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Abstract. We show that entire functions φ, which induce bounded
products of Volterra integral operators Vg (Volterra companion op-
erators Jg) and composition operators Cφ acting between different
Fock spaces, must be affine functions, i.e. φ(z) = az + b. Then,
using this special form of φ, we characterize boundedness and com-
pactness of these products in term of new quantities, which are
much simpler than the Berezin type integral transforms in the pre-
vious papers.

1. Introduction

For an entire function g, the Volterra integral operator Vg and its
companion operator Jg are defined as follows

Vgf(z) =

∫ z

0

f(ζ)g′(ζ)dζ and Jgf(z) =

∫ z

0

f ′(ζ)g(ζ)dζ.

These operators Vg and Jg have been intensively investigated on vari-
ous function spaces after the works of Pommerenke [17], Aleman and
Siskakis on Hardy and Bergman spaces [2, 3].

Given an entire function φ, the composition operator Cφ is defined
by Cφf = f ◦φ. Such operators Cφ have become an attractive subject
for many researchers during the past few decades (see [5] and [18] for
an overview).

In this paper we are interested in the products of Volterra integral
operators Vg (Volterra companion operators Jg) and composition oper-
ators Cφ. In details, we will investigate boundedness and compactness
of the following operators:

V φ
g f(z) = Vg ◦ Cφf(z) =

∫ z

0

f(φ(ζ))g′(ζ)dζ,

Cg
φf(z) = Cφ ◦ Vgf(z) =

∫ φ(z)

0

f(ζ)g′(ζ)dζ,
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Jg,φf(z) = Jg ◦ Cφf(z) =

∫ z

0

f ′(φ(ζ))φ′(ζ)g(ζ)dζ,

Cφ,gf(z) = Cφ ◦ Jgf(z) =
∫ φ(z)

0

f ′(ζ)g(ζ)dζ.

The study of these operators naturally comes from the isometry of some
function spaces (see, for instance, [6] and [7]) and has been carried out
on different spaces of holomorphic functions on the unit disc such as
Bergman spaces, Bloch spaces, Zygmund spaces, spaces H∞ [11, 12, 13,
20]. Recently, much progress was made in the study of these products
acting between Fock spaces Fp(C) and F q(C) with 0 < p, q ≤ ∞ by
Mengestie [14, 15, 16], and Abakumov and Doubtsov [1]. In details,
in [14, 15, 16] the author characterized boundedness and compactness
of the products V φ

g , Cg
φ, Cφ,g, and the generalized Volterra companion

operator Tg,φ : Fp(C) → F q(C) with p, q ∈ (0,∞), where

Tg,φf(z) =

∫ z

0

f ′(φ(ζ))g(ζ)dζ,

in term of the following Berezin type integral transforms, respectively:

BV φ
g
(w) =

∫
C
e

q
2
(2Re(wφ(z))−|z|2−|w|2) |g′(z)|q

(1 + |z|)q
dA(z),

BCg
φ
(w) =

∫
C
e

q
2
(2Re(wφ(z))−|z|2−|w|2) |g′(φ(z))φ′(z)|q

(1 + |z|)q
dA(z),

BCφ,g(w) = (1 + |w|)q
∫
C
e

q
2
(2Re(wφ(z))−|z|2−|w|2) |g(φ(z))φ′(z)|q

(1 + |z|)q
dA(z),

BTg,φ(w) = (1 + |w|)q
∫
C
e

q
2
(2Re(wφ(z))−|z|2−|w|2) |g(z)|q

(1 + |z|)q
dA(z).

However, these results are quite difficult to use, even for the special
operators

Tφ′,φf(z) = Cφf(z)− f(φ(0)) and Cφ,1f(z) = Cφf(z)− f(0),

for which boundedness and compactness can be easily reduced from the
ones of composition operators Cφ established by Tien and Khoi in [19,
Corollaries 3.5 and 3.6]. Note that the product Jg,φ and the operator
Tg,φ are slightly differently defined and we also consider the operator
Tg,φ at the end of this paper.

On the other hand, we recall that in [19] it was shown that en-
tire functions φ, which induce bounded composition operators Cφ :
Fp(C) → F q(C) and weighted composition operators ψCφ : Fp(C) →
F q(C), must be affine functions, i.e. φ(z) = az + b. Using this special
form of functions φ, the authors completely solved several important
questions for both operators Cφ and ψCφ. Based on this idea, in this
paper we also prove that this statement is valid for the products V φ

g ,
Cg

φ, Jg,φ, and Cφ,g. That is, these products are bounded from Fp(C)
to F q(C) only when φ(z) = az + b. This allows us to characterize
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boundedness and compactness of the products V φ
g , Cφ

g , Jg,φ and Cφ,g

in terms of the following simpler quantities, respectively:

MV φ
g
(z) =

|g′(z)|
1 + |z|

e
|φ(z)|2−|z|2

2 ,

MCg
φ
(z) =

|g′(φ(z))φ′(z)|
1 + |z|

e
|φ(z)|2−|z|2

2 ,

MJg,φ(z) =
(1 + |φ(z)|)|g(z)φ′(z)|

1 + |z|
e

|φ(z)|2−|z|2
2 ,

MCφ,g(z) =
(1 + |φ(z)|)|g(φ(z))φ′(z)|

1 + |z|
e

|φ(z)|2−|z|2
2 .

The paper is organized as follows. After the Introduction, in Section
2 we give some preliminary results about Fock spaces Fp(C), oper-
ators defined on them, Fock Carleson measure, and an extension of
[10, Proposition 2.1], which plays a crucial role in this work. Sec-
tion 3 is devoted to the products V φ

g and Cg
φ, while the products

Jg,φ and Cφ,g are studied in Section 4. In these sections, firstly we
prove that the considered products, denoted by T , are bounded from
Fp(C) to F q(C) only if φ(z) = az + b with |a| ≤ 1 (Propositions
3.2 and 4.2). Then, in the case 0 < p ≤ q < ∞, we show that the
product T : Fp(C) → F q(C) is bounded (or, compact) if and only
if MT (z) ∈ L∞(C, dA) (or, MT (z) → 0 as |z| → ∞, respectively)
(Theorems 3.4 and 4.4). When 0 < q < p < ∞, boundedness and
compactness of the product T : Fp(C) → F q(C) are equivalent, and
by using Fock Carleson measure we prove that these properties are

equivalent to that MT (z) ∈ L
pq
p−q (C, dA) (Theorems 3.5 and 4.5).

Based on the simpler criteria established in Sections 3 and 4, we can
give a clear overall picture on the interplay between two entire functions
g and φ in inducing bounded and compact products V φ

g , Cg
φ, Jg,φ, and

Cφ,g (Remarks 3.6 and 4.7).

Notations: Throughout this paper, we use the notation A . B
(and A & B) for nonnegative quantities A and B to mean that there
is a constant C > 0 dependent only on p, q such that A ≤ CB (and
A ≥ CB, respectively); similarly the notation A ≃ B means that both
A . B and B . A hold.

2. Preliminaries

2.1. Fock spaces. For a number p ∈ (0,∞), the Fock space Fp(C) is
defined as follows

Fp(C) =

{
f ∈ O(C) : ∥f∥p =

(
p

2π

∫
C
|f(z)|pe−

p|z|2
2 dA(z)

) 1
p

<∞

}
,
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whereO(C) is the space of entire functions on C with the usual compact
open topology and dA is the Lebesgue measure on C. Furthermore, the
space F∞(C) consists of all entire functions f ∈ O(C) for which

∥f∥∞ = sup
z∈C

|f(z)|e−
|z|2
2 <∞.

It is well known that Fp(C) with p ≥ 1 and F∞(C) are Banach spaces.
When 0 < p < 1, Fp(C) is a complete metric space with the distance
d(f, g) = ∥f − g∥pp.

For each w ∈ C, we define the function

kw(z) = ewz− |w|2
2 , z ∈ C.

