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Abstract. In this paper, we introduce I-fine modules and I-
cofine modules. Some results of local cohomology modules con-
cerning to these modules will be shown.
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1. Introduction

Throughout this paper, R is a noetherian commutative (with non-
zero identity) ring and I is an ideal of R. It is well-known that the
local cohomology theory of Grothendieck is an important tool in com-
mutative algebra and algebraic geometry. For an R-module M , the
I-torsion submodule of M is

ΓI(M) = {x ∈M | Inx = 0 for some positive integer n}.
The functor ΓI from the category of R-modules to itself is covariant,
left exact and R-linear. The i-th right derived functor of ΓI is called
the i-th local cohomology functor H i

I with respect to ideal I. When M
is a finitely generated R-module, many properties of H i

I(M) have been
studied in [3], [5], [7] and [9]. In [1] the authors studied some properties
of the local cohomology modules H i

I(M) relating to coatomic modules.
An R-module M is called coatomic if every proper submodule of M is
contained in a maximal submodule of M. The coatomic modules were
introduced by H. Zöschinger in [10]. An important result on coatomic
modules is implied from [10, Satz 2.4] that if M is a coatomic over a
local ring (R,m), then there is a short exact sequence

0→ 0 :M mt →M →M/(0 :M mt)→ 0,

where M/(0 :M mt) is finitely generated for some integer t. It is known
that finitely generated modules are coatomic. Another extension of
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finitely generated modules are minimax modules. Minimax modules
were first introduced by H. Zöschinger in [11]. An R-module M is
minimax if there is a finitely generated submodule N of M such that
M/N is artinian. Base on the coatomic modules and minimax modules,
we introduce I-fine R-modules and I-cofine R-modules. An R-module
M is I-fine if it has an I-torsion submodule N such that M/N is
finitely generated. In a local ring (R,m), coatomic modules are m-fine.
An R-module M is I-cofine if it has a finitely generated submodule N
such that M/N is I-torsion. The minimax R-modules over a local ring
(R,m) are m-cofine.

The organization of our paper is as follows. In Section 2, we deal
with I-fine modules. An equivalent condition of I-torsion modules
when M is an I-fine R-module is shown in Theorem 2.5. Next, The-
orem 2.8 shows that H i

I(M) is finitely generated or coatomic for all
i ≥ t if and only if H i

I(M) = 0 for all i ≥ t. When studying the
finiteness of supports of local cohomology modules with respect to an
ideal, Aghapournahr and Melkersson in [1] or Saremi in [6] proved that
Supp(HdimM−1

I (M)) is a finite set. Now, we verify in Theorem 2.14
that in a semi-local ring, the set Supp(HdimM−1

I (M)) is finite when
M is an I-fine R-module. Section 2 is closed by Theorem 2.16 which
affirms that if M is an I-fine R-module with d = dimM > 0 or an
I-cofine R-module with d = dimM > 1 over a local ring (R,m), then
the module Hd

I (M) is artinian and

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

The last section is devoted to the study of I-cofine modules. Theorem
3.5 asserts that in a local ring (R,m) and M a non-zero m-cofine R-
module, the module H i

m(M) is artinian for all i > 0 and HdimM
m (M) 6=

0. Finally, the set of attached primes of HdimM
I (M) is established in

Theorem 3.8 when M is an I-cofine module.

2. I-fine modules

An R-module M is called I-torsion if M = ΓI(M). When M is a
finitely generated R-module then M is I-torsion if and only if I tM = 0
for some integer t. Firstly, we extend this result in the case M is belong
to a class of R-modules which contains class of finitely generated R-
modules.

Definition 2.1. An R-module M is I-fine if it has an I-torsion sub-
module N such that M/N is finitely generated.
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The following examples may be implied immediately from 2.1.

Example 2.2. (i) Finitely generated modules are I-fine modules.
(ii) Coatomic modules over local ring (R,m) are m-fine.
(iii) Let M be a finitely generated R-module. It follows from [3,

2.2.6] that there is a short exact sequence

0→M/ΓI(M)→ DI(M)→ H1
I (M)→ 0.

Therefore, the ideal transform DI(M) is I-fine.

Here are some elementary properties of this concept.

Proposition 2.3. Let 0 → L → M → N → 0 be a short exact
sequence. Then M is I-fine if and only if L,N are both I-fine.

