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1 Introduction
We consider a process X = (X1(t), X2(t),… , Xd(t))t≥0 given by the following stochastic differential
equation (SDE)

Xi(t) = Xi(0) + ∫

t

0

(

∑

j≠i

ij
Xi(s) −Xj(s)

+ bi(Xi(s))

)

ds + ∫

t

0
�i(Xi(s))dWi(s), 1 ≤ i ≤ d, (1)

where X(0) is a deterministic constant and belongs to Δd = {x = (x1, x2,… , xd) ∈ ℝd ∶ x1 < x2 <
… < xd}, ij = ji ≥ 0 and (W (t) = (W1(t),W2(t)),… ,Wd(t))t≥0 is a d-dimensional Brownian motion
defined on a filtered probability space (Ω, , (t)t≥0,ℙ).In mathematical physics, the processX is used to model systems of d non-colliding particles evolv-
ing on the real line, such as Dyson Brownian motion or particles with electrostatic repulsion. The
SDE (1) was first studied by Dyson (1962), where it is used to represent the eigenvalues of a d × d-
dimensional symmetric Gaussian random matrix. The theory was later developed by Bru (1989) and
Bru (1991), where it was showed that the eigenvalues of a Wishart process also satisfy a system of the
form (1). There have been many works on the existence and uniqueness of the solution to equation (1),
e.g., Cépa and Lépingle (1997), Graczyk andMałecki (2014), Lépingle (2010), Rogers and Shi (1993),
Nakanuma and Taguchi (2018). Many applications and interesting features ofX were presented in Ka-
tori and Tanemura (2004), Rost and Vares (1985), and Ramanan and Shkolnikov (2018).
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The main aim of this paper is to introduce a high order numerical approximation scheme for equa-
tion (1) such that the approximate solution always stays in Δd . Since the multidimensional SDEs
whose solution stays in a domain appear in many applications such as biology, finance, and physics
(see Kloeden and Platen 1995), their numerical approximation has been studied extensively. Gyöngy
(1998) introduced a polygonal Euler approximation for SDEs on domains of ℝd and showed that it
converges almost surely if the drift coefficient satisfies a monotonicity condition and the diffusion co-
efficient is Lipschitz continuous. For SDEs with locally Lipschitz continuous coefficients, Jentzen et
al. (2009) introduced a projection Euler method and showed that it converges at the rate of order 1
in the pathwise sense. The main difficulty in constructing a numerical approximation for equation (1)
comes from the fact that its drift coefficient is non-locally Lipschitz continuous and even blows up
at the boundary of Δd . The first numerical simulation for Xt is presented in Li and Menon (2013)
where the authors introduced a tamed Euler-Maruyama approximation scheme. However, this tamed
scheme does not preserve the non-colliding property of the original system. Ngo and Taguchi (2017)
introduced a semi-implicit Euler-Maruyama approximation scheme for the SDE (1) and studied its con-
vergence in Lp-norm. A key feature of their new scheme is that the approximate solution always stays
inside the domain Δd as the true solution does. They showed that if the coefficients b = (bi)1≤i≤d and
� = (�i)1≤i≤d are Lipschitz continuous then the Euler-Maruyama approximation scheme converges
at the rate of order 1∕2. Moreover, if � is a constant and b is differentiable up to order 2, then the
Euler-Maruyama approximation scheme converges at the rate of order 1.

In this paper, we introduce a semi-implicit Milstein approximation scheme for the SDE (1). We
show that the approximate solution always stays inside the domain Δd and it converges at the rate of
order 1 in the mean-square sense when b and � are bounded and differentiable continuous up to order
2. Since when � is constant, our semi-implicit Milstein scheme coincides with the semi-implicit Euler-
Maruyama scheme in Ngo and Taguchi (2017), our result can be considered as a generalization of the
one in Ngo and Taguchi (2017) for SDEs with non-constant diffusion coefficients. To the best of our
knowledge, this is the first approximation scheme of strong order 1 for multidimensional SDEs defined
in a domain.

The rest of the paper is organized as follows. In Section 2, we introduce the semi-implicit Milstein
approximation scheme and state our main result in Theorem 2.1. The proof is given in Section 3. A
numerical simulation is presented in Section 4

2 Semi-implicit Milstein approximation scheme
The semi-implicit Milstein approximation scheme is defined as follows. For each integer n ≥ 1 and
T > 0, we set t(n)k = kT

n
, and X(n)(0) ∶= X(0), and for each k = 0,… , n − 1 and t ∈

[

t(n)k , t
(n)
k+1

]

,
X(n)(t) = (Xn

i (t))1≤i≤d is the unique solution in Δd of the following equations

X(n)
i (t) = X

(n)
i (t

(n)
k ) +

[

∑

j≠i

ij
X(n)
i (t) −X

(n)
j (t)

+ bi
(

X(n)
i (t

(n)
k )

)

]

(t − t(n)k )

+ �i
(

X(n)
i (t

(n)
k )

) [

Wi(t) −Wi(t
(n)
k )

]

+ 1
2
�i
(

X(n)
i (t

(n)
k )

)

�′i
(

X(n)
i (t

(n)
k )

)

[

(

Wi(t) −Wi(t
(n)
k )

)2
− (t − t(n)k )

]

, i = 1,… , d. (2)
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The existence and uniqueness of solution to equation (2) follows from Proposition 2.2 in Ngo and
Taguchi (2017) under an assumption that i,i+1 > 0 for all i = 1,… , d − 1.