These functions play an important role in the study of Fock spaces
and operators in them. Obviously, ∥kw∥p = 1 for every w ∈ C and
p ∈ (0,∞); and kw converges to 0 in O(C) as |w| → ∞.

Lemma 2.1. Let p ∈ (0,∞) be given. For every f ∈ O(C) and z ∈ C,

|f(z)|e−
|z|2
2 ≤ ∥f∥p.

Lemma 2.2. For 0 < p < q < ∞, Fp(C) ⊂ F q(C), and the inclusion
is proper and continuous. Moreover,

∥f∥q ≤
(
q

p

) 1
q

∥f∥p for all f ∈ Fp(C).

The next lemma proved in [19, Lemma 2.3] is a key ingredient in the
study of compactness of linear operators on Fock spaces.

Lemma 2.3. Let p, q ∈ (0,∞) and T be a linear continuous operator
from O(C) into itself and T : Fp(C) → F q(C) be well-defined. Then
T : Fp(C) → F q(C) is compact if and only if for every bounded se-
quence (fn)n in Fp(C) converging to 0 in O(C), the sequence (Tfn)n
also converges to 0 in F q(C).

To investigate the operators Jg,φ and Cφ,g, we need the following
weighted Fock space. Given a number p ∈ (0,∞) and a weightW (z) =
1
2
|z|2+log(1+ |z|), we define the weighted Fock space Fp

W (C) as follows

Fp
W (C) =

{
f ∈ O(C) : ∥f∥W,p =

(∫
C
|f(z)|pe−pW (z) dA(z)

) 1
p

<∞

}
.

By modifying W (r) on some finite interval [0, R], we can suppose that
ddcW (z) ≃ ddc|z|2. Then Fp

W (C) is a particular case of the space
Fp(φ) in [9]. For each z ∈ C, let KW,z(·) be the Bergman kernel and

kW,z(ζ) =
KW,z(ζ)√
KW,z(z)

the normalized Bergman kernel of Hilbert space

F 2
W (C). Then, according to [9, Section 2], we get

(2.1) KW,z(z) ≃ e2W (z) and ∥kW,z∥W,p ≃ 1, z ∈ C.
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Similar to Lemma 2.1, we have the following auxiliary result.

Lemma 2.4. Let p ∈ (0,∞) be given. For every f ∈ O(C) and every
z ∈ C,

|f(z)|
1 + |z|

e−
|z|2
2 .

(∫
C

|f(ζ)|p

(1 + |ζ|)p
e−

p|ζ|2
2 dA(ζ)

) 1
p

.

Proof. For each z ∈ C and f ∈ O(C) fixed, the inequality 2(1 + |z|) ≥
1 + |z + ζ| for all |ζ| ≤ 1 and the subharmonicity of |f(z + ζ)e−zζ |p
imply that

|f(z)|p

(1 + |z|)p
.

∫
|ζ|≤1

|f(z + ζ)e−zζ |p

(1 + |z + ζ|)p
e−

p|ζ|2
2 dA(ζ)

= e
p|z|2

2

∫
|ζ|≤1

|f(z + ζ)|p

(1 + |z + ζ|)p
e−

p|z+ζ|2
2 dA(ζ)

≤ e
p|z|2

2

∫
C

|f(ζ)|p

(1 + |ζ|)p
e−

p|ζ|2
2 dA(ζ).

From this the desired inequality follows. �

2.2. Fock Carleson measure. In the case 0 < q < p <∞, we will use
Fock Carleson measure for both spaces Fp(C) and Fp

W (C) to prove that
boundedness and compactness of the considered products are equiva-
lent.

We recall that a positive Borel measure µ on C is called a (p, q)-

Fock Carleson measure, if the operator i : Fp(C) → Lq(C, e−
q|z|2

2 dµ) is
bounded, i.e. there exists a constant C > 0 such that∫

C

|f(z)|qe−
q|z|2

2 dµ(z)

 1
q

≤ C∥f∥p for every f ∈ Fp(C).

We write ∥µ∥ for the norm of i from Fp(C) to Lq(C, e−
q|z|2

2 dµ). The
following characterization can be reduced from [8, Theorem 3.3].

Lemma 2.5. For 0 < q < p < ∞, a positive Borel measure µ on C is

a (p, q)-Fock Carleson measure if and only if µ̃ ∈ L
p

p−q (C, dA), where

µ̃(z) =

∫
C
|kz(ζ)|qe−

q|ζ|2
2 dµ(ζ), z ∈ C.

Furthermore, ∥µ∥ ≃ ∥µ̃∥
1
q

L
p

p−q
.

Next, we say that a positive Borel measure µ on C is a (p, q,W )-
Fock Carleson measure, if the operator i : Fp

W (C) → Lq
(
C, e−qW (z)dµ

)
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is bounded, i.e. there exists a constant C > 0 such that∫
C

|f(z)|qe−qW (z)dµ(z)

 1
q

≤ C∥f∥W,p for every f ∈ Fp
W (C).

We denote by ∥µ∥W the norm of i from Fp
W (C) to Lq

(
C, e−qW (z)dµ

)
.

Applying [9, Theorem 2.8] to the weight W (z) = 1
2
|z|2 + log(1 + |z|),

we get the following characterization.

Lemma 2.6. For 0 < q < p < ∞, a positive Borel measure µ on C
is a (p, q,W )-Fock Carleson measure if and only if µ̃W ∈ L

p
p−q (C, dA),

where

µ̃W (z) =

∫
C
|kW,z(ζ)|qe−qW (ζ)dµ(ζ), z ∈ C.

Furthermore, ∥µ∥W ≃ ∥µ̃W∥
1
q

L
p

p−q
.

We end this section with two lemmas, which play an essential role in
this paper. The first lemma was proved in [4, Proposition 1] and the
second one can be obtained by slightly modifying [10, Proposition 2.1].

Lemma 2.7. Let 0 < p <∞. The following inequality holds∫
C
|f(z)|pe−

p|z|2
2 dA(z) ≃ |f(0)|p +

∫
C

|f ′(z)|p

(1 + |z|)p
e−

p|z|2
2 dA(z),

for every function f in O(C).

Lemma 2.8. Let ψ and φ be two entire functions such that ψ is not
identically zero. If

sup
z∈C

|ψ(z)|
1 + |z|

e
|φ(z)|2−|z|2

2 <∞,

then φ(z) = az + b with |a| ≤ 1.

3. The products of Volterra integral operators and
composition operators

In this section we give characterization for boundedness and com-
pactness of the products V φ

g and Cg
φ in terms of MV φ

g
(z) and MCg

φ
(z),

respectively. First we prove the following auxiliary lemma, which al-
lows us to study both operators V φ

g and Cg
φ simultaneously. We put

mV φ
g
(z) =

|g′(z)|
1 + |z|

e−
|z|2
2 and mCg

φ
(z) =

|g′(φ(z))φ′(z)|
1 + |z|

e−
|z|2
2 , z ∈ C.
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Lemma 3.1. Let q ∈ (0,∞) and T be either V φ
g or Cg

φ induced by
entire functions g and φ, where g is non-constant. For each f ∈ O(C)
and z ∈ C,

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C
|f(φ(ζ))|qe−

q|φ(ζ)|2
2 MT (ζ)

qdA(ζ)(3.1)

= |(Tf)(0)|q +
∫
C
|f(φ(ζ))|qmT (ζ)

qdA(ζ)

& |(Tf)(0)|q + |f(φ(z))|qmT (z)
q.

In particular,

(3.2)

∫
C
mT (ζ)

qdA(ζ) . ∥T1∥qq.

Proof. For each f ∈ O(C), by Lemma 2.7, we get

∥V φ
g f∥qq ≃ |(V φ

g f)(0)|q +
∫
C

|f(φ(ζ))g′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

= |(V φ
g f)(0)|q +

∫
C
|f(φ(ζ))|qe−

q|φ(ζ)|2
2 MV φ

g
(ζ)qdA(ζ)

= |(V φ
g f)(0)|q +

∫
C
|f(φ(ζ))|qmV φ

g
(ζ)qdA(ζ)

and

∥Cg
φf∥qq ≃ |(Cg

φf)(0)|q +
∫
C

|f(φ(ζ))g′(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

= |(Cg
φf)(0)|q +

∫
C
|f(φ(ζ))|qe−

q|φ(ζ)|2
2 MCg

φ
(ζ)qdA(ζ)

= |(Cg
φf)(0)|q +

∫
C
|f(φ(ζ))|qmCg

φ
(ζ)qdA(ζ).

