
THE HIT PROBLEM FOR THE POLYNOMIAL ALGEBRA
IN CERTAIN DEGREES

NGUYỄN SUM

Abstract. Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the
prime field of two elements, F2, in k variables x1, x2, . . . , xk, each of degree 1.

We study the hit problem, set up by Frank Peterson, of finding a minimal
set of generators for Pk as a module over the mod-2 Steenrod algebra. In this
paper, we extend our results in [10] on the hit problem in degree (k−1)(2d−1)
with k > 6.

1. Introduction

Let Pk be the graded polynomial algebra F2[x1, x2, . . . , xk], with the degree of
each xi being 1. This algebra arises as the cohomology with coefficients in F2 of
an elementary abelian 2-group of rank k. Then, Pk is a module over the mod-
2 Steenrod algebra, A. The action of A on Pk is determined by the elementary
properties of the Steenrod operations Sqi and subject to the Cartan formula (see
Steenrod and Epstein [14]).

The Peterson hit problem in algebraic topology asks for a minimal generating set
for the polynomial algebra Pk as a module over the Steenrod algebra. Equivalently,
we want to find a vector space basis for QPk := Pk/A+Pk = F2 ⊗A Pk in each
degree, where A+ is the augmentation ideal of A.

The vector space QPk was explicitly calculated by Peterson [9] for k = 1, 2, by
Kameko [4] for k = 3, and by us [15] for k = 4. Recently, the hit problem and it’s
applications to representations of general linear groups have been presented in the
books of Walker and Wood [18, 19].

From the results of Wood [20] and Kameko [4], the hit problem is reduced to the
case of degree n of the form

n = s(2d − 1) + 2dm, (1.1)

where s, d,m are certain non-negative integers, 1 6 s < k and µ(m) < s. Here,
by µ(m) one means the smallest number r for which it is possible to write m =∑

16i6r(2ui − 1) with ui > 0. For s = k − 1 and m > 0, the problem was studied
by Crabb and Hubbuck [2], Nam [8], Repka and Selick [12], Walker and Wood [17]
and the present author [15]. For s = k − 1 and m = 0, it is partially studied
by Mothebe [5, 6] and by Phúc and Sum [10, 11]. In this case, the problem was
explicitly calculated for k 6 5.
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In this paper, we extend our results in [10] on the hit problem in degree n of the
form (1.1) with s = k − 1, m = 0, k > 6 and d > 2.

Denote by (QPk)n the subspace of QPk consisting of the classes represented by
the homogeneous polynomials of degree n in Pk. Carlisle and Wood showed in [1]
that the dimension of the vector space (QPk)n is uniformly bounded by a number
depended only on k. Moreover, base on our results in [15], we can show that for d
big enough, this dimension does not depend on d.

For a positive integer a, denote by α(a) the number of ones in dyadic expansion
of a and by ζ(a) the greatest integer u such that a is divisible by 2u. That means
a = 2ζ(a)b with b an odd integer.

Theorem 1.1. Let n = (k − 1)(2d − 1) with d a positive integer and let d(k) =
k − 1− α(k − 1)− ζ(k − 1). If d > d(k) + k − 1 and k > 4, then

dim(QPk)n = (2k − 1) dim(QPk−1)(k−1)(2d(k)−1).

For k = 4, we have d(4) = 1, dim(QP3)3 = 7. Hence, by Theorrem 1.1,

dim(QP4)3(2d−1) = (24 − 1)× 7 = 105, for all d > 4, (see Sum [15]).

For k = 5, we have d(5) = 1, dim(QP4)4 = 21. Hence, dim(QP5)4(2d−1) = (25 −
1)× 21 = 651 for all d > 5, (see Phúc and Sum [11]). For k = 6, we have d(6) = 3,
and 5(2d(6) − 1) = 35.

Proposition 1.2 (Hưng [3]). We have dim(QP5)35 = 1117.

Hưng proved this result in [3] by using a computer computation. However, the
detailed proof were unpublished at the time of the writing. We have also proved
this proposition by using Kameko’s method in [4]. However, the proof is a hard
work. It will be published in detail elsewhere.

Combining Theorem 1.1 and Proposition 1.2, we obtain the following.

Corollary 1.3. Let n = 5(2d − 1) with d a positive integer. If d > 8, then

dim(QP6)n = (26 − 1)× 1117 = 70371.

For any k > 7 and d > 2, we extend our result in [10] on a lower bound for
dim(QPk)n.

Let ω be a weight vector of degree degω = m and QPk(ω) be the quotient of
(QPk)m associated with ω (see Section 2.) We prove the following.

Theorem 1.4. Let n = (k − 1)(2d − 1) with d a positive integer. If d > 2, then

dim(QPk)n >
( ∑

degω=k−1
dimQPk−1(ω)

)min{k,d−1}∑
u=1

(
k

u

)
+
(

k

min{k, d}

)
.

By explicitly computing the space QPk−1(ω) for some ω we see that this result
implies our result in [10], hence it is also implies Mothebe’s result in [5, 6].

In Section 2, we recall some needed information on admissible monomials in Pk
and Singer’s criterion on hit monomials. The proofs of the main results will be
presented in Section 3. At the end of Section 3, we show that if d > d(k) + k − 1,
then Theorem 1.1 implies Theorem 4.13.
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2. Preliminaries

In this section, we recall some results on the admissible monomials and the hit
monomials from Kameko [4], Mothebe and Uys [7] and Singer [13], which will be
used in the next section.

Notation 2.1. We denote Nk = {1, 2, . . . , k} and

XJ = X{j1,j2,...,js} =
∏

j∈Nk\J

xj , J = {j1, j2, . . . , js} ⊂ Nk,

In particular, XNk
= 1, X∅ = x1x2 . . . xk, Xj = x1 . . . x̂j . . . xk, 1 6 j 6 k, and

X := Xk ∈ Pk−1.
Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative integer

a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or 1 with i > 0.
For a monomial x ∈ Pk, we write x = x

ν1(x)
1 x

ν2(x)
2 . . . x

νk(x)
k . Set Jt(x) = {j ∈

Nk : αt(νj(x)) = 0}, for t > 0. Then, we have x =
∏
t>0 X

2t

Jt(x).

Definition 2.2. A weight vector ω is a sequence of non-negative integers (ω1, ω2, . . .,
ωi, . . .) such that ωi = 0 for i � 0. For a monomial x in Pk, define two sequences
associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .), σ(x) = (ν1(x), ν2(x), . . . , νk(x)),
where ωi(x) =

∑
16j6k αi−1(νj(x)) = degXJi−1(x), i > 1. The sequences ω(x) and

σ(x) are respectively called the weight vector and the exponent vector of x.

