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Abstract. Let Pk be the graded polynomial algebra F2[x1, x2, . . . , xk] with
the degree of each generator xi being 1, where F2 denote the prime field of
two elements.

The hit problem of Frank Peterson asks for a minimal generating set for
the polynomial algebra Pk as a module over the mod-2 Steenrod algebra A.
Equivalently, we want to find a vector space basis for F2⊗APk in each degree.

In this paper, we study a generating set for the kernel of Kameko’s ho-
momorphism S̃q

0
∗ : F2 ⊗A Pk −→ F2 ⊗A Pk in a so-called ’generic degree’.

By using these results, we explicitly compute the hit problem for k = 5 in
respective generic degree.

1. Introduction

Denote by Pk := F2[x1, x2, . . . , xk] the polynomial algebra over the field of two
elements, F2, in k generators x1, x2, . . . , xk, each of degree 1. This algebra arises as
the cohomology with coefficients in F2 of a classifying space of an elementary abelian
2-group of rank k. Therefore, Pk is a module over the mod-2 Steenrod algebra, A.
The action of A on Pk is determined by the elementary properties of the Steenrod
squares Sqi and subject to the Cartan formula Sqn(fg) =

∑n
i=0 Sq

i(f)Sqn−i(g),
for f, g ∈ Pk (see Steenrod and Epstein [30]).

We study the Peterson hit problem of determining a minimal set of generators
for the polynomial algebra Pk as a module over the Steenrod algebra. Equivalently,
we want to find a vector space basis for the quotient

QPk := Pk/A+Pk = F2 ⊗A Pk,
where A+ denotes the augmentation ideal in A.

The hit problem was first studied by Peterson [18], Wood [39], Singer [28] and
Priddy [23], who showed its relation to several classical problems in the homotopy
theory. Then, this problem was investigated by Boardman [1], Bruner, Hà and
Hưng [2], Carlisle and Wood [3], Crabb and Hubbuck [4], Hưng and Nam [6, 7],
Janfada and Wood [8, 9], Kameko [10, 11, 12], Mothebe [13, 14], Nam [16, 17], Repka
and Selick [24], Silverman [25], Silverman and Singer [27], Singer [29], Walker and
Wood [34, 35, 36, 37], Wood [40], the present author [31, 33] and others.

The vector space QPk was explicitly calculated by Peterson [18] for k = 1, 2, by
Kameko [10] for k = 3 and by us [33] and Kameko [12] for k = 4. Recently, the hit
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problem and it’s applications to representations of general linear groups have been
presented in the monographs of Walker and Wood [37, 38].

The µ-function is one of the numerical functions that have much been used in
the context of the hit problem. For a nonnegative integer n, µ(n) is the minimum
number of terms of the form 2d − 1, d > 0, with repetitions allowed, whose sum is
n. A routine computation shows that µ(n) = s if and only if there exists a unique
sequence of integers d1 > d2 > . . . > ds−1 > ds > 0 such that

n = 2d1 + 2d2 + . . .+ 2ds−1 + 2ds − s =
∑

16i6s
(2di − 1). (1.1)

Denote by (Pk)n the subspace of Pk consisting of the homogeneous polynomials
of degree n in Pk and (QPk)n the subspace of QPk consisting of all the classes
represented by the elements in (Pk)n.

The following is Peterson’s conjecture, which was established by Wood.
Theorem 1.1 (Wood [39]). If µ(n) > k, then (QPk)n = 0.

One of the main tools in the study of the hit problem is Kameko’s homomorphism
S̃q

0
∗ : QPk → QPk. This homomorphism is induced by the F2-linear map, also

denoted by S̃q
0
∗ : Pk → Pk, given by

S̃q
0
∗(x) =

{
y, if x = x1x2 . . . xky

2,

0, otherwise,

for any monomial x ∈ Pk. Note that S̃q
0
∗ is not an A-homomorphism. However,

S̃q
0
∗Sq

2t = SqtS̃q
0
∗, and S̃q

0
∗Sq

2t+1 = 0 for any non-negative integer t.
Theorem 1.2 (Kameko [10]). Let n be a positive integer. If µ(n) = k, then
(S̃q

0
∗)(k,n) := S̃q

0
∗ : (QPk)n → (QPk) n−k

2
is an isomorphism of the F2-vector spaces.

Based on Theorems 1.1 and 1.2, the hit problem is reduced to the case of degree
n with µ(n) = s < k.

The hit problem in the case of degree n of the form (1.1) with s = k − 1, was
studied by Crabb and Hubbuck [4], Nam [16], Repka and Selick [24], Walker and
Wood [36] and the present author [31, 33].

For s = k− 2, we studied the kernel of Kameko’s homomorphism (S̃q
0
∗)(k,n). We

give in [31] a prediction for the dimension of Ker(S̃q
0
∗)(k,n) in this case.

Conjecture 1.3 (See Sum [31]). Let n =
∑k−2
i=1 (2di − 1) with di positive integers.

If di−2 − di−1 > i for 3 6 i 6 k − 1 and dk−2 > k > 3, then

dim Ker(S̃q
0
∗)(k,n) =

∏
36i6k

(2i − 1).

This conjecture is true for k 6 4. Recently, Walker and Wood [38] give a lower
bound for the dimension of (QPk)n.

Theorem 1.4 (Walker and Wood [38]). Let k > 3 and n =
∑k−2
i=1 (2di − 1) with di

positive integers. If di − di+1 > 4 for 1 6 i 6 k − 3 and dk−2 > 5, then

dim(QPk)n > (k − 1)
∏

36i6k
(2i − 1). (1.2)
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From our result in [31, Theorem 1.6], we can see that if Conjecture 1.3 is true,
then the inequality (1.2) is an equality for n as given in this conjecture.

In this paper, we study some properties of a generating set for the subspace
Ker(S̃q

0
∗)(k,n) of (QPk)n and explicitly compute the space (QPk)n for k = 5 and

d3 > 5. One of our main results (Theorem 3.3.3) implies an upper bound for the
dimension of Ker(S̃q

0
∗)(k,n).

Theorem 1.5. Let n =
∑k−2
i=1 (2di − 1) with di positive integers. If di−2− di−1 > i

for 3 6 i 6 k − 1 and dk−2 >
(
k
2
)
, then

dim Ker(S̃q
0
∗)(k,n) < 2(k−1)2 ∏

16i6k
(2i − 1).

Based on the construction of generators for Ker(S̃q
0
∗)(k,n) as given in the proof

of Theorem 1.5, we prove the following.

Theorem 1.6. Let n = 2d+s+t + 2d+s + 2d − 3 with d, s, t non-negative integers.
If d > 6, t, s > 4, then

dim Ker(S̃q
0
∗)(5,n) = (23 − 1)(24 − 1)(25 − 1) = 3255. (1.3)

Thus, we obtain the following.

Corollary 1.7. For k = 5, Conjecture 1.3 is true and the inequality (1.2) is an
equality.

Based on the proof of Theorem 1.6 and our results in [33, Theoren 1.4], we
explicitly compute (QP5)n.

Theorem 1.8. Let n = 2d+s+t + 2d+s + 2d − 3, with d, s, t integers such that
d > 6, s > 0 and t > 0. The dimension of the F2-vector space (QP5)n is given by
the following table:

n t = 1 t = 2 t = 3 t = 4 t = 5 t > 6
s = 0 1116 2790 3813 4960 5735 6045
s = 1 3410 6231 7285 7719 7595 7595
s = 2 5766 9207 10726 11160 11160 11160
s = 3 7254 10695 12090 12555 12555 12555
s > 4 7595 11160 12555 13020 13020 13020

Note that the case s = 0, t = 1 of this theorem have been proved by Phúc [20].

This paper is organized as follows. In Section 2, we recall some needed in-
formation on the admissible monomials in Pk and criterions of Singer [29] and
Silverman [26] on hit monomials. In Section 3, we present the results for gener-
ators of the kernel of Kameko’s homomorphism. As an application of the results
of Section 3, in Section 4, we explicitly compute the space QP5 in the degree
n = 2d+s+t + 2d+s + 2d − 3 for d > 5, s > 0 and t > 0.

2. Preliminaries

In this section, we recall some results from Kameko [10], Singer [29] and Silver-
man [26] which will be used in the next sections.
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Notation 2.1. From now on, we use the following notations.
Nk = {1, 2, . . . , k},

XJ = Xj1,j2,...,js
=

∏
j∈Nk\J

xj , J = {j1, j2, . . . , js} ⊂ Nk,

In particular, we have XNk
= 1, X∅ = x1x2 . . . xk, Xk = x1x2 . . . xk−1 ∈ Pk−1.

Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative integer
a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or 1 and i > 0.
Denote by α(a) the number of 1’s in dyadic expansion of a.

Let x = xa1
1 xa2

2 . . . xak

k ∈ Pk. Denote by νj(x) = aj , 1 6 j 6 k. Set
Ji(x) = {j ∈ Nk : αi(νj(x)) = 0},

for i > 0. Then we have
x =

∏
i>0

X2i

Ji(x).

For a polynomial f in Pk, we denote by [f ] the class in QPk represented by f .
For a subset S ⊂ Pk, we denote

[S] = {[f ] : f ∈ S} ⊂ QPk.

Definition 2.2. A weight vector ω is a sequence of non-negative integers (ω1, ω2, . . .,
ωi, . . .) such that ωi = 0 for i � 0. For a monomial x in Pk, define two sequences
associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .),
σ(x) = (ν1(x), ν2(x), . . . , νk(x)),

where ωi(x) =
∑

16j6k αi−1(νj(x)) = degXJi−1(x), i > 1. The sequences ω(x) and
σ(x) are respectively called the weight vector and the exponent vector of x.

The sets of the weight vectors and the exponent vectors are given the left lexi-
cographical order.

For weight vectors ω = (ω1, ω2, . . .) and η = (η1, η2, . . .), we define degω =∑
i>0 2i−1ωi, the length `(ω) = max{i : ωi > 0}, the concatenation of weight

vectors ω|η = (ω1, . . . , ωr, η1, η2, . . .) if `(ω) = r and (a)|b = (a)|(a)| . . . |(a), (b
times of (a)’s), where a, b are positive integers. Denote by Pk(ω) the subspace of
Pk spanned by monomials y such that deg y = degω and ω(y) 6 ω, and by P−k (ω)
the subspace of Pk(ω) spanned by monomials y such that ω(y) < ω.

Definition 2.3. Let ω be a weight vector and f, g two polynomials of the same
degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0, then f is said to be hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−k (ω).
iii) f '(s,ω) g if and only if f − g ∈ A+

s Pk + P−k (ω).

Obviously, the relations ≡, ≡ω and '(s,ω) are equivalence ones. Denote by
QPk(ω) the quotient of Pk(ω) by the equivalence relation ≡ω. Then, we have

(QPk)n ∼=
⊕

degω=n
QPk(ω). (2.1)

We recall some elementary properties on the action of the Steenrod squares on
Pk.
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Proposition 2.4. Let f be a polynomial in Pk.
i) If i > deg f , then Sqi(f) = 0. If i = deg f , then Sqi(f) = f2.
ii) If i is not divisible by 2s, then Sqi(f2s) = 0 while Sqr2s(f2s) = (Sqr(f))2s .

Proposition 2.5 (See [33, Proposition 2.5]). Let x, y be monomials and let f, g be
polynomials in Pk such that deg x = deg f , deg y = deg g.

i) If ωi(x) 6 1 for i > s and x 't f with t 6 s, then xy2s 't fy2s .
ii) If ωi(x) = 0 for i > s, x 's f and y 'r g, then xy2s 's+r fg

2s .
Definition 2.6. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.7. A monomial x is said to be inadmissible if there exist monomials
y1, y2, . . . , yt such that yj < x for j = 1, 2, . . . , t and x−

∑t
j=1 yj ∈ A+Pk.

A monomial x is said to be admissible if it is not inadmissible.
Obviously, the set of all the admissible monomials of degree n in Pk is a minimal

set of A-generators for Pk in degree n.
Definition 2.8. A monomial x is said to be strictly inadmissible if and only if there
exist monomials y1, y2, . . . , yt such that yj < x, for j = 1, 2, . . . , t and x−

∑t
j=1 yj ∈

A+
s Pk with s = max{i : ωi(x) > 0}.
It is easy to see that if x is strictly inadmissible, then it is inadmissible. The

following theorem is a modification of a result in [10].
Theorem 2.9 (Kameko [10], Sum [31]). Let x, y, w be monomials in Pk such that
ωi(x) = 0 for i > r > 0, ωs(w) 6= 0 and ωi(w) = 0 for i > s > 0.

i) If w is inadmissible, then xw2r is also inadmissible.
ii) If w is strictly inadmissible, then xw2r

y2r+s is also strictly inadmissible.
Proposition 2.10 (See [31]). Let x be an admissible monomial in Pk. Then we
have

i) If there is an index i0 such that ωi0(x) = 0, then ωi(x) = 0 for all i > i0.
ii) If there is an index i0 such that ωi0(x) < k, then ωi(x) < k for all i > i0.
For 1 6 i 6 k, define a homomorphism fi : Pk−1 → Pk of A-algebras by

substituting fi(xu) = xu for 1 6 u < i and fi(xu) = xu+1 for i 6 u < k. For
1 6 i < j 6 k, denote f(i,j) = fifj−1 : Pk−2

fj−1−→ Pk−1
fi−→ Pk.

Proposition 2.11 (See Mothebe and Uys [15]). Let i, d be positive integers such
that 1 6 i 6 k. If x is an admissible monomial in Pk−1 then x2d−1

i fi(x) is also an
admissible monomial in Pk.

Now, we recall Singer’s criterion on the hit monomials in Pk.
Definition 2.12. A monomial z in Pk is called a spike if νj(z) = 2sj − 1 for sj a
non-negative integer and j = 1, 2, . . . , k. If z is a spike with s1 > s2 > . . . > sr−1 >
sr > 0 and sj = 0 for j > r, then it is called a minimal spike.

The following is a criterion for the hit monomials in Pk.
Theorem 2.13 (See Singer [29]). Suppose x ∈ Pk is a monomial of degree n, where
µ(n) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then x is hit.



6 NGUYỄN SUM

From this theorem, we see that if z is a minimal spike, then P−k (ω(z)) ⊂ A+Pk.
We need Silverman’s criterion for the hit polynomials in Pk.

Theorem 2.14 (See Silverman [26, Theorem 1.2]). Let p be a polynomial of the
form fg2m for some homogeneous polynomials f and g. If deg f < (2m−1)µ(deg g),
then p is hit.

This result leads to a criterion in terms of minimal spike which is a stronger
version of Theorem 2.13.

