THE HIT PROBLEM FOR THE POLYNOMIAL ALGEBRA
IN CERTAIN DEGREES

NGUYEN SUM

ABSTRACT. Let Py := Fa[z1,22,...,2%] be the polynomial algebra over the
prime field of two elements, Fa, in k variables x1, x2, ..., Tk, each of degree 1.

We study the hit problem, set up by Frank Peterson, of finding a minimal
set of generators for P as a module over the mod-2 Steenrod algebra. In this
paper, we extend our results in [I0] on the hit problem in degree (k—1)(2% —1)
with & > 6.

1. INTRODUCTION

Let Py be the graded polynomial algebra Falzy,xa, ..., 2], with the degree of
each x; being 1. This algebra arises as the cohomology with coefficients in Fy of
an elementary abelian 2-group of rank k. Then, Py is a module over the mod-
2 Steenrod algebra, A. The action of A on Py is determined by the elementary
properties of the Steenrod operations Sq* and subject to the Cartan formula (see
Steenrod and Epstein [14]).

The Peterson hit problem in algebraic topology asks for a minimal generating set
for the polynomial algebra Py as a module over the Steenrod algebra. Equivalently,
we want to find a vector space basis for QP := Pi./ATP, = Fy @4 Py in each
degree, where AT is the augmentation ideal of A.

The vector space Q Py was explicitly calculated by Peterson [9] for k = 1,2, by
Kameko [4] for k = 3, and by us [15] for k = 4. Recently, the hit problem and it’s
applications to representations of general linear groups have been presented in the
books of Walker and Wood [I8, [19].

From the results of Wood [20] and Kameko [4], the hit problem is reduced to the
case of degree n of the form

n=s(2% - 1) + 2%m, (1.1)

where s,d, m are certain non-negative integers, 1 < s < k and p(m) < s. Here,
by w(m) one means the smallest number r for which it is possible to write m =
Y icicr (2% = 1) with u; > 0. For s =k — 1 and m > 0, the problem was studied
by Crabb and Hubbuck [2], Nam [8], Repka and Selick [12], Walker and Wood [L7]
and the present author [I5]. For s = k — 1 and m = 0, it is partially studied
by Mothebe [5 [6] and by Phiic and Sum [I0, IT]. In this case, the problem was
explicitly calculated for k£ < 5.
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In this paper, we extend our results in [I0] on the hit problem in degree n of the
formWiths:kfl,m:O,k>6andd>2.

Denote by (QPy), the subspace of QPj, consisting of the classes represented by
the homogeneous polynomials of degree n in Pj. Carlisle and Wood showed in [I]
that the dimension of the vector space (QPy)y is uniformly bounded by a number
depended only on k. Moreover, base on our results in [15], we can show that for d
big enough, this dimension does not depend on d.

For a positive integer a, denote by «(a) the number of ones in dyadic expansion
of a and by ((a) the greatest integer u such that a is divisible by 2“. That means
a = 29} with b an odd integer.

Theorem 1.1. Let n = (k — 1)(2¢ — 1) with d a positive integer and let d(k) =
E—1—ak—1)—Ck=1). Ifd>d(k)+k—1 and k > 4, then

dlm(QPk>n = (Qk - 1) dim(QPk_l)(kil)(2d(k)71).
For k = 4, we have d(4) = 1, dim(QP3)s = 7. Hence, by Theorrem (1.1
dim(QPy)3(2¢—1) = (2 —1) x 7=105, for all d > 4, (see Sum [15]).

For k = 5, we have d(5) = 1, dim(QPys)4 = 21. Hence, dim(QPs)s2a_1) = (2° —
1) x 21 = 651 for all d > 5, (see Phiic and Sum [11]). For k = 6, we have d(6) = 3,
and 5(246) — 1) = 35.

Proposition 1.2 (Hung [3]). We have dim(QPs)s5 = 1117.

Hung proved this result in [3] by using a computer computation. However, the
detailed proof were unpublished at the time of the writing. We have also proved
this proposition by using Kameko’s method in [4]. However, the proof is a hard
work. It will be published in detail elsewhere.

Combining Theorem [I.1] and Proposition we obtain the following.