The sets of the weight vectors and the exponent vectors are given the left lex-
icographical order. For weight vectors ω = (ω1, ω2, . . .) and η = (η1, η2, . . .), we
define degω =

∑
i>0 2i−1ωi, the length `(ω) = max{i : ωi > 0}, the concatena-

tion ω|η = (ω1, . . . , ωr, η1, η2, . . .) if `(ω) = r and (a)|b = (a)|(a)| . . . |(a), (b times
of (a)’s), where a, b are positive integers. Denote by Pk(ω) the subspace of Pk
spanned by monomials y such that deg y = degω and ω(y) 6 ω, and by P−k (ω) the
subspace of Pk(ω) spanned by monomials y such that ω(y) < ω.

Definition 2.3. Let ω be a weight vector and f, g two polynomials of the same
degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0, then f is said to be hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−k (ω).

Obviously, the relations ≡ and ≡ω are equivalence ones. Denote by QPk(ω)
the quotient of Pk(ω) by the equivalence relation ≡ω. Then, we have (QPk)n ∼=⊕

degω=nQPk(ω) (see Walker and Wood [18]).
Let GLn be the general linear group over the field F2. This group acts naturally

on Pn by matrix substitution. Since the two actions of A and GLn upon Pn
commute with each other, there is an inherited action of GLn on QPn.

We note that the weight vector of a monomial is invariant under the permutation
of the generators xi, hence QPk(ω) is an Σk-module, where Σk ⊂ GLk is the
symmetric group. Furthermore, we have the following.

Proposition 2.4 (See Sum [16]). For any weight vector ω, the space QPk(ω) is an
GLk-module.

For a polynomial f ∈ Pk(ω), we denote by [f ]ω the class in QPk(ω) represented
by f . Denote by |S| the cardinal of a set S.
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Definition 2.5. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.6. A monomial x is said to be inadmissible if there exist monomials
y1, y2, . . . , ym such that yt < x for t = 1, 2, . . . ,m and x−

∑m
t=1 yt ∈ A+Pk.

A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all admissible monomials of degree n in Pk is a minimal set
of A-generators for Pk in degree n.

For 1 6 i 6 k, define a homomorphism fi : Pk−1 → Pk of A-algebras by
substituting fi(xj) = xj for 1 6 j < i and fi(xj) = xj+1 for i 6 j < k.

Proposition 2.7 (See Mothebe and Uys [7]). Let i, d be positive integers such that
1 6 i 6 k. If x is an admissible monomial in Pk−1 then x2d−1

i fi(x) is also an
admissible monomial in Pk.

Now, we recall Singer’s criterion on the hit monomials in Pk.

Definition 2.8. A monomial z in Pk is called a spike if νj(z) = 2dj − 1 for dj a
non-negative integer and j = 1, 2, . . . , k. If z is a spike with d1 > d2 > . . . > dr−1 >
dr > 0 and dj = 0 for j > r, then it is called a minimal spike.

In [13], Singer showed that if µ(n) 6 k, then there exists a unique minimal spike
of degree n in Pk.

Theorem 2.9 (See Singer [13]). Suppose x ∈ Pk is a monomial of degree n, where
µ(n) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then x is hit.

This result implies the one of Wood [20].

Theorem 2.10 (See Wood [20]). Let n be a positive integer. If µ(n) > k, then
(QPk)n = 0.

For 1 6 r 6 k, set P+
r = 〈{x = x

ν1(x)
1 x

ν2(x)
2 . . . x

νr(x)
r : νi(x) > 0, 1 6 i 6 r}〉.

Then, P+
r is an A-submodule of Pk. For J = (j1, j2, . . . , jr) : 1 6 j1 < . . . <

jr 6 k, we define a monomorphism θJ : Pr → Pk of A-algebras by substituting
θJ(xt) = xjt for 1 6 t 6 r. It is easy to see that, for any weight vector ω,
QθJ(P+

r )(ω) ∼= QP+
r (ω). So, by a simple computation using Theorem 2.10, we get

the following.

Proposition 2.11 (See Walker and Wood [18]). For a weight vector ω of degree
n, we have a direct summand decomposition of the F2-vector spaces

QPk(ω) =
⊕

µ(n)6r6k

⊕
`(J)=r

QθJ(P+
r )(ω),

where `(J) is the length of J . Consequently

dimQPk(ω) =
∑

µ(n)6r6k

(
k

r

)
dimQP+

r (ω).
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3. Proofs of main results

First of all, we recall a construction for A-generators of Pk. Denote
Nk =

{
(i; I); I = (i1, i2, . . . , ir), 1 6 i < i1 < . . . < ir 6 k, 0 6 r < k

}
.

Definition 3.1 (See Sum [15]). Let (i; I) ∈ Nk, x(I,u) = x2r−1+...+2r−u

iu

∏
u<t6r x

2r−t

it

for r = `(I) > 0, For any monomial x in Pk−1, we define the monomial φ(i;I)(x) in
Pk by setting

φ(i;I)(x) =



fi(x), if r = `(I) = 0,
(x2r−1
i fi(x))/x(I,u), if there exists 1 6 u 6 r such that

νi1−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
νiu−1(x) > 2r − 1,
αr−t(νiu−1(x)) = 1, ∀t, 1 6 t 6 u,
αr−t(νit−1(x)) = 1, ∀t, u < t 6 r,

0, otherwise.

The following is needed for the proof of Theorem 1.1.

Theorem 3.2 (See Sum [15, Proposition 3.3]). Let n =
∑k−1
i=1 (2di − 1) with di

positive integers such that d1 > d2 > . . . > dk−2 > dk−1 := d > k − 1 > 3, and let
m =

∑k−2
i=1 (2di−dk−1 − 1). If Bk−1(m) is a minimal set of generators for A-module

Pk−1 in degree m, then

Bk(n) =
⋃

(i;I)∈Nk

{
φ(i;I)(X2d−1

k z2d

) : z ∈ Bk−1(m)
}
.

is also a minimal set of generators for A-module Pk in degree n. Consequently
dim(QPk)n = (2k − 1) dim(QPk−1)m.

Let n,m be as is Theorem 3.2. Walker and Wood [19] defined a duplication map
δ : (QPk)n → (QPk)2n+k−1. It is induced by a linear map δ̄ : (Pk)n → (Pk)2n+k−1
determined on monomials by δ̄(x) = XJ0(x)x

2 if ω1(x) = k − 1 and δ̄(x) = 0 if
ω1(x) < k − 1. They have proved in [19, Theorem 1.3] that if dk−1 > 2, then δ is
an epimorphism.

According to Theorem 3.2, if dk−1 > k − 1 > 3, then
dim(QPk)n = dim(QPk)2n+k−1 = (2k − 1) dim(QPk−1)m.

Hence, one gets the following.

