
ON EXPONENTIAL DICHOTOMY AND STABLE MANIFOLDS FOR

DIFFERENTIAL-ALGEBRAIC EQUATIONS ON THE HALF-LINE

NGUYEN THIEU HUY AND HA PHI

Abstract. In this work we study linear/semi-linear differential-algebraic equations (DAEs) on the half-
line R�. First we characterize the existence of exponential dichotomy for linear DAEs by invoking the

Lyapunov-Perron method. Then we prove the existence of local and global, invariant, stable manifolds for

semi-linear DAEs in the case that the corresponding evolution family to an associated linear DAE admits
exponential dichotomy and an inhomogeneity function fulfills the non-uniform ϕ-Lipschitz condition, where

the Lipschitz function ϕ belongs to wide classes of admissible function spaces such as Lp, 1 ¤ p ¤ 8, Lp,q ,
etc.

1. INTRODUCTION AND PRELIMINARIES

Our focus in the present paper is on the existence of (local and global) stable manifolds for semi-linear
time varying differential-algebraic equations (DAEs) of the form

d rows
a rows
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E1ptq

0

�
looomooon
Eptq

9xptq �

�
A1ptq
A2ptq

�
looomooon
Aptq

xptq �

�
f1pt, xptqq
f2pt, xptqq

�
loooooomoooooon

fpt,xptqq

, t P R� :� r0,�8q. (1.1)

Beside that, we also study the exponential dichotomy of the associated linear system

Eptq 9xptq � Aptqxptq, t P r0,�8q. (1.2)

Here E �

�
E1ptq

0

�
, A �

�
A1ptq
A2ptq

�
are assumed to be matrix-valued functions act on R� to Rn,n, x : R� Ñ Rn,

f : R� � Rn Ñ Rn. Furthermore, we assume that for all t, the matrices E1ptq, A2ptq have full row rank.

DAE systems of the forms (1.1), (1.2) arise in many applications, include multibody dynamics, electrical
circuit, chemical engineering, and many other applications. Due to the rank-deficiency of Eptq, the qualitative
behavior of DAEs is much richer, in comparison to ordinary differential equations (ODEs). We refer the
interested readers to recent monographs [2, 11–13] and the references therein. In particular, even though the
stability analysis for DAEs have been intensively discussed (see the survey [11], Chapter 2), there are only a
few papers on the spectral theory of DAEs and in particular, the exponential dichotomy for DAEs. We refer
to [14] for the concept of exponential dichotomy and its relation to the well conditioning of the associated
boundary value problem, to [16] for Lyapunov and other spectra for linear DAEs, to [4, 7] for the robustness
of exponential stability and Bohl exponents. Besides that, whenever the exponential dichotomy of the linear,
homogeneous system (1.2) is characterized, the next important question in the qualitative theory of DAEs
is to study whether integral manifolds (e.g., stable, unstable, center, center-stable, center-unstable) for the
semi-linear DAE (1.1) exist, [3, 5]. Unfortunately, till now this question is essentially open for DAEs. In
order to shorten these gaps, this paper is devoted to the exponential stability of (1.2) and stable manifolds
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of (1.1). Our method is based on the classical ”Lyapunov-Perron method” ([5, 24]) and the admissibility of
function spaces ([9, 10]).

The outline of this paper is as follows. In the first section we recall some basis concepts which will be useful
later, including an exponential dichotomy and its properties. Then, in Section 2 we present the admissibility
of function spaces and their properties. In Section 3 we gives a characterization for the existence of expo-
nential dichotomy for the DAE (1.2). Section 4 contains our main results on the existence and properties of
local stable manifold for the semi-linear DAE (1.1). The global version of these results will be presented in
Section 5. Finally, we illustrate our results by studying a spatial discretization of Navier-Stokes equations,
and we conclude this research by a summary and some open problems.

Now let us recall some basic notions. By (Rn, } � }) we denote the n-dimensional real vector space
equipped with the Euclidean norm. For any matrix V , by V T we denote its transpose. For any p P N, by
Cppr0,8q,Rnq we denote the space of p-times continuously differentiable functions act on r0,8q to Rn. By
C8pr0,8q,Rnq we denote the space of continuous, bounded functions act on r0,8q to Rn. This space is a
Banach space with the ess sup-norm }f}8 :� supt}fptq}, t ¥ 0u.

It is well-known (e.g. [3]), that for ordinary differential equations (ODEs), if the Cauchy problem

dxptq

dt
� Aptqxptq, t ¥ s ¥ 0, (1.3)

xpsq � xs P Rn,

is well-posed, then there exists a pointwise nonsingular matrix-valued function Xpt, sq P Rn,n such that
the solution of (1.3) is given by xptq � Xpt, sqxs. This fact motivates the existence of an evolution family
pXpt, sqqt¥s¥0 associated with the matrix function Aptq. This family satisfies the condition Xpt, tq � Id and
the so-called semi-group property

Xpt, rqXpr, sq � Xpt, sq, for all t ¥ r ¥ s ¥ 0. (1.4)

Furthermore, the solution of the corresponding semi-linear ODE

dxptq

dt
� Aptqxptq � fpt, xptqq, for all t ¥ s ¥ 0,

is given by the so-called variational of constant formula

xptq � Xpt, sqxpxq �

» t
s

Xpt, τqfpτ, xpτqqdτ, for all t ¥ s ¥ 0. (1.5)

For more details on the notion and some problems focus on properties and applications of evolution families
we refer the readers to Pazy, [21].

Definition 1.1. A given evolution family tXpt, squt¥s¥0 of the ODE (1.3) is said to have an exponential
dichotomy on the half-line if there exist a family of projection matrices tP ptqut¥0 and two positive constants
N, ν such that the following conditions are satisfied.

i) P ptqptqXpt, sq � Xpt, sqP psq, for all t ¥ s ¥ 0,
ii) the restriction Xpt, sq| : kerP psq Ñ kerP ptq is an isomorphism and we denote the inverse of Xps, tq|,

iii) }Xpt, sqP psqx} ¤ Ne�νpt�sq}P psqx}, for all t ¥ s ¥ 0, x P Rn,
iv) }Xpt, sq| pI � P psqqx} ¤ Neνpt�sq}pI � P psqqx}, for all s ¥ t ¥ 0, x P Rn.

Here tP ptqut¥0 (reps. N , ν) are called dichotomy projections (resp. dichotomy constants).