Moreover, for every f ∈ O(C) and z ∈ C, applying Lemma 2.4 to entire
functions (f ◦ φ)g′ and (f ◦ φ)(g′ ◦ φ)φ′, we obtain∫

C

|f(φ(ζ))g′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ) & |f(φ(z))g′(z)|q

(1 + |z|)q
e−

q|z|2
2

= |f(φ(z))|qmV φ
g
(z)q

and∫
C

|f(φ(ζ))g′(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ) & |f(φ(z))g′(φ(z))φ′(z)|q

(1 + |z|)q
e−

q|z|2
2

= |f(φ(z))|qmCg
φ
(z)q.

From these inequalities the assertions follow. �

Proposition 3.2. Let p, q ∈ (0,∞) and T be either V φ
g or Cg

φ induced
by entire functions φ and g, where g is non-constant. If the operator
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T : Fp(C) → F q(C) is bounded, then MT (z) ∈ L∞(C, dA). In this
case, φ(z) = az + b with |a| ≤ 1 and

(3.3) MT (z) . ∥Tkφ(z)∥q ≤ ∥T∥ for all z ∈ C.

Proof. For every w ∈ C, using ∥kw∥p = 1 and (3.1), we get

∥T∥q ≥ ∥Tkw∥qq &
∫
C
|kw(φ(ζ))|qmT (ζ)

qdA(ζ) & |kw(φ(z))|qmT (z)
q,

for all z ∈ C. In particular, with w = φ(z) the last inequality means
that

∥T∥ ≥ ∥Tkφ(z)∥q & e
|φ(z)|2

2 mT (z) =MT (z) for all z ∈ C.

Hence, by Lemma 2.8, φ(z) = az + b with |a| ≤ 1. �

In view of Proposition 3.2, throughout this section we suppose that
φ(z) = az + b with |a| ≤ 1. In the case a = 0 we get the following
simple result.

Corollary 3.3. Let p, q ∈ (0,∞), φ(z) ≡ b and g be a non-constant
function in O(C).

(a) The operator V b
g : Fp(C) → F q(C) is compact if and only if

g ∈ F q(C). Moreover,

∥V b
g ∥ = e

|b|2
2 ∥g − g(0)∥q.

(b) The operator Cg
b : Fp(C) → F q(C) is compact and

∥Cg
b ∥ ≤ |b|e

|b|2
2 max

ζ∈[0,b]
|g′(ζ)|.

Proof. (a) For each f ∈ Fp(C),

V b
g f(z) = f(b)(g(z)− g(0)), z ∈ C.

Hence, by Lemma 2.1, we obtain

∥V b
g f∥q = |f(b)|∥g − g(0)∥q ≤ e

|b|2
2 ∥g − g(0)∥q∥f∥p.

Moreover, ∥kb∥p = 1 and

∥V b
g kb∥q = |kb(b)|∥g − g(0)∥q = e

|b|2
2 ∥g − g(0)∥q.

From these the assertions follow.
(b) For each f ∈ Fp(C),

Cg
b f(z) =

∫ b

0

f(ζ)g′(ζ)dζ, z ∈ C.
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Hence, by Lemma 2.1, we get

∥Cg
b f∥q =

∣∣∣∣∫ b

0

f(ζ)g′(ζ)dζ

∣∣∣∣
≤ |b| max

ζ∈[0,b]
|f(ζ)g′(ζ)| ≤ |b|e

|b|2
2 ∥f∥p max

ζ∈[0,b]
|g′(ζ)|.

From these the assertions follow. �
The case 0 < |a| ≤ 1 is more complicated. We firstly investigate

the operators V φ
g and Cg

φ acting from a smaller Fock space Fp(C) to a
larger one F q(C).

Theorem 3.4. Let 0 < p ≤ q < ∞, T be either V φ
g or Cg

φ induced by
a non-constant entire function g and φ(z) = az + b with 0 < |a| ≤ 1.

(a) The operator T : Fp(C) → F q(C) is bounded if and only if
MT (z) ∈ L∞(C, dA). Moreover,

∥MV φ
g
(z)∥L∞ . ∥V φ

g ∥ . |a|−
2
q ∥MV φ

g
(z)∥L∞ ,

and

∥MCg
φ
(z)∥L∞ . ∥Cg

φ∥ . ∥Cg
b ∥+ |a|−

2
q ∥MCg

φ
(z)∥L∞ .

(b) The operator T : Fp(C) → F q(C) is compact if and only if

lim
|z|→∞

MT (z) = 0.

Proof. (a) The necessity follows from Proposition 3.2. Suppose that
MT (z) ∈ L∞(C, dA). Then, by (3.1) and Lemma 2.2, for every f ∈
Fp(C), we get

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C
|f(φ(z))|qe−

q|φ(z)|2
2 MT (z)

qdA(z)

≤ |(Tf)(0)|q + ∥MT (z)∥qL∞

∫
C
|f(φ(z))|qe−

q|φ(z)|2
2 dA(z)

≤ |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞

∫
C
|f(ζ)|qe−

q|ζ|2
2 dA(ζ)

≃ |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞∥f∥qq
. |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞∥f∥qp.

From this, (3.3) and the fact that (V φ
g f)(0) = 0 and (Cg

φf)(0) = Cg
b f ,

it follows that the operator T : Fp(C) → F q(C) is bounded; moreover

∥MV φ
g
(z)∥L∞ . ∥V φ

g ∥ . |a|−
2
q ∥MV φ

g
(z)∥L∞ ,

and
∥MCg

φ
(z)∥L∞ . ∥Cg

φ∥ . ∥Cg
b ∥+ |a|−

2
q ∥MCg

φ
(z)∥L∞ .

(b) Necessary. Suppose that the operator T : Fp(C) → F q(C) is
compact. Then for every sequence (zn)n with zn → ∞, φ(zn) → ∞,
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and hence, the sequence kφ(zn) converges to 0 in O(C) as n → ∞.
Therefore, by (3.3) and Lemma 2.3,

MT (zn) . ∥Tkφ(zn)∥q → 0 as n→ ∞.

Thus, lim|z|→∞MT (z) = 0.
Sufficiency. By part (a), the operator T : Fp(C) → F q(C) is

bounded. Let (fn) be an arbitrary bounded sequence in Fp(C) con-
verging to 0 in O(C). Then, for every n ∈ N and R > 0, using (3.1),
(3.2), and Lemma 2.2, we get

∥Tfn∥qq ≃ |(Tfn)(0)|q +
∫
|z|≤R

|fn(φ(z))|qmT (z)
qdA(z)

+

∫
|z|>R

|fn(φ(z))|qe−
q|φ(z)|2

2 MT (z)
qdA(z)

. |(Tfn)(0)|q +max
|z|≤R

|fn(φ(z))|q
∫
|z|≤R

mT (z)
qdA(z)

+ sup
|z|>R

MT (z)
q

∫
|z|>R

|fn(φ(z))|qe−
q|φ(z)|2

2 dA(z)

. |(Tfn)(0)|q + ∥T1∥qq max
|z|≤R

|fn(φ(z))|q + |a|−2∥fn∥qq sup
|z|>R

MT (z)
q

. |(Tfn)(0)|q + ∥T1∥qq max
|z|≤R

|fn(φ(z))|q + |a|−2 sup
n

∥fn∥qp sup
|z|>R

MT (z)
q.