Corollary 3.3. Let k > 4 and n be as is Theorem 3.2. If dk−1 > k − 1, then the
duplication map δ : (QPk)n → (QPk)2n+k−1 is an isomorphism.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Set s = α(k − 1). Then
k − 1 = 2c1 + 2c2 + . . .+ 2cs−1 + 2cs ,

where c1 > c2 > . . . > cs−1 > cs = ζ(k − 1) > 0. Then, we have
n = (k − 1)(2d − 1) = 2d+c1 + 2d+c2 + . . .+ 2d+cs−1 + 2d+cs − k + 1

=
∑

16i6k−1
(2di − 1),
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where

di =


d+ ci, 1 6 i < s,

d+ cs − i+ s− 1, s 6 i 6 k − 2,
dk−2 = d+ cs − k + s+ 1 = d− d(k), i = k − 1.

It is easy to see that d1 > d2 > . . . > dk−2 = dk−1 = d− d(k). If d > d(k) + k − 1
and k > 4, then dk−1 = d− d(k) > k − 1 > 3. According to Theorem 3.2, we have

dim(QPk)n = (2k − 1) dim(QPk−1)m,
where

m =
∑

16i6k−2
(2di−dk−1 − 1)

= 2c1+d(k) + 2c2+d(k) + . . .+ 2cs+d(k) − k + 1

= (k − 1)(2d(k) − 1).
The theorem is proved. �

For 1 6 q 6 k, we set Nk,q = {(i; I) ∈ Nk : `(I) < q}, then |Nk,q| =
∑q
u=1

(
k
u

)
.

Proposition 3.4. Let b be a positive integer. If ω is a weight vector of degree m
with µ(m) 6 k − 1, then the set⋃

(i;I)∈Nk,q

{[
φ(i;I)(X2b−1z2b

)
]

(k−1)|b|ω : z ∈ Bk−1(ω)
}

is linearly independent in QPk((k − 1)|b|ω), where Bk−1(ω) is the set of all the
admissible monomials of weight vector ω in Pk−1 and q = min{k, b}. Consequently

dimQPk((k − 1)|b|ω) > dim(QPk−1(ω))
q∑

u=1

(
k

u

)
.

We recall a result in our work [10] which is used for the proof of the proposition.

Definition 3.5. For any (i; I) ∈ Nk, we define the homomorphism p(i;I) : Pk →
Pk−1 of algebras by substituting

p(i;I)(xj) =


xj , if 1 6 j < i,∑
s∈I xs−1, if j = i,

xj−1, if i < j 6 k.

Then, p(i;I) is a homomorphism ofA-modules. In particular, for I = ∅, p(i;∅)(xi) = 0
and p(i;I)(fi(y)) = y for any y ∈ Pk−1.

Lemma 3.6 (See Phúc and Sum [10]). If x is a monomial in Pk, then p(i;I)(x) ∈
Pk−1(ω(x)). So, p(i;I) passes to a homomorphism from QPk(ω) to QPk−1(ω) for
any weight vector ω.

Proof of Proposition 3.4. Suppose there is a linear relation

S :=
∑

((i;I),z)∈Nk,q×Bk(ω)

γ(i;I),zφ(i;I)(X2d−1−1z2d−1
) ≡(k−1)|b|ω 0,

where γ(i;I),z ∈ F2. We prove γ(j;J),z = 0 for all (j; J) ∈ Nk,q and z ∈ Bk(ω).
We prove this by induction on m = `(J). Let (i; I) ∈ Nk,q. Since r = `(I) <
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q = min{k, b} and x2r−1
i fi(X2d−1−1) is divisible by x(I,1), using Definition 3.1, we

easily obtain

φ(i;I)(X2b−1z2b

) = φ(i;I)(X2d−1−1)fi(z2d−1
).

It is easy to see that if g ∈ P−k−1((k − 1)|b), then gz2b ∈ P−k−1((k − 1)|b|ω); if
(i; I) ⊂ (j; ∅), then (i; I) = (j; ∅); by Lemma 3.6, p(j;∅)(S) ≡(k−1)|b|ω 0. Hence,
using Lemma 3.7 in [15], we obtain

p(j,∅)(S) ≡(k−1)|b|ω
∑
z∈Ck

γ(j;∅),zX
2d−1−1z2d−1

≡(k−1)|b|ω 0.

Since z is admissible in Pk−1, X2d−1−1z2d−1 is also admissible in Pk−1. Hence, the
last relation implies γ(j;∅),z = 0 for all z ∈ Bk(ω).

Suppose 0 < m < q and γ(i;I),z = 0 for all z ∈ Bk(ω) and (i; I) ∈ Nk,q with `(I) <
m. Let (j; J) ∈ Nk,q with `(J) = m. According to Lemma 3.6, p(j;J)(S) ≡(k−1)|b|ω
0; if (i; I) ∈ Nk,q, `(I) > m and (i; I) ⊂ (j; J), then (i; I) = (j; J). Hence, using
Lemma 3.7 in [15] and the inductive hypothesis, we obtain

p(j,J)(S) ≡(k−1)|b|ω
∑

z∈Bk(ω)

γ(j;J),zX
2d−1−1z2d−1

≡(k−1)|b|ω 0.

From this equality, one gets γ(j;J),z = 0 for all z ∈ Bk(ω). The proposition is
proved. �

Proof of Theorem 1.4. Set ω(d) = (k−1)|d−2|(k−3, k−4, 2), we have deg(ω(d)) =
(k − 1)(2d − 1). Observe that for any k > 7, the monomials

z = x2d+1−1
1 x2d+1−1

2 x2d−1
3 . . . x2d−1

k−4 x
2d−1−1
k−3 x2d−2−1

k−2 x2d−2−1
k−1 ∈ Pk−1 ⊂ Pk

and f1(z) ∈ Pk are the spikes of the same weight vector ω(d), hence we get
dimQPk(ω(d)) > 2. If ω is a weight vector of degree k−1, then deg((k−1)|d−1|ω) =
(k− 1)(2d − 1). If d > k, then min{k, d− 1} = min{k, d} = k and

(
k

min{k,d}
)

= 1 <
dimQPk(ω(d)). Hence, from the above equalities and Proposition 3.4, we get

dim(QPk)n =
∑

deg η=n
dimQPk(η)

>
∑

degω=k−1
dimQPk((k − 1)|d−1|ω) + dimQPk(ω(d))

>

( ∑
degω=k−1

dimQPk−1(ω)
)

k∑
u=1

(
k

u

)
+ 1

=
( ∑

degω=k−1
dimQPk−1(ω)

)min{k,d−1}∑
u=1

(
k

u

)
+
(

k

min{k, d}

)
.

Suppose d 6 k, then min{k, d−1} = d−1, min{k, d} = d and (k−1)|d−1|(k−1) =
(k − 1)|d. According to Phúc and Sum [10, Proposition 3.7], we have

dimQPk((k − 1)|d) =
d∑
t=1

(
k

t

)
=
d−1∑
t=1

(
k

t

)
+
(
k

d

)
.
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Since dimQPk(ω(d)) > 0 and dimQPk−1((k− 1)) = 1, combining the above equal-
ities and Proposition 3.4 gives

dim(QPk)n >
∑

degω=k−1
dimQPk((k − 1)|d−1|ω) + dimQPk(ω(d))

>

( ∑
degω=k−1

dimQPk−1(ω)
)
d−1∑
u=1

(
k

u

)
+
(
k

d

)
.