Next we recall some basic concepts and properties for DAEs, starting with fundamental solution matrix
as below.
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Definition 1.2. i) Consider the DAE (1.2). A matrix function X P Cpr0,8q,Rn,kq, d ¤ k ¤ n, is called a
fundamental solution matrix of (1.2) if each of its columns is a solution to (1.2) and rankXptq � d, for all
t ¥ 0.
ii) A fundamental solution matrix is said to be maximal if k � n and minimal if k � d, respectively. A
maximal fundamental solution is called principal if it satisfies the projected initial condition

Ep0q pXp0q � Idq � 0. (1.6)

We can easily see that, fundamental solution matrices for DAEs are not necessarily square or of full
rank. Furthermore, every fundamental solution matrices has exactly d-linear independent columns, and a
minimal fundamental solution matrix can be made maximal by adding n � d zero columns. This is the
major difference between ODEs and DAEs. Consequently, we are unable to define the evolution family for a
DAE in the classical sense. The modified concept, but still capture the essence of an original one, has been
proposed and carefully discussed in [16]. We recall it below, and notice that this concept is equivalent to the
one proposed by Lentini and März in [14] within the context of the matrix chains approach and tractability
index. Throughout this paper, we will assume the following.

Assumption 1.3. Consider the DAEs (1.1), (1.2). We assume that the function pair pE,Aq in these DAEs
is strangeness-free, i.e.,

rank

�
E1ptq
A2ptq

�
� n,

for all t ¥ 0. Furthermore, we assume that E P C1pr0,8q,Rn,nq and A P C0pr0,8q,Rn,nq.

It should be important to note, that for general linear, homogeneous DAE of the form (1.2), one can
transform it to the strangeness-free form without alternating the solution space. For further details, see [12,
Chap. 3].

By making use of some smooth factorizations, for example QR or SVD ([6] or [12], Theorem 3.9), we can
decouple and then exploit the structure of the DAE (1.2) in the following lemma.

Lemma 1.4. Consider the DAE (1.2) and assume that it satisfies Assumption 1.3. Then, there exists
pointwise-orthogonal matrix-valued functions U and V P C1pr0,8q,Rn,nq, such that by changing variable
xptq � V ptqyptq, and scaling (1.2) with Uptq, we can transform it to the so-called decoupled system of the
following form �

Σptq 0
0 0

� �
9y1ptq
9y2ptq

�
�

�
Ã1ptq Ã2ptq

Ã3ptq Ã4ptq

� �
y1ptq
y2ptq

�
, (1.7)

with pointwise nonsingular matrix functions Σptq P Rd,d and Ã4ptq P Ra,a.

Proof. Applying an SVD factorization for E1ptq we can find pointwise-orthogonal matrix functions U1ptq P
C1pr0,8q,Rd,dq and V P C1pr0,8q,Rn,nq such that U1ptqE1ptqV ptq �

�
Σptq 0

�
, where Σptq is continuous,

pointwise nonsingular, matrix-valued function in Rd,d. Changing the variable xptq � V ptqyptq and scaling

(1.2) with Uptq :�

�
U1ptq 0

0 Ia

�
, we obtain a new system

UptqEptqV ptqyptq � Uptq
�
AptqV ptq � Eptq 9V ptq

	
yptq,

which is exactly of the form (1.7). Furthermore, notice that�
Σptq 0

Ã3ptq Ã4ptq

�
�

�
U1ptq 0

0 Ia

� �
E1ptq
A2ptq

�
V,

then Assumption 1.3 yields that both Σ and Ã4 are nonsingular. This completes the proof. �
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Let Â3 :� �Ã�1
4 ptqÃ3ptq, Â1 :� Σ�1ptqÃ1ptq � Σ�1ptqÃ2ptqÃ

�1
4 ptqÃ3ptq, we rewrite the transformed

system (1.7) as

9y1ptq � Â1ptqy1ptq, (1.8)

y2ptq � Â3ptqy1ptq. (1.9)

Since V ptq is orthogonal for all t ¥ 0, we see that all important qualitative properties of xptq, such as
boundedness, exponential stability, contractivity, expansiveness, etc., can be carried out for the function
yptq. Clearly, we see that (1.9) gives an algebraic constraint that the solution to (1.7) must obey, while (1.8)
gives the dynamic of (1.7). For this reason, we call it an underlying ODE to (1.7).

Let tŶ1pt, squt¥s¥0 be the evolution family associated with the matrix function Â1ptq, then we can define
the corresponding evolution families for two DAEs (1.7), (1.2) consecutively as follows.

Ŷ pt, sq :�

�
Ŷ1pt, sq 0

Â3ptqŶ1pt, sq 0

�
, X̂pt, sq � V ptqŶ pt, sqV T psq, for all t ¥ s ¥ 0. (1.10)

Nevertheless, since Xpt, sq is not invertible, we will define the reflexive generalized inverse matrix function
as in [16] by

Ŷ �pt, sq :�

�
Ŷ �1
1 pt, sq 0

Â3psqŶ
�1
1 pt, sq 0

�
, X̂�pt, sq :� V psqŶ �pt, sqV T ptq, for all t ¥ s ¥ 0. (1.11)

Furthermore, we can directly verify the semigroup properties, i.e.

X̂pt, rq � X̂pt, sqX̂ps, rq, for all t ¥ s ¥ r ¥ 0,

X̂pt, sq � X̂pt, 0qX̂�ps, 0q, for all t ¥ s ¥ 0.

Now we give a solution formula for system (1.1), in comparison to (1.5).

Lemma 1.5. Consider the DAE (1.1) and the evolution family pXpt, sqqt¥s¥0 defined by (1.10). Then the
solution to (1.1), if exists, also satisfies the so-called mild equation�

x1ptq
x2ptq

�
� X̂pt, sq

�
x1psq
x2psq

�
�

» t
s

X̂pt, τq

�
f̂1pτ, x1pτq, x2pτqq

0

�
dτ �

�
0

f̂2pt, x1ptq, x2ptqq

�
,

for all t ¥ s ¥ 0, where f̂1 :� Σ�1ptqf1 and f̂2 :� �Ã�1
4 ptqf2.

Proof. The proof can be obtained directly by using Lemma 1.4. Thus, in order to keep the brevity we will
omit the details here. �

In the following, for ease of notation, we will use the abbreviation X̂ptq :� X̂pt, 0q, X̂�ptq :� X̂�pt, 0q,

Ŷ ptq :� Ŷ pt, 0q and Ŷ �ptq :� Ŷ �pt, 0q. The concept of exponential dichotomy for the DAE (1.7) is given as
below.

Definition 1.6. ([16]) The DAE (1.7) is said to have an exponential dichotomy if there exist a family of
projection matrices tPyptqut¥0 in Rd,d and positive constants N , ν such that����Ŷ ptq

�
Pyptq 0

0 0

�
Ŷ �psq

���� ¤ Ne�νpt�sq, for all t ¥ s ¥ 0,����Ŷ ptq
�
Id � Pyptq 0

0 0

�
Ŷ �psq

���� ¤ Neνpt�sq, for all s ¥ t ¥ 0, (1.12)
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Since the Euclidean norm is preserved under orthogonal transformations, due to (1.10)-(1.12) we see that����X̂ptqV T p0q
�
Pyptq 0

0 0

�
V p0qX̂�psq

���� ¤ Ne�νpt�sq, for all t ¥ s ¥ 0.

and ����X̂ptqV T p0q
�
Id� Pyptq 0

0 0

�
V p0qX̂�psq

���� ¤ Neνpt�sq, for all s ¥ t ¥ 0.

