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Abstract. In this paper, we study the Kirchho� type problem −m
(∫

Ω

w1|∇u|p dx
)

div
(
w1|∇u|p−2∇u

)
= w2f(u) in Ω,

u = 0 on ∂Ω,

where p ≥ 2, Ω is a C1 domain of RN , w1, w2 are nonnegative func-
tions, m is a positive function and f is an increasing one. Under some
assumptions on Ω, w1, w2, m and f , we prove that the problem has no
nontrivial stable solution in dimension N < N#. Moreover, additional
assumptions on Ω, m or the boundedness of solutions can boost this
critical dimension N# to in�nity.

1. Introduction and main results

The aim of this paper is to establish the nonexistence of nontrivial stable

solutions of the Kirchho� type problem

(1.1)

{
−m

(
‖u‖pw1

)
div (w1|∇u|p−2∇u) = w2f(u) in Ω,

u = 0 on ∂Ω,

where ‖u‖w1 =
(∫

Ω
w1|∇u|p dx

) 1
p . Here and throughout the paper, we always

assume that

(i) p ≥ 2 and Ω is a (bounded or unbounded) domain of RN with C1

boundary,

(ii) w1, w2 ∈ L1
loc(Ω) \ {0} are nonnegative functions,

(iii) m : [0,+∞)→ R, m > 0 in (0,+∞) and m ∈ C1((0,+∞)),

(iv) f : (a, b) → R is an increasing function and f ∈ C1((a, b)) ∩
C2((a, b) \ Zf ), where −∞ ≤ a < b ≤ +∞ and Zf is the set of

zeros of f .

Clearly, Zf has at most one element since f is increasing. We denote by

zf the unique zero of f when Zf 6= ∅.
Problem (1.1) has the origin in a physical model introduced by Kirchho�

in 1883. Indeed, Kirchho� [19] proposed a model for vibration of an elastic
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string given by the equation

(1.2) ρutt −
(
P0

h
+
E

2L

∫ L

0

u2
x dx

)
uxx = 0.

Here ρ, P0, h, E, L are positive constants which have the following physical

meanings: L is the length of the string, h is the area of the cross-section,

E is the Young modulus of the material, ρ is the mass density and P0 is

the initial tension. This equation extends the classical d'Alembert's wave

equation by considering the e�ects of the changes in the string length during

the vibrations. It is worth mentioning that equation (1.2) received much

attention after Lions [28] introduced a functional analysis framework for

the problem.

In problem (1.1), w1 and w2 are usually regarded as weights, f is the

nonlinearity andm is the nonlocal term. Because of the presence of this non-

local term, the �rst equation in (1.1) is no longer a pointwise identity. This

phenomenon causes some mathematical di�culties which make the study of

such problem particularly interesting. Moreover, due to the degenerate na-

ture of the weighted p-Laplace operator ∆p,w1u = div (w1|∇u|p−2∇u) when

p > 2, solutions to this problem must be understood in the weak sense. It

was proved in the well known papers [6, 27, 32] that the best regularity of

solutions to (1.1) when p > 2 is C1,α(Ω). The existence and multiplicity

of solutions to (1.1) and related problems was studied intensively in recent

years via the variational method, see, for instance, [17,18,24,25,29�31] and

references therein.

In this paper, we study solutions of (1.1) in the following weak sense.

De�nition 1.1. Let u ∈ C1(Ω) such that u vanishes on ∂Ω. We also assume

‖u‖w1 <∞ if m is not constant. We say that

(i) u is a solution of (1.1) if

(1.3) m
(
‖u‖pw1

) ∫
Ω

w1|∇u|p−2∇u∇ϕdx =

∫
Ω

w2f(u)ϕdx

for all ϕ ∈ C1
c (Ω) which vanishes on ∂Ω,

(ii) u is a stable solution of (1.1) if u is a solution and

m
(
‖u‖pw1

) ∫
Ω

w1

[
|∇u|p−2|∇ϕ|2 + (p− 2)|∇u|p−4(∇u∇ϕ)2

]
+ pm′

(
‖u‖pw1

)(∫
Ω

w1|∇u|p−2∇u∇ϕdx
)2

≥
∫

Ω

w2f
′(u)ϕ2 dx

(1.4)

for all ϕ ∈ C1
c (Ω) which vanishes on ∂Ω.
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Moreover, if Ω = RN , then each solution of (1.1) is called an entire

solution. We also call a solution nontrivial if it is not constant in Ω. Since

w2 6≡ 0 in Ω, it is clear from the de�nition that (1.1) has no trivial stable

solution if f has no zero or m has no derivative at 0. Let us recall that

nontrivial solutions of (1.1) may be found by searching for critical points u

of the associated energy functional

E(u) =
1

p
M
(
‖u‖pw1

)
−
∫

Ω

w2F (u) dx,

where M(t) =
∫ t

0
m(s) ds and F (t) =

∫ t
0
f(s) ds, i.e., E ′(u)[ϕ] = 0. One

may also observe that (1.4) can be rewritten as E ′′(u)[ϕ, ϕ] ≥ 0. Hence, the

stability condition translates into the fact that the second variation at u of

E is nonnegative. Consequently, all local minima of E are stable solutions

of (1.1). For more mathematical background and physical motivation, we

refer to the excellent monograph [9] by Dupaigne and references therein.