Since (V φ
g fn)(0) = 0 for all n and (Cg

φfn)(0) → 0 as n → ∞, letting
n→ ∞ and then R → ∞ in the last inequality, we observe that (Tfn)n
converges to 0 in F q(C). From this and Lemma 2.3, the assertion
follows. �

To study the case q < p, we define the following positive pull-back
measures µV φ

g ,q and µCg
φ,q on C:

µV φ
g ,q(B) =

∫
φ−1(B)

|g′(z)|q

(1 + |z|)q
e−

q|z|2
2 dA(z) =

∫
φ−1(B)

mV φ
g
(z)qdA(z)

and

µCg
φ,q(B) =

∫
φ−1(B)

|g′(φ(z))φ′(z)|q

(1 + |z|)q
e−

q|z|2
2 dA(z) =

∫
φ−1(B)

mCg
φ
(z)qdA(z)

for every Borel subset B of C. Thus,

(3.4) µT,q(B) =

∫
φ−1(B)

mT (z)
qdA(z) for T = V φ

g or T = Cg
φ.

Theorem 3.5. Let 0 < q < p < ∞, T be either V φ
g or Cg

φ induced by
a non-constant entire function g and φ(z) = az + b with 0 < |a| ≤ 1.
The following statements are equivalent:

(i) The operator T : Fp(C) → F q(C) is bounded.
(ii) The operator T : Fp(C) → F q(C) is compact.
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(iii) MT (z) ∈ L
pq
p−q (C, dA).

Furthermore,

|a|
2(p−q)

pq ∥MV φ
g
(z)∥

L
pq
p−q

. ∥V φ
g ∥ . |a|−

2
p∥MV φ

g
(z)∥

L
pq
p−q

and

|a|
2(p−q)

pq ∥MCg
φ
(z)∥

L
pq
p−q

. ∥Cg
φ∥ . ∥Cg

b ∥+ |a|−
2
p∥MCg

φ
(z)∥

L
pq
p−q

.

Proof. (ii) =⇒ (i) is obvious.
(i) =⇒ (iii). Suppose that T : Fp(C) → F q(C) is bounded. Then

for every f ∈ Fp(C), by (3.1) and (3.4), we get

∥T∥∥f∥p ≥ ∥Tf∥q &
(∫

C
|f(φ(z))|qmT (z)

qdA(z)

) 1
q

=

(∫
C
|f(z)|qdµT,q(z)

) 1
q

=

(∫
C
|f(z)|qe−

q|z|2
2 dλT,q(z)

) 1
q

,

where dλT,q(z) = e
q|z|2

2 dµT,q(z). From this it follows that λT,q is a (p, q)-
Fock Carleson measure. Then, by Lemma 2.5, we obtain

λ̃T,q(w) =

∫
C
|kw(ζ)|qe−

q|ζ|2
2 dλT,q(ζ) ∈ L

p
p−q (C, dA).

Moreover, by (3.1), for every w, z ∈ C, we have

λ̃T,q(w) =

∫
C
|kw(ζ)|qdµT,q(ζ) =

∫
C
|kw(φ(ζ))|qmT (ζ)

qdA(ζ)

& |kw(φ(z))|qmT (z)
q.

In particular, with w = φ(z) we get that for every z ∈ C,

λ̃T,q(φ(z)) & e
q|φ(z)|2

2 mT (z)
q =MT (z)

q.

Hence ∫
C
MT (z)

pq
p−q dA(z) .

∫
C

(
λ̃T,q(φ(z))

) p
p−q

dA(z)

= |a|−2

∫
C

(
λ̃T,q(w)

) p
p−q

dA(w) <∞.

From this it follows that MT (z) ∈ L
pq
p−q (C, dA); moreover, again by

Lemma 2.5,

∥MT (z)∥
L

pq
p−q

. |a|−
2(p−q)

pq

(
∥λ̃T,q∥

L
p

p−q

) 1
q

≃ |a|−
2(p−q)

pq ∥λT,q∥ . |a|−
2(p−q)

pq ∥T∥.(3.5)
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(iii) =⇒ (ii). For each function f ∈ Fp(C), using (3.1) and Hölder’s
inequality, we get

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C
|f(φ(z))|qe−

q|φ(z)|2
2 MT (z)

qdA(z)

≤ |(Tf)(0)|q +
(∫

C
|f(φ(z))|pe−

p|φ(z)|2
2 dA(z)

) q
p
(∫

C
MT (z)

pq
p−q dA(z)

) p−q
p

≃ |(Tf)(0)|q + |a|−
2q
p ∥f∥qp∥MT (z)∥q

L
pq
p−q

.

This and the fact that (V φ
g f) = 0 and (Cg

φf)(0) = Cg
b f imply that the

operator T : Fp(C) → F q(C) is bounded; moreover

(3.6) ∥V φ
g ∥ . |a|−

2
p∥MV φ

g
(z)∥

L
pq
p−q

and

(3.7) ∥Cg
φ∥ . ∥Cg

b ∥+ |a|−
2
p∥MCg

φ
(z)∥

L
pq
p−q

.

Let (fn)n be an arbitrary bounded sequence in Fp(C) converging to
0 in O(C). Then for every R > 0 and n ∈ N, using (3.1), (3.2), and
again Hölder’s inequality, we get

∥Tfn∥qq ≃ |(Tfn)(0)|q +
∫
|z|≤R

|fn(φ(z))|qmT (z)
qdA(z)

+

∫
|z|>R

|fn(φ(z))|qe−
q|φ(z)|2

2 MT (z)
qdA(z)

. |(Tfn)(0)|q +max
|z|≤R

|fn(φ(z))|q
∫
|z|≤R

mT (z)
qdA(z)

+

(∫
|z|>R

|fn(φ(z))|pe−
p|φ(z)|2

2 dA(z)

) q
p
(∫

|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

. |(Tfn)(0)|q + ∥T1∥qq max
|z|≤R

|fn(φ(z))|q

+|a|−
2q
p ∥fn∥qp

(∫
|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

. |(Tfn)(0)|q + ∥T1∥qq max
|z|≤R

|fn(φ(z))|q

+|a|−
2q
p sup

n
∥fn∥qp

(∫
|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

.

Since (V φ
g fn)(0) = 0 for all n and (Cg

φfn)(0) → 0 as n → ∞, letting
n→ ∞ and then R → ∞ in the last inequality, and using the fact that

MT (z) ∈ L
pq
p−q (C, dA), we conclude that the sequence Tfn converges to

0 in F q(C).
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Consequently, the assertion follows from Lemma 2.3. Moreover, the
desired estimates for ∥V φ

g ∥ and ∥Cg
φ∥ can be obtained from (3.5), (3.6)

and (3.7). �
We summarize all situations of the function φ(z) = az + b with

|a| ≤ 1 for both operators V φ
g and Cg

φ.

Remark 3.6. (1) If a = 0, then by Corollary 3.3, for every 0 < p, q <∞,
V φ
g : Fp(C) → F q(C) is compact for every non-constant function
g ∈ F q(C) and Cg

φ : Fp(C) → F q(C) is compact for every non-constant
function g ∈ O(C). This means that in this case there exist entire

functions g, say g(z) = e
αz2

2 with 0 < α < 1, such that both products
V φ
g = Vg ◦Cφ and Cg

φ = Cφ ◦Vg are compact from Fp(C) to F q(C), but
the Volterra operator Vg : Fp(C) → F q(C) is unbounded by [4, Theo-
rem 1]. It should be noted that by [19, Corollary 3.2], the composition
operator Cφ : Fp(C) → F q(C) is compact when a = 0.

(2) If 0 < |a| < 1, then by [19, Corollaries 3.5 and 3.6], Cφ : Fp(C) →
F q(C) is compact for every 0 < p, q < ∞. However, in this case
there are non-constant entire functions g, which induce an unbounded
operator V φ

g : Fp(C) → F q(C) or Cg
φ : Fp(C) → F q(C). Indeed, for

g1(z) = e
αz2

2 in F q(C) with 1− |a|2 < α < 1, we have

sup
z∈C

MV φ
g1
(z) = sup

z∈C

α|z|
1 + |z|

e
(|a|2−1)|z|2+αRe(z2)+2Re(baz)+|b|2

2 = ∞,

and for g2(z) = e
α((z−b)/a)2

2 with 1− |a|2 < α < 1, we get

Cg2
φ (1)(z) = g2(φ(z))− g2(0) = e

αz2

2 − e
αb2

2a2 ∈ F q(C),
but

sup
z∈C

MC
g2
φ
(z) = sup

z∈C

α|z|
1 + |z|

e
(|a|2−1)|z|2+αRe(z2)+2Re(baz)+|b|2

2 = ∞.