Proof. We can assume that L is a submodule of M and N = M/L.
Firstly, if M is an I-fine R-module, then there is an I-torsion submod-
ule K of M such that M/K is finitely generated. It is clear that K ∩L
is an I-torsion submodule of L and

L/K ∩ L ∼= K + L/K ⊆M/K.

Hence L/K ∩ L is finitely generated and then L is I-fine. Next we
show that M/L is I-fine. Since K + L/L ∼= K/K ∩ L, it follows that
K + L/L is I-torsion. On the other hand,

M/L

K + L/L
∼=

M

K + L

and M/K +L is a homomorphic image of finitely generated R-module
M/K. Therefore, M/L is an I-fine R-module.

Now assume that L,M/L are both I-fine R-modules. By 2.1, L has
an I-torsion submodule K such that L/K is finitely generated and
there is a submodule P of M containing L such that P/L is I-torsion
and M/P is finitely generated. Note that K is an I-torsion submodule
of M and M/K is finitely generated since

M

K
∼=

M/P

P/K
.

Consequently, M is an I-fine R-module. �

From 2.3, the I-fine modules is a Serre subcategory of the category
of R-modules.

Corollary 2.4. The following statements hold:

(i) Direct sum of finite I-fine R-modules is I-fine.
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(ii) Let M be a finitely generated R-module and N an I-fine R-
module. Then ExtiR(M,N) and TorRi (M,N) are I-fine for all
i ≥ 0.

Now we give some equivalent conditions on the I-torsionness relating
to I-fine R-modules.

Theorem 2.5. Let M be an I-fine R-module. The following statements
are equivalent:

(i) M is I-torsion;
(ii) H i

I(M) = 0 for all i > 0.

Proof. (i) ⇒ (ii). Trivial.
(ii) ⇒ (i). By 2.1, there is a short exact sequence

0→ N →M → P → 0,

where N is I-torsion and P is finitely generated. By applying the
functor ΓI to the above exact squence, we have

H i
I(M) ∼= H i

I(P )

for all i > 0 since H i
I(N) = 0 for all i > 0 by [3, 2.1.7(i)].

It follows from the assumption that H i
I(P ) = 0 for all i > 0. If

P 6= ΓI(P ), then P/ΓI(P ) is an I-torsion-free R-module. There is an
element x ∈ I which is P/ΓI(P )-regular. Hence H i

I(P/ΓI(P )) 6= 0 for
some i ≥ 1. On the other hand, H i

I(P/ΓI(P )) ∼= H i
I(P ) for all i > 0

and this is a contradition. Therefore, P is I-torsion and then so is
M. �

Let M be a finitely generated module over local ring (R,m), then
H i

m(M) is artinian for all i ≥ 0. Now, we extend this property in the
case M is a m-fine R-module.

Proposition 2.6. Let (R,m) be a local ring and M a non-zero m-fine
R-module. Then

(i) H i
m(M) is artinian for all i > 0.

(ii) HdimM
m (M) 6= 0.

Proof. (i). We have a short exact sequence

0→ N →M → K → 0,

where N is m-torsion and K is finitely generated. Apply the functor
Γm to above exact sequence, we get an exact sequence

0→ Γm(N)→ Γm(M)→ Γm(K)→ 0
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and H i
m(K) ∼= H i

m(M) for all i > 0. Since K is finitely generated,
it follows that H i

m(K) is artinian for all i ≥ 0. Therefore H i
m(M) is

artinian for all i > 0.
(ii) If dimM = 0, then M is m-torsion. Thus H0

m(M) = M and the
assertion follows from the hypothesis on M.

Let dimM > 0. Note that dimM = dimK and HdimM
m (K) ∼=

HdimM
m (M). By [3, 6.1.4], HdimM

m (K) 6= 0 and the proof is complete. �

Corollary 2.7. [1, 3.2, 3.4] Let (R,m) be a local ring and M a non-zero
coatomic R-module. Then

(i) H i
m(M) is artinian for all i > 0.

(ii) HdimM
m (M) 6= 0.

The following theorem is a generalization of [1, 3.9] which shows a
relationship on the vanishing, the finiteness of H i

I(M).