This paper is concerned with nonexistence results, which are also called

Liouville type theorems, for problem (1.1). This type of theorem was �rst

established for bounded analytic functions by Cauchy [3] in 1844. From then

on, several Liouville theorems were proved for elliptic equations in bounded

and unbounded domains. One of the most well-known Liouville theorems

for nonlinear problems is the one in [14]. In this pioneering paper, Gidas

and Spruck proved that the Lane-Emden equation −∆u = |u|q−1u has no

positive entire solution if 1 < q < qS(N), where

qS(N) =

{
+∞ if N = 2,
N+2
N−2

if N > 2

is the Sobolev exponent.

There has been a recent surge of interest in Liouville theorems for stable

solutions of elliptic problems, mainly after Farina's in�uential papers [10�

12]. Such results are important in studying extremal solutions (see [1] and

references therein), as well as in establishing Liouville theorems for a larger

class of solutions (see [5, 13] for example). In [10, 11], Farina proved that

the only stable entire solution of −∆u = |u|q−1u is the trivial one provided

that 1 < q < qc(N). Here, qc(N) is the Joseph-Lundgren exponent (see [16])

de�ned by

qc(N) =

{
+∞ if N ≤ 10,
N2−8N+4+8

√
N−1

(N−2)(N−10)
if N ≥ 11.

One may observe that qc(N) > qS(N) and the assumption 1 < q < qc(N)

is equivalent to N <
4q+4
√
q(q−1)

q−1
+ 2. Later, similar results were obtained

for p-Laplace equations with or without weights and with several types of
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nonlinearities. We refer to [5,21] for p-Laplace equations with Lane-Emden

nonlinearity, to [15, 23] for negative exponent nonlinearity and to [2, 26]

for exponential nonlinearity. There are also some works dealing with more

general nonlinearities. For instance, we refer to [7, 8] for equation −∆u =

f(u) and to [2, 20] for equation −∆pu = f(u). One crucial assumption in

these papers is that f is nonnegative and convex, besides other assumptions.

A typical result in [2] is the nonexistence of nontrivial stable entire solutions

to p-Laplace equation −∆pu = f(u) in dimension

N <
p

p− 1

2 + (p− 1)Γ + 2
√

(p− 1)γ − (p− 2)

(p− 1)Γ− (p− 2)

under the assumption that f ∈ C2(R) is a positive, increasing, convex func-

tion and p−2
p−1
≤ γ ≤ ff ′′

(f ′)2 ≤ Γ. A more general result was established recently

in [22].

Liouville theorems for stable solutions of Kirchho� type problems were

also obtained recently by some authors. In [24], the authors proved that the

equation −
(
a+ b

∫
RN |∇u|

2dx
)

= |x|α|u|q−1u in RN has no nontrivial stable

solution in dimension N <
2(p+2)(q+

√
q(q−3))

3(q−1)
+ 2 if α > −2 and q > 3. Simi-

lar results were established in [33] for the equation −
(
a+ b

∫
RN |∇u|

2dx
)

=

h(x)f(u) in RN , where f(u) = eu or f(u) = |u|q−1u. However, there is cur-

rently no result in literature for Kirchho� type problems involving weighted

p-Laplace operators in general domains or general nonlinearities to the best

of our knowledge.

In this paper, we extend previous works by establishing Liouville theo-

rems for nontrivial stable solutions of (1.1) for a very large class of nonlocal

terms m and nonlinearities f . We also deal with general C1 domain Ω ⊂ RN

and nonnegative weights w1, w2 in our problems. In order to state our main

result, let us denote by BR the ball centered at the origin of RN with radius

R > 0. For c ∈ R, we de�ne sign(c) = 1 if c ≥ 0 and sign(c) = −1 otherwise.

We also denote |U | the Lebesgue measure of U ⊂ RN and use the convention∫
U

1
w
dx = +∞ if w is a nonnegative measurable function which equals to

zero in a subset of U having positive Lebesgue measure. Our main result is

the following Liouville type theorem which can be seen as an extension of

some results in [2, 4, 5, 11,22,24,33].