We set Xij(t) = Xi(t) −Xj(t), X
(n)
ij (t) = X

(n)
i (t) −X

(n)
j (t) and ei(t) = Xi(t) −X

(n)
i (t). For x ∈ ℝd ,

we denote by ‖x‖ the Euclidian norm of x.
Throughout this paper, we use C > 0 to denote a generic constant, which is independent of n, but

may depend on b, �, ij and x0. The value of C may vary frome place to place. When C depends on
some addtional parameter, say p, we denote it by C(p).
Assumption Hp̂: The equation (1) has a unique strong solution in Δd , and there exist some positive
constants p̂ and C such that

sup
t∈[0,T ]

E
[

‖X(t)‖p̂
]

+ max
1≤i≤d−1

sup
t∈[0,T ]

E
[

|Xi,i+1(t)|−p̂
]

< C,

and
E
[

‖X(t) −X(s)‖p̂
]

≤ C|t − s|p̂∕2, for all 0 ≤ s < t ≤ T .

Remark 2.1. It was shown in Ngo and Taguchi (2017) that AssumptionHp̂ is satisfied for some classes
of particle systems of the form (1), such as the interacting Brownian particles and the Brownian parti-
cles with nearest neighbor replusion.

We denote by n the set of all stopping times � taking value in the set {t(n)k , 0 ≤ k ≤ n}, and C2
b (ℝ)the set of all functions f ∶ ℝ → ℝ such that f, f ′ and f ′′ are bounded.

Theorem 2.1. Suppose that b, � ∈ C2
b (ℝ).

(i) If AssumptionHp̂ holds for some p̂ ≥ 6, then

sup
�∈n

E
[

‖

‖

‖

X(�) −X(n)(�)‖‖
‖

2
]

≤ C
n2
. (3)

Moreover, for any p ∈ (0, 2), it holds that

E
[

sup
0≤k≤n

‖X(t(n)k ) −X
(n)(t(n)k )‖

p
]

≤ C(p)
np

. (4)

(ii) If AssumptionHp̂ holds for some p̂ ≥ 18, then for any p ∈ (0, 2),

E
[

sup
t∈[0,T ]

‖

‖

‖

X(t) −X(n)(t)‖‖
‖

p
]

≤ C(p)
(log n)3p∕2

np
. (5)
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3 Proof

3.1 Representation of estimate error

For each i = 1,… , d, we denote by ei(t) = Xi(t) − X
(n)
i (t), and ‖e(t)‖2 =

d
∑

i=1
e2i (t). For each t ∈

[

t(n)k , t
(n)
k+1

]

and i = 1,… , d, it follows from (1) and (2) that

ei(t) = ei(t
(n)
k ) + Vi(t) +

∑

j≠i

(

ij
Xij(t)

−
ij

X(n)
ij (t)

)

(t − t(n)k ), (6)

where Vi(t) = S1i(t) + S2i(t) + S3i(t) + S4i(t) + S5i(t)+S6i(t), and

S1i(t) = ∫

t

t(n)k

∑

j≠i

( ij
Xij(s)

−
ij

Xij(t)

)

ds, (7)

S2i(t) = ∫

t

t(n)k

[

bi(Xi(s)) − bi(Xi(t
(n)
k ))

]

ds, (8)

S3i(t) = ∫

t

t(n)k

[

�i(Xi(s)) − �i(Xi(t
(n)
k )) − ∫

s

t(n)k

�i
(

Xi(t
(n)
k )

)

�′i
(

Xi(t
(n)
k )

)

dWi(u)

]

dWi(s), (9)

S4i(t) =
[

bi(Xi(t
(n)
k )) − bi(X

(n)
i (t

(n)
k ))

]

(t − t(n)k ), (10)
S5i(t) =

[

�i(Xi(t
(n)
k )) − �i(X

(n)
i (t

(n)
k ))

] (

Wi(t) −Wi(t
(n)
k )

)

, (11)
S6i(t) =

1
2

[

�i(Xi(t
(n)
k ))�

′
i (Xi(t

(n)
k )) − �i(X

(n)
i (t

(n)
k ))�

′
i (X

(n)
i (t

(n)
k ))

]

×
[

(

Wi(t) −Wi(t
(n)
k

)2
− (t − t(n)k

]

. (12)

It follows from (6) that

e2i (t
(n)
k ) + 2Vi(t)ei(t

(n)
k ) + V

2
i (t) =

{

ei(t) −
∑

j≠i

[

ij
Xij(t)

−
ij

X(n)
ij (t)

]

(t − t(n)k )

}2

≥ e2i (t) − 2ei(t)
∑

j≠i

[

ij
Xij(t)

−
ij

X(n)
ij (t)

]

(t − t(n)k ).