Theorem 2.8. Let (R,m) be a local ring, M an I-fine R-module and
t a positive integer. The following statements are equivalent:

(i) H i
I(M) = 0 for all i ≥ t;

(ii) H i
I(M) is finitely generated for all i ≥ t;

(iii) H i
I(M) is coatomic for all i ≥ t.

Proof. (i) ⇒ (ii) ⇒ (iii). Trivial.
(iii) ⇒ (i). There is a short exact sequence

0→ L→M → N → 0,

where L is I-torsion and N is finitely generated. Apply the functor ΓI

to the above exact sequence, we get an exact sequence

0→ ΓI(L)→ ΓI(M)→ ΓI(N)→ 0

and H i
I(N) ∼= H i

I(M) for all i > 0. By the assumption, H i
I(N) is

coatomic for all i ≥ t. It follows from [1, 3.9] that H i
I(N) = 0 for all

i ≥ t, which completes the proof. �

Corollary 2.9. Let (R,m) be a local ring and M an I-fine R-module

with cd(I,M) > 0. Then H
cd(I,M)
I (M) is not finitely generated.

Proposition 2.10. Let M be an I-fine R-module and t a positive in-
teger such that H i

I(M) = 0 for all i > t. Then H t
I(M)/IH t

I(M) = 0.

Proof. Since M is an I-fine R-module, there is an I-torsion submodule
N such that M/N is finitely generated. The proof above gives

H t
I(M) ∼= H t

I(M/N).
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Combining the hypothesis with [2, 3.1] we have H t
I(M/N)/IH t

I(M/N) =
0 and the assertion follows. �

Corollary 2.11. Let (R,m) be a local ring and M an I-fine R-module.

Assume that cd(I,M) > 0 and K is a proper submodule of H
cd(I,M)
I (M).

Then H
cd(I,M)
I (M)/K is not a coatomic R-module.

Proof. Suppose that the conclusion is false. By the definition of coatomic

modules, there exists a submodule L of H
cd(I,M)
I (M) such that we have

a short exact sequence

0→ L/K → H
cd(I,M)
I (M)/K → R/m→ 0.

By applying the functor R/I ⊗R − to the above exact sequence, there
is a following exact sequence

· · · → L/IL + K → H
cd(I,M)
I (M)/IH

cd(I,M)
I (M) + K → R/m→ 0.

Note that H
cd(I,M)
I (M)/IH

cd(I,M)
I (M) + K is a homomorphic image of

H
cd(I,M)
I (M)/IH

cd(I,M)
I (M). Consequently, we can conclude that

H
cd(I,M)
I (M)/IH

cd(I,M)
I (M)+K = 0 by 2.10. This implies that R/m =

0 which is a contradiction. �

We see in [9, 2.2] that H i
I(M) is artinian for all i < t if M is a finitely

generated R-module such that Supp(H i
I(M)) ⊆ Max for all i < t. Now,

we consider the case M is an I-fine module.

Proposition 2.12. Let M be an I-fine R-module and t a non-negative
integer such that Supp(H i

I(M)) ⊆ Max(R) for all i < t. Then H0
I (M)

is minimax and H i
I(M) is artinian for all 0 < i < t.

Proof. It follows from 2.1 that there is an I-torsion submodule N of
M such that M/N is finitely generated. From the exactness of the
sequence

0→ N →M →M/N → 0

we deduce a short exact sequence

0→ N → ΓI(M)→ ΓI(M/N)→ 0

and H i
I(M) ∼= H i

I(M/N) for all i > 0. Since Supp(H i
I(M)) ⊆ Max(R)

for all i < t, we infer that Supp(H i
I(M/N)) ⊆ Max(R) for all i < t.

Since M/N is a finitely generated R-module, we can conclude by [9,
2.2] that H i

I(M/N) is artinian for all i < t and which completes the
proof. �



On I-fine modules, I-cofine modules and local cohomology modules 7

Corollary 2.13. Let (R,m) be a local ring, M a coatomic R-module.
Assume that t is a non-negative integer such that Supp(H i

I(M)) ⊆ {m}
for all i < t. Then H0

I (M) is minimax and H i
I(M) is artinian for all

0 < i < t.