Furthermore, if b = 0 and α = 1− |a|2, then

lim sup
|z|→∞

MV φ
g1
(z) = lim sup

|z|→∞
MC

g2
φ
(z) = lim sup

|z|→∞

α|z|
1 + |z|

e(|a|
2−1)(Imz)2 = α.

In this case by Theorem 3.4, both operators V φ
g1

and Cg2
φ are bounded,

but not compact from Fp(C) to F q(C) with 0 < p ≤ q <∞; moreover,
by Theorem 3.5, these operators are unbounded when 0 < q < p <∞.

(3) If |a| = 1 and b ̸= 0, then by [19, Corollaries 3.5 and 3.6],
Cφ : Fp(C) → F q(C) is not bounded for every 0 < p, q < ∞. In this
case, we have

MV φ
g
(z) = e

|b|2
2

∣∣∣g′(z)ebaz∣∣∣
1 + |z|

and MCg
φ
(z) = e

|b|2
2

∣∣∣g′(az + b)ebaz
∣∣∣

1 + |z|
, z ∈ C.

Using this and Liouville’s theorem, we can check that
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• MV φ
g
(z) ∈ L∞(C, dA) if and only if g(z) = (Az + B)e−baz + C;

moreover, MV φ
g
(z) → 0 as |z| → ∞ precisely when A = 0, i.e.

g(z) = Be−baz + C.

• MCg
φ
(z) ∈ L∞(C, dA) if and only if g(z) = (Az + B)e−bz + C;

moreover, MCg
φ
(z) → 0 as |z| → ∞ precisely when A = 0, i.e.

g(z) = Be−bz + C.

Consequently, for 0 < p ≤ q <∞, by Theorem 3.4,

• the operator V φ
g : Fp(C) → F q(C) is bounded (or, compact) if

and only if g(z) = (Az + B)e−baz + C (or, g(z) = Be−baz + C,
respectively);

• the operator Cg
φ : Fp(C) → F q(C) is bounded (or, compact) if

and only if g(z) = (Az + B)e−bz + C (or, g(z) = Be−bz + C,
respectively).

While for 0 < q < p <∞, by Theorem 3.5,

• the operator V φ
g : Fp(C) → F q(C) is bounded (or, compact) if

and only if g(z) = Be−baz + C and q > 2p
p+2

;

• the operator Cg
φ : Fp(C) → F q(C) is bounded (or, compact) if

and only if g(z) = Be−bz + C and q > 2p
p+2

.

(4) If |a| = 1 and b = 0, then by [19, Corollaries 3.5 and 3.6],
Cφ : Fp(C) → F q(C) is bounded for 0 < p ≤ q < ∞ and unbounded
for 0 < q < p <∞ . In this case, we have

MV φ
g
(z) =

|g′(z)|
1 + |z|

and MCg
φ
(z) =

|g′(az)|
1 + |z|

, z ∈ C.

Using this and Liouville’s theorem, we can check that for T = V φ
g or

T = Cg
φ, MT (z) ∈ L∞(C, dA) if and only if g(z) = Az2 + Bz + C;

moreover, MT (z) → 0 as |z| → ∞ precisely when A = 0, i.e. g(z) =
Bz + C. Therefore,

• if 0 < p ≤ q < ∞, then, by Theorem 3.4, the operator T :
Fp(C) → F q(C) is bounded (or, compact) if and only if g(z) =
Az2 +Bz + C (or, g(z) = Bz + C, respectively);

• if 0 < q < p < ∞, then, by Theorem 3.5, the operator T :
Fp(C) → F q(C) is bounded (or, compact) if and only if g(z) =
Bz + C and q > 2p

p+2
.

From this and [4, Theorem 1], in this case V φ
g and Cg

φ : Fp(C) →
F q(C) are bounded (or, compact) if and only if Vg : Fp(C) → F q(C)
is bounded (or, compact, respectively).

Remark 3.7. From Remark 3.6 we can see that [15, Corollary 1] seems
to be incorrect. In fact, the reasoning before [15, Corollary 1] that the
Berezin type integral transform BV φ

g
(w) is bounded only when φ(z) =
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az + b with |a| ≤ 1; moreover, if |a| = 1, then b = 0 and compactness
is achieved only when |a| < 1, may be false.

4. The products of Volterra companion operators and
composition operators

In this section we establish criteria for boundedness and compact-
ness of the products Jg,φ and Cφ,g in terms of MJg,φ(z) and MCφ,g(z),
respectively. Similarly to Section 3, we firstly prove the following aux-
iliary lemma, which allows us to give the study of both products Jg,φ
and Cφ,g simultaneously. We put

mJg,φ(z) =
|g(z)φ′(z)|
1 + |z|

e−
|z|2
2 and mCφ,g(z) =

|g(φ(z))φ′(z)|
1 + |z|

e−
|z|2
2 .

Lemma 4.1. Let q ∈ (0,∞) and T be either Jg,φ or Cφ,g induced by
entire functions g and φ, where g is nonzero. For each f ∈ O(C) and
z ∈ C,

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C

|f ′(φ(ζ))|q

(1 + |φ(ζ)|)q
e−

q|φ(ζ)|2
2 MT (ζ)

qdA(ζ)(4.1)

= |(Tf)(0)|q +
∫
C
|f ′(φ(ζ))|qmT (ζ)

qdA(ζ)

& |(Tf)(0)|q + |f ′(φ(z))|qmT (z)
q.

In particular,

(4.2)

∫
C
mT (ζ)

qdA(ζ) . ∥Tz∥qq.

Proof. For each f ∈ O(C), by Lemma 2.7, we get

∥Jg,φf∥qq ≃ |(Jg,φf)(0)|q +
∫
C

|f ′(φ(ζ))φ′(ζ)g(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

= |(Jg,φf)(0)|q +
∫
C

|f ′(φ(ζ))|q

(1 + |φ(ζ)|)q
e−

q|φ(ζ)|2
2 MJg,φ(ζ)

qdA(ζ)

= |(Jg,φf)(0)|q +
∫
C
|f ′(φ(ζ))|qmJg,φ(ζ)

qdA(ζ)

and

∥Cφ,gf∥qq ≃ |(Cφ,gf)(0)|q +
∫
C

|f ′(φ(ζ))g(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

= |(Cφ,gf)(0)|q +
∫
C

|f ′(φ(ζ))|q

(1 + |φ(ζ)|)q
e−

q|φ(ζ)|2
2 MCφ,g(ζ)

qdA(ζ)

= |(Cφ,gf)(0)|q +
∫
C
|f ′(φ(ζ))|qmCφ,g(ζ)

qdA(ζ).
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Moreover, for every f ∈ O(C) and z ∈ C, applying Lemma 2.4 to entire
functions (f ′ ◦ φ)φ′g and (f ′ ◦ φ)(g ◦ φ)φ′, we obtain∫

C

|f ′(φ(ζ))φ′(ζ)g(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ) & |f ′(φ(z))φ′(z)g(z)|q

(1 + |z|)q
e−

q|z|2
2

= |f ′(φ(z))|qmJg,φ(z)
q

and∫
C

|f ′(φ(ζ))g(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ) & |f ′(φ(z))g(φ(z))φ′(z)|q

(1 + |z|)q
e−

q|z|2
2

= |f ′(φ(z))|qmCφ,g(z)
q.