The theorem is proved. �

4. Some applications

Base on Theorem 1.4, we can extend our results in [10] by explicitly computing
the spaces QPk−1(ω) with some weight vectors ω of degree k − 1.

Consider the weight vectors (k−1−2t−4ε, t, ε) with ε = 0, 1 and k−1−2t−4ε > t.
We recall the following result in our work [10] for the case t = 1, ε = 0.

Proposition 4.1 (Phúc and Sum [10]). For any k > 4,

dimQPk−1(k − 3, 1) = (k − 3)
(
k

2

)
.

Now we compute QPk−1(k − 5, 2) for the case t = 2, ε = 0.

Proposition 4.2. For k > 7, dimQPk−1(k − 5, 2) = (k − 1)(k − 6)
2

(
k

4

)
.

Proof. Observe that P+
r (k − 5, 2) = 0 for either r < k − 5 or r > k − 3. We denote

B̃+
(k−5,2) = {x1x2 . . . xk−5x

2
ix

2
j : 1 6 i < j 6 k − 5},

B̃+
(k−4,2) = {x1 . . . x

2
i . . . xk−4x

2
j : 1 6 i, j 6 k − 4, 2 6 i 6= j} \ {x3

1x
2
2x3 . . . xk−4},

B̃+
(k−3,2) = {x1 . . . x

2
i . . . x

2
j . . . xk−3 : 2 6 i < j 6 k − 3} \ {x1x

2
2x

2
3x4 . . . xk−3}.

It is easy to see that B̃+
(r,2) ⊂ P

+
r (k − 5, 2) for k − 5 6 r 6 k − 3.

If x ∈ B̃+
(k−5,2), then x is a spike. According to Phúc and Sum [10, Lemma

2.7], x is admissible. Obviously, if x is a monomial in P+
k−5, then x ∈ B̃+

(k−5,2).
Hence, B̃+

(k−5,2) is the set of all the admissible monomials in P+
k−5(k−5, 2). If x is a

monomial in P+
k−4(k−5, 2), then x = x1 . . . x

2
i . . . xk−4x

2
j with 1 6 i, j 6 k−4, i 6= j.

If i = 1 then
x =

∑
26t6k−4

x1 . . . x
2
t . . . xk−4x

2
j + Sq1(x1 . . . xk−4x

2
j ).

Hence, x is inadmissible. If j = 1, i = 2, then

x =
∑

36t6k−4
x3

1x2 . . . x
2
t . . . xk−4 + x4

1x2 . . . xk−4 + Sq1(x3
1x2 . . . xk−4).

This equality shows that x is inadmissible. If i > 1 and x 6= x3
1x

2
2x3 . . . xk−4, then

x is of the form x = xtx
2
i (ftfi−1)(z) with 1 6 t < i 6 k − 4 and z a spike in

Pk−6. According to Peterson [9], xtx2
i is admissible. So, by Proposition 2.7, x

is also admissible. Hence, B̃+
(k−4,2) is the set of all the admissible monomials in

P+
k−4(k − 5, 2).
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If x is a monomial in P+
k−3(k − 5, 2), then x = x1 . . . x

2
i . . . x

2
j . . . xk−3 with 1 6

i < j 6 k − 3. If i = 1, then

x =
∑

26t6k−3, t 6=j
x1 . . . x

2
t . . . x

2
j . . . xk−3 + Sq1(x1 . . . x

2
j . . . xk−3).

Hence, x is inadmissible. If x = x1x
2
2x

2
3x4 . . . xk−3, then

x =
∑

26s<t6k−3, (s,t)6=(2,3)

x1 . . . x
2
s . . . x

2
t . . . xk−3

+ Sq1(x2
1x2 . . . xk−3) + Sq2(x1x2 . . . xk−3).

So, x is inadmissible. If i > 1 and x 6= x1x
2
2x

2
3x4 . . . xk−3, then the monomial x is

of the form x = y(f1fs−1ft−2fu−3)(z) with z = x1 . . . xk−7 ∈ Pk−7, 1 < s < t <
u 6 k − 3 and either y = x1x

2
sxtx

2
u or y = x1xsx

2
tx

2
u. We have proved in [15] that

y is admissible. Hence, using Proposition 2.7, x is also admissible.
Thus, we have proved that B̃+

(r,2) is the set of all the admissible monomials in
P+
r (k − 5, 2), hence dimQP+

r (k − 5, 2) = |B̃+
(r,2)| for k − 5 6 r 6 k − 3. By a

direct computation, we obtain |B̃+
(k−5,2)| =

(
k−5

2
)
, |B̃+

(k−4,2)| = (k − 5)2 − 1 and
|B̃+

(k−3,2)| =
(
k−4

2
)
− 1. Hence, using Proposition 2.11, we get

dimQPk−1(k − 5, 2) =
∑

k−56r6k−3

(
k − 1
r

)
dimQP+

r (k − 5, 2)

= (k − 1)(k − 6)
2

(
k

4

)
.

The proposition is proved. �

By combining Theorem 1.4, Propositions 4.1, 4.2 we obtain a lower bound for
dim(QPk)n which extends the one in [10].

Theorem 4.3. Let n = (k − 1)(2d − 1) with d a positive integer. If k > 7 and
d > 2, then

dim(QPk)n >
p∑

u=1

(
k

u

)
+
(

(k − 3)
(
k

2

)
+ (k − 1)(k − 6)

2

(
k

4

)) q∑
v=1

(
k

v

)
,

where p = min{k, d} and q = min{k, d− 1}.

This result implies the one in our work [10] for k > 7.

Proposition 4.4. If k > 9, then dimQPk−1(k − 7, 1, 1) =
(
k − 6

2

)(
k + 1

6

)
.

Proof. We observe that P+
r (k−7, 1, 1) = 0 for either r < k−7 or r > k−5. Hence,

using Proposition 2.11 we have

dimQPk−1(k − 7, 1, 1) =
∑

k−76r6k−5

(
k − 1
r

)
dimQP+

r (k − 7, 1, 1).
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Suppose that k > 9. Then we set

B̄+
(k−7,1) = {x1x2 . . . xk−7x

2
i1x

4
i2 : 1 6 i1 6 i2 6 k − 7} ⊂ P+

k−7(k − 7, 1, 1),

B̄+
(k−6,1) = {x1 . . . x

2
i1 . . . xk−6x

4
i2 : 2 6 i1 6 i2 6 k − 6}

∪ {x1 . . . x
4
i2 . . . xk−6x

2
i1 : 1 6 i1 < i2 6 k − 6} ⊂ P+

k−6(k − 7, 1, 1),
B̄+

(k−5,1) = {x1 . . . x
2
i1 . . . x

4
i2 . . . xk−5 : 2 6 i1 < i2 6 k − 5} ⊂ P+

k−5(k − 7, 1, 1).