Theorem 1.2. Assume that there exist τ > 1
p
− 1, Γ > p−2

p−1
, γ > p+pτ−2

p+pτ−1

and α ∈ (max{α,−1, (p− 2)Γ− p+ 1}, α), where

α =
2− 2

√
(p+ pτ − 1)(γ − 1) + 1

p+ pτ − 1
− 1,
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α =
2 + 2

√
(p+ pτ − 1)(γ − 1) + 1

p+ pτ − 1
− 1,

such that the following conditions hold

(M) t 7→ m(t)

tτ
is non-increasing in (0,∞),

(F1)

C|f(t)|2Γ ≤ γf ′(t)2 ≤ f(t)f ′′(t) for some C > 0 and all t ∈ (a, b) \ Zf ,

(F2) |f |
α+1

2 sign(f) ∈ C1((a, b)),

(W ) lim
R→+∞

R
−p(Γ+α+1)

(p−1)Γ−(p−2)

∫
Ω∩B2R\BR

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 dx = 0,

(FW ) Zf = ∅ or w2 > 0 a.e. in Ω,

(FD) Ω = RN or f(0) = 0.

Then problem (1.1) has no nontrivial stable solution.

Remark 1.3. Since f ∈ C1((a, b)), we have |f |α+1
2 sign(f) ∈ C1((a, b) \

Zf ). Therefore, one may observe that the assumption (F2) is automatically

satis�ed if α ≥ 1 or f has no zero. Moreover, assumption (F1) is satis�ed if

one of the following two conditions hold

(i) Γ ≥ γ and

γf ′(t)2 ≤ f(t)f ′′(t) ≤ Γf ′(t)2 for all t ∈ (a, b) \ Zf ,
lim inf
t→a+

|f(t)|−Γf ′(t) > 0 if f(t1) ≤ 0 for some t1 ∈ (a, b),

lim inf
t→b−

|f(t)|−Γf ′(t) > 0 if f(t2) ≥ 0 for some t2 ∈ (a, b),

(ii) γ ≥ Γ and

γf ′(t)2 ≤ f(t)f ′′(t) for all t ∈ (a, b) \ Zf ,
lim inf
t→a+

|f(t)|−Γf ′(t) > 0 if f > 0 in (a, b),

lim inf
t→b−

|f(t)|−Γf ′(t) > 0 if f < 0 in (a, b),

lim inf
t→zf

|f(t)|−Γf ′(t) > 0 if Zf 6= ∅.
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Indeed, we have (|f(t)|−Γf ′(t))′ = [f(t)f ′′(t)− Γf ′(t)2] |f(t)|−Γ−2f(t).

Therefore, if f satis�es (i), then |f |−Γf ′ is non-decreasing in (a, c) and non-

increasing in (c, b), where

c =


a, if f > 0 in (a, b),

b, if f < 0 in (a, b),

zf , otherwise.

Hence, f ′(t) ≥ C|f(t)|Γ and (F1) is satis�ed. Otherwise, if f satis�es (ii),

then |f |−Γf ′ is non-increasing in (a, c) and non-decreasing in (c, b). Hence,

also in this case, f ′(t) ≥ C|f(t)|Γ and (F1) is satis�ed. Let us remark that

assumption (i) appeared �rst in [2]. Some examples of increasing functions

f that satisfy (i) and (ii) are

• f(t) = |t|q−1t in (−∞,+∞) where q > 1 and Γ = γ = q−1
q
,

• f(t) = −tq in (0,+∞) where q < 0 and Γ = γ = q−1
q
,

• f(t) = et in (−∞,+∞), where Γ = γ = 1.

Now we consider the following condition on w1 and w2:

(W ′)
w1(x)

|x|q1
≤ c1 and

w1(x)

|x|q1
≤ c2

w2(x)

|x|q2
for a.e. |x| > R0,

where q1, q2 ∈ R and c1, c2, R0 > 0. Clearly, this condition holds when

w1 ≡ |x|q1 and w2 ≡ |x|q2 .

Remark 1.4. Let

Nα =
(p− q1)(Γ + α + 1)− q2[(p− 2)Γ− p− α + 1]

(p− 1)Γ− (p− 2)
.

Then assumption (W ) is satis�ed if

lim
R→+∞

R−Nα|Ω ∩B2R \BR| = 0

and (W ′) holds.

Indeed, since (p− 2)Γ− p− α + 1 < 0 and

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 = w1

(
w2

w1

) (p−2)Γ−p−α+1
(p−1)Γ−(p−2)

,

we have for R > R0

R
−p(Γ+α+1)

(p−1)Γ−(p−2)

∫
Ω∩B2R\BR

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 dx ≤ CR−Nα|Ω∩B2R \BR|.