From these inequalities the assertions follow. �
Proposition 4.2. Let p, q ∈ (0,∞) and T be either Jg,φ or Cφ,g induced
by entire functions φ and g, where g is nonzero. If the operator T :
Fp(C) → F q(C) is bounded, then MT (z) ∈ L∞(C, dA). In this case,
φ(z) = az + b with |a| ≤ 1 and MT (z) . ∥T∥ for all z ∈ C.

Proof. For every w, using ∥kw∥p = 1 and (4.1), we get

∥T∥q ≥ ∥Tkw∥qq &
∫
C
|k′w(φ(ζ))|qmT (ζ)

qdA(ζ)

& |k′w(φ(z))|qmT (z)
q = |w|q|kw(φ(z))|qmT (z)

q,

for all z ∈ C. In particular, with w = φ(z) the last inequality means
that

∥T∥ ≥ ∥Tkφ(z)∥q & |φ(z)|e
|φ(z)|2

2 mT (z) for all z ∈ C.
From this and Lemma 2.8 it follows that φ(z) = az + b with |a| ≤ 1.

Moreover, if |φ(z)| ≥ 1, then

(4.3) ∥T∥ ≥ ∥Tkφ(z)∥q & (1 + |φ(z)|)e
|φ(z)|2

2 mT (z) =MT (z).

In the case |φ(z)| < 1, with w = 2 + φ(z) the above inequality shows
that

∥T∥ ≥ ∥Tk2+φ(z)∥q & |2 + φ(z)||k2+φ(z)(φ(z))|mT (z)

≥ e−2e
|φ(z)|2

2 mT (z) &MT (z).

Thus, MT (z) . ∥T∥ for all z ∈ C. �
In view of Proposition 4.2, throughout this section we suppose that

φ(z) = az + b with |a| ≤ 1. In the case a = 0, i.e. φ(z) ≡ b, it is clear
that Jg,b is the zero operator and we get the following simple result for
Cb,g.

Corollary 4.3. Let p, q ∈ (0,∞), φ(z) ≡ b and g be a nonzero entire
function. Then the operator Cb,g : Fp(C) → F q(C) is compact and

∥Cb,g∥ . |b|(1 + |b|)e
|b|2
2 max

ζ∈[0,b]
|g(ζ)|.
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Proof. For every f ∈ Fp(C),

Cb,gf(z) =

∫ b

0

f ′(ζ)g(ζ)dζ, z ∈ C.

Hence, by Lemmas 2.4 and 2.7, we obtain

∥Cb,gf∥q =
∣∣∣∣∫ b

0

f ′(ζ)g(ζ)dζ

∣∣∣∣ ≤ |b| max
ζ∈[0,b]

|f ′(ζ)g(ζ)|

. |b|(1 + |b|)e
|b|2
2

(∫
C

|f ′(ζ)|p

(1 + |ζ|)p
e−

p|ζ|2
2 d(ζ)

) 1
p

max
ζ∈[0,b]

|g(ζ)|

≤ |b|(1 + |b|)e
|b|2
2 ∥f∥p max

ζ∈[0,b]
|g(ζ)|.

From these the assertions follow. �

The case 0 < |a| ≤ 1 is more complicated. Now we give necessary
and sufficient conditions for boundedness and compactness of Jg,φ and
Cφ,g in the case 0 < p ≤ q <∞.

Theorem 4.4. Let 0 < p ≤ q < ∞, T be either Jg,φ or Cφ,g induced
by a nonzero entire function g and φ(z) = az + b with 0 < |a| ≤ 1.

(a) The operator T : Fp(C) → F q(C) is bounded if and only if
MT (z) ∈ L∞(C, dA). Moreover,

∥MJg,φ(z)∥L∞ . ∥Jg,φ∥ . |a|−
2
q ∥MJg,φ(z)∥L∞

and

∥MCφ,g(z)∥L∞ . ∥Cφ,g∥ . ∥Cb,g∥+ |a|−
2
q ∥MCφ,g(z)∥L∞ .

(b) The operator T : Fp(C) → F q(C) is compact if and only if

lim
|z|→∞

MT (z) = 0.

Proof. (a) The necessity follows from Proposition 4.2. Suppose that
MT (z) ∈ L∞(C, dA). Then using (4.1) and Lemmas 2.2 and 2.7, for
every f ∈ Fp(C), we get

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C

|f ′(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 MT (z)

qdA(z)

≤ |(Tf)(0)|q + ∥MT (z)∥qL∞

∫
C

|f ′(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 dA(z)

≤ |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞

∫
C

|f ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

. |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞∥f∥qq

. |(Tf)(0)|q + |a|−2∥MT (z)∥qL∞∥f∥qp.
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From this, Proposition 4.2, and the fact that (Jg,φf)(0) = 0 and
(Cφ,gf)(0) = Cb,gf , it follows that the operator T : Fp(C) → F q(C) is
bounded; moreover,

∥MJg,φ(z)∥L∞ . ∥Jg,φ∥ . |a|−
2
q ∥MJg,φ(z)∥L∞

and

∥MCφ,g(z)∥L∞ . ∥Cφ,g∥ . ∥Cb,g∥+ |a|−
2
q ∥MCφ,g(z)∥L∞ .

(b) Necessary. Suppose that the operator T : Fp(C) → F q(C) is
compact. Then for every sequence (zn)n with zn → ∞, φ(zn) → ∞,
and hence, the sequence kφ(zn) converges to 0 in O(C) as n → ∞.
Therefore, by (4.3) and Lemma 2.3,

MT (zn) . ∥Tkφ(zn)∥ → 0 as n→ ∞.

Thus, lim|z|→∞MT (z) = 0.
Sufficiency. By part (a), the operator T : Fp(C) → F q(C) is

bounded. Let (fn) be an arbitrary bounded sequence in Fp(C) con-
verging to 0 in O(C). Then, for every n ∈ N and R > 0, using (4.1),
Lemmas 2.2 and 2.7, we get

∥Tfn∥qq ≃ |(Tfn)(0)|q +
∫
|z|≤R

|f ′
n(φ(z))|qmT (z)

qdA(z)

+

∫
|z|>R

|f ′
n(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 MT (z)

qdA(z)

. |(Tfn)(0)|q +max
|z|≤R

|f ′
n(φ(z))|q

∫
|z|≤R

mT (z)
qdA(z)

+ sup
|z|>R

MT (z)
q

∫
|z|>R

|f ′
n(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 dA(z)

. |(Tfn)(0)|q + ∥Tz∥qq max
|z|≤R

|f ′
n(φ(z))|q

+ |a|−2 sup
|z|>R

MT (z)
q

∫
C

|f ′
n(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

. |(Tfn)(0)|q + ∥Tz∥qq max
|z|≤R

|f ′
n(φ(z))|q + |a|−2∥fn∥qq sup

|z|>R

MT (z)
q

. |(Tfn)(0)|q + ∥Tz∥qq max
|z|≤R

|f ′
n(φ(z))|q + |a|−2 sup

n
∥fn∥qp sup

|z|>R

MT (z)
q.

On the other hand, obviously, the sequence (f ′
n)n also converges to 0 in

O(C), (Jg,φfn)(0) = 0 for all n, and (Cφ,gfn)(0) → 0 as n→ ∞. Thus,
letting n→ ∞ and then R → ∞ in the last inequality, we observe that
(Tfn)n converges to 0 in F q(C).

From this and Lemma 2.3, the assertion follows. �

Similarly to the products V φ
g and Cg

φ, in the case 0 < q < p <
∞, boundedness and compactness of the operators Jg,φ and Cφ,g are
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equivalent. To show this, we define the following positive pull-back
measure µJg,φ,q and µCφ,g ,q on C:

µJg,φ,q(B) =

∫
φ−1(B)

|g(z)φ′(z)|q

(1 + |z|)q
e−

q|z|2
2 dA(z) =

∫
φ−1(B)

mJg,φ(z)
qdA(z)

and

µCφ,g ,q(B) =

∫
φ−1(B)

|g(φ(z))φ′(z)|q

(1 + |z|)q
e−

q|z|2
2 dA(z) =

∫
φ−1(B)

mCφ,g(z)
qdA(z)

for every Borel subset B of C. Thus,

(4.4) µT,q(B) =

∫
φ−1(B)

mT (z)
qdA(z) for T = Jg,φ or T = Cφ,g.