Let x be a monomial in P+
k−7(k− 7, 1, 1), then x = x1x2 . . . xk−7x

2
i1
x4
i2

with 1 6
i1, i2 6 k − 7. If i1 > i2, then x = Sq2(x1x2 . . . xk−7x

2
i1
x2
i2

)+ smaller monomials.
Hence, x is inadmissible. If i1 = i2 then x is a spike, hence x is admissible. If
i1 < i2, then x = x3

i1
x5
i2

(fi1fi2−1)(z) with z = x1 . . . xk−9 ∈ Pk−9. According to
Peterson [9], x3

i1
x5
i2

is admissible, so using Proposition 2.7, x is also admissible.
This means that B̄+

(k−7,1) is the set of all admissible monomials in P+
k−7(k−7, 1, 1).

Let x ∈ P+
k−6(k − 7, 1, 1), then either x = x1 . . . x

2
i1
. . . xk−6x

4
i2

or x = x1 . . . x
4
i2

. . . xk−6x
2
i1

with 1 6 i1, i2 6 k − 6. If i1 > i2 and x = x1 . . . x
2
i1
. . . xk−6x

4
i2

,
then x = Sq2(x1 . . . x

2
i1
. . . xk−6x

2
i2

)+ smaller monomials; if i1 > i2 and x =
x1 . . . x

4
i2
. . . xk−6x

2
i1

, then x = Sq2(x1 . . . x
2
i2
. . . xk−6x

2
i1

)+ smaller monomials; if
x = x2

1x2 . . . xk−6x
4
i2

, then x = Sq1(x1 . . . xk−6x
4
i2

) + smaller monomials, hence x
is inadmissible. If i1 = i2 > 1, then x = x1x

6
i1

(f1fi1−1)(x1 . . . xk−8). Since x1x
6
i1

is admissible, by Proposition 2.7, x is admissible. If x = x1 . . . x
2
i1
. . . xk−6x

4
i2

with
1 < i1 < i2, then

x = x1x
2
i1x

5
i2(f1fi1−1fi2−2)(z)

with z = x1 . . . xk−9. According to Kameko [4], x1x
2
i1
x5
i2

is admissible, so us-
ing Proposition 2.7, x is admissible. Suppose x = x1x2 . . . x

4
i2
. . . xk−6x

2
i1

with
1 6 i1 < i2. If i1 = 1, i2 = 2, then x = x3

1x
4
2x3(f1f1f1)(x1 . . . xk−9), if i1 =

1, i2 > 2, then x = x3
1x2x

4
i2

(f1f1fi2−2)(x1 . . . xk−9), if 1 < i1 < i2, then x =
x1x

3
i1
x4
i2

(f1fi1−1fi2−2)(x1 . . . xk−9). According to Kameko [4], x3
1x

4
2x3, x3

1x2x
4
i2

,
x1x

3
i1
x4
i2

are admissible. By Proposition 2.7, x is admissible. Thus, we have proved
that B̄+

(k−6,1) is the set of all admissible monomials in P+
k−6(k − 7, 1, 1).

Let x be a monomial in P+
k−5(k− 7, 1, 1), then x = x1 . . . x

2
i1
. . . x4

i2
. . . xk−5 with

1 6 i1 < i2 6 k−5. If i1 = 1, then x = Sq1(x1 . . . x
4
i2
. . . xk−5)+ smaller monomials,

hence x is inadmissible. If 1 < i1 then x = x1x
2
i1
x4
i2

(f1fi1−1fi2−2)(x1 . . . xk−8).
According to Kameko [4], x1x

2
i1
x4
i2

is admissible. So, by Proposition 2.7, x is
admissible.

Thus, we have proved that B̄+
(r,1) is the set of all admissible monomials in P+

r (k−
7, 1, 1), hence dimQP+

r (k − 7, 1, 1) = |B̄+
(r,1)|, for k − 7 6 r 6 k − 5. A direct

computation shows that

|B̄+
(k−7,1)| =

(
k − 6

2

)
, |B̄+

(k−6,1)| = 2
(
k − 6

2

)
, |B̄+

(k−5,1)| =
(
k − 6

2

)
.

Now using Proposition 2.11, we obtain

dimPk−1(k − 7, 1, 1) =
∑

k−76r6k−5

(
k − 1
r

)
|B̄+

(r,1)| =
(
k − 6

2

)(
k + 1

6

)
.

The proposition is proved. �
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Remark 4.5. We have B̄+
(1,1) = {x7

1}, B̄+
(3,1) = {x1x

2
2x

4
3}. Since x3

1x
4
2 ≡ x1x

6
2,

we get B̄+
(2,1) = {x1x

6
2}, hence dimQP7(1, 1, 1) =

(7
1
)

+
(7

2
)

+
(7

3
)

= 63 < 84 =(8−6
2
)(8+1

6
)
. So, Proposition 4.4 is not true for k = 8.

Proposition 4.6. If k > 10, then

dimQPk−1(k − 7, 3) = (k − 5)(k − 7)(k3 − 9k2 + 14k − 36)
180

(
k

4

)
.

Proof. Note that P+
r (k − 7, 3) = 0 for either r < k − 7 or r > k − 4. Hence, using

Proposition 2.11 we have

dimQPk−1(k − 7, 3) =
∑

k−76r6k−4

(
k − 1
r

)
dimQP+

r (k − 7, 3).

We set
B̃+

(k−7,3) = {x1x2 . . . xk−7x
2
i1x

2
i2x

2
i3 : 1 6 i1 < i2 < i3 6 k − 7} ⊂ P+

k−7,

B̃+
(k−6,3) = {x1 . . . x

2
i1 . . . xk−6x

2
i2x

2
i3 : 2 6 i1 6 k − 6, 1 6 i2 < i3 6 k − 6, i2, i3

6= i1} \
(
{x3

1x
2
2x3 . . . xk−6x

2
i3 : 3 6 i3 6 k − 6} ∪ {x3

1x
3
2x

2
3x4 . . . xk−6}

)
,

B̃+
(k−5,3) = {x1 . . . x

2
i1 . . . x

2
i2 . . . xk−5x

2
i3 : 2 6 i1 < i2 6 k − 5, 1 6 i3 6 k − 5, i3

6= i1, i2} \ {x3
1x

2
2x3 . . . x

2
i2 . . . xk−5 : 3 6 i2 6 k − 5} ⊂ P+

k−5,

B̃+
(k−4,3) = {x1 . . . x

2
i1 . . . x

2
i2 . . . x

2
i3 . . . xk−4 : 2 6 i1 < i2 < i3 6 k − 4} ⊂ P+

k−4.