Theorem 2.15 (See Walker-Wood [37, Theorem 14.1.3]). Let x ∈ Pk be a mono-
mial of degree n, where µ(n) 6 k and let z be the minimal spike of degree n. If
there is an index h such that

∑h
i=1 2i−1ωi(x) <

∑h
i=1 2i−1ωi(z), then x is hit.

For 1 6 r 6 k, we set

P 0
r = 〈{x = xa1

1 xa2
2 . . . xar

r : a1a2 . . . ar = 0}〉,
P+
k = 〈{x = xa1

1 xa2
2 . . . xar

r : a1a2 . . . ar > 0}〉.

It is easy to see that P 0
r and P+

r are the A-submodules of Pk.
For J = (j1, j2, . . . , jr) : 1 6 j1 < . . . < jr 6 k, we define a monomorphism

θJ : Pr → Pk of A-algebras by substituting θJ(xt) = xjt
for 1 6 t 6 r. It is easy to

see that, for any weight vector ω of degree n,

QθJ(P+
r )(ω) ∼= QP+

r (ω) and (QθJ(P+
r ))n ∼= (QP+

r )n
for 1 6 r 6 k. So, by a simple computation using Theorem 1.1 and (2.1), we get
the following.

Proposition 2.16 (See Walker-Wood [37]). For a weight vector ω of degree n, we
have direct summand decompositions of the F2-vector spaces

QPk(ω) =
⊕

µ(n)6r6k

⊕
`(J)=r

QθJ(P+
r )(ω),

where `(J) is the length of J . Consequently

dimQPk(ω) =
∑

µ(n)6r6k

(
k

r

)
dimQP+

r (ω),

dim(QPk)n =
∑

µ(n)6r6k

(
k

r

)
dim(QP+

r )n.

We recall a result in our work [21] which is used in Section 4.

Definition 2.17. For any (i; I) ∈ Nk, we define the homomorphism p(i;I) : Pk →
Pk−1 of algebras by substituting

p(i;I)(xj) =


xj , if 1 6 j < i,∑
s∈I xs−1, if j = i,

xj−1, if i < j 6 k.

Then, p(i;I) is a homomorphism ofA-modules. In particular, for I = ∅, p(i;∅)(xi) = 0
and p(i;I)(fi(y)) = y for any y ∈ Pk−1.
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Lemma 2.18 (See Phúc and Sum [21]). If x is a monomial in Pk, then p(i;I)(x) ∈
Pk−1(ω(x)). So, p(i;I) passes to a homomorphism from QPk(ω) to QPk−1(ω) for
any weight vector ω.

From now on, we denote by Bk(n) the set of all admissible monomials of degree
n in Pk, B0

k(n) = Bk(n) ∩ P 0
k , B+

k (n) = Bk(n) ∩ P+
k . For a weight vector ω

of degree n, we set Bk(ω) = Bk(n) ∩ Pk(ω), B+
k (ω) = B+

k (n) ∩ Pk(ω). Then,
[Bk(ω)]ω and [B+

k (ω)]ω, are respectively the basses of the F2-vector spaces QPk(ω)
and QP+

k (ω) := QPk(ω) ∩QP+
k .

3. On the kernel of Kameko’s homomorphism

3.1. A construction for the generators of Pk.

Notation 3.1.1. We denote

Nk = {(i; I) : I = (i1, i2, . . . , ir), 1 6 i < i1 < . . . < ir 6 k, 0 6 r < k}.

For (i; I) ∈ Nk, denote by r = `(I) the length of I.

Definition 3.1.2 (See Sum [33]). Let (i; I) ∈ Nk, x(I,u) = x2r−1+...+2r−u

iu

∏
u<t6r x

2r−t

it

for r = `(I) > 0, For any monomial x in Pk−1, we define the monomial φ(i;I)(x) in
Pk by setting

φ(i;I)(x) =



fi(x), if r = `(I) = 0,
(x2r−1
i fi(x))/x(I,u), if there exists 1 6 u 6 r such that

νi1−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
νiu−1(x) > 2r − 1,
αr−t(νiu−1(x)) = 1, ∀t, 1 6 t 6 u,
αr−t(νit−1(x)) = 1, ∀t, u < t 6 r,

0, otherwise.

Proposition 3.1.3 (See Sum [33]). Let d be a positive integer and let j0, j1, . . . , jd−1 ∈
Nk. We set i = min{j0, . . . , jd−1}, I = (i1, . . . , ir) with {i1, . . . , ir} = {j0, . . . , jd−1}\
{i}. Then, we have ∏

06t<d
X2t

jt
'(d−1 φ(i;I)(X2d−1

k ).

Proposition 3.1.4. For any positive integer d, {φ(i;I)(X2d−1
k ) : (i; I) ∈ Nk} is the

set of all admissible monomials in Pk such that their weight vectors are (k − 1)|d.

Proof. Let x be an admissible monomial in Pk such that ω(x) = (k − 1)|d. Then,
there are integers j1, j2, . . . , jd such that x =

∏
16t6dX

2d−t

jt
.

If there is an index t0 such that jt0 > jt0+1, then

x =
∏

16t<t0

X2d−t

jt
(X2

jt0
Xjt0+1)2d−t0−1 ∏

t0+26t<t0

X2d−t

jt
.

We have

X2
jt0
Xjt0+1 = x2

jt0+1
xjt0

X3
t0,jt0+1

= xjt0+1x
2
jt0
X3
t0,jt0+1

+ Sq1(xjt0+1xjt0
X3
t0,jt0+1

) mod(P−k ((k − 1)|2).
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This equality shows that the monomial X2
jt0
Xjt0+1 is strictly inadmissible, hence

by Theorem 2.9, x is strictly inadmissible. Since x is admissible, we get j1 6
j2 6 . . . 6 jd. Break the sequence J = (j1, j2, . . . , jd) into sections I0, I1, . . . , Ir of
lengths au = `(Iu), 0 6 u 6 r 6 k − 1, so that jt−1 and jt are in the same section
if and only if jt−1 = jt. If there is an index u > 0 such that au > 1, then there is
t1 such that jt1 < jt1+1 = jt1+2, (jt1 ∈ Iu−1 and jt1+1, jt1+2 ∈ Iu). Then, we have

x =
∏

16t<t1

X2d−t

jt
(X4

jt1
X3
jt0+1

)2d−t1−2 ∏
t1+36t<t0

X2d−t

jt
.

By a direct computation, we have
X4
jt1
X3
jt1+1

= x3
jt1
x4
jt1+1

X3
jt1 ,jt1+1

= x2
jt1
x5
jt1+1

X7
jt1 ,jt1+1

+ Sq1(x3
jt1
x3
jt0
X7
jt1 ,jt1+1

)

+ Sq2(x2
jt1
x3
jt0
X7
jt1 ,jt1+1

) mod(P−k ((k − 1)|3).

This equality implies X4
jt1
X3
jt1+1

is strictly inadmissible. By Theorem 2.9, x is
strictly inadmissible. Since x is admissible, we obtain au = `(Iu) = 1, 1 6 u 6 r

and x = φ(i;I)(X2d−1
k ), where i = j1 ∈ I0, I = (i1, i2, . . . , ir) with Iu = {iu} for

1 6 u 6 r. In [22, Proposition 3.7], we have proved that the set

[{φ(i;I)(X2d−1
k ) : (i; I) ∈ Nk}](k−1)|d

is linearly independent in QPk((k − 1)|d). So, the proposition is proved. �

Theorem 3.1.5 (See Sum [33, Proposition 3.3]). Let n =
∑k−1
i=1 (2di − 1) with di

positive integers such that d1 > d2 > . . . > dk−2 > dk−1 := d > k − 1 > 3, and let
m =

∑k−2
i=1 (2di−dk−1 − 1). Then⋃

(i;I)∈Nk

{
φ(i;I)(X2d−1

k z2d

) : z ∈ Bk−1(m)
}
.

is a minimal set of generators for A-module Pk in degree n. Consequently
dim(QPk)n = (2k − 1) dim(QPk−1)m.

3.2. Some properties of admissible monomials in Pk((k − 2)|d).

Lemma 3.2.1. Let n =
∑k−2
i=1 (2di − 1) with di positive integers such that d1 >

d2 > . . . dk−3 > dk−2. If x is an admissible monomial of degree n in Pk such that
[x] ∈ Ker((S̃q

0
∗)(k,n)), then ωi(x) = k − 2 for 1 6 i 6 dk−2.

Proof. Note that z =
∏k−2
t=1 x

2dt−1
t is the minimal spike of degree n and ωi(z) = k−2

for 1 6 i 6 dk−2. Since x is admissible, [x] 6= 0. By Theorem 2.13, either ω1(x) =
k − 2 or ω1(x) = k. If ω1(x) = k, then x = X∅y

2 with y a monomial in Pk. Since
x is admissible, by Theorem 2.9, y is also admissible. So, (S̃q

0
∗)(k,n)([x]) = [y] 6= 0.

This contradict the hypothesis that x ∈ Ker((S̃q
0
∗)(k,n)), hence ω1(x) = k− 2. Now

the lemma follows from Proposition 2.10. �

Lemma 3.2.2. If x is a monomial of degree n in Pk such that [x] ∈ Ker((S̃q
0
∗)(k,n)),

then x ≡
∑
x̄ with x̄ monomials in Pk such that ωi(x̄) = k−2, for 1 6 i 6 d = dk−2.

Proof. If ω1(x) < k − 2, then by Theorem 2.13, x is hit, hence the lemma holds.
Suppose ω1(x) = k − 2 and let s > 1 be the smallest index such that ωs(x) 6=
k − 2. If ωs(x) < k − 2, then by Theorem 2.13, x is hit, hence the lemma holds.
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Assume that ωs(x) = k. Then we have x =
∏s−3
t=0 X

2t

Jt(x)y
2s−2 ∏

t>sX
2t

Jt(x), where
y = XJs−2(x)X

2
Js−1(x) = X3

u,vx
2
ux

2
v with 1 6 u < v 6 k. Then we have

y =
∑
i6=u,v

X3
i,u,vxux

2
vx

4
i + Sq1(X3

u,vxux
2
v).

By using this equality, the Cartan formula and Theorem 2.13, we obtain x ≡∑
i 6=u,v x(i,u,v), where

x(i,u,v) =
s−3∏
t=0

X2t

Jt(x)(X3
i,u,vxux

2
vx

4
i )2s−2 ∏

t>s

X2t

Jt(x).

A simple computation shows that ωi(x(i,u,v)) = k − 2 for 1 6 i 6 s. By repeating
this argument we see that the lemma is true.

If ω1(x) = k, then x = X∅y
2 with y a monomial in Pk. Then, we have

(S̃q
0
∗)(k,n)([x]) = [y] = 0. Hence, y =

∑
r>0 Sq

r(gr) with suitable polynomial
gr in Pk. Then, using Proposition 2.4, Theorem 2.13 and the Cartan formula we
get

x = X∅y
2 =

∑
r>0

X∅Sq
2r(g2

r)

=
∑
r>0

Sq2r(X∅g2
r) +

∑
r>0

r∑
t=1

Sq2t(X∅)(Sqr−t(gr))2 ≡
∑

x′,

where x′ are monomials in (Pk)n such that ω1(x′) = k−2. The lemma is proved. �

Lemma 3.2.3. Let x be a monomial of degree (k − 2)(2d − 1). If ω1(x) < k and
there is r > d such that ωr(x) > 0, then x ∈ P−k ((k − 2)|d) +A+Pk.

Proof. If ω1(x) < k−2, then x ∈ P−k ((k−2)|d), hence the lemma holds. If ω1(x) >
k−2, then ω1(x) = k−2. Let s be the smallest index such that ωs(x) > k−2, then
ωs(x) = k. If s > d, then (k − 2)(2d − 1) = deg x > (k − 2)(2d − 1) + 2t−1ωt(x) >
(k − 2)(2d − 1). This is a contradiction, so s < d. If there is 1 < r < s such that
ωr(x) < k − 2, then x ∈ P−k ((k − 2)|d), so the lemma holds. Suppose ωr = k − 2
for 1 6 r < s. We have

y := X2
Js−1(x)XJs−2(x) = X3

u,vx
2
ux

2
v =

∑
i 6=u,v

X3
1,u,vx

4
ixux

2
v + Sq1(X3

u,vxux
2
v).

for 1 6 u < v 6 k. Using Proposition 2.4 and the Cartan formula we get x ≡(k−2)|d∑
i 6=u,v x(i,u,v), where

x(i,u,v) =
s−3∏
t=0

X2t

Jt(x)(X3
i,u,vxux

2
vx

4
i )2s−2 ∏

t>s

X2t

Jt(x).

It is easy to see that ωi(x(i,u,v)) = k − 2 for 1 6 i 6 s and ωr(x(i,u,v)) > 0 for
suitable r > d. By repeating this argument we obtain x ≡(k−2)|d

∑
x̄ with x̄

monomials such that ωi 6 k − 2 for 1 6 i 6 d and ωr(x̄) > 0 for suitable r > d.
Then we have

∑d
i=1 2i−1ωi(x̄) < deg x̄ = (k − 2)(2d − 1). Hence, there is an index

i such that ωi(x̄) < k − 2 and x̄ ∈ P−k ((k − 2)|d). The lemma is proved. �
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Lemma 3.2.4. Let i1, i2, j1, j2 ∈ Nk such that i1 < j1, i2 < j2.
i) If either i1 > i2 or i1 = i2 and j1 > j2, then X2

i1,j1
Xi2,j2 is strictly inadmissi-

ble.
ii) If j1 > j2 and i, j ∈ Nk, i < j, then the monomial X4

i1,j1
X2
i2,j2

Xi,j is strictly
inadmissible.

iii) If either i1 < i2 6 j1 or i1 = i2, j1 6= j2, then X4
i1,j1

X3
i2,j2

is strictly inad-
missible.

iv) If either i1 < i2 and j1 6 j2, then X8
i1,j1

X7
i2,j2

is strictly inadmissible.

Proof. We prove i). If i1 > i2 and j1 = j2 = j, then x = xi1x
2
i2
X3
i1,i2,j

. We have

x = xi2x
2
i1X

3
i1,i2,j +

∑
t6=i1,i2,j

xi1xi2x
4
tX

3
i1,i2,j,t + Sq1(xi1xi2X3

i1,i2,j).

This equality shows that x is strictly inadmissible.
If j1 6= j2, then x = xi1x

2
i2
xj1x

2
j2
X3
i1,i2,j1,j2

. Then we have

x = xi2x
2
i1xj1x

2
j2
X3
i1,i2,j1,j2

+ xi2xi1x
2
j1
x2
j2
X3
i1,i2,j1,j2

+
∑

t 6=i1,i2,j1,j2

xi1xi2xj1x
2
j2
x4
tX

3
i1,i2,j1,j2,t

+ Sq1(xi1xi2xj1x
2
j2
X3
i1,i2,j1,j2

).
Since i2 < i1 < j1, the above equality implies x is strictly inadmissible.