In addition, since V T p0q

�
Id� Pyptq 0

0 0

�
V p0q is also a projection matrix for any t ¥ 0, we can interpret the

exponential dichotomy of (1.2) as the one of (1.7).

2. Function Spaces and Admissibility

In this section we recall some notions of function spaces that play a fundamental role in the study of
differential equations and refer to Massera and Schäffer [17, Chap. 2] and Räbiger and Schnaubelt [22, §1]
for their concrete applications.

Denote by B the Borel algebra, by λ the Lebesgue measure on R�, and by L1,locpR�q the set of real-valued
locally integrable functions on R� (modulo λ-null functions). With a set of seminorms defining the topology
given by pnpfq :�

³
Jn
|fptq|dt, n P N, where tJnunPN � trn, n � 1sunPN, it is well-known (e.g. [17, Chapt.

2])) that L1,locpR�q becomes a Fréchet space. We can now define Banach function spaces as follows.

Definition 2.1. A vector space E of real-valued Borel-measurable functions on R� (modulo λ�nullfunctions)
is called a Banach function space (over pR�, β, λq) if

i) E is Banach lattice with respect to a norm } � }E , i.e., pE, } � }Eq is a Banach space, and if ϕ P E
and ψ is a real-valued Borel-measurable function such that |ψp�q| ¤ |ϕp�q|, λ�a.e., then ψ P E and
}ψ}E ¤ }ϕ}E ,

ii) the characteristic functions χA belong to E for all A P B of finite measure, and sup
t¥0

}χrt,t�1s}E   8

and inft¥0 }χrt,t�1s}E ¡ 0,
iii) E ãÑ L1,locpR�q, i.e., for each seminorm pn of L1,locpR�q there exists a positive constant βn such

that pnpfq ¤ βn}f}E for all f P E.

We then define the Banach space corresponding to the space E as follows.

Definition 2.2. Consider the Banach space pRn, } � }q with some arbitrary norm. For a Banach function
space E we set

E :� EpR�,Rnq :� tf : R� Ñ Rn : f is strongly measurable and }fp�q} P Eu

(modullo λ�nullfunctions) endowed with the norm }f}E :� }}fp�q}}E . Thus, one can directly see that pE , }�}Eq
is a Banach space. We call it the Banach space corresponding to E.

We now introduce the notion of admissibility in the following definition.

Definition 2.3. The Banach function space E is called admissible if for any ϕ P E the following conditions
hold.

i) There exists a constant Mϕ ¥ 1 such that for every compact interval ra, bs P R� we have» b
a

|ϕptq|dt ¤
Mϕpb� aq

}χra,bs}E
}ϕ}E for all ϕ P E. (2.1)

ii) The function Λ1ϕ defined by Λ1ϕptq :�
³t�1

t
ϕpτqdτ belongs to E.
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iii) For any τ ¥ 0, the space E is T�
τ -invariant and T�

τ -invariant, where T�
τ and T�

τ are defined as

T�
τ ϕptq :�

#
ϕpt� τq for t ¥ τ ¥ 0,

0 for 0 ¤ t ¤ τ,

T�
τ ϕptq :� ϕpt� τq for t ¥ 0.

(2.2)

Furthermore, there exist constants N1, N2 such that }T�
τ }E ¤ N1, }T

�
τ }E ¤ N2 for all τ P R�.

Example 2.4. Besides the spaces LppR�q, 1 ¤ p ¤ 8, and the space

MαpR�q :� th P L1,locpR�q : sup
t¥0

» t�α
t

|hpτq|dτ   8u,

(for any fixed α ¡ 0), endowed with the norm }h}Mα
:� sup

t¥0

³t�α
t

|hpτq|dτ , many other function spaces

occurring in interpolation theory, e.g. the Lorentz spaces Lp,q, 1   p   8, 1 ¤ q   8 (see [3], [23]) and,
more general, the class of rearrangement invariant function spaces over pR�, β, λq (see [15]) are admissible.

Remark 2.5. Following directly from Definitions 2.1 ii) and 2.3 i) we have that

sup
t¥0

» t�1

t

|ϕpτq|dτ ¤
Mϕ

inft¥0 }χrt,t�1s}E
}ϕ}E ,

and hence, E ãÑ M1pR�q. Furthermore, C8pR�q is dense in M1.

We now collect some properties of admissible Banach function spaces in the following proposition (see [9,
Proposition 2.6] and originally in [17, 23.V.(1)]).

Proposition 2.6. Let E be an admissible Banach function space. Then the following assertions hold.
a) Let ϕ P L1,locpR�q such that ϕ ¥ 0 and Λ1ϕ P E, where, Λ1 is defined as in definition 2.3 (ii). For σ ¡ 0
we define functions Λ1

σϕ and Λ2
σϕ by

Λ1
σϕptq :�

» t
0

e�σpt�sqϕpsqds,

Λ2
σϕptq :�

» 8

t

e�σps�tqϕpsqds.

Then, Λ1
σϕ and Λ2

σϕ belong to E. In particular, if sup
t¥0

³t�1

t
ϕpτqdτ   8 (this will be satisfied if ϕ P E (see

remark 2.5)) then Λ1
σϕ and Λ2

σϕ are bounded. Moreover, denoted by } � }8 for ess sup-norm, we have

}Λ1
σϕ}8 ¤

N1

1 � e�σ
}Λ1T

�
1 ϕ}8 and }Λ2

σϕ}8 ¤
N2

1 � e�σ
}Λ1ϕ}8 (2.3)

for operator T�
1 and constants N1, N2 defined as in Definition 2.3.

b) E contains exponentially decaying functions ψptq � e�αt for any constant α ¡ 0.
c) E does not contain exponentially growing functions fptq :� ebt for any constant b ¡ 0.

3. Exponential Dichotomy for linear DAEs and its properties

In the qualitative analysis of ODEs, one of the central topic is to find sufficient and necessary conditions
for the considered system to admit exponential dichotomy. Many researches have been devoted to this topic,
and critical results have been achieved for ODEs of both finite and infinite dimensions (e.g. [5, Chap. 4],
[24]). For DAEs, the only result that we are aware of is recalled below.
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Proposition 3.1. ([16]) The DAE (1.2) has exponential dichotomy if and only if the matrix function Â3ptq
is bounded, and the corresponding underlying ODE (1.8) also has exponential dichotomy. Moreover, the
existence of exponential dichotomy imlies that sup

t¥0
}Pyptq}   8.

Notice that, even for ODEs, Proposition 3.1 is only valid for finite but not infinite dimensional systems.
For this reason, we recall another important result below.

Proposition 3.2. ([5]) Consider the ODE (1.3). Then it has exponential dichotomy if and only if for any
continuous, bounded function fptq on r0,8q, there exists a continuous, bounded solution xptq.