We have B̃+
(r,3) ⊂ P

+
r for k − 7 6 r 6 k − 4.

If x ∈ B̃+
(k−7,3), then x is a spike, hence x is admissible. Obviously, if x is a

monomial in P+
k−7 then x ∈ B̃+

(k−7,3). Hence, B̃+
(k−7,3) is the set of all the admissible

monomials in P+
k−7(k − 7, 3).

If x ∈ B̃+
(k−6,3), then x = x1x

2
i1
f1(fi1−1(z)) with z a spike in Pk−8. Since x1x

2
i1

is
admissible, by Proposition 2.7, x is also admissible. If x is a monomial in P+

k−6(k−
7, 3), then x = x1 . . . x

2
i1
. . . xk−6x

2
i2
xi3 with 1 6 i1, i2, i3 6 k − 6, i2, i3 6= i1, i2 <

i3. If i1 = 1 then x = Sq1(x1 . . . xk−6x
2
i2
x2
i3

) + smaller monomials. Hence, x is
inadmissible. If i2 = 1, i1 = 2 then x = Sq1(x3

1x2 . . . xk−6x
2
i3

)+ smaller monomials.
This equality shows that x is inadmissible. If i2 = 1, i3 = 2, i1 = 3 then x =
Sq1(x3

1x
3
2x3 . . . xk−6x

2
i3

)+ smaller monomials. So, x is inadmissible. Thus, we have
showed that B̃+

(k−6,3) is the set of all the admissible monomials in P+
k−6(k − 7, 3).

If x ∈ B̃+
(k−5,3), then x = yf1(fu−1(fv−2fw−3(z))), where 1 < u < v < w, y

is one of the monomials: x3
1xux

2
vx

2
w, x1x

3
ux

2
vx

2
w, x1x

2
ux

3
vx

2
w, x1x

2
ux

2
vx

3
w and z =

x1 . . . xk−9 ∈ Pk−9. We have proved in [15] that y is admissible. Hence, by
Proposition 2.7, x is also admissible. Let x be a monomial in P+

k−5(k − 7, 3).
If x /∈ B̃+

(k−5,3), then either x = x2
1x2 . . . x

2
i2
. . . xk−5x

2
i3

, i2, i3 > 1, i2 6= i3 or x =
x3

1x
2
2 . . . x

2
i2
. . . xk−5, i2 > 2. If x = x2

1x2 . . . x
2
i2
. . . xk−5x

2
i3

, then x = Sq1(x1 . . . x
2
i2

. . . xk−5x
2
i3

)+ smaller monomials. If x = x3
1x

2
2 . . . x

2
i2
. . . xk−5, then x = Sq1(x3

1x2
. . . x2

i2
. . . xk−5)+ smaller monomials. Hence, x is inadmissible.

If x ∈ B̃+
(k−4,3), then x = yf1(fu−1(fv−2fw−3(z))), where 1 < u < v < w,

y = x1x
2
ux

2
vx

2
w and z = x1 . . . xk−8 ∈ Pk−8. We have proved in [15] that y is

admissible. Hence, by Proposition 2.7, x is also admissible. If x ∈ P+
k−4(k − 7, 3)
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and x /∈ B̃+
(k−4,3), then x = x2

1x2 . . . x
2
i1
. . . x2

i2
. . . xk−4 with 1 < i1 < i2 6 k − 4.

So, we get x = Sq1(x1 . . . x
2
i1
. . . x2

i2
. . . xk−4)+ smaller monomials. Hence, x is

inadmissible.
We have proved that B̃+

(r,3) is the set of all admissible monomials in P+
r (k−7, 3),

hence we obtain dimQP+
r (k − 7, 3) = |B̃+

(r,3)|, for k − 7 6 r 6 k − 4. By a direct
computation, we get

|B̃+
(k−7,3)| =

(
k − 7

3

)
, |B̃+

(k−6,3)| = (k − 9)
(
k − 6

2

)
= (k − 6)(k − 7)(k − 9)

2 ,

|B̃+
(k−5,3)| = (k − 5)

(
k − 7

2

)
= (k − 5)(k − 7)(k − 8)

2 , |B̃+
(k−4,3)| =

(
k − 5

3

)
.

Now, applying Proposition 2.11, we obtain

dimQPk−1(k − 7, 3) =
∑

k−76r6k−4

(
k − 1
r

)
|B̃+

(r,3)|

= (k − 5)(k − 7)(k3 − 9k2 + 14k − 36)
180

(
k

4

)
:= a(k).

The proof is completed. �

Remark 4.7. Since B̃+
(2,3) = B̃+

(3,3) = ∅, Proposition 4.6 holds for k = 9. We have
B̃+

(1,3) = B̃+
(2,3) = B̃+

(3,3) = ∅ and |B̃+
(4,3)| = 1, hence dimQP7(1, 3) =

(7
4
)

= 35 >
14 = a(8). So, Proposition 4.6 is not true for k = 8. Since QP7(0, 3) = 0, the
proposition holds for k = 7.

Proposition 4.8. If k > 13, then

dimQPk−1(k − 9, 4) = (k − 1)(k − 10)(k4 − 20k3 + 129k2 − 354k + 840)
1344

(
k

6

)
.

We need the following for the proof of this proposition.

Lemma 4.9. The following monomials are admissible in P6:
a1 = x1x2x

2
3x

2
4x

2
5x

2
6, a2 = x1x

2
2x3x

2
4x

2
5x

2
6,

a3 = x1x
2
2x

2
3x4x

2
5x

2
6, a4 = x1x

2
2x

2
3x

2
4x5x

2
6.

Proof. We prove the lemma by showing that {a1, a2, a3, a4} is the set of all admis-
sible monomials in P+

6 (2, 4). Let x be a monomial in P+
6 (2, 4), then

x = x1 . . . x
2
i1 . . . x

2
i2 . . . x

2
i3 . . . x

2
i4 . . . x6, 1 6 i1 < i2 < i3 < i4 6 6.

If i1 = 1, then x = Sq1(x1 . . . x
2
i2
. . . x2

i3
. . . x2

i4
. . . x6)+ smaller monomials. If i1 >

1, i4 < 6, then
x = x1x

2
2x

2
3x

2
4x

2
5x6 = Sq1(x2

1Sq
2(x2 . . . x6))

+ Sq4(x1 . . . x6) + smaller monomials.
Hence, x is inadmissible. Thus, we have proved that if x is admissible, then x is
one of the monomials a1, a2, a3, a4. Now we prove the set

{[a1](2,4), [a2](2,4), [a2](2,4), [a4](2,4)}

is linearly independent in QP+
6 (2, 4). Suppose there is a linear relation

S := γ1a1 + γ2a2 + γ3a3 + γ4a4 ≡(2,4) 0, (4.1)
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with γu ∈ F2, 1 6 u 6 4. By applying the homomorphism p(1,j) : P6 → P5 to the
relation (4.1) for 1 < j < 6, we get

p(1,2)(S) ≡(2,4) (γ2 + γ3 + γ4)x3
1x2x

2
3x

2
4x

2
5 ≡(2,4) 0,

p(1,3)(S) ≡(2,4) (γ1 + γ3 + γ4)x1x
3
2x

2
3x

2
4x

2
5 ≡(2,4) 0,

p(1,4)(S) ≡(2,4) (γ1 + γ2 + γ4)x1x
2
2x

3
3x

2
4x

2
5 ≡(2,4) 0,

p(1,5)(S) ≡(2,4) (γ1 + γ2 + γ3)x1x
2
2x

2
3x

3
4x

2
5 ≡(2,4) 0.