We now prove ii). If i1 = i2 = i, then x = xj1x
2
j2
X3
i,j1,j2

. We have

x = x2
j1
xj2X

3
i,j1,j2

+
∑

t6=i,j1,j2

xj1xj2x
4
tX

3
i,j1,j2,j + Sq1(xj1xj2X

3
i,j1,j2,j).

This equality shows that x is strictly inadmissible. By Theorem 2.9, Xi,jx
2 is also

strictly inadmissible.
Suppose i1 < i2. Then x = xi1x

2
i2
x2
j2
xj1X

3
i1,i2,j1,j2

. We have

xi1x
2
i2x

2
j2
xj1 = xi1xi2x

2
j2
x2
j1

+ xi1x
2
i2xj2x

2
j1

+ Sq1(x2
i1xi2xj2xj1) + Sq2(xi1xi2xj2xj1)

So, using the Cartan formula, we get
x = xi1xi2x

2
j2
x2
j1
X3
i1,i2,j1,j2

+ xi1x
2
i2xj2x

2
j1
X3
i1,i2,j1,j2

+A+B + C

where
A = x2

i1xi2xj1xj2Sq
1(X3

i1,i2,j1,j2
) + Sq1(xi1xi2xj1xj2)Sq1(X3

i1,i2,j1,j2
),

B = xi1xi2xj1xj2Sq
2(X3

i1,i2,j1,j2
),

C = Sq1(x2
i1xi2xj1xj2X

3
i1,i2,j1,j2

) + Sq2(xi1xi2xj1xj2X
3
i1,i2,j1,j2

).

A direct computation shows that Xi,jA
2 ∈ P−k ((k−2)|3), Xi,jB

2 ∈ P−k ((k−2)|3)+
A+

1 P5 and Xi,jC
2 ∈ P−k ((k− 2)|3) +A+

3 P5. Hence, the monomial Xi,jx
2 is strictly

inadmissible.
We prove Part iii). If i2 = j1 = i, then x := X4

i1,j1
X3
i2,j2

= x3
i1
x4
j2
X7
i1,i2,j2

. Then
we have

x = x2
i1x

5
j2
X7
i1,i2,j2

+ Sq1(x3
i1x

3
j2
X7
i1,i2,j2

)
+ Sq2(x2

i1x
3
j2
X7
i1,i2,j2

) mod(P−k ((k − 2)|3)).
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Hence, x is strictly inadmissible. If i2 < j1, then x = x3
i1
xx4

i2
x3
j1
x4
j2
Y 7 with Y :=

X7
i1,i2,j1,j2

. Then we have

x = x3
i1xx

3
i2x

4
j1
x4
j2
Y 7 + x2

i1xx
5
i2x

3
j1
x4
j2
Y 7 + x3

i1xx
3
i2x

5
j1
x4
j2
Y 7

+ Sq1(x3
i1xx

3
i2x

3
j1
x4
j2
Y 7) + Sq2(x2

i1xx
3
i2x

3
j1
x4
j2
Y 7) mod(P−k ((k − 2)|3)).

The above equality shows that the monomial X4
1,jt0

X3
1,jt0+1

is strictly inadmissible.
We now prove Part iv). If j1 = j2, then x = x7

i1
x8
i2
X15
i1,i2,j1

. We have

x = x6
i1x

9
i2X

15
i1,i2,j1

+Sq1(x7
i1x

7
i2X

15
i1,i2,j1

) +Sq2(x6
i1x

7
i2X

15
i1,i2,j1

) mod(P−k ((k−2)|4)).

Hence, x is strictly inadmissible. If j1 = i2, then x = x7
i1
x8
j2
X15
i1,i2,j1

. By a similar
computation, we see that x is strictly inadmissible.

Suppose j1 6= i1, j2, then we have x = x7
i1
x8
i2
x7
j1
x8
j2
X15
i1,i2,j1,j2

. If i2 < j1, then

x = x6
i1x

9
i2x

7
j1
x8
j2
X15
i1,i2,j1,j2

+ x6
i1x

7
i2x

9
j1
x8
j2
X15
i1,i2,j1,j2

+ x7
i1x

7
i2x

8
j1
x8
j2
X15
i1,i2,j1,j2

+ Sq1(x7
i1x

7
i2x

7
j1
x8
j2
X15
i1,i2,j1,j2

)
+ Sq2(x6

i1x
7
i2x

7
j1
x8
j2
X15
i1,i2,j1,j2

) mod(P−k ((k − 2)|4)).
Hence, x is strictly inadmissible. If j1 < i2, then
x = x4

i1x
7
j1
x11
i2 x

8
j2
X15
i1,i2,j1,j2

+ x5
i1x

6
j1
x11
i2 x

8
j2
X15
i1,i2,j1,j2

+ x7
i1x

6
j1
x9
i2x

8
j2
X15
i1,i2,j1,j2

+ Sq1(x7
i1x

7
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

+ x3
i1x

11
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

)
+ Sq2((x7

i1x
6
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

+ x3
i1x

10
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

)
+ Sq4(x4

i1x
7
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

+ x5
i1x

6
j1
x7
i2x

8
j2
X15
i1,i2,j1,j2

) mod(P−k ((k − 2)|4)).
Hence, x is strictly inadmissible.

The lemma is proved. �

We see that there is a monomial x in Pk such that x is inadmissible but it is not
strictly inadmissible. We defined the notion of strongly inadmissible monomial in
(Pk)(k−2)(2d−1).

For a positive integer a, denote by α(a) the number of ones in dyadic expansion
of a and by ζ(a) the greatest integer u such that a is divisible by 2u. That means
a = 2ζ(a)b with b an odd integer. We set d(a) = a− α(a)− ζ(a).

For any positive integer d such that d > d(k− 2), denote by P(k,d) the subspace
of Pk spanned by all monomials x of degree (k − 2)(2d − 1) such that

h∑
j=1

ωj(x) < (k − 2)(2h − 1),

for some h, 1 6 h 6 d− d(k − 2).

Definition 3.1. A monomial x of of weight vector (k − 2)|d in Pk is said to be
strongly inadmissible if there exist monomials y1, y2, . . . , yt of the same weight vec-
tor (k − 2)|d such that yu < x, 1 6 u 6 t and

x 'd y1 + y2 + . . . yt mod(P(k,d)).

Obviously, if x is strictly inadmissible, then x is strongly inadmissible.
By a direct computation we can show that the monomial x = x1x

3
2x

6
3x

6
4x

5
5 of

weight vector (3)|3 in P5 is strongly inadmissible but it is not strictly inadmissible.
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Proposition 3.2. Let x be a monomial of weight vector (k − 2)|d in Pk. If x is
strongly inadmissible, then x is inadmissible.

Proof. Set s = α(k − 2). Then

k − 2 = 2t1 + 2t2 + . . .+ 2ts−1 + 2ts ,

where t1 > t2 > . . . > ts−1 > ts = ζ(k − 2) > 0. Then, we have

(k − 2)(2d − 1) = 2d+t1 + 2d+t2 + . . .+ 2d+ts−1 + 2d+ts − k + 2

=
∑

16i6k−2
(2di − 1),

where

di =


d+ ti, 1 6 i < s,

d+ ts − i+ s− 1, s 6 i 6 k − 3,
dk−3 = d+ ts − k + s+ 1 = d− d(k − 2), i = k − 2.

It is easy to see that d1 > d2 > . . . > dk−3 = dk−2 = d − d(k − 2). Hence
z =

∏k−2
i=1 x

2di−1

i is a minimal spike of degree (k − 2)(2d − 1) and ωj(z) = k − 2
for 1 6 j 6 k − 2. By Theorem 2.14, we have P(k,d) ⊂ A+Pk. Hence x is
inadmissible. �

Proposition 3.2.5. Let c, d, e be positive integers and let u, x, y ∈ Pk be mono-
mials such that ω(u) = (k − 2)|c, ω(x) = (k − 2)|d and ω(y) = (k − 2)|e. If x is
strongly inadmissible, then ux2c

y2c+d is also strongly inadmissible.

Proof. Since x is strongly inadmissible, there exist monomials y1, y2, . . . , yt of the
same weight vector (k − 2)|d, g1 ∈ P−k ((k − 2)|d) and g2 ∈ P(k,d) such that yi < x
for i = 1, 2, . . . , t and

x = y1 + y2 + . . .+ yt + g1 + g2 +
∑

16j<2d

Sqj(hj),

where hj are suitable polynomials in Pk. Since ω(u) = (k−2)|c and ω(x) = (k−2)|d,
using Proposition 2.4 and the Cartan formula, we get

u(Sqj(hj))2c

y2c+d

= Sqj2
c
(
uh2c

j y
2c+d

)
mod(P−k ((k − 2)|c+d+e)),

for 1 6 j < 2d. Combining the above equalities gives

ux2c

y2c+d

=
∑

16i6t
uy2c

i y
2c+d

+ ug2c

1 y
2c+d

+ ug2c

2 y
2c+d

+
∑

16j<2d

Sqj2
c
(
uh2c

j y
2c+d

)
mod(P−k ((k − 2)|c+d+e)).

Since ω(u) = (k−2)|c, we can easily check that uy2c

i y
2c+d

< ux2c

y2c+d for 1 6 i 6 t,
ug2c

1 y
2c+d ∈ P−k ((k−2)|c+d+e) and ug2c

2 y
2c+d ∈ P(k,c+d+e). Hence, the last equality

implies that ux2c

y2c+d is strongly inadmissible. �

Proposition 3.2.6. Let d > d(k − 2) + 2 and let x =
∏d
t=1 X

2d−t

it,jt
, where 1 6 it <

jt 6 k for 1 6 t 6 d. If the monomial x is admissible, then i1 6 i2 6 . . . 6 id and
j1 6 j2 6 . . . 6 jd.
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Proof. Suppose x is admissible. By using Lemma 3.2.4(i) and Theorem 2.9, one
gets i1 6 i2 6 . . . 6 id. Combining Lemma 3.2.4(ii) and Theorem 2.9 gives j1 6
j2 6 . . . 6 jd−1. So, we need only to prove jd−1 6 jd.

Suppose the contrary that jd < jd−1. We proved the proposition for the case
id−2 < id−1 < id and jd−2 /∈ {id−2, id−1, id, jd−2, jd−1}. The other cases can be
proved by similar computations. Then, we have x = yY 8 with

y = X4
id−2,jd−2

X2
id−1,jd−1

Xid,jd
= x3

id−2
x5
id−1

x6
id
x3
jd−2

x6
jd−1

x5
id
Z7,

and Y =
∏d−3
t=1 X

2d−3−t

it,jt
, Z = Xid−2, id−1, id, jd−2,jd−1, jd

. By a direct computation,
we get

x = x3
id−2

x5
id−1

x5
id
x3
jd−2

x6
jd−1

x6
id
Z7Y 8 + x3

id−2
x5
id−1

x6
id
x3
jd−2

x5
jd−1

x6
id
Z7Y 8

+ g + Sq1(x3
id−2

x6
id−1

x5
id
x3
jd−2

x5
jd−1

x5
id
Z7Y 8)

+ Sq2(x3
id−2

x5
id−1

x5
id
x3
jd−2

x5
jd−1

x5
id
Z7Y 8) mod(P−k ((k − 2)|d)),

with

g = x5
id−2

x5
id−1

x5
id
x3
jd−2

x5
jd−1

x5
id
Z7 + x3

id−2
x5
id−1

x5
id
x5
jd−2

x5
jd−1

x5
id
Z7

+
∑
u

x3
id−2

x5
id−1

x5
id
x3
jd−2

x5
jd−1

x5
id
x9
uZ

7
u,

where the last sum runs over all u ∈ Nk \ {id−2, id−1, id, jd−2, jd−1, jd} and Zu =
Z/xu. It is easy to see that if a monomial v appears as a term of g, then ω1(v) = k
and ω2(v) = k − 5. This implies ω1(v) + 2ω2(v) = 3k − 10 < (k − 2)(22 − 1). Since
d > d(k − 2) + 2, one gets g ∈ P(k,d). This shows that x is strongly inadmissible.
By Proposition 3.2, x is inadmissible. This is a contradiction, so jd−1 6 jd. �

Notation 3.2.7. Let S = (s1, s2, . . . , sd) be a sequences of integers.
Break S into sections of lengths c0, c1, . . . , cr, so that st−1 and st are in the same

section if and only if st−1 = st. We denote rl(S) = c1 + c2 + . . . + cr, the reduced
length of S. For example, for S = (2, 2, 3, 1, 1, 1), we have rl(S) = 4.

We denote by PSeqdk the set of all pairs (I,J ) of sequences I = (i1, i2, . . . , id),
J = (j1, j2, . . . , jd), where it, jt are integers such that 1 6 it < jt 6 k, for 1 6 t 6 d,
and by PIncdk the set of all (I,J ) ∈ PSeqdk such that i1 6 i2 6 . . . 6 id and
j1 6 j2 6 . . . 6 jd. For (I,J ) ∈ PSeqdk, we denote

X(I,J ) =
∏

16t6d
X2d−t

it,jt
∈ Pk.

Proposition 3.2.8. Let (I,J ) ∈ PIncdk. If the monomial X(I,J ) is admissible,
then rl(I) <

(
k
2
)

and rl(J ) <
(
k
2
)
.

Proof. We prove rl(I) <
(
k
2
)
. Break I into sections of lengths b0, b1, . . . , br so that

it−1 and it are in the same section if and only if it−1 = it. We prove bu 6 k − u
for 1 6 u 6 r. Suppose the contrary that there is an index u, 1 6 u 6 r, such that
bu > k − u + 1. Then, there is t0 such that i(t0+t) = i(t0+1) for 1 6 t 6 bu and
it0 < i(t0+1). Note that i(t0+1) > u+ 1. We have

X(I,J ) =
t0∏
t=1

X2d−t

it,jt

( bu∏
t=1

X2bu−t

i(t0+t),j(t0+t)

)2d−t0−bu d∏
t=t0+bu+1

X2d−t

it,jt
.
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Since it0+t = it0+1 for 1 6 t 6 bu, we have

y :=
bu∏
t=1

X2bu−t

i(t0+t),j(t0+t)
= fi

( bu∏
t=1

Y 2bu−t

j(t0+t−1)

)
,

where i = it0+1 and Yh = x1 . . . x̂h . . . xk−1 ∈ Pk−1 for 1 6 h 6 k − 1. Since fi
is a homomorphism of A-algebras, by Proposition 3.1.3, if y 6= φ(h;H)(Y 2bu−1)
for all (h;H) ∈ Nk−1 and Y = x1x2 . . . xk−1 ∈ Pk−1, then y is strictly in-
admissible. Hence, by Theorem 2.9, X(I,J ) is also strictly inadmissible. Sup-
pose y = φ(h;H)(Y 2bu−1) for suitable (h;H) ∈ Nk−1. Since bu > k − u and
u + 1 6 it0+1 < it0+2 < jt0+2 = h + 1, we have h > u + 1, `(H) 6 k − u − 2
and bu − `(H) > 3. Hence, we get jt0+1 = jt0+2 = jt0+3 = h+ 1. Then, we obtain

X(I,J ) =
t0−1∏
t=1

X2d−t

it,jt

(
X8
it0 ,jt0

X7
it0+1,jt0+1

)2d−t0−3 d∏
t=t0+4

X2d−t

it,jt
.