Theorem 4.5. Let 0 < q < p < ∞, T be either Jg,φ or Cφ,g induced
by a nonzero entire function g and φ(z) = az+b with 0 < |a| ≤ 1. The
following statements are equivalent:

(i) The operator T : Fp(C) → F q(C) is bounded.
(ii) The operator T : Fp(C) → F q(C) is compact.

(iii) MT (z) ∈ L
pq
p−q (C, dA).

In this case

|a|
2(p−q)

pq ∥MJg,φ(z)∥L pq
p−q

. ∥Jg,φ∥ . |a|−
2
p∥MJg,φ(z)∥L pq

p−q

and

|a|
2(p−q)

pq ∥MCφ,g(z)∥L pq
p−q

. ∥Cφ,g∥ . ∥Cb,g∥+ |a|−
2
p∥MCφ,g(z)∥L pq

p−q
.

Proof. (ii) =⇒ (i) is obvious.
(i) =⇒ (iii). Suppose that T : Fp(C) → F q(C) is bounded. Then for

every f ∈ Fp
W (C), by Lemma 2.7, F (z) =

∫ z

0
f(ζ)dζ belongs to Fp(C),

and hence, using (4.1) and (4.4), we have

∥T∥∥f∥W,p ≃ ∥T∥∥F∥p ≥ ∥TF∥q

&
(∫

C
|f(φ(z))|qmT (z)

qdA(z)

) 1
q

=

(∫
C
|f(z)|qdµT,q(z)

) 1
q

=

(∫
C

|f(z)|q

(1 + |z|)q
e−

q|z|2
2 dλT,q(z)

) 1
q

,

where dλT,q(z) = (1 + |z|)qe
q|z|2

2 dµT,q(z). From this it follows that λT,q
is a (p, q,W )- Fock Carleson measure. Then, by Lemma 2.6, we get

(λ̃T,q)W (w) =

∫
C

|kW,w(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dλT,q(ζ) ∈ L

p
p−q (C, dA).
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Moreover, by (4.1), for every w, z ∈ C,

(λ̃T,q)W (w) =

∫
C
|kW,w(ζ)|qdµT,q(ζ) =

∫
C
|kW,w(φ(ζ))|qmT (ζ)

qdA(ζ)

& |kW,w(φ(z))|qmT (z)
q.

In particular, with w = φ(z) using (2.1), we obtain

(λ̃T,q)W (φ(z)) & |kW,φ(z)(φ(z))|qmT (z)
q

≃ (1 + |φ(z)|)qe
q|φ(z)|2

2 mT (z)
q =MT (z)

q,

for every z ∈ C. Hence∫
C
MT (z)

pq
p−q dA(z) .

∫
C

(
(λ̃T,q)W (φ(z))

) p
p−q

dA(z)

= |a|−2

∫
C

(
(λ̃T,q)W (w)

) p
p−q

dA(w) <∞.

From this it follows that MT (z) ∈ L
pq
p−q (C, dA), and by Lemma 2.6

again,

∥MT (z)∥
L

pq
p−q

. |a|−
2(p−q)

pq

(
∥(λ̃T,q)W∥

L
p

p−q

) 1
q

≃ |a|−
2(p−q)

pq ∥λT,q∥W . |a|−
2(p−q)

pq ∥T∥.(4.5)

(iii) =⇒ (ii). For each function f ∈ Fp(C), using (4.1), Lemma 2.7,
and Hölder’s inequality, we get

∥Tf∥qq ≃ |(Tf)(0)|q +
∫
C

|f ′(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 MT (z)

qdA(z)

≤ |(Tf)(0)|q +
(∫

C

|f ′(φ(z))|p

(1 + |φ(z)|)p
e−

p|φ(z)|2
2 dA(z)

) q
p
(∫

C
MT (z)

pq
p−q dA(z)

) p−q
p

= |(Tf)(0)|q + |a|−
2q
p

(∫
C

|f ′(ζ)|p

(1 + |ζ|)p
e−

p|ζ|2
2 dA(ζ)

) q
p
(∫

C
MT (z)

pq
p−q dA(z)

) p−q
p

. |(Tf)(0)|q + |a|−
2q
p ∥f∥qp∥MT (z)∥q

L
pq
p−q

.

This and the fact that (Jg,φf)(0) = 0 and (Cφ,gf)(0) = Cb,gf imply
that the operator T : Fp(C) → F q(C) is bounded; moreover,

(4.6) ∥Jg,φ∥ . |a|−
2
p∥MJg,φ(z)∥L pq

p−q

and

(4.7) ∥Cφ,g∥ . ∥Cb,g∥+ |a|−
2
p∥MCφ,g(z)∥L pq

p−q

Let (fn)n be an arbitrary bounded sequence in Fp(C) converging to
0 in O(C). Then for every R > 0 and n ∈ N, again using (4.1), (4.2),
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and Hölder’s inequality, we obtain

∥Tfn∥qq ≃ |(Tfn)(0)|q +
∫
|z|≤R

|f ′
n(φ(z))|qmT (z)

qdA(z)

+

∫
|z|>R

|f ′
n(φ(z))|q

(1 + |φ(z)|)q
e−

q|φ(z)|2
2 MT (z)

qdA(z)

. |(Tfn)(0)|q +max
|z|≤R

|f ′
n(φ(z))|q

∫
|z|≤R

mT (z)
qdA(z)

+

(∫
|z|>R

|f ′
n(φ(z))|p

(1 + |φ(z)|)p
e−

p|φ(z)|2
2 dA(z)

) q
p
(∫

|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

. |(Tfn)(0)|q + ∥Tz∥qq max
|z|≤R

|f ′
n(φ(z))|q

+|a|−
2q
p ∥fn∥qp

(∫
|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

. |(Tfn)(0)|q + ∥Tz∥qq max
|z|≤R

|f ′
n(φ(z))|q

+|a|−
2q
p sup

n
∥fn∥qp

(∫
|z|>R

MT (z)
pq
p−q dA(z)

) p−q
p

.

Similarly to the proof of Theorems 3.5 and 4.4, letting n → ∞
and then R → ∞ in the last inequality, and using the fact that

MT (z) ∈ L
pq
p−q (C, dA), we conclude that the sequence Tfn converges to

0 in F q(C).
Consequently, the assertion follows from Lemma 2.3. Moreover, the

desired estimates for ∥Jg,φ∥ and ∥Cφ,g∥ can be reduced from (4.5), (4.6)
and (4.7). �

Putting φ(z) = z in Theorems 4.4 and 4.5, we get the following char-
acterization for boundedness and compactness of Volterra companion
operator Jg.

Corollary 4.6. Let g be a nonzero entire function on C.
(i) If 0 < p ≤ q < ∞, then the operator Jg : Fp(C) → F q(C) is

bounded if and only if g is a constant; however, this operator Jg
is not compact.

(ii) If 0 < q < p < ∞, then every operator Jg : Fp(C) → F q(C) is
unbounded.

We summarize all situations of the function φ(z) = az + b with
|a| ≤ 1 for both operators Jg,φ and Cφ,g.

Remark 4.7. (1) If a = 0, then Jg,φ is the zero operator and by Corollary
4.3, for every 0 < p, q < ∞, Cφ,g : Fp(C) → F q(C) is compact for any
nonzero entire function g. From this and Corollary 4.6, for every non-
constant entire functions g, the product Cφ,g = Cφ◦Jg is compact from
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Fp(C) to F q(C), but the Volterra companion operator Jg : Fp(C) →
F q(C) is unbounded.