Corollary 1.3. Let n = 5(2¢ — 1) with d a positive integer. If d > 8, then
dim(QPs), = (25 — 1) x 1117 = 70371.

For any k > 7 and d > 2, we extend our result in [I0] on a lower bound for
dim(QPk.)n.

Let w be a weight vector of degree degw = m and QPy(w) be the quotient of
(QPy)m associated with w (see Section [2]) We prove the following.

Theorem 1.4. Let n = (k —1)(2% — 1) with d a positive integer. If d > 2, then

min{k,d—1} K k
dim(QPy), > <deng_:k1d1mQPk_1(w)> ; (u> + <min{k7d}>.

By explicitly computing the space QPy_1(w) for some w we see that this result
implies our result in [T0], hence it is also implies Mothebe’s result in [5, [6].

In Section [2| we recall some needed information on admissible monomials in Py
and Singer’s criterion on hit monomials. The proofs of the main results will be
presented in Section [3| At the end of Section |3} we show that if d > d(k) + &k — 1,
then Theorem [I.1] implies Theorem [£.13]
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2. PRELIMINARIES

In this section, we recall some results on the admissible monomials and the hit
monomials from Kameko [4], Mothebe and Uys [7] and Singer [I3], which will be
used in the next section.

Notation 2.1. We denote N, = {1,2,...,k} and

Xy = X{j17j27~~a.js} = H Zj, J= {j17j23 cee 7js} C Ng,
JENE\J

In particular, Xy, =1, Xy = x122... 2%, X; = 21...85...7, 1 < j < k, and
X =X, € Py_;.

Let a;(a) denote the i-th coefficient in dyadic expansion of a non-negative integer
a. That means a = ag(a)2° + a1 (a)2t +az(a)2? +. .., for a;(a) = 0 or 1 with i > 0.

For a monomial z € Py, we write z = J;'ljl(w)m?(x) . .xzk(w). Set Ju(z) = {j €
Ng : ax(vj(x)) = 0}, for ¢ > 0. Then, we have z =[], Xﬁ:(w).

Definition 2.2. A weight vector w is a sequence of non-negative integers (wq, wa, . . .,
wi, . ..) such that w; = 0 for ¢ > 0. For a monomial z in Py, define two sequences
associated with = by

w(z) = (w1(z),wa(x),...,wi(z),...), ol@)=(n(x),v(x),... v())),

where w; () = 321 ;) @i-1(vj(2)) = deg Xy, ,(2), © > 1. The sequences w(z) and
o(x) are respectively called the weight vector and the exponent vector of x.

The sets of the weight vectors and the exponent vectors are given the left lex-
icographical order. For weight vectors w = (w1,wa,...) and n = (n1,72,...), we
define degw = >, 2" 'w;, the length ¢(w) = max{i : w; > 0}, the concatena-
tion w|n = (W1, ...,Wr, N1, M2, ...) if £(w) = r and (a)|® = (a)|(a)]...|(a), (b times
of (a)’s), where a, b are positive integers. Denote by Pj(w) the subspace of Py
spanned by monomials y such that degy = degw and w(y) < w, and by P, (w) the
subspace of Pj(w) spanned by monomials y such that w(y) < w.

Definition 2.3. Let w be a weight vector and f,g two polynomials of the same
degree in Pj.

i) f=gifand only if f —g € ATP,. If f =0, then f is said to be hit.

ii) f =, g ifand only if f —g € ATP, + P, (w).

Obviously, the relations = and =,, are equivalence ones. Denote by QP (w)
the quotient of Py(w) by the equivalence relation =,. Then, we have (QPy), =
Dacgwn @Pr(w) (see Walker and Wood [18]).

Let GL,, be the general linear group over the field Fo. This group acts naturally
on P, by matrix substitution. Since the two actions of A and GL, upon P,
commute with each other, there is an inherited action of GL,, on QFP,.

We note that the weight vector of a monomial is invariant under the permutation
of the generators z;, hence QPg(w) is an Xj-module, where ¥ C GLj is the
symmetric group. Furthermore, we have the following.

Proposition 2.4 (See Sum [16]). For any weight vector w, the space QPy(w) is an
G Ly, -module.