We have prove in [15] that the monomial x1x
2
2x

2
3x

2
4 is admissible in P4. Hence, by

Proposition 2.7, the monomials x3
1x2x

2
3x

2
4x

2
5, x1x

3
2x

2
3x

2
4x

2
5, x1x

2
2x

3
3x

2
4x

2
5, x1x

2
2x

2
3x

3
4x

2
5

are admissible in P5. So, from the above equalities we get γi = 0 for 1 6 i 6 4.
The lemma is proved. �

We now prove Proposition 4.8.

Proof of Proposition 4.8. Observe that P+
r (k − 9, 4) = 0 for either r < k − 9 or

r > k − 5. Hence, using Proposition 2.11 we have

dimQPk−1(k − 9, 4) =
∑

k−96r6k−5

(
k − 1
r

)
dimQP+

r (k − 9, 4).

We set
B̃+

(k−9,4) = {x1x2 . . . xk−9x
2
i1x

2
i2x

2
i3x

2
i4 : 1 6 i1 < i2 < i3 < i4 6 k − 9},

B̃+
(k−8,4) = {x1 . . . x

2
i1 . . . xk−8x

2
i2x

2
i3x

2
i4 : 2 6 i1 6 k − 8, 1 6 i2 < i3 < i4 6 k − 8,

i2, i3, i4 6= i1} \
(
{x3

1x
2
2x3 . . . xk−8x

2
i3x

2
i4 : 3 6 i3 < i4 6 k − 8}

∪ {x3
1x

3
2x

2
3x4 . . . xk−8x

2
i4 : 4 6 i4 6 k − 8} ∪ {x3

1x
3
2x

3
3x

2
4x5 . . . xk−8}

)
,

B̃+
(k−7,4) = {x1 . . . x

2
i1 . . . x

2
i2 . . . xk−7x

2
i3x

2
i4 : 2 6 i1 < i2 6 k − 7, 1 6 i3 < i4 6

k − 7, i3, i4 6= i1, i2} \
(
{x3

1x
2
2x3 . . . x

2
i2 . . . xk−7x

2
i4 : 3 6 i2, i4 6 k − 7,

i4 6= i2} ∪ {x3
1x

3
2x

2
3x4 . . . x

2
i4 . . . xk−7 : 4 6 i4 6 k − 7}

)
,

B̃+
(k−6,4) = {x1 . . . x

2
i1 . . . x

2
i2 . . . x

2
i3 . . . xk−6x

2
i4 : 2 6 i1 < i2 < i3 6 k − 6,

1 6 i4 6 k − 6, i4 6= i1, i2, i3}
\ {x3

1x
2
2x3 . . . x

2
i2 . . . x

2
i3 . . . xk−6 : 3 6 i2 < i3 6 k − 6},

B̃+
(k−5,4) = {x1 . . . x

2
i1 . . . x

2
i2 . . . x

2
i3 . . . x

2
i4 . . . xk−5 : 2 6 i1 < i2 < i3 < i4 6 k − 5}

\ {x1x
2
2x

2
3x

2
4x

2
5x6 . . . xk−5}.

By arguments similar to the ones in the proof of Proposition 4.6 we can prove that
B̃+

(r,4) is the set of all the admissible monomials in QP+
r (k−9, 4) for k−9 6 r 6 k−6.

Let x ∈ B̃+
(k−5,4). Then x = y(f1fi1−1fi2−2fi3−3fi4−4fi5−5)(z), where y is one

of the monomials:
x1xi1x

2
i2x

2
i3x

2
i4x

2
i5 , x1x

2
i1xi2x

2
i3x

2
i4x

2
i5 , x1x

2
i1x

2
i2xi3x

2
i4x

2
i5 , x1x

2
i1x

2
i2x

2
i3xi4x

2
i5 ,

with 1 < i1 < i2 < i3 < i4 < i5 6 k − 5 and z = x1 . . . xk−11 ∈ Pk−11. By Lemma
4.9, y is admissible. So, by Proposition 2.7, x is also admissible.

Now let x be a monomial in P+
k−5(k − 9, 4), then

x = x1 . . . x
2
i1 . . . x

2
i2 . . . x

2
i3 . . . x

2
i4 . . . xk−5 : 1 6 i1 < i2 < i3 < i4 6 k − 5
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If i1 = 1, then x = Sq1(x1 . . . x
2
i2
. . . x2

i3
. . . x2

i4
. . . xk−5)+ smaller monomials. Hence,

x is inadmissible. If x = x1x
2
2x

2
3x

2
4x

2
5x6 . . . xk−5, then

x = Sq1(x2
1Sq

2(x2 . . . xk−5)) + Sq4(x1 . . . xk−5) + smaller monomials.
This equality shows that x is inadmissible.

Thus, we have proved that B̃+
(r,4) is the set of all the admissible monomials in

QP+
r (k − 9, 4), so we get dimQP+

r (k − 9, 4) = |B̃+
(r,4)|, for k − 9 6 r 6 k − 5. By a

direct computation, we obtain

|B̃+
(k−9,4)| =

(
k − 9

4

)
, |B̃+

(k−8,4)| = (k − 12)
(
k − 8

3

)
,

|B̃+
(k−7,4)| =

(
k − 7

2

)(
k − 10

2

)
, |B̃+

(k−6,4)| = (k − 6)
(
k − 8

3

)
,

|B̃+
(k−5,4)| =

(
k − 6

4

)
− 1 = (k − 5)(k − 10)(k2 − 15k + 60)

24 .

By using Proposition 2.11, we obtain

dimQPk−1(k − 9, 4) =
∑

k−96r6k−5

(
k − 1
r

)
|B̃+

(r,4)|

= b(k) := (k − 1)(k − 10)(k4 − 20k3 + 129k2 − 354k + 840)
1344

(
k

6

)
.