By Lemma 3.2.4(iv), the monomialX8
it0 ,jt0

X7
it0+1,jt0+1

is strictly inadmissible. Hence,
by Theorem 2.9, X(I,J ) is strictly inadmissible. This contradicts the hypothesis
that x is admissible. Since bu 6 k − u for 1 6 u 6 r 6 k − 2, we get

rl(I) =
r∑

u=1
bu 6

r∑
u=1

(k − u) <
k−1∑
u=1

(k − u) =
(
k

2

)
.

We now prove rl(J ) <
(
k
2
)
. Break J into sections of lengths c0, c1, . . . , cs so that

jt−1 and jt are in the same section if and only if jt−1 = jt. We prove cv < k+ v− s
for all v, 1 6 v 6 s. Suppose there is an index v, 1 6 v 6 s such that cv > k+v−s,
then there is t0 such that jt0+t = jt0+1 > jt0 for 1 6 t 6 cv. It is easy to see that
jt0+1 6 k + v − s. Then we have

X(I,J ) =
t0∏
t=1

X2d−t

it,jt

( cv∏
t=1

X2cv−t

i(t0+t),j(t0+t)

)2d−t0−cv d∏
t=t0+cv+1

X2d−t

it,jt
.

Since jt0+t = jt0+1 for 1 6 t 6 cv, we have

z :=
cv∏
t=1

X2cv−t

i(t0+t),j(t0+t)
= fj

( cv∏
t=1

Y 2cv−t

i(t0+t−1)

)
,

where j = jt0+1. Since fj is a homomorphism of A-algebras, by Proposition 3.1.3,
if z 6= φ(h;H)(Y 2cv−1) for all (h;H) ∈ Nk−1, then z is strictly inadmissible. Hence,
by Theorem 2.9, X(I,J ) is also strictly inadmissible. Suppose z = φ(h;H)(Y 2cv−1)
for suitable (h;H) ∈ Nk−1. Since cv > k + v − s and it0+t < jt0+1 6 k + v − s, for
1 6 t 6 cv, we get `(H) 6 k+v−s−2. If `(H) < k+v−s−2, then cv− `(H) > 3.
Hence, we get it0+1 = it0+2 = it0+3 = h+ 1. Then, we obtain

X(I,J ) =
t0−1∏
t=1

X2d−t

it,jt

(
X8
it0 ,jt0

X7
it0+1,jt0+1

)2d−t0−3 d∏
t=t0+4

X2d−t

it,jt
.

By Lemma 3.2.4(iv), the monomialX8
it0 ,jt0

X7
it0+1,jt0+1

is strictly inadmissible. Hence,
by Theorem 2.9, X(I,J ) is strictly inadmissible. If `(H) = k+v− s−2, then it = 1
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for 1 6 t 6 t0 + 1 and cv − `(H) > 2. This implies it0+2 = it0+1 = 1. Then, we get

X(I,J ) =
t0−1∏
t=1

X2d−t

1,jt

(
X4

1,jt0
X3

1,jt0+1

)2d−t0−2 d∏
t=t0+3

X2d−t

it,jt
.

By Lemma 3.2.4(iii), the monomial X4
1,jt0

X7
1,jt0+1

is strictly inadmissible. Hence,
by Theorem 2.9, X(I,J ) is strictly inadmissible. This contradicts the fact that x is
admissible.

Since cv 6 k + v − s− 1 for 1 6 v 6 s 6 k − 2, one gets

rl(J ) =
s∑

v=1
cv 6

s∑
v=1

(k + v − s− 1) =
s∑

u=1
(k − u) <

(
k

2

)
.

The proposition is completely proved. �

From the proofs of Lemmas 3.2.4, Proposition 3.2.8 and Theorem 2.9, we easily
obtain the following.

Proposition 3.2.9. Let d >
(
k
2
)
. For any (H,K) ∈ PSeqdk, we have

X(H,K) 'd
minK∑

u=minH+1

∑
(I,J )∈Bu

X(I,J ) mod(P(k,d)),

where Bu is a set of some pairs (I,J ) ∈ PIncdk such that rl(I) <
(
k
2
)
, rl(J ) <

(
k
2
)
,

min I = minH and minJ = u.

3.3. Proof of Theorem 1.5.

Let n =
∑k−2
i=1 (2di − 1) with di positive integers such that d1 > d2 > . . . >

dk−3 > dk−2 := d, and m =
∑k−3
i=1 (2di−d − 1).

Lemma 3.3.1. Let d > d(k − 2) and let f, g ∈ (Pk)(k−2)(2d−1) be homogeneous
polynomials and let y ∈ (Pk)m be a monomial. If f '(d,(k−2)|d) g mod(P(k,d)), then
fy2d ≡ gy2d .

Proof. Note that z =
∏k−2
i=1 x

2di−1 is the minimal spike of degree n and ωt(z) = k−2
for 1 6 t 6 d. Suppose f = g+g1+

∑
16j<2d Sqj(hj), where g1 ∈ P(k,d) and suitable

polynomials hj ∈ Pk. By Proposition 2.4, Sqj(hj)y2d = Sqj(hjy2d) for 1 6 j < 2d.
If a monomial w appears as a term of the polynomial g1, then there is an integer
h, 1 6 h 6 d− d(k − 2), such that

h∑
i=1

2i−1ωi(w) < (k − 2)(2h − 1) =
h∑
i=1

2i−1ωi(z).

By Theorem 2.15, wy2d is hit, hence the polynomial g1y
2d is hit. This implies

fy2d ≡ gy2d . The lemma is proved. �

Definition 3.3.2. Suppose d0 > d(k − 2), and B(k,d0) is a subset of PIncd0
k . The

set B(k,d0) is said to be compatible with (k − 2)|d0 if all of the following hold:
i) For any (I,J ) ∈ B(k,d0), rl(I) 6 d0 − 2 and rl(J ) 6 d0 − 2,
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ii) For any (H,K) ∈ PSeqd0
k , we have

X(H,K) 'd0

minK∑
u=minH+1

∑
(I,J )∈Bu

X(I,J ) mod(P(k,d0)), (3.1)

where Bu is a set of some pairs (I,J ) ∈ B(k,d0) such that min I = minH and
minJ = u.

Obviously, Proposition 3.2.9 shows that for any d0 >
(
k
2
)
, the set

B̄(k,d0) = {((i)|d0−(k
2)|I, (j)|d0−(k

2)|J ) : (I,J ) ∈ PInc(k
2)
k , i = min I, j = minJ }

is compatible with (k − 2)|d0 . By a simple computation, we get

|B̄(k,d0)| = |PInc(k
2)
k | < 2(k−1)2

(2k − 1)(2k−1 − 1).
Theorem 1.5 follows from this inequality, Proposition 3.2.9, Theorem 3.1.5 and the
following.

Theorem 3.3.3. Let k > 4, n =
∑k−2
i=1 (2di − 1) with di positive integers such that

d1 > d2 > . . . > dk−3 > dk−2 = d > d0 > d(k − 2), and m =
∑k−3
i=1 (2di−d − 1).

Suppose the set B(k,d0) ⊂ PIncd0
k is compatible with (k − 2)|d0 . Then,⋃

(I,J )∈B(k,d0)

{
X(I,J )(Xi,j)2d−2d0 (f(i,j)(z))2d

: z ∈ Bk−2(m), i = min I, j = minJ
}

is a set of generators for Ker(S̃q
0
)(k,n). Consequently

dim Ker(S̃q
0
)(k,n) 6 |B(k,d0)|dim(QPk−2)m.

We need the following lemma for the proof of the theorem.

Lemma 3.3.4. Let n, m and B(k,d0) be as in Theorem 3.3.3. Let y0 be a monomial
in (Pk)m0−1, yu = y0xu for 1 6 u 6 k, and (I,J ) ∈ B(k,d0), i = min I, j = minJ .
Then we have

X(I,J )y
2d0
i ≡

∑
16u6k
u 6=i,j

∑
(U,V)∈Bu

X(U,V)y
2d0
u , (3.2)

X(I,J )y
2d0
j ≡

∑
16v6k
v 6=i,j

∑
(U,V)∈Cv

X(U,V)y
2d0
v , (3.3)

where Bu is a set of some (U ,V) ∈ B(k,d0) such that minU = u for u < i and
minU = i for u > i; Cv is a set of some (U ,V) ∈ B(k,d0) such that minV = v for
v < j and minV = j for v > j.

Proof. Applying the Cartan formula, we have

Xi,jy
2
i =

∑
16u<j

u 6=i

Xu,jy
2
u +

∑
j<u6k

Xj,uy
2
u + Sq1(Xjy

2
0).

We have X(I,J ) = X(I\i,J\j)(Xi,j)2d0−1 and

X(I\i,J\j)(Xu,j)2d0−1
=
{
X(u|(I\i),J ), if u < j,

X(j|(I\i),u|(J\j)), if u > j.
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Using the Cartan formula, Proposition 2.4 and Theorem 2.13 we can see that the
polynomial X(I\i,J\j)(Sq1(Xjy

2
0))2d0−1 is hit. So, we get

X(I,J )y
2d0
i ≡

∑
16u<j

u 6=i

X(u|(I\i),J )y
2d0
u +

∑
j<u6k

X(j|(I\i),u|(J\j))y
2d0
u .

Since rl(I) < d0 − 1 and rl(J ) < d0 − 1, we have min(u|(I \ i)) = u for u < i,
min(j|(I \ i)) = min(u|(I \ i)) = i for i < u < j and min(u|(J \ j)) = j for u > j.
Hence the relation (3.2) follows from Lemma 3.3.1 and the condition of B(k,d0) in
Assumption 3.3.2.

The relation (3.3) is proved by a similar computation. �

Lemma 3.3.5. Let n, m0 be as in Lemma 3.3.4 and let P1
k(n) denote the subspace

of (Pk)n spanned by all monomials of the form X(J ,J )(fi(y))2d0 with (I,J ) ∈
B(k,d0), i = min I and y ∈ (Pk−1)m0 . Then Ker(S̃q

0
)(k,n) ⊂ [P1

k(n)].

Proof. Let x be a monomial of degree n such that [x] ∈ Ker(S̃q
0
)(k,n). Using

Lemmas 3.2.1 and 3.2.2, we can assume that ωi(x) = k − 2, for 1 6 i 6 d. Since
d > d0, there are sequences of integers H = (α1, α2, . . . , αd0), K = (β1, β2, . . . , βd0)
such that 1 6 αt < βt 6 k, for 1 6 t 6 d0, and x = X(H,K)ȳ

2d0 , where ȳ is a
monomial of degree m0 in Pk. By the condition of B(k,d0) in Definition 3.3.2, the
monomial X(H,K) is of the form (3.1). Hence, using Lemma 3.3.1, one gets

x = X(H,K)ȳ
2d0 ≡

minK∑
u=minH+1

∑
(I,J )∈Bu

X(I,J )ȳ
2d0
,

where Bu is a set of some (I,J ) ∈ B(k,d0) such that minJ = minH and minJ =
u. For i = minH, we have ȳ = xai fi(y) with a a non-negative integer and y ∈
(Pk−1)m0−a. We prove the lemma by proving [X(I,J )(xai fi(y))2d0 ] ∈ [P1

k(n)] for all
(I,J ) ∈ Bu, i < u 6 minK. We prove this claim by double induction on (a, i).

If a = 0, then the claim is true for all 1 6 i < k. Suppose a > 0 and the claim
is true for (a− 1, i) with 1 6 i < minJ .

For i = 1, using Lemma 3.3.4 with y0 = xa−1
1 f1(y), we get

X(I,J )(xa1f1(y))2d0 ≡
∑

26t6k
t6=minJ

∑
(U,V)∈B(t,1)

X(U,V)(xa−1
1 f1(xt−1y))2d0

, (3.4)

where B(t,1) is a set of some (U ,V) ∈ B(k,d0) such that minU = 1. By the inductive
hypothesis, [X(U,V)(xa−1

1 f1(xt−1y))2d0 ] ∈ [P1
k(n)] for all (U ,V) ∈ B(t,1) with 1 <

t 6= minJ . Hence, the claim is true for (a, 1).
Suppose i > 1 and the claim is true for all (a′, t), 1 6 t < i, and for (a − 1, i).

Applying Lemma 3.3.4 for y0 = xa−1
i fi(y), we have

X(I,J )(xai fi(y))2d0 ≡
∑

16t<i

∑
(U,V)∈B(t,i)

X(U,V)(xtxa−1
i fi(y))2d0

+
∑

i<t6k
t 6=minJ

∑
(U,V)∈B(t,i)

X(U,V)(xa−1
i fi(xt−1y))2d0

, (3.5)
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where B(t,i) is a set of some (U ,V) ∈ B(k,d0) such that minU = t for t < i and
minU = i for t > i. From the relation (3.5) and the inductive hypothesis, we see
that our claim is true for (a, i). This completes the proof. �

We now prove Theorem 3.3.3.

Proof of Theorem 3.3.3. Denote by Pk(n) the subspace of (Pk)n spanned by the
set Bk(n). We prove that Ker(S̃q

0
)(k,n) ⊂ [Pk(n)]. By using Lemma 3.3.5, we

prove that [X(I,J )(fi(y∗))2d ] ∈ Pk(n) for all (I,J ) ∈ B(k,d0) with min I = i and
y∗ ∈ (Pk−1)m0 , where m0 =

∑k−2
t=1 (2dt−d0 − 1).

Set j = minJ , we have fi(y∗) = xbjf(i,j)(y) with b a nonnegative integer and
y ∈ (Pk−2)m0−b. We prove [X(I,J )(xbjf(i,j)(y))2d ] ∈ [Pk(n)] by double induction on
(b, j).