In view of (W ′), we may get the following consequence from Theorem

1.2.
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Proposition 1.5. Assume (FD), (FW ) hold, (M) holds for some τ >
1
p
−1, (W ′) holds for some q1 ∈ R, q2 > q1−p, (F1) holds for some Γ > p−2

p−1
,

γ > p+pτ−2
p+pτ−1

and (F2) holds for all α ∈ (α − ε, α), where α is de�ned as in

Theorem 1.2 and ε > 0. Moreover, assume that (p − 2)Γ − p − α + 1 < 0

and

(1.5) lim
R→+∞

R−N
#+ε|Ω ∩B2R \BR| = 0,

where

N# =
p+ q2 − q1

p+ pτ − 1

2 + (p+ pτ − 1)Γ + 2
√

(p+ pτ − 1)(γ − 1) + 1

(p− 1)Γ− (p− 2)
− q2.

Then (1.1) has no nontrivial stable solution.

Remark 1.6. One may choose ε < N# −N to see that (1.5) is satis�ed if

N < N#. If f(0) = 0, then (1.5) is satis�ed in one of the following cases

• Ω is bounded,

• Ω has �nite Lebesgue measure and N# > 0,

• Ω ⊂ RK×ω and K < min{N#, N}, where ω ⊂ RN−K is any domain

with �nite (N −K)-dimensional Lebesgue measure.

Remark 1.7. The case that Ω = RN , m ≡ 1 and w1 ≡ w2 ≡ 1 was studied

in [2, Theorem 1.3]. However, in [2], f must be positive and convex, b is not

allowed to be +∞ and Liouville results there only apply to one-side bounded

stable solutions. Therefore, our statement in Proposition 1.5 is new even in

this particular case.

Proposition 1.5 claims that problem (1.1) has no nontrivial stable solu-

tion in any dimension if Ω is bounded or Ω has �nite Lebesgue measure and

N# > 0. It is interesting that even in the case Ω = RN , we are still able

to establish Liouville theorems without any restriction on dimension N if

some suitable additional conditions on m or the boundedness of solutions

are assumed.

Proposition 1.8. Assume (FD), (FW ) hold, (F1) holds for some Γ > p−2
p−1

,

γ > 0 and (W ′) holds for some q1 ∈ R, q2 > q1 − p. Moreover, assume that

(1.6) t 7→ t1−
1
pm(t) is non-increasing in (0,∞).

Then (1.1) has no nontrivial stable solution.

Proposition 1.9. Assume Ω = RN , (M) holds for some τ > 1
p
− 1 and

(W ′) holds for some q1 ∈ R, q2 > q1 − p. Moreover, assume that one of the

following conditions holds

(i) f > 0 in (a, b) and a = −∞,
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(ii) f < 0 in (a, b) and b = +∞

and there exists γ > p+pτ−2
p+pτ−1

such that

γf ′(t)2 ≤ f(t)f ′′(t) for all t ∈ (a, b).

Then equation (1.1) has no bounded below stable solution if (i) holds and

no bounded above stable solution if (ii) holds.

As applications of Proposition 1.5 and Proposition 1.9, we derive the

following Liouville theorems for problem (1.1) with Lane-Emden, negative

exponent, exponential or singular nonlinearities.

Corollary 1.10. (Lane-Emden nonlinearity) Let u be a stable solution of

the problem −m
(∫

Ω

w1|∇u|p dx
)

div (w1|∇u|p−2∇u) = w2|u|q−1u in Ω,

u = 0 on ∂Ω.

Assume that (M) holds for some τ > 1
p
−1, (W ′) holds for some q1 ∈ R,

q2 > q1 − p and w2 > 0 a.e. in Ω. Moreover, assume q > p+ pτ − 1 and

lim
R→+∞

R−N
#+ε|Ω ∩B2R \BR| = 0

for some ε > 0, where

N# =
p+ q2 − q1

p+ pτ − 1

2q + (q − 1)(p+ pτ − 1) + 2
√
q(2q − 1)(p+ pτ − 1) + q2

q − p+ 1

− q2.

Then u ≡ 0.

Corollary 1.11. (Negative exponent nonlinearity) Assume that (M) holds

for some τ > 1
p
− 1 and (W ′) holds for some q1 ∈ R, q2 > q1− p. Moreover,

assume q < 0. Then equation

m

(∫
Ω

w1|∇u|p dx
)

div
(
w1|∇u|p−2∇u

)
= w2u

q in RN

has no positive stable solution in dimension N < N# and has no bounded

above positive stable solution in any dimension, where N# is de�ned as in

Corollary 1.10.