For a polynomial f € Py(w), we denote by [f]. the class in QPj(w) represented
by f. Denote by |S| the cardinal of a set S.
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Definition 2.5. Let x,y be monomials of the same degree in P;. We say that
x < y if and only if one of the following holds:

i) w(r) < wiy);

ii) w(z) = w(y) and o(x) < o(y).

Definition 2.6. A monomial z is said to be inadmissible if there exist monomials
Y1,Y2s - -, Ym such that gy <z for t =1,2,...,mand . — Y 1, y: € AT Py.
A monomial z is said to be admissible if it is not inadmissible.

Obviously, the set of all admissible monomials of degree n in P is a minimal set
of A-generators for Py in degree n.

For 1 < i < k, define a homomorphism f; : P,_; — P, of A-algebras by
substituting f;(z;) = «; for 1 < j < i and fi(z;) = xj41 for i < j < k.

Proposition 2.7 (See Mothebe and Uys [7]). Let i,d be positive integers such that

d
1 <i< k. Ifxisan admissible monomial in Pi_1 then x? _1fi(x) is also an
admissible monomial in Py.

Now, we recall Singer’s criterion on the hit monomials in Pj.

Definition 2.8. A monomial z in Py is called a spike if vj(z) = 2% — 1 for d; a
non-negative integer and j = 1,2,..., k. If z is a spike with d; > do > ... > d,._1 >
dr > 0 and d; = 0 for j > r, then it is called a minimal spike.

In [I3], Singer showed that if u(n) < k, then there exists a unique minimal spike
of degree n in Py.

Theorem 2.9 (See Singer [13]). Suppose x € Py, is a monomial of degree n, where
u(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z), then x is hit.

This result implies the one of Wood [20].

Theorem 2.10 (See Wood [20]). Let n be a positive integer. If p(n) > k, then
(QPx), = 0.

For 1 <r <k, set P+ = ({z =20 @a2@ 2@ 1 pi@) > 0,1 <i <))
Then, Pt is an A-submodule of Py. For J = (ji,j2,..-,4r) : 1 < j1 < ... <
jr < k, we define a monomorphism 0; : P. — P, of A-algebras by substituting
0y(zy) = z;, for 1 < t < r. It is easy to see that, for any weight vector w,
Q0,(PF)(w) = QP (w). So, by a simple computation using Theorem we get
the following.

Proposition 2.11 (See Walker and Wood [I8]). For a weight vector w of degree
n, we have a direct summand decomposition of the Fy-vector spaces

QP(w) = P P QPN w),

p(n)<r<k €(J)=r

where £(J) is the length of J. Consequently

amer) = ¥ (F)amorre),

u(n)<r<k
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3. PROOFS OF MAIN RESULTS

First of all, we recall a construction for A-generators of P;. Denote
N ={(G1); 1 = (in,d2,...,4r), 1 <i<iy <...<ip <k, 0<r <k}

Definition 3.1 (See Sum [I5]). Let (i;1) € Nk, 2(1,4) = 27 2 2 I1 22

i u<<t<r Vit
for r = £(I) > 0, For any monomial z in Py_1, we deflne the monomial ¢;,)(x) in

P by setting

fi(z), ifr=4(I)=
(x?r_lfi(a:))/z@u), if there exists 1 < u < r such that
Vii—1(x) = ... = v, —1(z) =2" — 1,
b () = Viy—1(z) >2" =1,
ar—t(vi,—1(x)) =1, Vt, 1 <t < u,
ar_t (Vi —1(2)) =1, Vt, u <t <,

0, otherwise.
The following is needed for the proof of Theorem

Theorem 3.2 (See Sum [I5] Proposition 3.3]). Let n = Zf 11(2 — 1) with d;
positive integers such that dy > dy > ... > dp_o 2 dp_1:=d>2k—12> 3, and let
m= Zk 2(2d ~de—1 1), If Bp_1(m) is a minimal set of generators for A-module
Pi_1 in degree m, then

d_ d
Bk(n) = U {dj(z,I)(X]z 122 ) VA Bk_l(m)}
(1) EN
is also a minimal set of generators for A-module Py in degree n. Consequently
dim(QP:), = (28 — 1) dim(QPr_1)m

Let n,m be as is Theorem [3.2] Walker and Wood [19] defined a duplication map
0 : (QPx)n — (QPx)2ntk—1- It is induced by a linear map 5 (Pe)n — (Px)ontk-1
determined on monomials by §(z) = Xy, (@? if wi(z) = k— 1 and 6(z) = 0 if
wi1(z) < k — 1. They have proved in [19, Theorem 1.3] that if di_; > 2, then d is
an epimorphism.