If b = 0, then y ∈ (Pk−2)m0 . Since ωu(y) = k − 2 for 1 6 u 6 d − d0, we
get y = Y 2d−d0−1(ỹ)2d−d0 , with ỹ ∈ (Pk−2)m and Y = x1x2 . . . xk−2. Note that
f(i,j)(Y ) = Xi,j , hence f(i,j)(y) = X2d−d0−1

i,j (f(i,j)(ỹ))2d−d0 . Since Bk−2(m) is a set
of generators for (Pk−2)m, there are z1, z2, . . . , zr ∈ Bk−2(m) such that

ỹ ≡ z1 + z2 + . . .+ zr +
∑
t>0

Sqt(ht),

where ht are suitable polynomials in Pk−2. By using the Cartan formula and
Theorem 2.13, we see that the polynomial X(I,J )(Xi,j)2d−2d0 (Sqt(f(i,j)(ht)))2d is
hit. Since f(i,j) : Pk−2 → Pk is a homomorphism of A-algebras, we get

X(I,J )(f(i,j)(y))2d

≡
∑

16u6r
X(I,J )(Xi,j)2d−2d0 (f(i,j)(zu))2d

∈ Pk(n).

Hence, our claim is true for (0, j), i < j 6 k. We assume b > 0 and our claim holds
for all (b− 1, j) with i < j 6 k.

For j = 2, we have i = 1. Applying Lemma 3.3.4 for y0 = xb−1
2 f(1,2)(y) we

obtain

X(I,J )(xb2f(1,2)(y))2d0 ≡
∑

36t6k

∑
(U,V)∈Bt

X(U,V)(xb−1
2 f(1,2)(xt−2y))2d0

,

where Bt is a set of some (U ,V) ∈ B(k,d0) such that minV = 2. The last equality
and the inductive hypothesis imply our claim for (b, 2).

Suppose j > 2 and the claim holds for all (b′, t) with 1 6 i < t < j and for
(b− 1, j). Using Lemma 3.3.4 with y0 = xb−1

j f(i,j)(y), we have

X(I,J )(xbjf(i,j)(y))2d0 ≡
∑

16t<i

∑
(U,V)∈Bt

X(U,V)(fi(xtxb−1
j−1y))2d0

+
∑
i<t<j

∑
(U,V)∈Bt

X(U,V)(fi(xt−1x
b−1
j−1y))2d0

+
∑
j<t6k

∑
(U,V)∈Bt

X(U,V)(xb−1
j f(i,j)(xt−2y))2d0

,

where Bt is a set of some (U ,V) ∈ B(k,d0) such that minV = i for t < i, minV = t
for i < t < j and minV = j for t > j. From the last equality and the inductive
hypothesis, our claim is true for (b, j). The theorem is proved �
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4. Applications to the case k = 5

In this section, we explicitly determine the spaces QP5((3)|d) for d > 5. By using
this results and Theorem 3.3.3 and prove Theorems 1.6 and 1.8.

4.1. The admissible monomials of the weight vector (3)|d in P5.
From the results of Kameko [10] and our work [33] we see that if d > 4, then

QP+
3 ((3)|d) = 〈[(x1x2x3)2d−1](3)|d〉 and QP+

4 ((3)|d) = 〈{[wd,u](3)|d : 1 6 u 6 11}〉,
where

wd,1 = x1x
2d−2
2 x2d−1

3 x2d−1
4 wd,2 = x1x

2d−1
2 x2d−2

3 x2d−1
4

wd,3 = x1x
2d−1
2 x2d−1

3 x2d−2
4 wd,4 = x2d−1

1 x2x
2d−2
3 x2d−1

4
wd,5 = x2d−1

1 x2x
2d−1
3 x2d−2

4 wd,6 = x2d−1
1 x2d−1

2 x3x
2d−2
4

wd,7 = x3
1x

2d−3
2 x2d−2

3 x2d−1
4 wd,8 = x3

1x
2d−3
2 x2d−1

3 x2d−2
4

wd,9 = x3
1x

2d−1
2 x2d−3

3 x2d−2
4 wd,10 = x2d−1

1 x3
2x

2d−3
3 x2d−2

4
wd,11 = x7

1x
2d−5
2 x2d−3

3 x2d−2
4

Applying Proposition 2.16, we get dimQP 0
5 ((3)|d) =

(5
3
)

+ 11
(5

4
)

= 65. So
we need only to determine QP+

5 ((3)|d). The main result of the subsection is the
following.
Theorem 4.1.1. Let d be a positive integer. If d > 5, then QP+

5 ((3)|d) is an F2-
vector space of dimension 90 with a basis consisting the classes represented by the
mononials ad,t, 1 6 t 6 90, which are determined as follows:
1. x1x2x

2d−2
3 x2d−2

4 x2d−1
5 2. x1x2x

2d−2
3 x2d−1

4 x2d−2
5 3. x1x2x

2d−1
3 x2d−2

4 x2d−2
5

4. x1x
2d−2
2 x3x

2d−2
4 x2d−1

5 5. x1x
2d−2
2 x3x

2d−1
4 x2d−2

5 6. x1x
2d−2
2 x2d−1

3 x4x
2d−2
5

7. x1x
2d−1
2 x3x

2d−2
4 x2d−2

5 8. x1x
2d−1
2 x2d−2

3 x4x
2d−2
5 9. x2d−1

1 x2x3x
2d−2
4 x2d−2

5
10. x2d−1

1 x2x
2d−2
3 x4x

2d−2
5 11. x1x

2
2x

2d−4
3 x2d−1

4 x2d−1
5 12. x1x

2
2x

2d−1
3 x2d−4

4 x2d−1
5

13. x1x
2
2x

2d−1
3 x2d−1

4 x2d−4
5 14. x1x

2d−1
2 x2

3x
2d−4
4 x2d−1

5 15. x1x
2d−1
2 x2

3x
2d−1
4 x2d−4

5
16. x1x

2d−1
2 x2d−1

3 x2
4x

2d−4
5 17. x2d−1

1 x2x
2
3x

2d−4
4 x2d−1

5 18. x2d−1
1 x2x

2
3x

2d−1
4 x2d−4

5
19. x2d−1

1 x2x
2d−1
3 x2

4x
2d−4
5 20. x2d−1

1 x2d−1
2 x3x

2
4x

2d−4
5 21. x1x

2
2x

2d−3
3 x2d−2

4 x2d−1
5

22. x1x
2
2x

2d−3
3 x2d−1

4 x2d−2
5 23. x1x

2
2x

2d−1
3 x2d−3

4 x2d−2
5 24. x1x

2d−1
2 x2

3x
2d−3
4 x2d−2

5
25. x2d−1

1 x2x
2
3x

2d−3
4 x2d−2

5 26. x1x
3
2x

2d−4
3 x2d−2

4 x2d−1
5 27. x1x

3
2x

2d−4
3 x2d−1

4 x2d−2
5

28. x1x
3
2x

2d−2
3 x2d−4

4 x2d−1
5 29. x1x

3
2x

2d−2
3 x2d−1

4 x2d−4
5 30. x1x

3
2x

2d−1
3 x2d−4

4 x2d−2
5

31. x1x
3
2x

2d−1
3 x2d−2

4 x2d−4
5 32. x1x

2d−1
2 x3

3x
2d−4
4 x2d−2

5 33. x1x
2d−1
2 x3

3x
2d−2
4 x2d−4

5
34. x3

1x2x
2d−4
3 x2d−2

4 x2d−1
5 35. x3

1x2x
2d−4
3 x2d−1

4 x2d−2
5 36. x3

1x2x
2d−2
3 x2d−4

4 x2d−1
5

37. x3
1x2x

2d−2
3 x2d−1

4 x2d−4
5 38. x3

1x2x
2d−1
3 x2d−4

4 x2d−2
5 39. x3

1x2x
2d−1
3 x2d−2

4 x2d−4
5

40. x3
1x

2d−1
2 x3x

2d−4
4 x2d−2

5 41. x3
1x

2d−1
2 x3x

2d−2
4 x2d−4

5 42. x2d−1
1 x2x

3
3x

2d−4
4 x2d−2

5
43. x2d−1

1 x2x
3
3x

2d−2
4 x2d−4

5 44. x2d−1
1 x3

2x3x
2d−4
4 x2d−2

5 45. x2d−1
1 x3

2x3x
2d−2
4 x2d−4

5
46. x3

1x
2d−3
2 x2

3x
2d−4
4 x2d−1

5 47. x3
1x

2d−3
2 x2

3x
2d−1
4 x2d−4

5 48. x3
1x

2d−3
2 x2d−1

3 x2
4x

2d−4
5

49. x3
1x

2d−1
2 x2d−3

3 x2
4x

2d−4
5 50. x2d−1

1 x3
2x

2d−3
3 x2

4x
2d−4
5 51. x3

1x
5
2x

2d−6
3 x2d−4

4 x2d−1
5

52. x3
1x

5
2x

2d−6
3 x2d−1

4 x2d−4
5 53. x3

1x
5
2x

2d−1
3 x2d−6

4 x2d−4
5 54. x3

1x
2d−1
2 x5

3x
2d−6
4 x2d−4

5
55. x2d−1

1 x3
2x

5
3x

2d−6
4 x2d−4

5 56. x1x
3
2x

2d−3
3 x2d−2

4 x2d−2
5 57. x1x

3
2x

2d−2
3 x2d−3

4 x2d−2
5

58. x1x
2d−2
2 x3

3x
2d−3
4 x2d−2

5 59. x3
1x2x

2d−3
3 x2d−2

4 x2d−2
5 60. x3

1x2x
2d−2
3 x2d−3

4 x2d−2
5

61. x3
1x

2d−3
2 x3x

2d−2
4 x2d−2

5 62. x3
1x

2d−3
2 x2d−2

3 x4x
2d−2
5 63. x3

1x
2d−3
2 x2

3x
2d−3
4 x2d−2

5
64. x1x

6
2x

2d−5
3 x2d−3

4 x2d−2
5 65. x1x

7
2x

2d−6
3 x2d−3

4 x2d−2
5 66. x7

1x2x
2d−6
3 x2d−3

4 x2d−2
5
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67. x1x
7
2x

2d−5
3 x2d−4

4 x2d−2
5 68. x1x

7
2x

2d−5
3 x2d−2

4 x2d−4
5 69. x7

1x2x
2d−5
3 x2d−4

4 x2d−2
5

70. x7
1x2x

2d−5
3 x2d−2

4 x2d−4
5 71. x7

1x
2d−5
2 x3x

2d−4
4 x2d−2

5 72. x7
1x

2d−5
2 x3x

2d−2
4 x2d−4

5
73. x7

1x
2d−5
2 x2d−3

3 x2
4x

2d−4
5 74. x3

1x
3
2x

2d−4
3 x2d−3

4 x2d−2
5 75. x3

1x
3
2x

2d−3
3 x2d−4

4 x2d−2
5

76. x3
1x

3
2x

2d−3
3 x2d−2

4 x2d−4
5 77. x3

1x
2d−3
2 x3

3x
2d−4
4 x2d−2

5 78. x3
1x

2d−3
2 x3

3x
2d−2
4 x2d−4

5
79. x3

1x
4
2x

2d−5
3 x2d−3

4 x2d−2
5 80. x3

1x
5
2x

2d−6
3 x2d−3

4 x2d−2
5 81. x3

1x
5
2x

2d−5
3 x2d−4

4 x2d−2
5

82. x3
1x

5
2x

2d−5
3 x2d−2

4 x2d−4
5 83. x3

1x
7
2x

2d−7
3 x2d−4

4 x2d−2
5 84. x3

1x
7
2x

2d−7
3 x2d−2

4 x2d−4
5

85. x7
1x

3
2x

2d−7
3 x2d−4

4 x2d−2
5 86. x7

1x
3
2x

2d−7
3 x2d−2

4 x2d−4
5 87. x3

1x
7
2x

2d−3
3 x2d−6

4 x2d−4
5

88. x7
1x

3
2x

2d−3
3 x2d−6

4 x2d−4
5 89. x7

1x
2d−5
2 x5

3x
2d−6
4 x2d−4

5 90. x7
1x

11
2 x

2d−11
3 x2d−6

4 x2d−4
5

4.1.1. Generating sets for QP5((3)|d) with d 6 4.
Proposition 4.1.2. We have

i) B5((3)|1) = {Xα,β : 1 6 α < β 6 5}.
ii) B+

5 ((3)|2) is the set of the monomials a2,t, 1 6 t 6 15, which are determine
as follows:

1. x1x2x
2
3x

2
4x

3
5 2. x1x2x

2
3x

3
4x

2
5 3. x1x2x

3
3x

2
4x

2
5 4. x1x

2
2x3x

2
4x

3
5

5. x1x
2
2x3x

3
4x

2
5 6. x1x

2
2x

2
3x4x

3
5 7. x1x

2
2x

2
3x

3
4x5 8. x1x

2
2x

3
3x4x

2
5

9. x1x
2
2x

3
3x

2
4x5 10. x1x

3
2x3x

2
4x

2
5 11. x1x

3
2x

2
3x4x

2
5 12. x1x

3
2x

2
3x

2
4x5

13. x3
1x2x3x

2
4x

2
5 14. x3

1x2x
2
3x4x

2
5 15. x3

1x2x
2
3x

2
4x5.

Proof. For d = 1, if x ∈ P5((3)|1), then ω(x) = (3)|1 if and only if x = Xα,β with
1 6 α < β 6 5. Since Xα,β is admissible, we see that the first of Proposition 4.1.2
is true.

From the results in Kameko [10] and our work [33], we have B+
3 ((3)|2) =

{x3
1x

3
2x

3
3} and B+

4 ((3)|2) = {w2,1, w2,2, . . . , w2,6}, where
w2,1 = x1x

2
2x

3
3x

3
4, w2,2 = x1x

3
2x

2
3x

3
4, w2,3 = x1x

3
2x

3
3x

2
4,

w2,4 = x3
1x2x

2
3x

3
4, w2,5 = x3

1x2x
3
3x

2
4, w2,6 = x3

1x
3
2x3x

2
4.

Hence, applying Proposition 2.16, we get dimQP 0
5 ((3)|2) =

(5
3
)

+ 6
(5

4
)

= 40. So,
we need only to determine QP+

5 ((3)|2). By a direct computation we see that if
x ∈ P+

5 ((3)|2) and x 6= a2,t for all t, 1 6 t 6 15, then x = X2
i1,j1

Xi2,j2 with i1 > i2.
By Lemma 3.2.4, x is inadmissible.