In view of Proposition 3.2, comparable conditions for the existence of exponential dichotomy have not
been considered for DAEs, and hence, this will be our main aim in this section.

Definition 3.3. Consider the matrix functions E, A in system (1.2). Then, any function f : R� Ñ Rn
satisfies the condition

sup
t¥0

"����
�
Σ�1ptq �Σ�1ptqÃ2ptqÃ

�1
4 ptq

0 Ã�1
4 ptq

�
fptq

����
*
  �8,

is called pE,Aq-bounded. We denote the set of all continuous, pE,Aq-bounded function by BEApR�,Rnq.

The main result of this section is to prove, that ”roughly speaking” the DAE (1.2) admits exponential

dichotomy if and only if the mapping L :� E
d

dt
�A is surjective on the space BEApR�,Rnq. In connection

with the solvability of the linear, inhomogeneous DAE

d rows
a rows

�
E1ptq

0

�
looomooon
Eptq

9xptq �

�
A1ptq
A2ptq

�
looomooon
Aptq

�

�
f1ptq
f2ptq

�
loomoon
fptq

, t P r0,�8q. (3.1)

we reform our main result in this section as follows.

Theorem 3.4. Consider the linear, strangeness-free DAE (1.2) and the associated inhomogeneous DAE
(3.1). Then the following assertions hold.
i) If the DAE (1.2) admits exponential dichotomy then for any continuous, pE,Aq-bounded function fptq on
r0,8q, there exists a continuous, bounded solution xptq to the DAE (3.1).

ii) If the matrix function Â3ptq is bounded, then the converse of i) is also true.

Proof. First we notice that, since f̂ � Uptq

�
Σ�1ptq �Σ�1ptqÃ2ptqÃ

�1
4 ptq

0 �Â�1
4

�
fptq, the pE,Aq-boundedness of

f is equivalent to the boundedness of f̂ . Recall that the decoupled system (1.7) reads

9y1ptq � Â1ptqy1ptq � f̂1ptq, (3.2)

y2ptq � Â3ptqy1ptq � f̂2ptq. (3.3)

i) Assuming that the DAE (1.2) admits exponential dichotomy, then (1.7) also has an exponential dichotomy.

Proposition 3.1 implies that equation (3.2) has an exponential dichotomy, and the function Â3 is bounded.
Therefore, Proposition 3.2 implies that y1 is bounded, and consequently, y2 is also bounded.
ii) Due to Proposition 3.2, it follows that (3.2) has exponential dichotomy. Besides that, due to the bound-

edness of Â3, it follows that (1.2) admits exponential dichotomy. �

Remark 3.5. Making use of admissible function spaces, stronger conditions for characterizing the exponential
dichotomy of the DAE (1.2) have been obtained in [20], where an inhomogeneity function fptq belongs to less
restricted spaces than BEApR�,Rnq. There, we also study the robustness of exponential dichotomy under
structured-perturbations.
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4. Local Stable manifolds for semi-linear DAEs

In this section we study the existence of a local stable manifold for the semi-linear DAE (1.1). Throughout
this section we assume that the evolution family pXpt, sqqt¥s¥0 associated with the linear, homogeneous DAE
(1.2) admits an exponential dichotomy on R�.

Due to Lemma 1.4, by using orthogonal transformation xptq � V ptqyptq, where yptq �

�
y1ptq
y2ptq

�
P Rd�a we

can transform (1.1) to the coupled system

9y1ptq � Â1ptqy1ptq � f̂1pt, yptqq, (4.1)

y2ptq � Â3ptqy1ptq � f̂2pt, yptqq, (4.2)

where

f̂pt, yptqq �

�
f̂1pt, yptqq

f̂2pt, yptqq

�
:�

�
Σ�1ptqf1pt, xptqq � Σ�1ptqÃ2ptqÃ

�1
4 ptqf2pt, xptqq

�A�1
4 ptqf2pt, xptqq

�
. (4.3)

Notice that, different from the DAEs (1.2) and (3.1), equation (4.2) only gives an implicit algebraic constraint
in terms of y1 and y2. In order to guarantee the strangeness-free of system (1.1), we need the following
assumption.

Assumption 4.1. Assume that for some ρ ¡ 0, the function A�1
4 ptqf2pt, xq is a contraction mapping in the

ball Bρ (uniformly in time), i.e.,

}A�1
4 ptqf2pt, xq �A�1

4 ptqf2pt, x̃q} ¤ L}x� x̃},

for a.e. t P R�, and for all x, x̃ P Bρ, where the Lipschitz constant L satisfies that L   1.

Lemma 4.2. Under Assumption 4.1, restricted to the ball Bρ � Rn, y2 can be uniquely solvable from (4.2)
in terms of t and y1.

Proof. First notice that Assumption 4.1 implies that f̂2pt, yq is also Lipschitz in y with the same constant
L. Then, the desired claim is obtained directly by making use of [18, Lem. 2.7]. �

Remark 4.3. Lemma 4.2 leads to one critical fact, that under Assumption 4.1, the coupled system (4.1)-(4.2)
is still strangeness-free, as defined in [12, Chap. 4]. Therefore, in analoguous to the linear case, (4.2) is called
an algebraic constraint, while (4.1) is called an underlying ODE.

To obtain the stable manifold we need the following property of the nonlinear part f1 as be shown in the
notion below.

Definition 4.4. Let E be an admissible Banach function space and ϕ be a positive function belongs to E.
A function h : R� � Rd Ñ Rd is said to belong to the class pM,ϕ, ρq for some positive constant M , ρ if h
satisfies

(i) }hpt, xq} ¤Mϕptq for a.e. t P R� and for all x P Bρ,
(ii) }hpt, xq � hpt, x̃q} ¤ ϕptq}x� x̃} for a.e. t P R�, for all x, x̃ P Bρ.

Assumption 4.5. Assume that the function Σ�1ptq f1pt, xptqq �Σ�1ptqÃ2ptqÃ
�1
4 ptq f2pt, xptqq belongs to

the class pM,ϕ, ρq for some positive constants M , ρ and a positive function ϕ P E.

For notational simplicity, we will study the existence of a local stable manifold for system (4.1)-(4.2).
Moreover, we consider the mild/integral-algebraic system which reads�

y1ptq
y2ptq

�
� Ŷ pt, sq

�
y1psq
y2psq

�
�

» t
s

Ŷ pt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, (4.4)

for all t ¥ s ¥ 0.
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Lemma 4.6. Let Assumptions 4.1 and 4.5 hold true. Then, for all y, ỹ P Bρ the following assertions hold.

i) }f̂1pt, yq} ¤Mϕptq, for a.e. t P R�,

ii) }f̂1pt, yq � f̂1pt, ỹq} ¤ ϕptq}y � ỹ}, for a.e. t P R�,

iii) }f̂2pt, yq � f̂2pt, ỹq} ¤ L}y � ỹ}, for a.e. t P R�.