According to Theorem (3.2} if dj_1 > k — 1 > 3, then

dim(QPy)n = dlm(QPk)gan,l = (Qk — 1) dim(QPx-1)m
Hence, one gets the following.

Corollary 3.3. Let k >4 and n be as is Theorem[3.2 If dy—y > k — 1, then the
duplication map 0 : (QPk) — (QPx)an+r—1 is an isomorphism.

We can now prove Theorem
Proof of Theorem[I.1]. Set s = a(k —1). Then
k—1=20 42 4. 4201 4 2%,
where ¢ > co > ... > ¢s—1 > ¢s = ((k— 1) > 0. Then, we have
n=(k—1)2%—1) =20 podtez p 4 odter 4 gdtes oy

= Z (le - 1)v

1<i<k—1
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where
d+ ¢, 1<i<s,
di=<¢d+cs—i+s—1, s<i<k—2,
dy—o=d+cs—k+s+1=d—-dk), i=k-1.
It is easy to see that d; > do > ... > dp_o =di—1 =d—d(k). Ud>dk)+k—-1
and k >4, then dy,_1 =d —d(k) > k—1 > 3. According to Theorem we have

dim(QPy), = (2% — 1) dim(QPy_1)m,

where
m= >y (2%t
1<i<k—2
= gortd(k) y geatd(k) oy gestdR) _py g
= (k—1)(2¢® —1).
The theorem is proved. |
For 1 < ¢ <k, we set Nig = {(i;1) € Ny : £(I) < g}, then [Ny 4| = 30, (¥).

Proposition 3.4. Let b be a positive integer. If w is a weight vector of degree m
with p(m) < k — 1, then the set

U Aleen (X2b71Z2b)](k71)|b|w P 2 € Bra(w)}
(1) €N, 4

is linearly independent in QPy((k — 1)[’|w), where Bj_1(w) is the set of all the
admissible monomials of weight vector w in Pyr_1 and ¢ = min{k,b}. Consequently

q
. . k
dim QPy((k — 1)||w) > dim(QPy_1(w)) Z ( )
u=1 u
We recall a result in our work [10] which is used for the proof of the proposition.

Definition 3.5. For any (i;I) € N}, we define the homomorphism P Pr —
Py_1 of algebras by substituting

Zj, if1<j<i,
pan (@) = S cpwemn, it j =14,
Tj_1, if i < j < k.

Then, p(;;7) is a homomorphism of A-modules. In particular, for I = 0, pgp)(z;) =0
and p(;r)(fi(y)) =y for any y € Pp_;.

Lemma 3.6 (See Phiic and Sum [I0]). If x is a monomial in Py, then p(;.p)(z) €
Pr_1(w(z)). So, pu.ry passes to a homomorphism from QPy(w) to QPy_1(w) for
any weight vector w.

Proof of Proposition[3.4 Suppose there is a linear relation
d—1_ d—1
S = Z Vi), e (X2 22 = O,
((851),2) ENk g X Bi(w)

where ;1) € Fa. We prove 7,5, = 0 for all (j;.J) € Npq and z € B(w).
We prove this by induction on m = £(J). Let (i;1) € Njq. Since r = £(I) <
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¢ = min{k, b} and xiztlfi(Xffl_l) is divisible by (71, using Definition ﬂ, we
easily obtain

2d 1_ 2d7 1

b b
¢(i;1)(X2 ) = Pisn (X YhGET).
It is easy to see that if g € P, ((k — 1)"), then g22" € P ((k — 1)]’|w); if

(1;1) C (5;0), then (;1) = (5;0); by Lemma P(3:0)(S) =(k—1)|p|w 0. Hence,
using Lemma 3.7 in [I5], we obtain

_ 2d-1_71 _2d-1 _
PG.0) () =-1)p ) Z V(5:0),=X z =k-1)|t|w 0
zeCy
Since z is admissible in P _1, X212 ig also admissible in Pi._1. Hence, the

last relation implies (;;p),. = 0 for all z € By(w).