This implies that

‖e(t(n)k )‖
2 + 2

d
∑

i=1
Vi(t)ei(t

(n)
k ) +

d
∑

i=1
V 2
i (t)

≥ ‖e(t)‖2 − 2(t − t(n)k )
d
∑

i=1
ei(t)

∑

j≠i

[

ij
Xij(t)

−
ij

X(n)
ij (t)

]

4



= ‖e(t)‖2 − (t − t(n)k )
d
∑

i=1

∑

j≠i

(

ei(t) − ej(t)
)

[

ij
Xij(t)

−
ij

X(n)
ij (t)

]

= ‖e(t)‖2 − (t − t(n)k )
d
∑

i=1

∑

j≠i

(

Xij(t) −X
(n)
ij (t)

)

[

ij
Xij(t)

−
ij

X(n)
ij (t)

]

≥ ‖e(t)‖2,

where the last estimate follows from the fact that (Xij(t) −X
(n)
ij (t))(

ij
Xij(t)

−
ij

X(n)
ij (t)

) ≤ 0 for any i ≠ j.

Therefore,

‖e(t)‖2 ≤ ‖e(t(n)k )‖
2 + 6

6
∑

m=1
‖Sm(t)‖2 + 2

6
∑

m=1
Rm(t), (13)

where
‖Sm(t)‖2 =

d
∑

i=1
S2mi(t), and Rm(t) =

d
∑

i=1
ei(t

(n)
k )Smi(t). (14)

In the following we will estimate the expectations of S2mi andRm form = 1, 2,… , 6, and i = 1, 2,… , d.

3.2 Some auxiliary estimates
We need the following simple estimate.
Lemma 3.1. Let (ak)0≤k≤n,(�k)0≤k≤n and (�k)0≤k≤n are adapted processes defined on a filtered probabilityspace (Ω,, (k)0≤k≤n,ℙ) such that

(i) a0 = 0 and ak ≥ 0 for any 1 ≤ k ≤ n,
(ii) E(�k+1|k) = 0, for any 0 ≤ k ≤ n − 1,
(iii) ak+1 ≤ qak + �k + �k+1 for any 0 ≤ k ≤ n − 1, for some q > 1,
(iv) sup0≤k≤n E[|�k|] ≤ " for some " > 0.

Then for any stopping time � ≤ n,
E[a�] ≤

"qn

q − 1
.

Proof. It follows from condition (iii) that∑k
i=0 q

k−iai+1 ≤
∑k

i=0

(

qk−i+1ai+qk−i�i+qk−i�i+1
)

. This fact
together with condition (i) implies ak+1 ≤

k
∑

i=0
qk−i�i +

k+1
∑

i=1
qk+1−i�i.

It leads to q−kak ≤
n−1
∑

i=0
q−i−1|�i| +

k
∑

i=1
q−i�i. Let Mk =

k
∑

i=1
q−i�i. For all stoping time � ≤ n, q−na� ≤

q−�a� ≤
n−1
∑

i=0
q−i−1|�i| +M� . Thanks to condition (ii), (Mk,k)1≤k≤n is a martingale. Using condition
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(iv) and Doob’s optional sampling theorem, we get E[a�] ≤
n−1
∑

i=0
qn−1−i" ≤ "qn

q − 1
, which implies the

desired result.
We also need the following moment estimates for X and its modulus of continuity.

Lemma 3.2. (i) Let AssumptionHp̂ hold for some p̂ ≥ 2, then

E
[

sup
t∈[0,T ]

‖X(t)‖p̂
]

< C(p̂), (15)

E
[

sup
s≤t,t′≤s′

‖X(t) −X(t′)‖p̂
]

≤ C(p̂)
(

|s′ − s| ln 2T
|s′ − s|

)p̂∕2

, for all 0 ≤ s < s′ ≤ T . (16)

(ii) Let AssumptionHp̂ hold for some p̂ ≥ 3, then

E
[

max
i=1,…,d−1

sup
t∈[0,T ]

|Xi,i+1(t)|−p̂∕3
]

< C(p̂), (17)

Proof. (i) Let AssumptionHp̂ hold for p̂ ≥ 2. Since bi is bounded,

|Xi(t)|p̂ ≤ C(p̂) + C(p̂)∫

T

0

∑

j≠i

|

|

|

|

|

ij
Xij(s)

|

|

|

|

|

p̂

ds + C(p̂)
|

|

|

|

|

∫

t

0
�i(Xi(s))dWi(s)

|

|

|

|

|

p̂

.