Proof. The proof is trivially followed from Assumptions 4.1 and 4.5 due to the fact that }y} � }Qy} for any
orthogonal matrix V . �

Let pŶ pt, sqqt¥s¥0 has an exponential dichotomy with the corresponding projection matrices tPyptqut¥0

and the dichotomy constants N, ν ¡ 0 as in Definition 1.6. Furthermore, due to Proposition 3.1, let us
denote by H1 :� sup

t¥0
}Â3ptq} and H2 :� sup

t¥0
}Pyptq}. Then, we can define the Green function on the half-line

as follows

Gpt, τq :�

$''''&
''''%
Ŷ pt, τq

�
Pypτq 0

0 0

�
�

�
Ŷ1pt, τqPypτq 0

Â3ptqŶ1pt, τqPypτq 0

�
, for all t ¥ τ ¥ 0,

�Ŷ pt, τq

�
Id � Pypτq 0

0 0

�
�

�
Ŷ1pt, τqpId � Pypτqq 0

Â3pτqŶ1pt, τqpId � Pypτqq 0

�
, for all 0 ¤ t   τ.

(4.5)

Then, we have

}Gpt, τq} ¤ p1 �H1qp1 �H2q Ne
�ν|t�τ | for all t �� τ ¥ 0. (4.6)

In the following lemma, we give an explicit form for bounded solutions to system (4.4).

Lemma 4.7. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) has an exponential dichotomy with the
corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore, assume
that Assumptions 4.1, 4.5 hold true. Let yptq be any solution to (4.4) such that ess supt¥t0 }yptq} ¤ ρ for
fixed t0 ¥ 0 and some ρ ¡ 0. Then, for t ¥ t0 ¥ 0, we can rewrite yptq in the form�

y1ptq
y2ptq

�
� Y pt, t0q

�
v0
0

�
�

» 8

t0

Gpt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, (4.7)

for some v0 P ImPypt0q, where Gpt, τq is the Green function defined by (4.5).

Proof. Put zptq �

�
z1ptq
z2ptq

�
:�

³8
t0
Gpt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, by direct computation, we can verify

that z satisfies the integral equation

zptq � Ŷ pt, t0q

�
z1pt0q
z2pt0q

�
�

» t
t0

Ŷ pt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
,

for all t ¥ t0. Now let us estimate }zptq}. Making use of Lemma 4.6 and (4.6), we see that

}zptq} ¤

» 8

t0

p1 �H1qp1 �H2q Ne
�ν|t�τ | Mϕpτq dτ � Lρ,

and then, (2.3) follows that

}zptq} ¤M p1 �H1qp1 �H2q
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
� Lρ ,

for all t ¥ t0. Thus, zptq � yptq is also bounded. Moreover, since

zptq � yptq � Ŷ pt, t0q pzpt0q � ypt0qq �

�
Ŷ1pt, t0q pz1pt0q � y1pt0qq

Â3ptqŶ1pt, t0q pz1pt0q � y1pt0qq

�
,
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we see that v0 :� z1pt0q � y1pt0q P ImPypt0q. Finally, since zptq � yptq � Ŷ pt, t0q

�
v0
0

�
for all t ¥ t0, (4.7)

follows. �

Remark 4.8. By computing directly, we can see that the converse of Lemma 4.7 is also true. It means, that
all solutions to (4.7) also satisfy equation (4.4) for all t ¥ t0.

Let us denote by

H3 :� p1 �H1qp1 �H2q
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
and ρ̃ :�

1 � L

2Np1 �H1q
ρ . (4.8)

Lemma 4.9. Under the assumptions of Lemma 4.7, let yptq, ỹptq be any two functions lie in the ball Bρ and
satisfy (4.7) for v0, ṽ0 P ImPypt0q. If H3 defined by (4.8) satisfies H3 � L   1 then we have the following
estimation

}y � ỹ}8 ¤
N

1 �H3 � L
}v0 � ṽ0} . (4.9)

Proof. Using the same arguments as in the proof of Lemma 4.6, we see that

}yptq � ỹptq} ¤ N}v0 � ṽ0} �

» 8

t0

p1 �H1qp1 �H2q Ne
�ν|t�τ | ϕpτq}ypτq � ỹpτq} dτ � L}yptq � ỹptq},

¤ N}v0 � ṽ0} � p1 �H1qp1 �H2q
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
}y � ỹ}8 � L}yptq � ỹptq},

¤ N}v0 � ṽ0} � pH3 � Lq }y � ỹ}8,

which directly implies (4.9). �

In the following theorem, we exploit the local structure of bounded solutions to (4.4).

Theorem 4.10. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) have an exponential dichotomy
with the corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore,
assume that Assumptions 4.1, 4.5 hold true.
i) If the condition

H3   min

"
1 � L,

p1 � Lqρ

2M

*
(4.10)

is fulfilled, then there corresponds to each v0 P Bρ̃ X ImPypt0q one and only one solution yptq to (4.4) on
rt0,8q satisfying Pypt0qy1pt0q � v0 and ess supt¥t0 }yptq} ¤ ρ.
ii) Moreover, for any two solutions yptq, ỹptq corresponding to different v0, ṽ0 in Bρ̃ X ImPypt0q, they are
attracted to each other exponentially, i.e.,

}yptq � ỹptq} ¤ H4 e
�µpt�t0q }v0 � ṽ0}, for all t ¥ t0, (4.11)

for some positive constants H4, µ.

Proof. i) Consider in the space L8pR�,Rnq the ball Bρ :� ty P L8pR�,Rnq : }yp�q}8 :� esssup
t¥0

}yptq} ¤ ρu.

For each fixed v0 P Bρ̃ we will prove the transformation T defined by

pTyqptq �

$'&
'%
Y pt, t0q

�
v0

0

�
�
³8
t0
Gpt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, for all t ¥ t0,

0, for all t   t0,

(4.12)
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is a contraction mapping from Bρ to itself. Using the same argument as in the proof of Lemma 4.6, we see
that

}pTyqptq} ¤ p1 �H1qNe
�νpt�t0q}v0} �M p1 �H1qp1 �H2q

N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
� Lρ ,

¤ p1 �H1qN}v0} �MH3 � Lρ ,

and due to (4.10) we see that

}pTyqptq} ¤ p1 �H1qNρ̃ �
p1 � Lqρ

2
� Lρ � ρ .

Therefore, T is a mapping from Bρ to itself. Now we prove its contraction property. Making use of (4.6),
we obtain the following estimation

}Typtq � T ỹptq} ¤

» 8

t0

}Gpt, τq} }f̂1pτ, ypτqq � f̂1pτ, ỹpτqq}dτ � }f̂2pt, yptqq � f̂2pt, ỹptqq},

¤

» 8

t0

p1 �H1qp1 �H2q Ne
�ν|t�τ |ϕpτq }ypτq � ỹpτq}dτ � L }yptq � ỹptq},

¤ pH3 � Lq }yptq � ỹptq}8.