We observe that for 1 6 t 6 15, a2,t = xifi(b2,t) with b2,t an admissible monomial
of degree 8 in P4 and 1 6 i 6 5. By Proposition 2.11, a2,t is admissible. The
proposition is proved. �

Consider the case d = 3. From the results in Kameko [10] and our work [33], we
have B+

3 ((3)|3) = {(x1x2x3)7} and B+
4 ((3)|3) = {w3,i : 1 6 i 6 10}, where w3,i,

1 6 i 6 10, are determined as in the beginning of this subsection. Namely,
w3,1 = x1x

6
2x

7
3x

7
4 w3,2 = x1x

7
2x

6
3x

7
4 w3,3 = x1x

7
2x

7
3x

6
4 w3,4 = x7

1x2x
6
3x

7
4

w3,5 = x7
1x2x

7
3x

6
4 w3,6 = x7

1x
7
2x3x

6
4 w3,7 = x3

1x
5
2x

6
3x

7
4 w3,8 = x3

1x
5
2x

7
3x

6
4

w3,9 = x3
1x

7
2x

5
3x

6
4 w3,10 = x7

1x
3
2x

5
3x

6
4

So, using Proposition 2.16, we get dimQP 0
5 ((3)|3) =

(5
3
)

+ 10
(5

4
)

= 60. We need
to compute QP+

5 ((3)|3).
We denote by A(3) the set of the monomilas a3,t, 1 6 t 6 50, which are given in

Theorem 4.1.1 for d = 3 and five monomials:
a3,51 = x3

1x
3
2x

4
3x

4
4x

7
5 a3,52 = x3

1x
3
2x

4
3x

7
4x

4
5 a3,53 = x3

1x
3
2x

7
3x

4
4x

4
5

a3,54 = x3
1x

7
2x

3
3x

4
4x

4
5 a3,55 = x7

1x
3
2x

3
3x

4
4x

4
5
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Proposition 4.1.3. B+
5 ((3)|3) = A(3) ∪ C(3), where C(3) is the set of the mono-

mials a3,t, 56 6 t 6 70 which are determined as follows:
56. x1x

3
2x

5
3x

6
4x

6
5 57. x1x

3
2x

6
3x

5
4x

6
5 58. x1x

6
2x

3
3x

5
4x

6
5 59. x3

1x2x
5
3x

6
4x

6
5

60. x3
1x2x

6
3x

5
4x

6
5 61. x3

1x
5
2x3x

6
4x

6
5 62. x3

1x
5
2x

6
3x4x

6
5 63. x3

1x
5
2x

2
3x

5
4x

6
5

64. x3
1x

3
2x

4
3x

5
4x

6
5 65. x3

1x
3
2x

5
3x

4
4x

6
5 66. x3

1x
3
2x

5
3x

6
4x

4
5 67. x3

1x
4
2x

3
3x

5
4x

6
5

68. x3
1x

5
2x

3
3x

4
4x

6
5 69. x3

1x
5
2x

3
3x

6
4x

4
5 70. x3

1x
5
2x

6
3x

3
4x

4
5

We prepare some lemmas for the proof of this proposition.

Lemma 4.1.4. Let x is one of the monomials: x1x
6
2x

6
3x4, x1x

2
2x

6
3x

5
4, x1x

6
2x

2
3x

5
4,

x1x
6
2x

3
3x

4
4, x3

1x
4
2x3x

6
4, x3

1x
4
2x

5
3x

2
4, x3

1x
5
2x

4
3x

2
4. Then, the monomial x7

i fi(x), 1 6 i 6 5,
is strictly inadmissible.

Proof. We prove the lemma for some monomials of the form f5(x). The others can
be proved by similar computations. We have
x1x

6
2x

6
3x4x

7
5 = x1x

5
2x

6
3x

2
4x

7
5 + x1x

6
2x

5
3x

2
4x

7
5 + Sq1(x2

1x
5
2x

5
3x4x

7
5)

+ Sq2(x1x
5
2x

5
3x4x

7
5 + x1x

3
2x

5
3x4x

9
5) mod(P−5 ((3)|3)),

x1x
2
2x

6
3x

5
4x

7
5 = x1x2x

6
3x

6
4x

7
5 + x1x

2
2x

5
3x

6
4x

7
5 + Sq1(x2

1x2x
5
3x

5
4x

7
5)

+ Sq2(x1x2x
5
3x

5
4x

7
5 + x1x2x

3
3x

5
4x

9
5) mod(P−5 ((3)|3)),

x1x
6
2x

3
3x

4
4x

7
5 = x1x

3
2x

4
3x

6
4x

7
5 + x1x

3
2x

6
3x

4
4x

7
5 + x1x

4
2x

3
3x

6
4x

7
5 + x1x

4
2x

6
3x

3
4x

7
5

+ x1x
6
2x

2
3x

5
4x

7
5 + Sq1(x2

1x
3
2x

3
3x

5
4x

7
5 + x2

1x
3
2x

5
3x

3
4x

7
5 + x2

1x
5
2x

3
3x

3
4x

7
5)

+ Sq2(x1x
3
2x

3
3x

3
4x

9
5 + x1x

3
2x

3
3x

5
4x

7
5 + x1x

3
2x

5
3x

3
4x

7
5

+ x1x
5
2x

3
3x

3
4x

7
5 + x1x

6
2x

2
3x

3
4x

7
5) mod(P−5 ((3)|3)),

x3
1x

5
2x

4
3x

2
4x

7
5 = x3

1x
3
2x

4
3x

4
4x

7
5 + x3

1x
5
2x

2
3x

4
4x

7
5 + Sq1(x3

1x
3
2x3x

2
4x

11
5 )

+ Sq2(x5
1x

3
2x

2
3x

2
4x

7
5) + Sq4(x3

1x
3
2x

2
3x

2
4x

7
5) mod(P−5 ((3)|3)).

Hence, the above monomials are strictly inadmissible. �

Lemma 4.1.5. The following monomials are strictly inadmissible:
x3

1x
5
2x

5
3x

2
4x

6
5 x3

1x
5
2x

5
3x

6
4x

2
5 x3

1x
5
2x

6
3x

5
4x

2
5 x3

1x
4
2x

5
3x

3
4x

6
5

x3
1x

4
2x

5
3x

6
4x

3
5 x3

1x
5
2x

4
3x

3
4x

6
5 x3

1x
5
2x

4
3x

6
4x

3
5 x3

1x
5
2x

6
3x

4
4x

3
5

Proof. We prove the lemma for the monomial x = x1x
6
2x

6
3x4x

7
5. The others can be

proved by a similar computation. We have
x = x3

1x
3
2x

6
3x

4
4x

5
5 + x3

1x
5
2x

6
3x

2
4x

5
5 + Sq1(x3

1x
3
2x

9
3x

2
4x

3
5)

+ Sq2(x5
1x

3
2x

6
3x

2
4x

3
5) + Sq4(x3

1x
3
2x

6
3x

2
4x

3
5) mod(P−5 ((3)|3)).

These equality implies x is strictly inadmissible. �

Proof of Proposition 4.1.3. By a direct computation we see that if x ∈ P+
5 ((3)|3)

and x 6= a3,t for all t, 1 6 t 6 70, then either x is one of the monomials as given
in Lemmas 4.1.4, 4.1.5, or x is of the form X4

i,jX
2
i1,j1

Xi2,j2 with i1 > i2. Hence, by
Lemma 3.2.4(i) and Theorem 2.9, x is inadmissible.

We now prove that the set {[a3,t] : 1 6 t 6 70} is linearly independent in
QP+

5 ((3)|3).
Consider 〈[A(3)](3)|3〉 ⊂ QP5((3)|3) and 〈[C(3)](3)|3〉 ⊂ QP5((3)|3). We see that

for 1 6 t 6 55, a3,t = x7
i fi(b3,t) with b3,t an admissible monomial of degree 14 in
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P4. By Proposition 2.11, a3,t is admissible. This implies dim〈[A(3)](3)|3〉 = 55. On
the other hand, we have 〈[A(3)](3)|3〉 ∩ 〈[C(3)](3)|3〉 = {0}. Hence, we need only to
prove the set [C(3)](3)|3 is linearly independent. Suppose there is a linear relation

S :=
∑

566t670
γta3,t ≡(3)|3 0, (4.1)

where γt ∈ F2.
Applying the homomorphism p(i;j) : P5 → P4 to (4.1), we obtain

p(1;2)(S) ≡(3)|3 (γ58 + γ67)w3,10 ≡(3)|3 0,
p(1;3)(S) ≡(3)|3 (γ57 + γ64)w3,9 ≡(3)|3 0,
p(1;4)(S) ≡(3)|3 (γ56 + γ65 + γ68)w3,8 ≡(3)|3 0,
p(1;5)(S) ≡(3)|3 (γ56 + γ57 + γ58 + γ66 + γ69 + γ70)w3,7 ≡(3)|3 0,
p(2;3)(S) ≡(3)|3 (γ60 + γ63 + γ64 + γ67)w3,9 ≡(3)|3 0,
p(2;4)(S) ≡(3)|3 (γ59 + γ65)w3,8 ≡(3)|3 0,
p(2;5)(S) ≡(3)|3 (γ59 + γ60 + γ66)w3,7 ≡(3)|3 0,
p(3;4)(S) ≡(3)|3 (γ61 + γ62 + γ63 + γ68)w3,8 ≡(3)|3 0,
p(3;5)(S) ≡(3)|3 (γ61 + γ69)w3,7 ≡(3)|3 0,
p(4;5)(S) ≡(3)|3 (γ62 + γ70)w3,9 ≡(3)|3 0.

From these equalities, we get γ67 = γ58, γ64 = γ57, γ65 = γ59, γ69 = γ61, γ70 = γ62.
Then, applying the homomorphism p(1;(i,j)) : P5 → P4 to (4.1), we get

p(1;(2,3))(S) ≡(3)|3 γ60w3,9 + γ63w3,10 ≡(3)|3 0,
p(1;(2,4))(S) ≡(3)|3 (γ56 + γ58 + γ68)w3,9 + γ68w3,10 ≡(3)|3 0,
p(1;(3,4))(S) ≡(3)|3 (γ59 + γ60 + γ66)w3,3 + (γ59 + γ62)w3,9

+ (γ56 + γ57 + γ59 + γ61 + γ63 + γ68)w3,8 ≡(3)|3 0.

From these above equalities we obtain γ60 = γ63 = γ68 = 0 and γt = γ56 for 56 6 t 6
70 and t 6= 60, 63, 68. Hence, the relation (4.1) becomes S = γ56θ ≡(3)|3 0, where
θ =

∑
t6=60,63,68 a3,t. By a direct computation, we can show that a3,70 = x3

1x
5
2x

6
3x

3
4x

4
5

is admissible. So, we get γ56 = 0. The proposition follows. �

We consider the case d = 4. From the results in Kameko [10], we get B+
3 ((3)|4) =

{(x1x2x3)7} and B+
4 ((3)|4) = {w4,t : 1 6 t 6 11}, where w3,t are determined

as in the beginning of this subsection. By Proposition 2.16, dimQP5((3)|4) =(5
3
)

+ 11
(5

4
)

= 65. We need to determined the set B+
5 ((3)|4).

For d > 4, we denote A(d) the set of monomials ad,t, 1 6 t 6 55, which are
determined as in Theorem 4.1.1.

Proposition 4.1.6. B+
5 ((3)|4) = A(4) ∪ C(4), where C(4) is the set of the mono-

mials a4,t, 56 6 t 6 89 which are determined as in Theorem 4.1.1 for d = 4 and
the following monomials:

a4,90 = x3
1x

7
2x

8
3x

13
4 x

14
5 a4,91 = x7

1x
3
2x

8
3x

13
4 x

14
5 a4,92 = x7

1x
7
2x

8
3x

9
4x

14
5

a4,93 = x7
1x

7
2x

9
3x

8
4x

14
5 a4,94 = x7

1x
7
2x

9
3x

10
4 x

12
5 .

We need the following lemma for the proof of this proposition.
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Lemma 4.1.7. If x is one of the monomials: x1x
7
2x

10
3 x

12
4 , x7

1x2x
10
3 x

12
4 , x3

1x
3
2x

12
3 x

12
4 ,

x3
1x

5
2x

8
3x

14
4 , x3

1x
5
2x

14
3 x

8
4, then the monomial x15

i fi(x), 1 6 i 6 5, is strictly inadmis-
sible.

Proof. We prove the lemma for monomials of the form f5(x). The others can be
proved by similar computations. We have
x1x

7
2x

10
3 x

12
4 x

15
5 = x1x

4
2x

11
3 x

14
4 x

15
5 + x1x

6
2x

11
3 x

12
4 x

15
5 + x1x

7
2x

8
3x

13
4 x

14
5

+ Sq1(x1x
5
2x

11
3 x

12
4 x

15
5 + x1x

7
2x

8
3x

13
4 x

15
5

+ x1x
7
2x

9
3x

12
4 x

15
5 + x1x

8
2x

7
3x

13
4 x

15
5 + x4

1x
7
2x

7
3x

11
4 x

15
5 )

+ Sq2(x2
1x

7
2x

7
3x

12
4 x

15
5 + x2

1x
7
2x

8
3x

11
4 x

15
5 + x2

1x
8
2x

7
3x

11
4 x

15
5 )

+ Sq4(x1x
4
2x

7
3x

14
4 x

15
5 + x2

1x
5
2x

7
3x

12
4 x

15
5 ) mod(P−5 ((3)|4))

x3
1x

3
2x

12
3 x

12
4 x

15
5 = x2

1x
3
2x

13
3 x

12
4 x

15
5 + x2

1x
4
2x

11
3 x

13
4 x

15
5 + x2

1x
5
2x

11
3 x

12
4 x

15
5

+ Sq1(x3
1x

3
2x

11
3 x

12
4 x

15
5 + x3

1x
8
2x

7
3x

11
4 x

15
5 )

+ Sq2(x2
1x

3
2x

11
3 x

12
4 x

15
5 + x2

1x
8
2x

7
3x

11
4 x

15
5 )

+ Sq4(x3
1x

4
2x

7
3x

12
4 x

15
5 + x2

1x
4
2x

7
3x

13
4 x

15
5 ) mod(P−5 ((3)|4))

x3
1x

5
2x

8
3x

14
4 x

15
5 = x2

1x
5
2x

9
3x

14
4 x

15
5 + x3

1x
4
2x

9
3x

14
4 x

15
5

+ Sq1(x3
1x

3
2x

9
3x

14
4 x

15
5 ) + Sq2(x2

1x
3
2x

9
3x

14
4 x

15
5 + x5

1x
3
2x

6
3x

14
4 x

15
5 )

+ Sq4(x3
1x

3
2x

6
3x

14
4 x

15
5 ) mod(P−5 ((3)|4)).