Thanks to Burkholder-Davis-Gundy’s inequality, we get

E
[

sup
t∈[0,T ]

|Xi(t)|p̂
]

≤ C(p̂) + C(p̂)E

[

sup
t∈[0,T ]

|

|

|

|

|

∫

t

0
�i(Xi(s))dWi(s)

|

|

|

|

|

p̂]

≤ C(p̂) + C(p̂)E

[

|

|

|

|

|

∫

T

0
�2i (Xi(s))ds

|

|

|

|

|

p̂∕2]

≤ C(p̂),

which implies (15). Next, for any s ≤ t ≤ t′ ≤ s′, it follows from Hölder’s inequality for integral that

|Xi(t′) −Xi(t)|p̂ ≤ C(p̂)(s′ − s)p̂−1 ∫

s′

s

∑

j≠i

1
|Xij(u)|p̂

du+C(p̂)(s′ − s)p̂ +C(p̂)||
|∫

t′

t
�i(Xi(u))dWi(u)

|

|

|

p̂
.

(18)
By applying Theorem 1 in Fisher and Nappo (2009), we have

E

[

sup
s≤t,t′≤s′

|

|

|

|

|

∫

t′

t
�i(Xi(u))dWi(u)

|

|

|

|

|

p̂]

≤ C(p̂)
(

|s′ − s| ln 2T
|s′ − s|

)p̂∕2

, for all 0 ≤ s < s′ ≤ T .

This fact together with (18) and AssumptionHp̂ concludes (16).(ii) Let that AssumptionHp̂ hold for p̂ ≥ 3. Applying Itô’s formula, we have
1

Xi(t) −Xj(t)
= −∫

t

0

1
X2
ij(s)

∑

k≠i

ik
Xik(s)

ds − ∫

t

0

bi(Xi(s))
X2
ij(s)

ds − ∫

t

0

�i(Xi(s))
X2
ij(s)

dWi(s)
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+ ∫

t

0

1
X2
ij(s)

∑

k≠j

jk
Xjk(s)

ds + ∫

t

0

bj(Xj(s))

X2
ij(s)

ds + ∫

t

0

�j(Xj(s))

X2
ij(s)

dWj(s)

+ ∫

t

0

�2i (Xi(s)) + �2j (Xj(s))

X3
ij(s)

ds. (19)

By following a similar argument as in the proof of (15), we obtain (17).
Lemma 3.3. Let S1i and R1 be defined by (7) and (14), respectively.

(i) Let AssumptionHp̂ hold for some p̂ ≥ 6. For any t(n)k ≤ t ≤ t(n)k+1, it holds that
R1(t) ≤

1
n
‖e(t(n)k )‖

2 + �1(t) + �1(t), (20)

where �1 and �1 are adapted processes satisfying E
[

|�1(t)|
]

≤ C
n3

and E
[

�1(t)|t(n)k

]

= 0. More-
over, it holds that

sup
t∈[0,T ]

E
[

‖S1(t)‖2
]

≤ C
n3
. (21)

(iii) Let AssumptionHp̂ hold for some p̂ ≥ 18, then

E
[

sup
t∈[0,T ]

‖S1(t)‖2
]

≤
C log3 n
n2

. (22)

Proof. (i) For each t ∈
[

t(n)k , t
(n)
k+1

]

, by (7) and(19), we can write S1i(t) = S̄1i(t) + Ŝ1i(t), where

S̄1i(t) = ∫

t

t(n)k
∫

t

s

∑

j≠i

∑

k≠i

ik
X2
ij(u)Xik(u)

duds − ∫

t

t(n)k
∫

t

s

∑

j≠i

∑

k≠i

ik
X2
ij(u)Xjk(u)

duds

+ ∫

t

t(n)k
∫

t

s

∑

j≠i

bi(Xi(u))
X2
ij(u)

duds − ∫

t

t(n)k
∫

t

s

∑

j≠i

bj(Xj(u))

X2
ij(u)

duds

− ∫

t

t(n)k
∫

t

s

∑

j≠i

1
X3
ij(u)

[

�2i (Xi(u)) + �2j (Xj(u))
]

duds,

and
Ŝ1i(t) = ∫

t

t(n)k
∫

t

s

∑

j≠i

1
X2
ij(u)

�i(Xi(u))dWi(u)ds − ∫

t

t(n)k
∫

t

s

∑

j≠i

1
X2
ij(u)

�j(Xj(u))dWj(u)ds

= ∫

t

t(n)k
∫

u

t(n)k

∑

j≠i

1
X2
ij(u)

�i(Xi(u))dsdWi(u) − ∫

t

t(n)k
∫

u

t(n)k

∑

j≠i

1
X2
ij(u)

�j(Xj(u))dsdWj(u),

where the last equation follows from Fubini’s theorem. Using Holder’s inequality and the estimate
x4y2 ≤ 2

3
x6 + 1

3
y6, we have

S̄21i(t) ≤
C
n2

{

∫

t

t(n)k
∫

t

s

∑

j≠i

∑

k≠i

2ik
X4
ij(u)X

2
ik(u)

duds + ∫

t

t(n)k
∫

t

s

∑

j≠i

∑

k≠i

2ik
X4
ij(u)X

2
jk(u)

duds
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+ ∫

t

t(n)k
∫

t

s

∑

j≠i

b2i (Xi(u))
X4
ij(u)

duds + ∫

t

t(n)k
∫

t

s

∑

j≠i

b2j (Xj(u))

X4
ij(u)

duds

+∫

t

t(n)k
∫

t

s

∑

j≠i

�4i (Xi(u)) + �4j (Xj(u))

X6
ij(u)

duds.