Corollary 1.12. (Exponential nonlinearity) Assume that (M) holds for

some τ > 1
p
−1 and (W ′) holds for some q1 ∈ R, q2 > q1−p. Then equation

−m
(∫

Ω

w1|∇u|p dx
)

div
(
w1|∇u|p−2∇u

)
= w2e

u in RN



INSTABILITY OF SOLUTIONS TO KIRCHHOFF TYPE PROBLEMS 9

has no stable solution in dimension

N < N# :=
(p− q1)(p+ pτ + 3) + 4q2

p+ pτ − 1

and has no bounded below stable solution in any dimension.

Corollary 1.13. (Singular nonlinearities) Assume that (M) holds for some

τ > 1
p
− 1 and (W ′) holds for some q1 ∈ R, q2 > q1 − p. Moreover, assume

that f : (0,+∞)→ R has one of the following forms

(i) f(t) = −ert−s,
(ii) f(t) = −t−r − t−s,
(iii) f(t) = −e−rt − t−s,

where r, s > 0. Then equation

−m
(∫

Ω

w1|∇u|p dx
)

div
(
w1|∇u|p−2∇u

)
= w2f(u) in RN

has no bounded above positive stable solution.

Remark 1.14. To prove Corollary 1.13, it is su�cient to check that

f(t)f ′′(t)

f ′(t)2
> 1

for all t ∈ (0,∞) and then to apply Proposition 1.9. For instance, if f(t) =

−e−rt − t−s, we have
f(t)f ′′(t)

f ′(t)2
=

(r2e−rt + s(s+ 1)t−s−2) (e−rt + t−s)

(re−rt + st−s−1)2

= 1 +
st−s−2 (e−rt + t−s) + (r − st−1)

2
t−se−rt

(re−rt + st−s−1)2 > 1.

The rest of the paper is devoted to the proofs of our main results, namely,

Theorem 1.2, Proposition 1.5, 1.8 and 1.9. We always denote by C a generic

positive constant whose values may vary depending on the situation. If this

constant depends on an arbitrary small positive number ε, then we will

denote it by Cε. We also use Young inequality in the form ab ≤ εaq +Cεb
q′

for a, b > 0 and q, q′ > 1 satisfying 1
q

+ 1
q′

= 1.

2. Proofs of main results

In this section, we de�ne

w(t) = (p− 1)m(t) + ptm′(t)

for t > 0.

The following lemma can be easily proved by using Hölder's inequality.
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Lemma 2.1. If u is a nontrivial stable solution of (1.1), then for all ϕ ∈
C1
c (Ω) which vanishes on ∂Ω, we have

(2.1) w
(
‖u‖pw1

) ∫
Ω

w1|∇u|p−2|∇ϕ|2 dx ≥
∫

Ω

w2f
′(u)ϕ2 dx.

The main ingredient in the proof of Theorem 1.2 is the following lemma.

Lemma 2.2. Assume that u is a nontrivial stable solution of (1.1) and

φ, ψ ∈ C1(R) such that ψ′(t) ≥ φ′(t)2 and φ′(t) > 0 for a.e. t ∈ R. Then for

all nonnegative functions η ∈ C1
c (Ω) and ε ∈ (0, 1) we have∫

Ω

w2Hε(u)ηp dx ≤ Cε

∫
Ω

w1G(u)|∇η|p dx,

where

Hε(u) =
1

w (‖u‖pw1)
f ′(u)φ(u)2 − 1 + ε

m (‖u‖pw1)
f(u)ψ(u),

G(u) = |φ(u)|pφ′(u)2−p + |ψ(u)|pψ′(u)1−p.

Moreover, the same conclusion holds for all nonnegative functions η ∈
C1
c (RN) if φ(0) = ψ(0) = 0.

Proof of Lemma 2.2. We test (1.3) with ϕ = ψ(u)ηp to obtain∫
Ω

w1ψ
′(u)ηp|∇u|p dx+ p

∫
Ω

w1ψ(u)ηp−1|∇u|p−2∇u∇η dx

=
1

m (‖u‖pw1)

∫
Ω

w2f(u)ψ(u)ηp dx.