Hence, the above monomials are strictly inadmissible. �

Lemma 4.1.8. i) The following monomials are strictly inadmissible.
x3

1x
12
2 x

3
3x

13
4 x

14
5 x3

1x
13
2 x

14
3 x

3
4x

12
5 x3

1x
5
2x

9
3x

14
4 x

14
5 x3

1x
5
2x

14
3 x

9
4x

14
5

x3
1x

5
2x

14
3 x

11
4 x

12
5 x3

1x
7
2x

13
3 x

8
4x

14
5 x3

1x
7
2x

13
3 x

14
4 x

8
5 x7

1x
3
2x

13
3 x

8
4x

14
5

x7
1x

3
2x

13
3 x

14
4 x

8
5 x3

1x
7
2x

11
3 x

12
4 x

12
5 x7

1x
3
2x

11
3 x

12
4 x

12
5 x7

1x
11
2 x

3
3x

12
4 x

12
5

x7
1x

11
2 x

5
3x

8
4x

14
5 x7

1x
11
2 x

5
3x

14
4 x

8
5 x7

1x
11
2 x

13
3 x

6
4x

8
5 x7

1x
9
2x

7
3x

10
4 x

12
5 .

ii) The following monomials are strongly inadmissible.
x3

1x
13
2 x

6
3x

11
4 x

12
5 x3

1x
13
2 x

7
3x

10
4 x

12
5 x7

1x
7
2x

9
3x

14
4 x

8
5.

Proof. We prove Part i) for x = x3
1x

12
2 x

3
3x

13
4 x

14
5 , y = x7

1x
3
2x

13
3 x

8
4x

14
5 and z =

x7
1x

11
2 x

5
3x

8
4x

14
5 . We have

x = x2
1x

11
2 x

5
3x

13
4 x

14
5 + x2

1x
13
2 x

3
3x

13
4 x

14
5 + x3

1x
9
2x

5
3x

14
4 x

14
5 + x3

1x
11
2 x

4
3x

13
4 x

14
5

+ Sq1(x3
1x

7
2x

3
3x

13
4 x

18
5 + x3

1x
7
2x

3
3x

17
4 x

14
5 + x3

1x
11
2 x

3
3x

13
4 x

14
5 ) + Sq2(x2

1x
11
2 x

3
3x

13
4 x

14
5

+ x5
1x

7
2x

3
3x

14
4 x

14
5 ) + Sq4(x3

1x
7
2x

3
3x

14
4 x

14
5 ) mod(P−5 ((3)|4)),

y = x5
1x

3
2x

11
3 x

12
4 x

14
5 + x5

1x
3
2x

13
3 x

10
4 x

14
5 + x7

1x
2
2x

13
3 x

9
4x

14
5 + x7

1x
3
2x

9
3x

12
4 x

14
5

+ x7
1x

3
2x

12
3 x

9
4x

14
5 + Sq1(x7

1x
3
2x

11
3 x

9
4x

14
5 ) + Sq2(x7

1x
2
2x

11
3 x

9
4x

14
5 + x7

1x
5
2x

7
3x

10
4 x

14
5

+ x7
1x

5
2x

11
3 x

6
4x

14
5 ) + Sq4(x5

1x
3
2x

7
3x

12
4 x

14
5 + x5

1x
3
2x

13
3 x

6
4x

14
5 + x11

1 x
3
2x

7
3x

6
4x

14
5 )

+ Sq8(x7
1x

3
2x

7
3x

6
4x

14
5 ) mod(P−5 ((3)|4)),

z = x5
1x

11
2 x

3
3x

12
4 x

14
5 + x5

1x
11
2 x

5
3x

10
4 x

14
5 + x5

1x
11
2 x

9
3x

6
4x

14
5 + x5

1x
13
2 x

3
3x

10
4 x

14
5

+ x7
1x

9
2x

5
3x

10
4 x

14
5 + x7

1x
10
2 x

5
3x

9
4x

14
5 + x7

1x
11
2 x

4
3x

9
4x

14
5 + Sq1(x7

1x
7
2x

3
3x

5
4x

22
5

+ x7
1x

7
2x

3
3x

9
4x

18
5 + x7

1x
11
2 x

3
3x

5
4x

18
5 + x7

1x
11
2 x

3
3x

9
4x

14
5 ) + Sq2(x7

1x
7
2x

2
3x

5
4x

22
5
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+ x7
1x

7
2x

3
3x

12
4 x

14
5 + x7

1x
10
2 x

3
3x

9
4x

14
5 + x7

1x
13
2 x

3
3x

6
4x

14
5 + x9

1x
7
2x

3
3x

10
4 x

14
5 )

+ Sq4(x5
1x

7
2x

3
3x

12
4 x

14
5 + x5

1x
11
2 x

5
3x

6
4x

14
5 + x5

1x
13
2 x

3
3x

6
4x

14
5 + x11

1 x
7
2x

3
3x

6
4x

14
5 )

+ Sq8(x7
1x

7
2x

3
3x

6
4x

14
5 ) mod(P−5 ((3)|4)).

The above equalities show that x, y, z are strictly inadmissible.
We prove Part ii) for w = x3

1x
13
2 x

6
3x

11
4 x

12
5 . We have

w = x2
1x

13
2 x

3
3x

14
4 x

13
5 + x2

1x
13
2 x

5
3x

14
4 x

11
5 + x3

1x
11
2 x

5
3x

14
4 x

12
5 + x3

1x
13
2 x

3
3x

14
4 x

12
5

+ x3
1x

13
2 x

4
3x

14
4 x

11
5 + Sq1(x3

1x
11
2 x

3
3x

17
4 x

10
5 + x3

1x
13
2 x

3
3x

13
4 x

12
5 + x3

1x
13
2 x

3
3x

14
4 x

11
5

+ x3
1x

13
2 x

3
3x

18
4 x

7
5 + x3

1x
13
2 x

5
3x

11
4 x

12
5 + x3

1x
13
2 x

6
3x

13
4 x

9
5 + x3

1x
17
2 x

3
3x

11
4 x

10
5

+ x3
1x

17
2 x

3
3x

14
4 x

7
5) + Sq2(x2

1x
13
2 x

3
3x

14
4 x

11
5 + x3

1x
13
2 x

5
3x

13
4 x

9
5 + x5

1x
11
2 x

3
3x

14
4 x

10
5

+ x5
1x

14
2 x

3
3x

11
4 x

10
5 + x5

1x
14
2 x

3
3x

14
4 x

7
5) + Sq4(x3

1x
11
2 x

3
3x

14
4 x

10
5 + x3

1x
14
2 x

3
3x

11
4 x

10
5

+ x3
1x

14
2 x

3
3x

14
4 x

7
5) + x5

1x
13
2 x

5
3x

13
4 x

9
5 mod(P−5 ((3)|4)).

Since x5
1x

13
2 x

5
3x

13
4 x

9
5 ∈ P(5,4), this equality shows that w is strongly inadmissible.

The lemma follows. �

Proof of Proposition 4.1.6. Let x ∈ P+
5 ((3)|4) be an admissible monomial, then x =

Xi,jy
2 with 1 6 i < j 6 k. Since x is admissible, by Theorem 2.9, y is admissible.

By a direct computation we see that if z ∈ B5((3)|3) such that Xi,jz
2 ∈ P+

5 ((3)|4)
and Xi,jz

2 6= a4,t for all t, 1 6 t 6 94, then either Xi,jz
2 is one of the monomials

as given in Lemmas 3.2.4(iv), 4.1.7, 4.1.8, or Xi,jz
2 is of the form uv2r , where u is

a monomial as given in one of Lemmas 3.2.4, 4.1.4, 4.1.5 and r is a suitable integer.
Hence, by Theorem 2.9, Xi,jz

2 is inadmissible. Since x = Xi,jy
2 is admissible, we

have x = a4,t for some t, 1 6 t 6 94.
We now prove that the set {[a4,t] : 1 6 t 6 94} is linearly independent in

QP+
5 ((3)|4).
Consider 〈[A(4)](3)|4〉 ⊂ QP5((3)|4) and 〈[C(4)](3)|4〉 ⊂ QP5((3)|4). We see that

for 1 6 t 6 55, a4,t = x15
i fi(b4,t) with b4,t an admissible monomial of degree 30 in

P4. By Proposition 2.11, a4,t is admissible. This implies dim〈[A(4)](3)|4〉 = 55. On
the other hand, we have 〈[A(4)](3)|4〉 ∩ 〈[C(4)](3)|4〉 = {0}. Hence, we need only to
prove the set [C(4)](3)|4 is linearly independent. Suppose there is a linear relation

S :=
∑

566t694
γta4,t ≡(3)|4 0, (4.2)

where γt ∈ F2. We denote γJ =
∑
t∈J γt for J ⊂ N.

Applying the homomorphism p(i;j) : P5 → P4 to (4.2), we obtain

p(1;2)(S) ≡(3)|4 γ58w4,10 + γ{64,79}w4,11 ≡(3)|4 0,
p(1;3)(S) ≡(3)|4 γ{57,74,91,92}w4,9 + γ{65,90}w4,11 ≡(3)|4 0,
p(1;4)(S) ≡(3)|4 γ{56,68,75,77,81,83,93}w4,8 + γ67w4,11 ≡(3)|4 0,
p(1;5)(S) ≡(3)|4 γ{56,57,58,64,65,67,76,78,82,84,87}w4,7 + γ68w4,11 ≡(3)|4 0,
p(2;3)(S) ≡(3)|4 γ{60,63,74,79,80,90,92}w4,9 + γ{66,91}w4,11 ≡(3)|4 0,
p(2;4)(S) ≡(3)|4 γ{59,70,75,85,93}w4,8 + γ69w4,11 ≡(3)|4 0,
p(2;5)(S) ≡(3)|4 γ{59,60,66,69,76,86,88}w4,7 + γ70w4,11 ≡(3)|4 0,
p(3;4)(S) ≡(3)|4 γ{61,62,63,72,73,77,89}w4,8 + γ71w4,11 ≡(3)|4 0,
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p(3;5)(S) ≡(3)|4 γ{61,71,78}w4,7 + γ72w4,11 ≡(3)|4 0,
p(4;5)(S) ≡(3)|4 γ62w4,7 + γ73w4,11 ≡(3)|4 0.

From these equalities, we get γ58 = γ62 = γ67 = γ68 = γ69 = γ70 = γ71 =
γ72 = γ73 = 0, γ79 = γ64, γ90 = γ65, γ91 = γ66, γ78 = γ61. Then, applying the
homomorphism p(1;(i,j)) : P5 → P4 to (4.2), we get

p(1;(2,3))(S) ≡(3)|4 γ{57,60,74,92}w4,9 + γ63w4,10 + γ80w4,11 ≡(3)|4 0,
p(1;(2,4))(S) ≡(3)|4 γ{56,59,64,75,77,81,82,83,85,93}w4,8 + γ77w4,10 + γ81w4,11 ≡(3)|4 0,
p(1;(3,4))(S) ≡(3)|4 γ{56,61,63,65,66,74,75,77,80,81,83,84,85,89,92,93,94}w4,8 + γ83w4,11

+ γ{59,60,66,76,86,88}w4,3 + γ{57,66,74,75,85,87,92,93,94}w4,9 ≡(3)|4 0.

From these above equalities we obtain γ63 = γ77 = γ80 = γ81 = γ83 = 0 and
γ89 = γ61. Then we have

p(1;(2,5))(S) ≡(3)|4 γ{56,57,59,60,61,65,66,76,82,84,86,87,88}w4,7

+ γ61w4,10 + γ82w4,11 ≡(3)|4 0,
p(1;(3,5))(S) ≡(3)|4 γ{59,75,85,93}w4,2 + γ{56,57,64,66,74,76,82,84,86,87,92,94}w4,7

+ γ{57,66,74,76,86,87,92,94}w4,9 + γ84w4,11 ≡(3)|4 0,
p(1;(4,5))(S) ≡(3)|4 γ{60,64,65,74,92}w4,1 + γ{56,57,64,65,75,76,82,84,87,88,93,94}w4,7

+ γ{56,75,76,82,84,88,93,94}w4,8 + γ87w4,11 ≡(3)|4 0.

Computing from these above equalities we get γt = 0 for t /∈ {56, 57, 59, 60, 64,
65, 66, 74, 75, 76, 79, 90, 91, 92, 93, 94}, and the relation (4.2) becomes

S = δ1θ1 + δ2θ2 + δ3θ3 + δ4θ4 + δ5θ5 ≡(3)|4 0, (4.3)

where δ1 = γ56 + γ57, δ2 = γ60, δ3 = γ57 + γ60 + γ74, δ4 = γ56 + γ75, δ5 = γ56 and
θu, 1 6 u 6 5, is determined as follows:

θ1 = x1x
3
2x

14
3 x

13
4 x

14
5 + x1x

7
2x

10
3 x

13
4 x

14
5 + x3

1x
3
2x

12
3 x

13
4 x

14
5 + x3

1x
7
2x

8
3x

13
4 x

14
5 ,

θ2 = x3
1x2x

14
3 x

13
4 x

14
5 + x3

1x
3
2x

12
3 x

13
4 x

14
5 + x7

1x2x
10
3 x

13
4 x

14
5 + x7

1x
3
2x

8
3x

13
4 x

14
5 ,

θ3 = x3
1x

3
2x

12
3 x

13
4 x

14
5 + x7

1x
7
2x

8
3x

9
4x

14
5 ,

θ4 = x3
1x

3
2x

13
3 x

12
4 x

14
5 + x7

1x
7
2x

9
3x

8
4x

14
5 ,

θ5 = x1x
3
2x

13
3 x

14
4 x

14
5 + x1x

3
2x

14
3 x

13
4 x

14
5 + x1x

6
2x

11
3 x

13
4 x

14
5 + x3

1x2x
13
3 x

14
4 x

14
5

+ x3
1x

3
2x

12
3 x

13
4 x

14
5 + x3

1x
3
2x

13
3 x

12
4 x

14
5 + x3

1x
3
2x

13
3 x

14
4 x

12
5 + x3

1x
4
2x

11
3 x

13
4 x

14
5

+ x7
1x

7
2x

9
3x

10
4 x

12
5 .

By a direct computation we can show that the monomial a4,94 = x7
1x

7
2x

9
3x

10
4 x

12
5

is admissible, hence from (4.3) one gets δ5 = 0. By applying the homomorphism
ρ4 : P5 → P5 to (4.3), we get

ρ4(S) ≡(3)|4 δ1θ1 + δ2θ2 + (δ3 + δ4)θ3 + δ4θ4 + δ4θ5 ≡(3)|4 0.

This implies δ4 = 0. Applying the homomorphism ρ3 : P5 → P5 to (4.3) gives

ρ3(S) ≡(3)|4 δ1θ1 + δ2θ2 + δ3θ4 ≡(3)|4 0.