}

≤ C
n2

{

∫

t

t(n)k
∫

t

s

d−1
∑

i=1

[

1
X6
i,i+1(u)

+ 1
X4
i,i+1(u)

]

duds

}

.

Set
�1(t) =

n
4

d
∑

i=1
S̄21i(t) and �1(t) =

d
∑

i=1
ei(t

(n)
k )Ŝ1i(t).

By Young’s inequality,

R1(t) =
d
∑

i=1
ei(t

(n)
k )S1i(t) ≤

d
∑

i=1

(

e2i (t
(n)
k )
n

+ n
4
S̄21i(t)

)

+
d
∑

i=1
ei(t

(n)
k )Ŝ1i(t)

= 1
n
‖e(t(n)k )‖

2 + �1(t) + �1(t).

Since AssumptionHp̂ holds for p̂ ≥ 6, E
[

|�1(t)|
]

≤ C
n3
. Moreover, it easy to see thatE

[

�1(t)|t(n)k

]

= 0.
Thus we can conclude (20).

Next, using the AM-GM inequality a + b + c ≥ 3 3
√

abc for non-negative numbers a, b, c, and the
Hölder inquality for integral, we get

‖S1(t)‖2 ≤
C
n2

d
∑

i=1

∑

j≠i

{

∫

t

t(n)k

n3 |
|

Xi(s) −Xi(t)||
6 ds + ∫

t

t(n)k

n3 ||
|

Xj(s) −Xj(t)
|

|

|

6
ds

+2∫

t

t(n)k

|

|

|

Xij(s)
|

|

|

−6
ds + 2∫

t

t(n)k

|

|

|

Xij(t)
|

|

|

−6
ds

}

.

This estimate together with AssumptionHp̂ for p̂ ≥ 6 implies (21).
(ii) Finally we show (22). Note that supt∈[0,T ] ‖S1(t)‖2 is bounded above by

C
n2

n−1
∑

k=0

d
∑

i=1

∑

j≠i

{

sup
t(n)k ≤t≤t′≤t(n)k+1

n2‖X(t) −X(t′)‖6 + 1
n
max
i=1,…,d

sup
t(n)k ≤t≤t′≤t(n)k+1

|Xi,i+1(t)|−6
}

.

If AssumptionHp̂ holds with p̂ ≥ 18, then using Lemma 3.2 we obtain (22).
Lemma 3.4. Let S2i and R2 be defined by (8) and (14), respectively. Let Assumption Hp̂ hold for
some p̂ ≥ 2, for any t(n)k ≤ t ≤ t(n)k+1, then

R2(t) ≤
1
n
‖e(t(n)k )‖

2 + �2(t) + �2(t), (23)
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where �2 and �2 are adapted processes satisfying E
[

‖�2(t)‖
]

≤ C
n3

and E
[

�2(t)|t(n)k

]

= 0. Moreover,
it holds that

sup
t∈[0,T ]

E[‖S2(t)‖2] ≤
C
n3
, (24)

and
E
[

sup
t∈[0,T ]

‖S2(t)‖2
]

≤ C
n2
. (25)

Proof. For each t ∈
[

t(n)k , t
(n)
k+1

]

, applying Itô’s formula, we have

bi(Xi(t)) − bi(Xi(t
(n)
k )) = ∫

t

t(n)k

b′i(Xi(u))�i(Xi(u))dWi(u)

+ ∫

t

t(n)k

(

b′i(Xi(u))
∑

j≠i

ij
Xij(u)

+ b′i(Xi(u))bi(Xi(u)) +
b′′i (Xi(u))�2i (Xi(u))

2

)

du.

Combine with (8), we can write S2i(t) = S̄2i(t) + Ŝ2i(t), where

S̄2i(t) = ∫

t

t(n)k
∫

s

t(n)k

(

b′i(Xi(u))
∑

j≠i

ij
Xij(u)

+ b′i(Xi(u))bi(Xi(u)) +
b′′i (Xi(u))�2i (Xi(u))

2

)

duds,

and
Ŝ2i(t) = ∫

t

t(n)k
∫

s

t(n)k

b′i(Xi(u))�i(Xi(u))dWi(u)ds.