Therefore,∫
Ω

w1ψ
′(u)ηp|∇u|p dx− 1

m (‖u‖pw1)

∫
Ω

w2f(u)ψ(u)ηp dx

≤ p

∫
Ω

w1|ψ(u)|ηp−1|∇u|p−1|∇η| dx

≤
∫

Ω

ε

(
w

p−1
p

1 ψ′(u)
p−1
p ηp−1|∇u|p−1

) p
p−1

+ Cε

(
w

1
p

1 |ψ(u)|ψ′(u)
1−p
p |∇η|

)p
dx

= ε

∫
Ω

w1ψ
′(u)ηp|∇u|p dx+ Cε

∫
Ω

w1|ψ(u)|pψ′(u)1−p|∇η|p dx,

which implies

(1− ε)
∫

Ω

w1ψ
′(u)ηp|∇u|p dx ≤ 1

m (‖u‖pw1)

∫
Ω

w2f(u)ψ(u)ηp dx

+ Cε

∫
Ω

w1|ψ(u)|pψ′(u)1−p|∇η|p dx.
(2.2)
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Now we apply (2.1) with ϕ = φ(u)η
p
2 to get

1

w (‖u‖pw1)

∫
Ω

w2f
′(u)φ(u)2ηp dx

≤
∫

Ω

w1|∇u|p−2
∣∣∣φ′(u)η

p
2∇u+

p

2
φ(u)η

p−2
2 ∇η

∣∣∣2 dx
≤
∫

Ω

w1φ
′(u)2ηp|∇u|p dx+

p2

4

∫
Ω

w1φ(u)2ηp−2|∇u|p−2|∇η|2 dx

+ p

∫
Ω

w1|φ(u)|φ′(u)ηp−1|∇u|p−1|∇η| dx.

(2.3)

Moreover, we have the estimate

p

∫
Ω

w1|φ(u)|φ′(u)ηp−1|∇u|p−1|∇η| dx

≤
∫

Ω

{
ε

2

(
w

p−1
p

1 φ′(u)
2p−2
p ηp−1|∇u|p−1

) p
p−1

+ Cε

(
w

1
p

1 |φ(u)|φ′(u)
2−p
p |∇η|

)p}
dx

=
ε

2

∫
Ω

w1φ
′(u)2ηp|∇u|p dx+ Cε

∫
Ω

w1|φ(u)|pφ′(u)2−p|∇η|p dx,

and if p > 2 we also have

p2

4

∫
Ω

w1φ(u)2ηp−2|∇u|p−2|∇η|2 dx

≤
∫

Ω

{
ε

2

(
w

p−2
p

1 φ′(u)
2p−4
p ηp−2|∇u|p−2

) p
p−2

+ Cε

(
w

2
p

1 φ(u)2φ′(u)
4−2p
p |∇η|2

) p
2

}
dx

=
ε

2

∫
Ω

w1φ
′(u)2ηp|∇u|p dx+ Cε

∫
Ω

w1|φ(u)|pφ′(u)2−p|∇η|p dx.

Plugging the last two estimates into (2.3) to get

1

w (‖u‖pw1)

∫
Ω

w2f
′(u)φ(u)2ηp dx ≤ (1 + ε)

∫
Ω

w1φ
′(u)2ηp|∇u|p dx

+Cε

∫
Ω

w1|φ(u)|pφ′(u)2−p|∇η|p dx.

(2.4)

From (2.2), (2.4) and assumption ψ′ ≥ φ′2 we obtain

1

w (‖u‖pw1)

∫
Ω

w2f
′(u)φ(u)2ηp dx ≤ 1 + ε

1− ε
1

m (‖u‖pw1)

∫
Ω

w2f(u)ψ(u)ηp dx

+Cε

∫
Ω

w1

[
|φ(u)|pφ′(u)2−p + |ψ(u)|pψ′(u)1−p] |∇η|p dx.
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Finally, we may replace ε with ε
2+ε

to get the conclusion. �

Proof of Theorem 1.2. By contradiction, assume that problem (1.1) has a

nontrivial stable solution u. In (a, b), we de�ne φ(t) = |f(t)|α+1
2 sign(f(t))

and ψ(t) =
∫ t
c
φ′(s)2 ds, where

c =


a, if f(t) > 0 for all t ∈ (a, b),

b, if f(t) < 0 for all t ∈ (a, b),

zf , otherwise.

We de�ne Hε and G as in Lemma 2.2. If t > c we have f(t) > 0, ψ(t) > 0

and for all d ∈ (c, t),

α

∫ t

d

|f(s)|α−1f ′(s)2 ds

= |f(t)|α−1f(t)f ′(t)− |f(d)|α−1f(d)f ′(d)−
∫ t

d

|f(s)|α−1f(s)f ′′(s) ds

≤ |f(t)|α−1f(t)f ′(t)− γ
∫ t

d

|f(s)|α−1f ′(s)2 ds.

This and the fact that

α + γ > α + γ =

(√
(p+ pτ − 1)(γ − 1) + 1− 1

)2

p+ pτ − 1
≥ 0

implies ∫ t

d

|f(s)|α−1f ′(s)2 ds ≤ 1

α + γ
|f(t)|α−1f(t)f ′(t).