(2) If 0 < |a| < 1, then by [19, Corollaries 3.5 and 3.6], Cφ : Fp(C) →
F q(C) is compact for every 0 < p, q < ∞. However, in this case
there are non-constant entire functions g, which induce an unbounded
operator Jg,φ : Fp(C) → F q(C) or Cφ,g : Fp(C) → F q(C). Indeed, for

g1(z) = e
αz2

2 with 1− |a|2 < α < 1, we obtain

sup
z∈C

MJg1,φ
(z) = sup

z∈C

|a|(1 + |az + b|)
1 + |z|

e
(|a|2−1)|z|2+αRe(z2)+2Re(baz)+|b|2

2 = ∞,

and for g2(z) = e
α((z−b)/a)2

2 with 1− |a|2 < α < 1, we get

sup
z∈C

MCφ,g2(z) = sup
z∈C

|a|(1 + |az + b|)
1 + |z|

e
(|a|2−1)|z|2+αRe(z2)+2Re(baz)+|b|2

2 = ∞.

Furthermore, if b = 0 and α = 1− |a|2, then

lim sup
|z|→∞

MJg1,φ
(z) = lim sup

|z|→∞
MCφ,g2(z)

= lim sup
|z|→∞

|a|(1 + |az|)
1 + |z|

e(|a|
2−1)(Imz)2 = |a|2.

In this case by Theorem 4.4, both operators Jg1,φ and Cφ, g2 are bounded,
but not compact from Fp(C) to F q(C) with 0 < p ≤ q <∞; moreover,
by Theorem 4.5, these operators are unbounded when 0 < q < p <∞.

(3) If |a| = 1 and b ̸= 0, then by [19, Corollaries 3.5 and 3.6],
Cφ : Fp(C) → F q(C) is not bounded for every 0 < p, q < ∞. In this
case, we have

MJg,φ(z) = e
|b|2
2

(1 + |az + b|)
∣∣∣g(z)ebaz∣∣∣

1 + |z|
and

MCφ,g(z) = e
|b|2
2

(1 + |az + b|)
∣∣∣g(az + b)ebaz

∣∣∣
1 + |z|

, z ∈ C.

Using this and Liouville’s theorem, we can check that

• MJg,φ(z) ∈ L∞(C, dA) if and only if g(z) = Ae−baz; moreover,
MJg,φ(z) → 0 as |z| → ∞ precisely when g is the zero function.

• MCφ,g(z) ∈ L∞(C, dA) if and only if g(z) = Ae−bz; moreover,
MCφ,g(z) → 0 as |z| → ∞ precisely when g is the zero function.

Consequently, for 0 < p ≤ q <∞, by Theorem 4.4,

• the operator Jg,φ : Fp(C) → F q(C) is bounded if and only if

g(z) = Ae−baz;
• the operator Cφ,g : Fp(C) → F q(C) is bounded if and only if

g(z) = Ae−bz;
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• there does not exist a nonzero entire function g such that Jg,φ
or Cφ,g : Fp(C) → F q(C) is compact.

For 0 < q < p < ∞, by Theorem 4.5, the operators Jg,φ and Cφ,g :
Fp(C) → F q(C) are unbounded for any nonzero entire function g.

(4) If |a| = 1 and b = 0, then by [19, Corollaries 3.5 and 3.6],
Cφ : Fp(C) → F q(C) is bounded for 0 < p ≤ q < ∞ and unbounded
for 0 < q < p <∞ . In this case, we have

MJg,φ(z) = |g(z)| and MCφ,g(z) = |g(az)|, z ∈ C.

Using this and Liouville’s theorem, we can check that for T = Jg,φ or
T = Cφ,g, MT (z) ∈ L∞(C, dA) if and only if g is constant; moreover,
MT (z) → 0 as |z| → ∞ precisely when g is zero. Therefore,

• if 0 < p ≤ q < ∞, then, by Theorem 4.4, the operator T :
Fp(C) → F q(C) is bounded if and only if g is constant, and
there does not exist a nonzero compact operator T : Fp(C) →
F q(C);

• if 0 < q < p < ∞, then, by Theorem 4.5, the operator T :
Fp(C) → F q(C) is unbounded for any nonzero entire function
g.

From this and Corollary 4.6, in this case the operator T : Fp(C) →
F q(C) is bounded (or, compact) if and only if Jg : Fp(C) → F q(C) is
bounded (or, compact, respectively).

Remark 4.8. In [14, Proposition 2.7] and [16, Theorems 2.1 and 2.2],
it was stated that in the case 0 < p ≤ q <∞,

(4.8) ∥Cg
φ∥ ≃ ∥BCg

φ
(w)∥

1
q

L∞ and ∥Cφ,g∥ ≃ ∥BCφ,g(w)∥
1
q

L∞ ,

while if 0 < q < p <∞, then

(4.9) ∥Cg
φ∥ ≃ ∥BCg

φ
(w)∥

L
p

p−q
and ∥Cφ,g∥ ≃ ∥BCφ,g(w)∥L p

p−q
.

We can see that these estimates are slightly different from our ones
obtained in Theorems 3.4, 3.5, 4.4, and 4.5. In fact, to get (4.8) and
(4.9) the author used the following inequalities:

∥Cg
φf∥qq ≃

∫
C

|f(φ(ζ))g′(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

and

∥Cφ,gf∥qq ≃
∫
C

|f ′(φ(ζ))g(φ(ζ))φ′(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ).

From this and Lemma 2.7, it is clear that the terms |(Cg
φf)(0)|q and

|(Cφ,gf)(0)|q were omitted in these inequalities. Therefore, the con-
stants C hidden in the estimates (4.8) and (4.9) must depend not only
on p and q, but also on functions φ and g.

It should be noted that the constants C hidden in the estimates for
∥Cg

φ∥ and ∥Cφ,g∥ in our results are dependent only on p and q.
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We end this section with some discussions about the generalized
Volterra companion operator Tg,φ mentioned in the Introduction. Sim-
ilarly to the operator Jg,φ and Cφ,g, we put

MTg,φ(z) =
(1 + |φ(z)|)|g(z)|

1 + |z|
e

|φ(z)|2−|z|2
2 , z ∈ C.

Then we can see that Proposition 4.2 also holds for Tg,φ. That is, if the
operator Tg,φ : Fp(C) → F q(C) is bounded with 0 < p, q < ∞, then
MTg,φ(z) ∈ L∞(C, dA). In this case, φ(z) = az + b with |a| ≤ 1.

Indeed, for every w, using ∥kw∥p = 1, Lemmas 2.4 and 2.7, we have

∥Tg,φ∥q ≥ ∥Tg,φkw∥qq &
∫
C

|k′w(φ(ζ))g(ζ)|q

(1 + |ζ|)q
e−

q|ζ|2
2 dA(ζ)

& |k′w(φ(z))g(z)|q

(1 + |z|)q
e−

q|z|2
2

= |w|q |kw(φ(z))g(z)|
q

(1 + |z|)q
e−

q|z|2
2 ,

for all z ∈ C. In particular, with w = φ(z) the last inequality means
that

∥Tg,φ∥ ≥ ∥Tg,φkφ(z)∥q &
|φ(z)g(z)|
1 + |z|

e
|φ(z)|2−|z|2

2 for all z ∈ C.

From this and Lemma 2.8, it follows that φ(z) = az + b with |a| ≤ 1.
Obviously, if a = 0, i.e. φ(z) ≡ b, then the operator Tg,b : Fp(C) →

F q(C) is compact for every 0 < p, q < ∞, otherwise if φ(z) = az + b
with 0 < |a| ≤ 1, then

Tg,φf(z) =

∫ z

0

f ′(φ(ζ))g(ζ)dζ

= a−1

∫ z

0

f ′(φ(ζ))φ′(ζ)g(ζ)dζ = a−1Jg,φf(z)

and

MTg,φ(z) =
(1 + |φ(z)|)|g(z)|

1 + |z|
e

|φ(z)|2−|z|2
2

= |a|−1 (1 + |φ(z)|)|g(z)φ′(z)|
1 + |z|

e
|φ(z)|2−|z|2

2 = |a|−1MJg,φ(z),

for every f ∈ O(C) and z ∈ C.
Consequently, Theorems 4.4 and 4.5 also hold for the operator Tg,φ.
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