Consequently, due to (4.10), we see that T is a contraction mapping with the contraction constant H3 � L.
Thus, there exist a unique function y P Bρ such that y � Ty, and hence, due to the definition of T , y is the
solution to the mild/integral-algebraic system (4.4).
ii) The proof of the estimate (4.11) can be done in a similar way as in [10, Thm 3.7]. We present here for seek
of completeness. Let yptq and ỹptq be two essentially bounded solutions of (4.4) corresponding to different
values v0, ṽ0 P Bρ̃ X ImPypt0q. Then, we have that

}yptq � ỹptq} ¤ Y pt, t0q}v0 � ṽ0} �

» 8

t0

}Gpt, τq} }f̂1pτ, ypτqq � f̂1pτ, ỹpτqq}dτ � }f̂2pt, yptqq � f̂2pt, ỹptqq},

¤ p1 �H1qNe
�νpt�t0q �

» 8

t0

p1 �H1qp1 �H2q Ne
�ν|t�τ |ϕpτq }ypτq � ỹpτq}dτ � L }yptq � ỹptq},

and hence,

}yptq � ỹptq} ¤
1 �H1

1 � L
Ne�νpt�t0q �

» 8

t0

p1 �H1qp1 �H2q

1 � L
Ne�ν|t�τ |ϕpτq }ypτq � ỹpτq}dτ .

Then, due to the Cone Inequality, [5, Theorem 1.9.3], in analoguous to [19, Theorem 3.7], we obtain the
estimation (4.11) with H4, µ are given by

0   µ   ν � ln

�
1 �

H3p1 � e�νq

1 � L



, H4 :�

p1 �H1qN

1 � L�
H3p1 � e�νq

1 � eµ�ν

.

Furthermore, notice that due to (4.10) we see that µ   ν, which implies the positivity of H4. This completes
the proof. �

Under Assumption 4.1, we define the so-called constrained manifold, which all solutions to (4.1)-(4.2)
must lie on

Lpt, yq :� tpt, y1, y2q P R� � Rd � Ra | y2 � Â3ptqy1 � f̂2pt, y1, y2qu . (4.13)

We further notice that this manifold is of dimension d, which is the degree of freedom to the DAE (4.4).
Now we are able to introduce the concept of a local stable manifold for the solutions of the integral-algebraic
system (4.4).



12 N.T. HUY AND H. PHI

Definition 4.11. A subset M of the constrained manifold Lpt, yq is said to be a local stable manifold for
solutions to (4.4) if for every t P R� the phase subspace Rd splits into a direct sum Rd �W1ptq`W2ptq such
that

inf
tPR�

SnpW1ptq,W2ptqq :� inf
tPR�

inft}w1 � w2}, wi PWiptq, }wi} � 1, i � 0, 1u ¡ 0,

and if there exist positive constants ρ, ρ1, ρ2 and a family of Lipschitz continuous mappings

gt : Bρ1 XW1ptq Ñ Bρ2 XW2ptq, t P R�,

with a common Lipschitz constant independent of t such that

(i) M � tpt, y1 � w1 � gtpw1q, y2q P R� � pW1ptq `W2ptqq � Ra | w1 P Bρ1 XW1ptqu, and we denote by
Mt :� tpy1 � w1 � gtpw1q, y2q | pt, y1 � w1 � gtpw1q, y2q P Mu,

(ii) Mt is homeomorphic to Bρ1 XW1ptq for all t ¥ 0,
(iii) to each w̃ P Mt0 there corresponds one and only one solution y to (4.4) satisfying y1pt0q � w̃ and

ess supt¥t0 }yptq} ¤ ρ.

Theorem 4.12. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) have an exponential dichotomy
with the corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore,
assume that Assumptions 4.1, 4.5 hold true. If the condition

H3   min

"
1 � L,

p1 � Lqp1 �H1qρ

2M
,
p1 � Lqp1 �H1qp1 �H2q

N � p1 �H1qp1 �H2q

*

is fulfilled, then there exists a local stable manifold for the solutions of (4.4). Moreover, every two solutions
yptq, ỹptq on the manifold M attract each other exponentially in the sense that there exist positive constants
H4 and µ independent of t0 ¥ 0 such that

}yptq � ỹptq} ¤ H4 e
�µpt�t0q }P pt0qy1pt0q � P pt0qy2pt0q}, for all t ¥ t0 . (4.14)

Proof. First we notice that the phase subspace Rd splits into the direct sum Rd � ImPyptq ` kernelPyptq
for all t ¥ 0. We set W1ptq :� ImPyptq and W2ptq :� kernelPyptq, then due to Proposition 3.1, we see that
sup
t¥0

}Pyptq}   8, and hence, inftPR� SnpW1ptq,W2ptqq ¡ 0.

For any ρ ¡ 0 corresponding to Assumptions 4.1, 4.5, let ρ1 :� ρ̃ �
1 � L

2Np1 �H1q
ρ and ρ2 :�

p1 � Lqρ

2
.

For each t ¥ 0 we define the mapping gt acts on Bρ1 XW1ptq as

gtpw1q :�

» 8

t

Ŷ1pt, τqpId � Pypτqqf1pτ, ypτqqdτ,

where the function yptq is uniquely defined via Theorem 4.10 i). Clearly, gtpw1q P kerPyptq �W2ptq.

Now we prove that }gtpw1q} ¤ ρ2. Due to Theorem 4.10 i) and Lemma 4.6 i), we see that }yptq} ¤ ρ and
}f1pτ, ypτqq} ¤Mϕpτq for a.e. t ¥ 0. Therefore,

}gtpw1q} ¤

» 8

t

N e�νpτ�tq }f1pτ, ypτqq}dτ ¤

» 8

t

N e�νpτ�tq Mϕpτqdτ,

¤ M p1 �H2q
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
�

MH3

1 �H1
¤
p1 � Lqρ

2
,

and hence, gt : Bρ1 XW1ptq Ñ Bρ2 XW2ptq.



EXPONENTIAL DICHOTOMY AND STABLE MANIFOLD FOR DAES 13

Notice that both part iii) in Definition 4.11 and estimation (4.14) are followed directly from Theorem
4.10. We now only need to prove that Mt is homeomorphic to Bρ1 XW1ptq. We first prove that gt is a
Lipschitz mapping. This fact can be seen from the following estimation.

}gtpw1q � gtpw̃1q} ¤

» 8

t

N e�νpτ�tq }f1pτ, ypτqq � f2pτ, ỹpτqq}dτ ¤

» 8

t

N e�νpτ�tq ϕpτq }ypτq � ỹpτq}dτ ,

¤
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
}y � ỹ}8 �

H3

p1 �H1qp1 �H2q
}y � ỹ}8 ,

and hence, (4.9) implies that

}gtpw1q � gtpw̃1q} ¤
NH3

p1 �H1qp1 �H2qp1 �H3 � Lq
}w1 � w̃1} .