Set �2(t) = n
4

d
∑

i=1
S̄22i(t), and �2(t) =

d
∑

i=1
ei(t

(n)
k )Ŝ2i(t). By a similar argument as in proof of Lemma 3.3,

we obtain (23), (24), and (25).
Lemma 3.5. Let S3i and R3 be defined by (9) and (14), respectively. Let Assumption Hp̂ hold for
some p̂ ≥ 2, then

sup
t∈[0,T ]

E
[

‖S3(t)‖2
]

≤ C
n3
, (26)

and
E
[

sup
t∈[0,T ]

‖S3(t)‖2
]

≤ C
n2
. (27)

Proof. For each i = 1,… , d, applying Itô’s formula for �i, we get

�i(Xi(s)) − �i(Xi(t
(n)
k )) − ∫

s

t(n)k

�′i (Xi(t
(n)
k ))�i(Xi(t

(n)
k ))dWi(u)

=∫

s

t(n)k

[

∑

j≠i

ij�′i (Xi(u))
Xij(u)

+ �′i (Xi(u))bi(Xi(u)) +
1
2
�′′i (Xi(u))�2i (Xi(u))

]

du

+ ∫

s

t(n)k

[

�′i (Xi(u))�i(Xi(u)) − �′i (Xi(t
(n)
k ))�i(Xi(t

(n)
k ))

]

dWi(u).

9



Using Doob’s maximal inequality and Hölder’s inequality for integral, we get

E
⎧

⎪

⎨

⎪

⎩

sup
t(n)k ≤t≤t(n)k+1

[

∫

t

t(n)k
∫

s

t(n)k

(

∑

j≠i

ij�′i (Xi(u))
Xij(u)

+ �′i (Xi(u))bi(Xi(u)) +
1
2
�′′i (Xi(u))�2i (Xi(u))

)

dudWi(s)

]2⎫
⎪

⎬

⎪

⎭

≤ 4E
⎡

⎢

⎢

⎣

∫

t(n)k+1

t(n)k

(

∫

s

t(n)k

|

|

|

|

|

|

∑

j≠i

ij�′i (Xi(u))
Xij(u)

+ �′i (Xi(u))bi(Xi(u)) +
1
2
�′′i (Xi(u))�2i (Xi(u))

|

|

|

|

|

|

du

)2

ds
⎤

⎥

⎥

⎦

≤ C
n
E
⎡

⎢

⎢

⎣

∫

t(n)k+1

t(n)k
∫

t(n)k+1

t(n)k

|

|

|

|

|

|

∑

j≠i

ij�′i (Xi(u))
Xij(u)

+ �′i (Xi(u))bi(Xi(u)) +
1
2
�′′i (Xi(u))�2i (Xi(u))

|

|

|

|

|

|

2

duds
⎤

⎥

⎥

⎦

≤ C
n3
, (28)

where the last estimate follows from Assumption Hp̂ and the fact that b, � ∈ C2
b . Similary, by using

Doob’s maximal inequality, the Itô isometry and the Lipschitz continuity of �′i�i, we get

E
⎡

⎢

⎢

⎣

sup
t(n)k ≤t≤t(n)k+1

(

∫

t

t(n)k
∫

s

t(n)k

[

�′i (Xi(u))�i(Xi(u)) − �′i (Xi(t
(n)
k ))�i(Xi(t

(n)
k ))

]

dWi(u)dWi(s)

)2
⎤

⎥

⎥

⎦

≤ CE
⎡

⎢

⎢

⎣

∫

t(n)k+1

t(n)k

(

∫

s

t(n)k

[

�′i (Xi(u))�i(Xi(u)) − �′i (Xi(t
(n)
k ))�i(Xi(t

(n)
k ))

]

dWi(u)

)2

ds
⎤

⎥

⎥

⎦

= C ∫

t(n)k+1

t(n)k
∫

s

t(n)k

E
[

|

|

|

�′i (Xi(u))�i(Xi(u)) − �′i (Xi(t
(n)
k ))�i(Xi(t

(n)
k ))

|

|

|

2
]

duds

≤ C ∫

t(n)k+1

t(n)k
∫

s

t(n)k

E
[

|Xi(u) −Xi(t
(n)
k )|

2
]

duds

≤ C
n3
,

where the last estimate follows from Assumption 2.1. This estimate together with (28) implies that

sup
0≤k<n

E

[

sup
t(n)k ≤t≤t(n)k+1

‖S3(t)‖2
]

≤ C
n3
,

which concludes (26). Moreover,

E
[

sup
t∈[0,T ]

‖S3(t)‖2
]

≤
n−1
∑

k=0
E

[

sup
t(n)k ≤t≤t(n)k+1

‖S3(t)‖2
]

,

which implies (27).
Lemma 3.6. Let S4i and R4 be defined by (10) and (14), respectively.
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(i) It holds
‖S4(t)‖2 ≤

C
n2
‖e(t(n)k )‖

2 and R4(t) ≤ C
n
‖e(t(n)k )‖

2 for any t(n)k ≤ t ≤ t(n)k+1,

(ii) Moreover,
E
[

sup
t∈[0,T ]

‖S4(t)‖2
]

≤ C
n2

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

.

Proof. These estimates follows from the Lipschitz property of bi(x), so, we skip the detailed proof.
Lemma 3.7. Let S5i and R5 be defined by (11) and (14), respectively.