Next, we will consider the dimension of H i
I(M) and the support of

Hd−1
I (M) where d = dimM. In [1, 3.3] or [6, 2.3], when studying the

local cohomology modules with respect to an ideal, the authors showed
that dimH i

I(M) ≤ d− i and Supp(Hd−1
I (M)) is a finite set. The proof

of next theorem is based on these results. .

Theorem 2.14. Let M be an I-fine R-module with d = dimM < ∞.
Then

(i) dimH i
I(M) ≤ d− i.

(ii) If R is a semi-local ring, then Supp(Hd−1
I (M)) is finite.

Proof. (i) The short exact sequence

0→ L→M → N → 0,

where L is I-torsion and N is finitely generated, induces an exact se-
quence

0→ ΓI(L)→ ΓI(M)→ ΓI(N)→ 0

and H i
I(N) ∼= H i

I(M) for all i > 0. It follows from [1, 3.3(a)] that
dimH i

I(M) ≤ d − i for all 0 < i ≤ d. Note that dim ΓI(N) ≤ d and
dim ΓI(L) = dimL ≤ d. Hence dim ΓI(M) ≤ d, as required.

(ii) If dimM > 1, then the claim follows from [1, 3.3(b)] and the
isomorphism H i

I(N) ∼= H i
I(M) for all i > 0. Now assume that dimM =

1. Note that Supp(H0
I (N)) is finite by [1, 3.3(b)]. Since N is I-torsion

and dimN ≤ 1, then Supp(N) is finite. Now from the equality

Supp(H0
I (M)) = Supp(H0

I (L)) ∪ Supp(H0
I (N))

we can conclude that Supp(H0
I (M)) is finite, which completes the proof.

�

Corollary 2.15. Let M be an I-fine R-module with finite dimension.
Then

Supp(HdimM−1
I (M)) ⊆ Ass(HdimM−1

I (M)) ∪Max(R).

Proof. Since dim(HdimM−1
I (M)) ≤ 1, we see that Supp(HdimM−1

I (M))
contains minimal prime ideals of Ass(HdimM−1

I (M)) and maximal ideals,
which completes the proof. �
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It is well-known that if M is a finitely generated R-module with
dimM = d, then Hd

I (M) is artinian. In [5], Dibaei and Yassemi proved
that

Att(Hd
I (M)) = {p ∈ Ass(M) | cd(I, R/p) = n},

where cd(I,N) = sup{n | Hn
I (N) 6= 0}.

Theorem 2.16. Let M be an I-fine R-module with d = dimM > 0.
Then Hd

I (M) is artinian and

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

Proof. There is an I-torsion R-submodule N of M such that M/N is
finitely generated by 2.1. From the short exact sequence

0→ N →M →M/N → 0

we have

H i
I(M) ∼= H i

I(M/N)

for all i > 0. If dimM/N = dimM > 0, then Hd
I (M/N) is artinian.

Hence Hd
I (M) is also artinian. Now by [5, Theorem A],

Att(Hd
I (M)) = Att(Hd

I (M/N))

= {p ∈ Supp(M/N) | cd(I, R/p) = d}.

Since N is I-torsion, it follows that Supp(N) ⊆ V (I) and then

Supp(M) = Supp(N) ∪ Supp(M/N) ⊆ Supp(M/N) ∪ V (I).

Let p ∈ Supp(M) such that cd(I, R/p) = d > 0. We see that p 6∈ V (I)
since H i

I(R/p) = 0 for all i > 0. This implies that p ∈ Supp(M/N).
Therefore

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

If dimM/N < dimM, then dimM = dimN. We see that Hd
I (M) = 0

and Att(Hd
I (M)) = ∅. Let p ∈ Supp(M) such that cd(I, R/p) = d > 0.

We see that p ∈ Supp(N) ∪ Supp(M/N). Since Supp(N) ⊆ V (I), it
follows that p 6∈ Supp(N). Hence p ∈ Supp(M/N) and dim(R/p) < d
since dimM/N < d. This yields cd(I, R/p) < d. So we can conclude
that

{p ∈ Supp(M) | cd(I, R/p) = d} = ∅,
and the proof is complete. �

It should be mentioned that the above result is not true when dimM =
0. The example is similar to [1, 3.5]. On the other hand, if R is
not a semi-local ring and dimM = 0, then H0

I (M) is not artinian.