Finally, H3  
p1 � Lqp1 �H1qp1 �H2q

N � p1 �H1qp1 �H2q
yields that

NH3

p1 �H1qp1 �H2qp1 �H3 � Lq
  1, and hence, gt is a

contraction mapping for all t ¥ 0. Then, applying the Implicit Function Theorem for Lipschitz continuous
mappings ([18, Lem. 2.7]), we see that the mapping Id � gt : Mt Ñ Bρ1 XW1ptq is a homeomorphism.
This implies the condition ii) of Definition 4.11, and hence, the proof is finished. �

5. Global stable manifolds for semi-linear DAEs

In this section we study the existence of global stable manifolds for semi-linear DAEs of the form (1.1).
We begin with the concept of ϕ-Lipschitz functions.

Definition 5.1. Let E be an admissible Banach function space and ϕ P E is a positive function. A function
h : R� � Rn Ñ Rd is said to be ϕ-Lipschitz if the following conditions hold true.

(i) }hpt, 0q} � 0 for a.e. t P R�,
(ii) }hpt, xq � hpt, x̃q} ¤ ϕptq}x� x̃} for a.e. t P R� and all x, x̃ P Rn.

In comparable to Assumptions 4.1, 4.5, we also need some global properties of the nonlinear term f .

Assumption 5.2. Assume that the followings hold true.
i) The function Σ�1ptq f1pt, xptqq � Σ�1ptqÃ2ptqÃ

�1
4 ptq f2pt, xptqq is ϕ-Lipschitz.

ii) The function Ã�1
4 ptq f2pt, xptqq is a contraction mapping with the Lipschitz constant L   1 for all pt, xptqq

lies on the constraint-manifold associated with (1.1) defined by

Lpt, xq :� tpt, xq P R� � Rn | 0 � A2ptqx� f2pt, xqu .

We can directly verify that orthogonal transformations of the form x � V y preserves the ϕ-Lipschitz

property, and hence, function f̂1 in (4.1) is also ϕ-Lipschitz. Besides that, function f̂2 in (4.2) is also a
contraction mapping with the Lipschitz constant L   1. For notational simplicity, now we will study the
transformed system (1.7) and the integral-algebraic system (4.4).

Definition 5.3. A subset M of the constrained manifold Lpt, yq is said to be a global, stable manifold for
solutions to (4.4) if for every t P R� the phase subspace Rd splits into a direct sum Rd �W1ptq`W2ptq such
that

inf
tPR�

SnpW1ptq,W2ptqq :� inf
tPR�

inft}w1 � w2}, wi PWiptq, }wi} � 1, i � 0, 1u ¡ 0,

and if there exists a family of Lipschitz continuous mappings

gt : W1ptq ÑW2ptq, t P R�,

with the Lipschitz constants independent of t such that
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(i) M � tpt, y1 � w1 � gtpw1q, y2q P R� � pW1ptq ` W2ptqq � Ra | w1 P W1ptqu, and we denote by
Mt :� tpy1 � w1 � gtpw1q, y2q | pt, y1 � w1 � gtpw1q, y2q P Mu,

(ii) Mt is homeomorphic to W1ptq for all t ¥ 0,
(iii) to each w̃ P Mt0 there corresponds one and only one solution y to (4.4) satisfying y1pt0q � w̃ and

ess supt¥t0 }yptq}   8,
(iv) M is invariant under system (4.4), i.e., if y is a solution to (4.4), and ess supt¥t0 }yptq}   8, then

ypsq P Ms for all s ¥ t0.

In analogous to Lemma 4.7, we give the explicit form of bounded solutions to system (4.4) as below.

Lemma 5.4. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) has an exponential dichotomy with the
corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore, assume
that Assumption 5.2 holds true. Let yptq be any solution to (4.4) such that ess supt¥t0 }yptq}   8 for fixed
t0 ¥ 0. Then, for all t ¥ t0 ¥ 0, we can rewrite yptq in the form�

y1ptq
y2ptq

�
� Y pt, t0q

�
v0
0

�
�

» 8

t0

Gpt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, (5.1)

for some v0 P ImPypt0q, where Gpt, τq is the Green function defined by (4.5).

Proof. The proof can be achieved by using similar arguments as done in the proof of Lemma 4.2, and we
will omit the details here in order to keep the brevity of this research. �

In the following two theorems, we present the global versions of Theorems 4.10 and 4.12, where we
construct the structure of bounded solutions to (4.4) and prove the existence of a global, stable manifold,
respectively.

Theorem 5.5. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) have an exponential dichotomy with the
corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore, assume
that Assumption 5.2 holds true.
i) For any fixed t0 ¥ 0, if the condition

H3   1 � L

is fulfilled, then there corresponds to each v0 P ImPypt0q one and only one solution yptq to (4.4) on rt0,8q
satisfying Pypt0qy1pt0q � v0 and ess supt¥t0 }yptq}   8.
ii) Moreover, for any two solutions yptq, ỹptq corresponding to different v0, ṽ0 in ImPypt0q, they are attracted
to each other exponentially, i.e.,

}yptq � ỹptq} ¤ H4 e
�µpt�t0q }v0 � ṽ0}, for all t ¥ t0,

for some positive constants H4, µ satisfying

0   µ   ν � ln

�
1 �

H3p1 � e�νq

1 � L



, H4 :�

p1 �H1qN

1 � L�
H3p1 � e�νq

1 � eµ�ν

.

Proof. The proof of this theorem is essentially the same as the proof of Theorem 4.10. The only change is,
that instead of considering the ball Bρ we will work with the space L8pR�,Rnq itself. Then, we can prove
(without any difficulty) that for each fixed v0 P ImPypt0q, the transformation T defined by

pTyqptq �

$'&
'%
Y pt, t0q

�
v0

0

�
�
³8
t0
Gpt, τq

�
f̂1pτ, ypτqq

0

�
dτ �

�
0

f̂2pt, yptqq

�
, for all t ¥ t0,

0, for all t   t0,

is a contraction mapping, and therefore, all the assertions of the theorem follows. �
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Theorem 5.6. Let the evolution family pŶ pt, sqqt¥s¥0 of system (1.7) have an exponential dichotomy with the
corresponding projection matrices tPyptqut¥0 and the dichotomy constants N, ν ¡ 0. Furthermore, assume
that Assumption 5.2 holds true. If the condition

H3   min

"
1 � L,

p1 � Lqp1 �H1qp1 �H2q

N � p1 �H1qp1 �H2q

*
is fulfilled, then there exists a global stable manifold for the solutions of (4.4). Moreover, every two solutions
yptq, ỹptq on the manifold M attract each other exponentially in the sense that there exist positive constants
H4 and µ independent of t0 ¥ 0 such that

}yptq � ỹptq} ¤ H4 e
�µpt�t0q }P pt0qy1pt0q � P pt0qy2pt0q}, for all t ¥ t0 .