(i) For any t(n)k ≤ t ≤ t(n)k+1, it holds
‖S5(t)‖2 ≤

C
n
‖e(t(n)k )‖

2 + �5(t), (29)

where �5(t) is an adapted process satisfying E
[

�5(t)|t(n)k

]

= 0.
(ii) Moreover,

E
[

sup
t∈[0,T ]

‖S5(t)‖2
]

≤ C
n

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

. (30)

Proof. For any t ∈
[

t(n)k , t
(n)
k+1

]

, we have

‖S5(t)‖2≤ C
d
∑

i=1
‖e(t(n)k )‖

2(Wi(t) −Wi(t
(n)
k ))

2

≤ C
n
‖e(t(n)k )‖

2 + C
d
∑

i=1
‖e(t(n)k )‖

2
[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]

,

which implies (29) with �5(t) = C∑d
i=1 ‖e(t

(n)
k )‖

2
[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]

. On the other hand,

sup
t∈[0,T ]

‖S5(t)‖2≤ C
d
∑

i=1

n
∑

k=0
‖e(t(n)k )‖

2 sup
t(n)k ≤t≤t(n)k+1

(Wi(t) −Wi(t
(n)
k ))

2.

Note that supt(n)k ≤t≤t(n)k+1
(Wi(t) −Wi(t

(n)
k ))

2 and e(t(n)k ) are independent, we have

E
[

sup
t∈[0,T ]

‖S5(t)‖2
]

≤ C
d
∑

i=1

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

E

[

sup
t(n)k ≤t≤t(n)k+1

(Wi(t) −Wi(t
(n)
k ))

2

]

≤ 4C
d
∑

i=1

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

E
[

(Wi(t
(n)
k+1) −Wi(t

(n)
k ))

2
]

= 4Cd
n

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

,

which implies (30).
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Lemma 3.8. Let S6i be defined by (12).
(i) For any t ∈ [t(n)k , t(n)k+1], it holds

‖S6(t)‖2 ≤
C
n2
‖e(t(n)k )‖

2 + �6(t), (31)

where �6(t) is an adapted process satisfying E
[

�6(t)|t(n)k

]

= 0.
(ii) Moreover,

E
[

sup
t∈[0,T ]

‖S6(t)‖2
]

≤ C
n2

n
∑

k=0
E
[

‖e(t(n)k )‖
2
]

. (32)

Proof. For any t ∈
[

t(n)k , t
(n)
k+1

]

, since ��′ is Lipschitz continuous, we have

‖S6(t)‖2 ≤ C
d
∑

i=1
‖e(t(n)k )‖

2
[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2

≤ C
n2
‖e(t(n)k )‖

2

+ C
d
∑

i=1
‖e(t(n)k )‖

2
{

[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2
− 2(t − tk)2

}

.

Set �6(t) = ∑d
i=1 ‖e(t

(n)
k )‖

2
{

[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2
− 2(t − tk)2

}

, we have (31) andE
[

�6(t)|t(n)k

]

=

0. On the other hand, we have

sup
t∈[0,T ]

‖S6(t)‖2 ≤ C
n
∑

k=0

d
∑

i=1
‖e(t(n)k )‖

2 sup
t(n)k ≤t≤t(n)k+1

[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2
.

Note that supt(n)k ≤t≤t(n)k+1

[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2 and ‖e(t(n)k )‖2 are independent, we have

E
[

sup
t∈[0,T ]

‖S6(t)‖2
]

≤ C
n
∑

k=0

d
∑

i=1
E
[

‖e(t(n)k )‖
2
]

E

[

sup
t(n)k ≤t≤t(n)k+1

[

(Wi(t) −Wi(t
(n)
k ))

2 − (t − t(n)k )
]2
]

≤ 4C
n
∑

k=0

d
∑

i=1
E
[

‖e(t(n)k )‖
2
]

E
[

[

(Wi(t
(n)
k+1) −Wi(t

(n)
k ))

2 − (t(n)k+1 − t
(n)
k )

]2
]

= 8C
n2

n
∑

k=0
‖e(t(n)k )‖

2,

where the last inquality follows from Dood’s maximal inequality for non-negative sub-martingale.
Therefore, we conclude (32).

12



3.3 Proof of Theorem 2.1
(i) Let AssumptionHp̂ hold for p̂ ≥ 6. For each t ∈

[

t(n)k , t
(n)
k+1

]

, it follows from (13) and Lemmas 3.3
– 3.7 that

‖e(t)‖2 ≤
(

1 + C
n

)

‖e(t(n)k )‖
2 + ‖S1(t)‖2 + ‖S2(t)‖2 + ‖S3(t)‖2 + �1(t) + �2(t)

+ �1(t) + �2(t) + R3(t) + R5(t) + �5(t) + �6(t) + R6(t)

≤
(

1 + C
n

)

‖e(t(n)k )‖
2 + � (t) + �(t),

where � (t) = ‖S1(t)‖2 + ‖S2(t)‖2 + ‖S3(t)‖2 + �1(t) + �2(t), and �(t) = �1(t) + �2(t) + �5(t) + �6(t) +
R3(t) + R5(t) + R6(t). It also follows from Lemmas 3.3 – 3.5 that

sup
t∈[0,T ]

E[|� (t)|] ≤ C
n3
.