Letting d→ c+ in the above inequality, we deduce that ψ(t) is �nite and

(2.5) 0 < f(t)ψ(t) ≤ (α + 1)2

4(α + γ)
f ′(t)φ(t)2.

By similar argument, (2.5) also holds for t < c. One the other hand, the

assumption (M) implies tm′(t)
m(t)

≤ τ for all t > 0. From these facts we have

Hε(u) =
1

w (‖u‖pw1)
f ′(u)φ(u)2 − 1 + ε

m (‖u‖pw1)
f(u)ψ(u)

≥
(

1

w (‖u‖pw1)
− (α + 1)2

4(α + γ)

1 + ε

m (‖u‖pw1)

)
f ′(u)φ(u)2

=

(
m
(
‖u‖pw1

)
w (‖u‖pw1)

− (1 + ε)(α + 1)2

4(α + γ)

)
1

m (‖u‖pw1)
f ′(u)φ(u)2

≥
(

1

p+ pτ − 1
− (1 + ε)(α + 1)2

4(α + γ)

)
1

m (‖u‖pw1)
f ′(u)φ(u)2.

Since 1
p+pτ−1

− (α+1)2

4(α+γ)
> 0 by assumption α ∈ (α, α), we may �x some

ε > 0 such that 1
p+pτ−1

− (1+ε)(α+1)2

4(α+γ)
> 0. Hence, together with assumption
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(F1), we obtain

(2.6) Hε(u) ≥ C

m (‖u‖pw1)
f ′(u)φ(u)2 ≥ C

m (‖u‖pw1)
|f(u)|Γ+α+1.

Now we use (2.5) to estimate G(u) as follow

G(u) = |φ(u)|pφ′(u)2−p + |ψ(u)|pψ′(u)1−p

≤ |φ(u)|pφ′(u)2−p + C
(
|f(u)|−1f ′(u)φ(u)2

)p
φ′(u)2−2p

= C|f(u)|p+α−1f ′(u)2−p.

With the aid of (F1), we deduce

(2.7) G(u) ≤ C|f(u)|(2−p)Γ+p+α−1.

By assumption (FD), either Ω = RN or f(0) = 0. The latter case implies

φ(0) = ψ(0) = 0. From (2.6), (2.7) and Lemma 2.2, for all nonnegative

function η ∈ C1
c (RN), we have∫

Ω

w2|f(u)|Γ+α+1ηp dx ≤ Cm
(
‖u‖pw1

) ∫
Ω

w1|f(u)|(2−p)Γ+p+α−1|∇η|p dx.

Applying this inequality for η = ξm, where ξ ∈ C1
c (RN) is nonnegative

and m = Γ+α+1
(p−1)Γ−(p−2)

, to get∫
Ω

w2|f(u)|Γ+α+1ξpm dx

≤ Cm
(
‖u‖pw1

) ∫
Ω

w1|f(u)|(2−p)Γ+p+α−1ξp(m−1)|∇ξ|p dx.

Young inequality with q = Γ+α+1
(2−p)Γ+p+α−1

> 0, q′ = Γ+α+1
(p−1)Γ−(p−2)

> 0 and

ε = 1
2
leads now to∫
Ω

w2|f(u)|Γ+α+1ξpm dx

≤
∫

Ω

{
1

2

(
w

1
q

2 |f(u)|(2−p)Γ+p+α−1ξp(m−1)

)q
+ C

(
m
(
‖u‖pw1

)
w1w

− 1
q

2 |∇ξ|p
)q′}

dx

=
1

2

∫
Ω

w2|f(u)|Γ+α+1ξpm dx+ Cm
(
‖u‖pw1

)q′ ∫
Ω

wq
′

1 w
− q
′
q

2 |∇ξ|pq′ dx,

which implies∫
Ω

w2|f(u)|Γ+α+1ξ
p(Γ+α+1)

(p−1)Γ−(p−2) dx

≤ Cm
(
‖u‖pw1

)q′ ∫
Ω

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 |∇ξ|
p(Γ+α+1)

(p−1)Γ−(p−2) dx.
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Choosing a test function ξ ∈ C1
c (RN) such that 0 ≤ ξ ≤ 1 in RN , ξ = 1

in BR, ξ = 0 outside of B2R and |∇ξ| ≤ CR−1 in B2R \BR, we obtain∫
Ω∩BR

w2|f(u)|Γ+α+1 dx

≤ Cm
(
‖u‖pw1

)q′
R
−p(Γ+α+1)

(p−1)Γ−(p−2)

∫
Ω∩B2R\BR

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 dx.