On I-fine modules, I-cofine modules and local cohomology modules 9

Let R = Z,M = (Z2)
N and I = 2Z. We see that dimM = 0 and

H0
I (M) = M is not artinian.

3. On I-cofine modules

Next, we give another definition that is an extension of finitely gen-
erated R-modules.

Definition 3.1. An R-module M is I-cofine if it has a finitely gener-
ated submodule N such that M/N is I-torsion.

We see that finitely generated modules are I-cofine modules. In a lo-
cal ring (R,m), minimax modules are m-cofine modules. The reversion
will be shown in the following proposition.

Proposition 3.2. Let (R,m) be a local ring and M a m-cofine R-
module. If 0 :M m is artinian, then M is minimax.

Proof. There is a short exact sequence

0→ L→M → N → 0,

where L is finitely generated and N is m-torsion. From this, we get an
exact sequence

0→ 0 :L m→ 0 :M m→ 0 :N m→ Ext1R(R/m, L).

Since L is finitely generated, it follows that Ext1R(R/m, L) is artinian.
By the assumption, 0 :N m is an artinian R-module. It follows from [4,
1.3] that N is artinian, which infers that M is a minimax R-module. �

Let us mention an important property of this concept.

Proposition 3.3. Let 0 → L → M → N → 0 be a short exact
sequence. Then M is I-cofine if and only if L,N are both I-cofine.

Proof. We can assume that L is a submodule of M and N = M/L.
Let M be an I-cofine R-module. By 3.1 there is a finitely generated
submodule K of M such that M/K is I-torsion. This implies that
K ∩ L a finitely generated submodule of L. Moreover,

L

K ∩ L
∼=

K + L

K
⊆ M

K

and by [3, 2.1.3] L/K∩L is I-torsion. Hence L is an I-cofine R-module.
Now we prove that M/L is I-cofine. From the isomorphism

K + L

L
∼=

K

K ∩ L
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we get that K + L/L is a finitely generated submodule of M/L since
K is finitely generated. Next, combining the isomorphisms

M/L

K + L/L
∼=

M

K + L
∼=

M/K

K + L/K

with [3, 2.1.3], (M/L)/(K +L/L) is an I-torsion R-module. Therefore
M/L is an I-cofine R-module.

Now, assume that L and M/L are both I-cofine. There is a finitely
generated submodule K of L such that L/K is I-torsion and a sub-
module P of M containing L such that P/L is finitely generated and
(M/L)/(P/L) is I-torsion. This induces that K is a finitely generated
submodule of M. The isomorphism

M

K
∼=

M/P

P/K

shows that M/K is I-torsion. Hence M is an I-cofine R-module. �

From 3.3, the I-cofine modules is a Serre subcategory of the category
of R-modules.

Corollary 3.4. The following statements hold:

(i) Direct sum of finite I-cofine R-modules is I-cofine.
(ii) Let M be a finitely generated R-module and N an I-cofine R-

module. Then ExtiR(M,N) and TorRi (M,N) are I-cofine for all
i ≥ 0.

Let M be a finitely generated module over local ring (R,m), then
H i

m(M) is artinian for all i ≥ 0. Now, we extend this property in the
case M is an m-cofine R-module.

Theorem 3.5. Let (R,m) be a local ring and M a non-zero m-cofine
R-module. Then

(i) H i
m(M) is artinian for all i > 0.

(ii) If dimM 6= 1, then HdimM
m (M) 6= 0.

Proof. (i). We have a short exact sequence

0→ N →M → K → 0,

where K is m-torsion and N is finitely generated. Apply the functor
Γm to above exact sequence, we get an exact sequence

0→ Γm(N)→ Γm(M)→ Γm(K)→ H1
m(N)→ H1

m(M)→ 0
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and H i
m(N) ∼= H i

m(M) for all i > 1. Since N is finitely generated,
it follows that H i

m(N) is artinian for all i ≥ 0. Therefore H i
m(M) is

artinian for all i > 0.
(ii) If dimM = 0, then M is m-torsion. Consequently H0

m(M) = M.
The assertion follows from the hypothesis on M.

Let dimM > 1. Note that dimN = dimM and HdimM
m (N) ∼=

HdimM
m (M). By [3, 6.1.4], HdimN

m (N) 6= 0 and the proof is complete. �

If dimM = 1, then H1
I (M) can be vanished.