By choosing t = t(n)k+1, we have

‖e(t(n)k+1)‖
2 ≤

(

1 + C
n

)

‖e(t(n)k )‖
2 + � (t(n)k+1) + �(t

(n)
k+1).

Moreover, since E
[

�(t(n)k+1)|t(n)k

]

= 0, by applying Lemma 3.1 with q = 1 + C
n
, we obtain (3).

The estimate (4) is a consequence of (3) and Lemma 3.2 in Gyöngy and Krylov (2003).
(ii) Suppose that AssumptionHp̂ holds for p̂ ≥ 18, we show (5). From (13), we have

sup
t∈[0,T ]

‖e(t)‖2 ≤ C sup
0≤k≤n

‖e(t(n)k )‖
2 + C

6
∑

m=1
sup
t∈[0,T ]

‖Sm(t)‖2.

If p ∈ (0, 2), applying the simple estimate
(

∑

j a2j
)p∕2

≤
∑

j |aj|p, we get

E
[

sup
t∈[0,T ]

‖e(t)‖p
]

≤CE
[

sup
0≤k≤n

‖e(t(n)k )‖
p
]

+ C
6
∑

m=1
E
[

sup
t∈[0,T ]

‖Sm(t)‖p
]

≤CE
[

sup
0≤k≤n

‖e(t(n)k )‖
p
]

+ C
6
∑

m=1

(

E
[

sup
t∈[0,T ]

‖Sm(t)‖2
])p∕2

.

This estimate together with Lemmas 3.3 – 3.8 concludes (5).

4 Example
In this section, we present a numerical example to justify our asymptotic convergence analysis of the
semi-implicit Milstein (SIM) scheme. We also compare this scheme with the semi-implicit Euler-
Maruyama (SIEM) scheme in [15]. We consider a system of Brownian particles with nearest neighbor
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repulsion X = (X1,… , Xd) given by the following SDEs
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dX1(t) =
{


X1(t)−X2(t)

+ b1(X1(t))
}

dt + �1(X1(t))dW1(t),

dXi(t) =
{


Xi(t)−Xi−1(t)

+ 
Xi(t)−Xi+1(t)

+ bi(Xi(t))
}

dt + �i(Xi(t))dWi(t),

i = 2,… , d − 1,
dXd(t) =

{


Xd (t)−Xd−1(t)

+ bd(Xd(t))
}

dt + �d(Xd(t))dWd(t),

(33)

with X(0) ∈ Δd . In particular, we choose d = 10,  = 1, and bi(x) = sin x, �i(x) = sin(2x)
2

for
i = 1,… , 10. Then it follows from Corollary 6.2 in [6] that equation (33) has a unique strong solution
in Δd for all t > 0.Let’s denote by X ,n and X,n the SIEM and SIM approximate solutions of X, respectively. Let’s
also denote by (X ,n,i)i≥1 and (X,n,i)i≥1 independent and identicaly distributed copies of random vari-
ables X ,n and X,n, respectively. The iteration method in [15], Propostion 4.1, is applied to estimate
solution to systems of algebraic equations of the type (2) for both schemes. We use

mse (k) = 1
M

M
∑

i=1
‖X ,2k,i(1) −X ,2k+1,i(1)‖2,

and
mse(k) = 1

M

M
∑

i=1
‖X,2k,i(1) −X,2k+1,i(1)‖2,

to estimate the convergence rate. It is justified by the fact that if a scheme X∙,n converges at the rate of
order � ∈ (0,+∞) in L2-norm then there exists some constant � > 0 such that

22�nE
[

‖X(1) −X∙,2n(1)‖2
]

= O(1),

then also
22�nE

[

‖X∙,2n+1(1) −X∙,2n(1)‖2
]

= O(1),

and vice versa. In this case, we can write
log2(mse∙(k)) = −2�k + �̃ + o(1),

for some �̃ ∈ ℝ. Figure 1 shows the simulation result where we compute mse (k) and mse(k) for
k = 1,… , 5, M = 103 and X0(i) = i∕2 (left), X0(i) = i (center), and X0(i) = 2i (right). We draw
regression lines to estimate the rates of convergence � for each scheme.

The empirical rates of convergence for each numerical scheme are shown in Table 1. We see that
the rate of convergence of each scheme seems to depend on the distances between particles at the
initial time. However, the rate of convergence of the SIM scheme is always higher than the one of
SIEM scheme. In Cases 2 and 3, the rates of SIM scheme are close to 1, which supports our theoretical
result. However, the rate of SIM scheme in Case 1 is low, which may due to the fact that the iteration
method in Proposition 4.1 of [15] converges slowly in this case.
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Figure 1: Values of mse (k) (marked by ⋄) and mse(k) (marked by ∙) in log2-scale with k = 1,… , 5

Case 1: Xi(0) = i∕2 Case 2: Xi(0) = i Case 3: Xi(0) = 2i
SIEM scheme 0.59 0.59 0.66
SIM scheme 0.70 0.91 0.97

Table 1: Empirical rates of convergence of each numerical scheme
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