The proposition is proved. �

Remark 4.10. We have B̃+
(3,4) = B̃+

(4,4) = ∅, hence Proposition 4.8 holds for
k = 12. Since B̃+

(2,4) = B̃+
(3,4) = B̃+

(4,4) = ∅, |B̃+
(5,4)| = 5, |B̃+

(6,4)| = 4, we get
dimQP10(2, 4) = 5

(10
5
)

+ 4
(10

6
)

= 2100 > 1980 = b(11). Hence, Proposition 4.8
is not true for k = 11. By a simple computation, we have QP9(1, 4) = 0, hence
Proposition 4.8 is also true for k = 10.

Proposition 4.11. If k > 11, then

dimQPk−1(k − 9, 2, 1) = (k − 1)(k − 8)(k − 10)
3

(
k + 1

8

)
.

Proof. Note that P+
r (k− 9, 2, 1) = 0 for either r < k− 9 or r > k− 6. Hence, using

Proposition 2.11 we have

dimQPk−1(k − 9, 2, 1) =
∑

k−96r6k−6

(
k − 1
r

)
dimQP+

r (k − 9, 2, 1).

We set
B̄+

(k−9,2) = {x1x2 . . . xk−9x
2
i1x

2
i2x

4
i3 : 1 6 i1 < i2 6 k − 9, i1 6 i3 6 k − 9},

B̄+
(k−8,2) =

(
{x1 . . . x

2
i1 . . . xk−8x

2
i2x

4
i3 : 2 6 i1 < i2 6 k − 8, i1 6 i3 6 k − 8}

∪ {x1 . . . x
2
i2 . . . xk−8x

2
i1x

4
i3 : 1 6 i1 < i2 6 k − 8, i1 6 i3 6 k − 8}

∪ {x1 . . . x
4
i3 . . . xk−8x

2
i1x

2
i2 : 1 6 i1 < i2 6 k − 8, i1 < i3 6 k − 8,

i3 6= i2}
)
\ {x3

1x
2
2x3 . . . xk−8x

4
i : 1 6 i 6 k − 8},
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B̄+
(k−7,2) =

(
{x1 . . . x

2
i1 . . . x

2
i2 . . . xk−7x

4
i3 : 2 6 i1 < i2 6 k − 7, i1 6 i3 6 k − 7}

∪ {x1 . . . x
2
i1 . . . x

4
i3 . . . xk−7x

2
i2 : 1 6 i1 < i2 6 k − 7, i1 < i3 6 k − 7,

i3 6= i2} ∪ {x1 . . . x
2
i2 . . . x

4
i3 . . . xk−7x

2
i1 : 1 6 i1 < i2 6 k − 8,

i1 < i3 6 k − 7, i3 6= i2}
)
\
(
{x1x

2
2x

6
3x4 . . . xk−7, x1x

6
2x

2
3x4 . . . xk−7,

x1x
2
2x

2
3x4 . . . xk−7x

4
i : 4 6 i 6 k − 7}

∪ {x3
1x

4
2x

2
3x4 . . . xk−7, x

3
1x

2
2x3 . . . x

4
i . . . xk−7 : 3 6 i 6 k − 7}

)
,

B̄+
(k−6,2) = {x1 . . . x

2
i1 . . . x

2
i2 . . . x

4
i3 . . . xk−6 : 2 6 i1 < i2, i3 6 k − 6, i2 6= i3}

\ {x1x
2
2x

4
3x

2
4x5 . . . xk−6, x1x

2
2x

2
3x4 . . . x

4
i . . . xk−6 : 4 6 i 6 k − 6}.

By an analogous arguments to the previous ones, we can show that B̄+
(r,2) is the

set of all admissible monomials in P+
r (k − 9, 2, 1) for k − 9 6 r 6 k − 6. Hence,

dimQP+
r (k − 9, 2, 1) = |B̄+

(r,2)| for k − 9 6 r 6 k − 6. By a direct computation, we
get

|B̄+
(k−9,2)| = 2

(
k − 8

3

)
, |B̄+

(k−8,2)| = (k − 8)2(k − 10),

|B̄+
(k−7,2)| = (k − 7)(k − 8)(k − 10), |B̄+

(k−6,2)| =
(k − 6)(k − 8)(k − 10)

3 .

So, we obtain

dimQPk−1(k − 9, 2, 1) =
∑

k−96r6k−6

(
k − 1
r

)
|B̄+

(r,2)|

= (k − 1)(k − 8)(k − 10)
3

(
k + 1

8

)
.

This completes the proof. �

Remark 4.12. For k = 10, we have proved in [15] that QP4(1, 2, 1) = 0. So, this
implies QP`(1, 2, 1) = 0, ` = 1, 2, 3. Using Proposition 2.11 one gets QP9(1, 2, 1) =
0. Hence, Proposition 4.11 holds for k = 10.

By a direct computation using Theorem 1.4, Propositions 4.1, 4.2, 4.4, 4.6, 4.8,
4.11 and the relation

(
k+1
2t
)

=
(
k
2t
)

+ k−2t+2
2t−1

(
k

2(t−1)
)

for t > 0, we easily obtain a
new lower bound for dim(QP )n.

Theorem 4.13. Let n = (k − 1)(2d − 1) with d a positive integer. If k > 10 and
d > 2, then

dim(QPk)n >
( 4∑
u=0

Ck,u

(
k

2u

))min{k,d−1}∑
v=1

(
k

v

)
+
(

k

min{k, d}

)
,

where

Ck,u =



1, u = 0,
k − 3, u = 1,
k5−21k4+175k3−735k2+1984k−3744

180 , u = 2,
(k−6)(k−7)

2 + (k−1)(k−10)(k4−20k3+193k2−1250k+3912)
1344 , u = 3,

(k−1)(k−8)(k−10)
3 , u = 4.
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Remark 4.14. Let d(k) be as in Theorem 1.1 and let ω(d(k)) be as in the proof
of Theorem 1.4. By an elementary computation, we can show that d(k) > 3 for
any k > 6. If d > d(k) + k − 1, then d > k, min{k, d} = min{k, d − 1} = k and∑k
u=1

(
k
u

)
= 2k − 1. If ω is a weight vector with degω = k − 1, then deg((k −

1)|d(k)−1|ω) = (k − 1)(2d(k) − 1), dimQPk−1((k − 1)|d(k)−1|ω) = dimQPk−1(ω),
dimQPk−1(ω(d(k))) > 0 and

(
k

min{k,d}
)

= 1 < 2k − 1. According to Theorem 1.1,
we have

dim(QPk)n = (2k − 1) dim(QPk−1)(k−1)(2d(k)−1)

> (2k − 1)
( ∑

degω=k−1
dimQPk−1((k − 1)|d(k)−1|ω)

+ dimQPk−1(ω(d(k)))
)

> (2k − 1)
∑

degω=k−1
dimQPk−1(ω) + 2k − 1

>

( ∑
degω=k−1

dimQPk−1(ω)
)min{k,d−1}∑

u=1

(
k

u

)
+
(

k

min{k, d}

)
.

This shows that Theorem 1.1 implies Theorem 1.4, hence it also implies Theorem
4.13.
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