Example 3.6. Let R = Z,M = (Z2)
N and I = 2Z. Then dimM = 1

and M is I-torsion. Hence H1
I (M) = 0.

Corollary 3.7. Let (R,m) be a local ring and M a minimax R-module.
Then the following statements hold:

(i) H i
m(M) is artinian for all i > 0;

(ii) HdimM
m (M) 6= 0 where dimM 6= 1.

Theorem 3.8. Let M be an I-cofine R-module with d = dimM. The
following statements hold:

(i) dimH i
I(M) ≤ d− i.

(ii) If R is a semi-local ring, then Supp(Hd−1
I (M)) is finite.

(iii) If dimM > 1, then Hd
I (M) is artinian and

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

Proof. (i) By 3.1, there exists a short exact sequence

0→ N →M → A→ 0

where N is finitely generated and A is I-torsion. By applying the
functor ΓI to the above exact sequence, there is an exact sequence

0→ H0
I (N)→ H0

I (M)→ H0
I (A)→ H1

I (N)→ H1
I (M)→ 0

and

H i
I(N) ∼= H i

I(M)

for all i ≥ 2. It follows from [1, 3.3] that dimH i
I(N) ≤ d − i. This

implies that dimH i
I(M) ≤ d− i.

(ii). Using again [1, 3.3], Supp(Hd−1
I (N)) is finite. The assertion

holds in the case dimM ≥ 2. Now, assume that dimM = 1. We see
that dimN ≤ 1 and dimH0

I (A) = dimA ≤ 1. Then Supp(H0
I (N)) and

Supp(H0
I (A)) are finite. Consequently, Supp(H0

I (M)) is finite and the
claim follows.
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(iii). If dimM = dimN, then Hd
I (N) is artinian and so is Hd

I (M).
By using [5, Theorem A] again, we have

Att(Hd
I (M)) = Att(Hd

I (N))

= {p ∈ Supp(N) | cd(I, R/p) = d}.

Note that

Supp(M) = Supp(N) ∪ Supp(A) ⊆ Supp(N) ∪ V (I)

since A is an I-torsion R-module. Let p ∈ Supp(A), we have H i
I(R/p) =

0 for all i > 0. Hence cd(I, R/p) ≤ 0. This implies that

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

If dimN < dimM, then dimM = dimA. It follows that Hd
I (M) = 0.

Therefore Att(Hd
I (M)) = ∅. Let p ∈ Supp(M) such that cd(I, R/p) =

d. Then p ∈ Supp(N). On the other hand, dim(R/p) ≤ dimN and
cd(I, R/p) ≤ dimR/p < d. Thus

{p ∈ Supp(M) | cd(I, R/p) = d} = ∅
and the proof is complete. �

Note that, if M is an I-cofine R-module with dimM = 1, then we
see that

Att(H1
I (M)) ⊆ {p ∈ Supp(M) | cd(I, R/p) = 1}.

Corollary 3.9. Let (R,m) be a local ring and M a minimax R-module
with d = dimM > 1. Then Hd

I (M) is artinian and

Att(Hd
I (M)) = {p ∈ Supp(M) | cd(I, R/p) = d}.

Proposition 3.10. Let (R,m) be a local ring, M an I-cofine R-module
and t > 1 a positive integer. The following statements are equivalent:

(i) H i
I(M) = 0 for all i ≥ t.

(ii) H i
I(M) is finitely generated for all i ≥ t.

(iii) H i
I(M) is coatomic for all i ≥ t.

Proof. (i) ⇒ (ii) ⇒ (iii). Trivial. We now prove (iii) ⇒ (i). Since M
is an I-cofine R-module, there is a short exact sequence

0→ N →M → A→ 0,

where N is finitely generated and A is I-torsion. By applying the
functor ΓI to the above exact sequence, we get a long exact sequence

0→ H0
I (N)→ H0

I (M)→ H0
I (A)→ H1

I (N)→ H1
I (M)→ 0
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and
H i

I(N) ∼= H i
I(M)

for all i ≥ 2. By the hypothesis, H i
I(N) is coatomic for all i ≥ t. It

follows from 2.8 that H i
I(N) = 0 for all i ≥ t and which completes the

proof. �
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