Hence, δ3 = 0. Now by applying the homomorphism ρ2 : P5 → P5 to (4.3) we
obtain

ρ2(S) ≡(3)|4 δ1θ1 + δ2θ3 ≡(3)|4 0.
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This implies δ2 = 0. Finally, applying the homomorphism ρ1 : P5 → P5 to (4.3) we
obtain ρ1(S) ≡(3)|4 δ1θ2 ≡(3)|4 0, hence δ1 = 0. From the above equalities we get
γt = 0 for all t, 56 6 r 6 94. The proposition is proved. �

4.1.2. Proof of Theorem 4.1.1.
Lemma 4.1.9.

i) The following monomials are strictly inadmissible.
x3

1x
7
2x

24
3 x

29
4 x

30
5 x7

1x
3
2x

24
3 x

29
4 x

30
5 x7

1x
7
2x

25
3 x

26
4 x

28
5 x15

1 x
15
2 x

17
3 x

18
4 x

28
5 .

ii) The following monomials are strongly inadmissible.
x3

1x
15
2 x

21
3 x

26
4 x

28
5 x15

1 x
3
2x

21
3 x

26
4 x

28
5 .

Proof. By a direct computation, we have
x3

1x
7
2x

24
3 x

29
4 x

30
5 '5 x1x

3
2x

30
3 x

29
4 x

30
5 + x1x

7
2x

26
3 x

29
4 x

30
5 + x3

1x
3
2x

28
3 x

29
4 x

30
5 ,

x7
1x

7
2x

25
3 x

26
4 x

28
5 '5 x1x

3
2x

29
3 x

30
4 x

30
5 + x1x

3
2x

30
3 x

29
4 x

30
5 + x1x

6
2x

27
3 x

29
4 x

30
5

+ x3
1x2x

29
3 x

30
4 x

30
5 + x3

1x
3
2x

28
3 x

29
4 x

30
5 + x3

1x
3
2x

29
3 x

28
4 x

30
5

+ x3
1x

3
2x

29
3 x

30
4 x

28
5 + x3

1x
4
2x

27
3 x

29
4 x

30
5 ,

x15
1 x

15
2 x

17
3 x

18
4 x

28
5 '5 x1x

3
2x

29
3 x

30
4 x

30
5 + x1x

3
2x

30
3 x

29
4 x

30
5 + x1x

6
2x

27
3 x

29
4 x

30
5

+ x3
1x2x

29
3 x

30
4 x

30
5 + x3

1x
3
2x

28
3 x

29
4 x

30
5 + x3

1x
3
2x

29
3 x

28
4 x

30
5

+ x3
1x

3
2x

29
3 x

30
4 x

28
5 + x3

1x
4
2x

27
3 x

29
4 x

30
5 ,

x3
1x

15
2 x

21
3 x

26
4 x

28
5 '5 x1x

3
2x

30
3 x

29
4 x

30
5 + x1x

6
2x

27
3 x

29
4 x

30
5 + x1x

7
2x

27
3 x

28
4 x

30
5

+ x3
1x2x

29
3 x

30
4 x

30
5 + x3

1x
3
2x

28
3 x

29
4 x

30
5 + x3

1x
3
2x

29
3 x

28
4 x

30
5

+ x3
1x

3
2x

29
3 x

30
4 x

28
5 + x3

1x
4
2x

27
3 x

29
4 x

30
5 + x3

1x
7
2x

25
3 x

28
4 x

30
5

+ x3
1x

7
2x

25
3 x

30
4 x

28
5 + x3

1x
7
2x

29
3 x

26
4 x

28
5 mod(P(5,5)).

The lemma follows. �

Proof of Theorem 4.1.1. Denote A(d) = {ad,t : 1 6 t 6 55} and C(d) = {ad,t :
56 6 t 6 90}. We prove that B+

5 ((3)|d) ⊂ A(d) ∪ C(d) by induction on d > 5.
Let x ∈ P+

5 ((3)|d) is an admissible monomial. Then, ω(x) = (3)|d and x = Xi,jy
2

with y a monomial in P5((3)|d−1) and 1 6 i < j 6 5. Since x is admissible, by
Theorem 2.9, y is also admissible.

Let d = 5 and z ∈ A(4)∪C(4)∪B0
5((3)|4). By a direct computation we see that

if Xi,jz
2 ∈ P+

5 ((3)|5) and Xi,jz
2 6= a5,t for all t, 1 6 t 6 90, then either Xi,jz

2 is
one of the monomials as given in Lemma 4.1.9, or Xi,jz

2 is of the form uv2r , where
u is a monomial as given in one of Lemmas 3.2.4, 4.1.4, 4.1.5, 4.1.7, 4.1.8 and r is a
suitable integer. Hence, by Theorem 2.9, Xi,jz

2 is inadmissible. Since x = Xi,jy
2

is admissible and y ∈ B5((3)|4) ⊂ A(4) ∪ C(4) ∪ B0
5((3)|4), we have x = a5,t for

some t, 1 6 t 6 90. Hence, B+
5 ((3)|5 ⊂ A(5) ∪ C(5).

Suppose d > 5 and B+
5 ((3)|d−1) ⊂ A(d− 1)∪C(d− 1). Let z ∈ A(d− 1)∪C(d−

1)∪B0
5((3)|d−1). By a direct computation we can check that if Xi,jz

2 ∈ P+
5 ((3)|d)

and Xi,jz
2 6= ad,t for all t, 1 6 t 6 90, then Xi,jz

2 is is of the form uv2r , where u
is a monomial as given in one of Lemmas 3.2.4, 4.1.4, 4.1.5, 4.1.7, 4.1.8, 4.1.9 and
r is a suitable integer. By Theorem 2.9, Xi,jz

2 is inadmissible. Since x = Xi,jy
2

is admissible and y ∈ B5((3)|d−1) ⊂ A(d − 1) ∪ C(d − 1) ∪ B0
5((3)|d−1), we have

x = ad,t for some t, 1 6 t 6 90. That means B+
5 ((3)|d) ⊂ A(d) ∪ C(d).
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Now we prove that the set [A(d)∪C(d)](3)|d is linearly independent in QP5((3)|d).
Consider 〈[A(d)](3)|d〉 ⊂ QP5((3)|4) and 〈[C(d)](3)|d〉 ⊂ QP5((3)|d). By a simple
computation, we can see that for 1 6 t 6 55, ad,t = x2d−1

i fi(bd,t) with bd,t an
admissible monomial of degree 2(2d− 1) in P4 and 1 6 i 6 5. By Proposition 2.11,
ad,t is admissible. This implies dim〈[A(d)](3)|d〉 = 55. On the other hand, we have
〈[A(d)](3)|d〉 ∩ 〈[C(d)](3)|d〉 = {0}. Hence, we need only to prove the set [C(d)](3)|d

is linearly independent in QP5((3)|d). Suppose there is a linear relation

S :=
∑

566t690
γtad,t ≡(3)|d 0, (4.4)

where γt ∈ F2. Applying the homomorphism p(i;j) : P5 → P4, 1 6 i < j 6 5, to
(4.4), we obtain

p(1;2)(S) ≡(3)|d γ58wd,10 + γ{64,79}wd,11 ≡(3)|d 0,
p(1;3)(S) ≡(3)|d γ{57,74}wd,9 + γ65wd,11 ≡(3)|d 0,
p(1;4)(S) ≡(3)|d γ{56,68,75,77,81,83}wd,8 + γ67wd,11 ≡(3)|d 0,
p(1;5)(S) ≡(3)|d γ{56,57,58,64,65,67,76,78,82,84,87}wd,7 + γ68wd,11 ≡(3)|d 0,
p(2;3)(S) ≡(3)|d γ{60,63,74,79,80}wd,9 + γ66wd,11 ≡(3)|d 0,
p(2;4)(S) ≡(3)|d γ{59,70,75,85}wd,8 + γ69wd,11 ≡(3)|d 0,
p(2;5)(S) ≡(3)|d γ{59,60,66,69,76,86,88}wd,7 + γ70wd,11 ≡(3)|d 0,
p(3;4)(S) ≡(3)|d γ{61,62,63,72,73,77,89}wd,8 + γ71wd,11+ ≡(3)|d 0,
p(3;5)(S) ≡(3)|4 γ{61,71,78}wd,7 + γ72wd,11 ≡(3)|d 0,
p(4;5)(S) ≡(3)|d γ62wd,7 + γ73wd,11 ≡(3)|d 0.

From these equalities, we get γ58 = γ62 = γ65 = γ66 = γ67 = γ68 = γ69 = γ70 =
γ71 = γ72 = γ73 = 0, γ74 = γ57, γ78 = γ61, γ79 = γ64. Then, applying the
homomorphism p(1;(i,j)) : P5 → P4 to (4.4), we get
p(1;(2,3))(S) ≡(3)|d γ60wd,9 + γ63wd,10 + γ80wd,11 ≡(3)|d 0,
p(1;(2,4))(S) ≡(3)|d γ{56,59,64,75,77,81,82,83,85}wd,8 + γ77wd,10 + γ81wd,11 ≡(3)|d 0,
p(1;(3,4))(S) ≡(3)|d γ{59,60,76,86,88}wd,3 + γ{56,57,61,63,75,77,80,81,83,84,85,89,90}wd,8

+ γ{75,85,87}wd,9 + γ83wd,11 ≡(3)|d 0.
Computing from these above equalities gives γ60 = γ63 = γ77 = γ80 = γ81 = γ83 = 0
and γ64 = γ57, γ75 = γ65, γ89 = γ61. Then we have
p(1;(2,5))(S) ≡(3)|d γ{56,57,59,61,76,82,84,86,87,88,90}wd,7 + γ61wd,10 + γ82wd,11 ≡(3)|d 0,
p(1;(3,5))(S) ≡(3)|d γ{56,59,85}wd,2 + γ{56,57,76,82,84,86,87}wd,7

+ γ{76,86,87}wd,9 + γ84wd,11 ≡(3)|d 0,
p(1;(4,5))(S) ≡(3)|d γ{76,82,84,87,88,90}wd,7 + γ{76,82,84,88,90}wd,8 + γ87wd,11 ≡(3)|d 0.
By a direct computation from the above equalities we get γt = 0 for all t, 56 6 t 6
90. The theorem is proved. �

Proof of Theorem 1.6. Let n = 2d+s+t + 2d+s + 2d − 3 and m = 2s+t + 2s − 2. We
have n−5

2 = 2d−1+s+t + 2d−1+s + 2d−2 + 2d−2 − 4. By Theorem 3.1.5 and Theorem
1.4 in [33], if d > 6, s > 4 and t > 4, then

dim(QP5) n−5
2

= (25 − 1) dim(QP4)2s+t+1+2s+1−2 = 3(23 − 1)(24 − 1)(25 − 1).
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Kameko’s homomorphism (S̃q
0
)(5,n) : (QP5)n −→ (QP5) n−5

2
is an epimorphism,

hence using Theorem 2.15, we get

4(23 − 1)(24 − 1)(25 − 1) 6 dim(QP5)n = dim Ker(S̃q
0
)(5,n) + dim(QP5) n−5

2

= dim Ker(S̃q
0
)(5,n) + 3(23 − 1)(24 − 1)(25 − 1).

This implies dim Ker(S̃q
0
)(5,n) > (23 − 1)(24 − 1)(25 − 1).

We set B(5,d) = {(I,J ) ∈ PIncd5 : X(I,J ) ∈ B5((3)|d)}. By a direct computa-
tion using Lemma 3.2.4, Lemmas in Subsection 4.1 on inadmissible monomials and
Proposition 3.2.5 we can check that the set B(5,d) is compatible with ((3)|d) for any
d > 6. By applying Theorem 3.3.3 we obtain

dim Ker(S̃q
0
)(5,n) 6 |B((5,d)|dim(QP3)m = 155 dim(QP3)m.

By Kameko [10], we have dim(QP3)m = 21 for any s, t > 2. Hence, we get

dim Ker(S̃q
0
)(5,n) 6 |B5((3)|6)|dim(QP3)m

= 155× 21 = (23 − 1)(24 − 1)(25 − 1).

Thus, dim Ker(S̃q
0
)(5,n) = (23 − 1)(24 − 1)(25 − 1), for any d > 6, s, t > 4. The

theorem is proved �

4.2. Proof of Theorem 1.8.
First, we prove the following.

Theorem 4.2.1. Let n = 2d+s+t + 2d+s + 2d − 3, with d, s, t integers such that
d > 6, s > 0 and t > 0. Then, dim Ker(S̃q

0
)(5,n) = 155 dim(QP3)m.

We recall the following.

Theorem 4.2.2 (See Kameko [10]). Let m = 2s+t + 2s − 2 with s, t integers such
that s > 0, t > 1. The dimension of the F2-vector space (QP3)m is given by the
following table:

m t = 1 t = 2 t = 3 t = 4 t > 5
s = 0 3 7 10 13 14
s = 1 8 15 14 14 14
s > 2 14 21 21 21 21

Sketch proof of Theorem 4.2.1. From the proof of Theorem 1.6, we see that the
theorem holds for s, t > 4 and dim Ker(S̃q

0
)(5,n) 6 155 dim(QP3)m for any s >

0, t > 1. We prove dim Ker(S̃q
0
)(5,n) = 155 dim(QP3)m by proving that the set

{[X(I,J )(f(i,j)(z))2d

] : (I,J ) ∈ B(5,d), z ∈ B3(m), i = min I, j = minJ }
is linearly independent in (QP5)n. Suppose that there is a linear relation

S :=
∑

(I,J )∈B(5,d),z∈B3(m)

γ(I,J ),zX(I,J )(f(i,j)(z))2d

≡ 0,

with γ(I,J ),z ∈ F2. By a direct computation from the relations p(i;j)(S) ≡ 0,
1 6 i < j 6 5 and p(1;(u,v))(S) ≡ 0, 2 6 u < v 6 5, we get γ(I,J ),z = 0 for all
(I,J ) ∈ B(5,d), z ∈ B3(m).
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Now the theorem follows from the relation dim Ker(S̃q
0
)(5,n) = 155 dim(QP3)m

and Theorem 4.2.2. �

Proposition 4.2.3 (See Sum [33, Theorem 1.4]). Let n = 2d+s+t + 2d+s + 2d − 3,
with d, s, t integers such that d > 6, s > 0 and t > 0. The dimension of the F2-vector
space (QP4) n−5

2
is given by the following table:

n t = 1 t = 2 t = 3 t = 4 t = 5 t > 6
s = 0 21 55 73 95 115 125
s = 1 70 126 165 179 175 175
s = 2 116 192 241 255 255 255
s = 3 164 240 285 300 300 300
s > 4 175 255 300 315 315 315

Proof of Theorem 1.8. By Theorem 3.1.5, we have
dim(QP5) n−5

2
) = (25 − 1) dim(QP4) n−5

2

for any d > 6. Since (S̃q
0
)(5,n) : (QP5)n → (QP5) n−5

2
) is an epimorphism, we get

dim(QP5)n = dim Ker(S̃q
0
)(5,n) + dim(QP4) n−5

2
.

Now the theorem follows from the last equality, Theorem 4.2.1 and Proposition
4.2.3. �
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