Letting R → +∞ and using assumption (W ) to get w2|f(u)|Γ+α+1 = 0

a.e. in Ω. But this contradicts the fact that u is non-constant, w2 6≡ 0 and

(FW ). �

Proof of Proposition 1.5. Since

lim
α→α−

((p− 2)Γ− p− α + 1) = (p− 2)Γ− p− α + 1 < 0,

we may choose α ∈ (max{α,−1, α− ε}, α) su�ciently close to α such that

(p−2)Γ−p−α+ 1 < 0. Here α is de�ned as in Theorem 1.2. As in Remark

1.4, for R > R0 we have

(2.8)

R
−p(Γ+α+1)

(p−1)Γ−(p−2)

∫
Ω∩B2R\BR

w
Γ+α+1

(p−1)Γ−(p−2)

1 w
(p−2)Γ−p−α+1
(p−1)Γ−(p−2)

2 dx ≤ CR−Nα|Ω∩B2R \BR|,

where

Nα =
(p− q1)(Γ + α + 1)− q2[(p− 2)Γ− p− α + 1]

(p− 1)Γ− (p− 2)
.

Since lim
α→α−

Nα = N#, we may choose α even closer to α if necessary such

that Nα > N# − ε and then let R→ +∞ in (2.8) to obtain (W ). Now the

conclusion follows immediately from Theorem 1.2. �

Proof of Proposition 1.8. By contradiction, assume that (1.1) has a nontriv-

ial stable solution. Since

lim
τ→( 1

p
−1)

+
α = +∞,

where α is de�ned as in Theorem 1.2, we may choose τ > 1
p
− 1 su�ciently

close to 1
p
− 1 and choose some ε > 0 su�ciently small such that (p− 2)Γ−

p− α+ 1 < 0 and α− ε > 1. Then (M) holds for such τ due to (1.6) while

(F2) holds for all α ∈ (α− ε, α) thanks to Remark 1.3.

We may choose τ even closer to 1
p
− 1 if necessary such that

N# :=
p+ q2 − q1

p+ pτ − 1

2 + (p+ pτ − 1)Γ + 2
√

(p+ pτ − 1)(γ − 1) + 1

(p− 1)Γ− (p− 2)
− q2

> N + ε.

Then (1.5) is satis�ed and we reach a contradiction with Proposition 1.5. �
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Proof of Proposition 1.9. We �rst show that f ′ > 0 in (a, b). Indeed, suppose

f ′(t0) = 0 for some t0 ∈ (a, b). If f > 0 in (−∞, b), then f ′′ ≥ 0 in (−∞, b).
Therefore, f ′(t) ≤ f ′(t0) = 0 for all t ∈ (−∞, t0]. But this contradicts the

fact that f is increasing in t ∈ (−∞, t0]. Similar argument can be applied

in the case that f > 0 in (a,+∞).

By contradiction, assume that (i) holds and (1.1) has a bounded below

stable solution u. Clearly, u is nontrivial since constant functions do not sat-

isfy the equation. Then we may restrict f into the interval

(
inf
(a,b)

u− 1,+∞
)

∩(a, b) and �nd out that f satis�es condition (ii) in Remark 1.3 in its new

domain for any Γ ∈
(
p−2
p−1

, γ
]
. Hence, f also satis�es (F1) in its new domain

for any Γ ∈
(
p−2
p−1

, γ
]
. Moreover, (F2) holds for any α thanks to the fact that

f has no zero and Remark 1.3.

One may observe that

lim
Γ→( p−2

p−1)
+

[(p− 2)Γ− p− α + 1] =
2− p
p− 1

−
2 + 2

√
(p+ pτ − 1)(γ − 1) + 1

p+ pτ − 1

<
2− p
p− 1

≤ 0.

If we choose Γ su�ciently close to p−2
p−1

such that (p−2)Γ−p−α+ 1 < 0

and

N# :=
p+ q2 − q1

p+ pτ − 1

2 + (p+ pτ − 1)Γ + 2
√

(p+ pτ − 1)(γ − 1) + 1

(p− 1)Γ− (p− 2)
− q2

> N,

we reach a contradiction with Proposition 1.5. Similarly, problem (1.1) has

no bounded above stable solution if (ii) holds. �

Conclusion

Via integral estimates, we have established Liouville theorems for stable

solutions of p-Kirchho� type problems in bounded or unbounded domains

with Dirichlet boundary value condition. The problems in our paper may

have very general nonlinearities or nonlocal terms which were not studied in

literature before. Our theorems therefore extend and unify previous results

in [2, 4, 5, 11, 22, 24, 33]. Moreover, our results also indicate that Liouville

type theorem for stable solutions usually hold in low dimensional space.
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