Proof. Analogous to the proof of Theorem 4.12, we consider the decomposition Rd � ImPyptq ` kernelPyptq
and set W1ptq :� ImPyptq and W2ptq :� kernelPyptq. Thus, we see that inftPR� SnpW1ptq,W2ptqq ¡ 0.
Now we define the family of mappings pgtqt¥0 acting on W1 as

gtpw1q :�

» 8

t

Ŷ1pt, τqpId � Pypτqqf1pτ, ypτqqdτ,

where the function yptq is bounded and be uniquely defined via Theorem 5.5 i). Clearly, gtpw1q P kerPyptq �
W2ptq. To verify the Lipschitz property of gt, let us consider two arbitrary elements w1 and w̃1 in W1 and
let y and ỹ be the corresponding functions defined via Theorem 5.5 i). Then, we see that

}gtpw1q � gtpw̃1q} ¤

» 8

t

N e�νpτ�tq }f1pτ, ypτqq � f2pτ, ỹpτqq}dτ ¤

» 8

t

N e�νpτ�tq ϕpτq }ypτq � ỹpτq}dτ ,

¤
N

1 � e�ν
�
}Λ1T

�
1 ϕ}8 � }Λ1ϕ}8

�
}y � ỹ}8 �

H3

p1 �H1qp1 �H2q
}y � ỹ}8 ,

and hence, (4.9) implies that

}gtpw1q � gtpw̃1q} ¤
NH3

p1 �H1qp1 �H2qp1 �H3 � Lq
}w1 � w̃1} .

Finally, H3  
p1 � Lqp1 �H1qp1 �H2q

N � p1 �H1qp1 �H2q
yields that

NH3

p1 �H1qp1 �H2qp1 �H3 � Lq
  1, and hence, gt is a

contraction mapping for all t ¥ 0. Then, applying the Implicit Function Theorem for Lipschitz continuous
mapping ([18, Lem. 2.7]), we see that the mapping Id � gt : Mt Ñ W1ptq is a homeomorphism. This
implies the condition ii) of Definition 4.11, and hence, the proof is finished. �

Now let us illustrate our results by the following examples.

Example 5.7. The dynamical behavior of a system in fluid mechanics and turbulence modeling is often
described by the incompressible Navier-Stokes equation on an open, bounded domain Ω � Rk, k � 2 or 3,
of the form

Bu

Bt
� ν∆u�∇p� pu �∇qu� fpt, u, pq,

∇ � u � 0,

where ν ¡ 0 is the viscosity, u � upt, ξq is the velocity field which is a function of the time t and the position
ξ, p is the pressure, f is the external force. Then, discretizing the space variable by finite difference, finite
volumes, or finite element methods [8], one obtains a differential-algebraic system of the following form.

M 9U � pK �NpUqq U � CP � F pt, U, P q,

CTU � 0,
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where Uptq, P ptq approximate the velocity upt, ξq and the pressure ppt, ξq, respectively. Here the leading
matrix M is either an identity matrix or a symmetric positive definite matrix depending on the spatial

discretization scheme. Furthermore, in many applications, the matrix CTM�1

�
C �

BF

BP



is nonsingular.

We notice, see e.g. [1], that the differentiation index of this system is two, and hence, it is not strangeness-free,
so Assumption 1.3 is violated. Thus, one needs to transform it first in order to obtain a DAE

M 9U � �pK �NpUqq U � CP � F pt, U, P q,

0 � CTM�1C P � CTM�1 pF � pK �NpUqq Uq . (5.2)

Clearly, we still need to linearize (5.2) to obtain system of the form (1.1). Fortunately, in this case the
linearization procedure around a trajectory yields the decoupled form (1.7)

M 9U � Ã1ptqU � Ã2ptqP � g1pt, U, P q,

0 � CTM�1

�
C �

BF

BP



P � CTM�1

�
BF

BU
�Aptq



U � CTM�1g2pt, U, P q . (5.3)

We further notice that since CTM�1

�
C �

BF

BP



is nonsingular, from the second equation we can uniquely

determine P in term of U , and hence, system (5.2) is indeed strangeness-free. Let

Ã3ptq :� �CTM�1

�
BF

BU
�Aptq



, Ã4ptq :� CTM�1

�
C �

BF

BP



Consequently, if the homogenous DAE�

M 0
0 0

� �
9U
9V

�
�

�
Ã1ptq Ã2ptq

Ã3ptq Ã4ptq

� �
U
P

�

admits an exponential dichotomy, and g1 satisfies the ϕ-Lipschitz condition, and g2 is a contraction mapping
(uniformly in time), then there exists a stable manifold for the solution to (5.2).

Example 5.8. Consider the nonlinear electrical circuit with the Josephson junction in Figure 1 below. The
Josephson junction device on the right hand side, consisting of two super conductors separated by an oxide
barrier, is characterized by the sinusoidal relation i2 � I0 sinpkφ2q, where I0 and k are positive constants
depend on the device itself. Moreover, the resistance R, inductance L and conductance G are positive.
Furthermore, i1 is the current goes through the inductance, v1 and v2 are voltage of the inductance and the
Josephson junction, respectively. It is important to note that we will consider nonlinear instead of linear

Figure 1. Electric circuit with Josephson junction, [? ]
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resistance, inductance and conductance as in [? ], and hence, we see that for the inductance i1 � iLpL, φ1q,
for the resistance vR � vRpR, i1q, and for the conductance iG � iGpG, v2q. Therefore, we obtain the following
system, which completely describes the behavior of this circuit.

9φ1 � v1, (5.4a)

9φ2 � v2, (5.4b)

i1 � iLpL, φ1q, (5.4c)

i2 � I0 sinpkφ2q, (5.4d)

0 � v1 � vRpR, i1q � v2, (5.4e)

0 � �iGpG, v2q � I � i1 � i2. (5.4f)

From (5.4c)-(5.4f) we obtain an explicit form of v1 in terms of φ1, i1 and v2, so we can compress the system
to obtain

9φ1 � vRpR, iLpL, φ1qq � v2, (5.5a)

9φ2 � v2, (5.5b)

i1 � iLpL, φ1q, (5.5c)

0 � �iGpG, v2q � I � iLpL, φ1q � I0 sinpkφ2q. (5.5d)

The linearized version of this system along equilibrium points defined by v2 � 0, i1 � I, φ1 � LI, φ2 � nπ{k,
reads

9φ1 � RI � pR{Lqφ1 � v2,

9φ2 � v2,

i1 � φ1{L,

0 � �Gv2 � I � φ1{L� I0 sinpkφ2q,

will have one positive and one negative eigenvalue (e.g. [? ]). Hence, it admits exponential dichotomy
for any odd number n. Thus, for ϕ-Lipschitz function vR and contraction mapping iG, we obtain a stable
manifold for (5.5).
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