Suppose 0 < m < qand ;). = 0 forall z € By(w) and (i;I) € Ny q with £(I) <
m. Let (j;J) € Ny 4 with £(J) = m. According to Lemma PG (S) Ee—1)p|w
0; if (451) € Nyg, €(I) = m and (4;1) C (j;J), then (i;I) = (j;J). Hence, using
Lemma 3.7 in [15] and the inductive hypothesis, we obtain

d—1_ d—1
PGHS) Zhonypl Y. Vo= XT T =g 0
2€By (w)
From this equality, one gets v(;.s). = 0 for all z € By(w). The proposition is
proved. (I

Proof of Theorem[1.4. Set w(d) = (k—1)|"2|(k— 3,k —4,2), we have deg(w(d)) =
(k—1)(2¢ — 1). Observe that for any k > 7, the monomials

gd+l_q ogdtl_1 od_ 1 2¢4_1 24711 2d 21 2d 2.1
zZ =13 T3 T3 STy Ty Ty Tpy € P CH

and f1(z) € Py are the spikes of the same weight vector w(d), hence we get
dim QPy(w(d)) > 2. If w is a weight vector of degree k—1, then deg((k—1)|?"}w) =
(k—1)(2* = 1). If d > k, then min{k,d — 1} = min{k,d} = k and (;.f oy) =1 <
dim QP (w(d)). Hence, from the above equalities and Proposition we get

dim(QPy). Z dim Q Py (n)

degn=n
> Y dmQPu((k — D)|*Hw) + dim QPy(w(d))
degw=k—1
5k
> < > dimQPk_l(w)> > (u) +1
degw=k—1 u=1
min{k,d—1} k i
<deng—k1dlm QPk_l(w}) ; (u> " <min{k,d}>'

Suppose d < k, then min{k,d—1} = d—1, min{k,d} = d and (k—1)|"!|(k—1) =
(k —1)|%. According to Phiic and Sum [I0, Proposition 3.7], we have

amani- =3 () =3 () + ().



8 NGUYEN SUM

Since dim Q Py (w(d)) > 0 and dim QPj—1((k — 1)) = 1, combining the above equal-
ities and Proposition [3.4] gives

dm(QP), > Y dimQPy((k — 1)|"|w) + dim QPy(w(d))

degw=k—1
=1 i
> < Z dimQPk_l(w)> Z (u> + <d)
degw=k—1 u=1
The theorem is proved. O

4. SOME APPLICATIONS

Base on Theorem we can extend our results in [I0] by explicitly computing
the spaces QPy_1(w) with some weight vectors w of degree k — 1.

Consider the weight vectors (k—1—2t—4e, t,¢) withe = 0,1 and k—1—2t—4e > ¢.

We recall the following result in our work [I0] for the case t =1, ¢ = 0.

Proposition 4.1 (Phic and Sum [I0]). For any k > 4,

2
Now we compute QPy_1(k — 5,2) for the case t =2, e = 0.

dim QPy_1(k — 3,1) = (k — 3) (k>

Proposition 4.2. Fork > 7, dimQP,_1(k —5,2) = W (Z)

Proof. Observe that P;F(k —5,2) =0 for either r < k —5 or r > k — 3. We denote
B(J;cf5,2) ={z125. ..xk,5m?x§ 1<i<j<k-5}

B(J;_ALQ) ={z.. m?...xk_4x§ 1<i,j<k—42<i#j}\ {22325 214},
2 2 .
1

B&;igz) ={zr1...z ...xj...xk_g.2<i<jgka}\{xlxgxgu...xk_g}.

It is easy to see that B(J;Q) C PH(k—5,2)for k—5<r<k-—3.
Ifz e B&_&z), then z is a spike. According to Phic and Sum [I0, Lemma
+

2.7], = is admissible. Obviously, if x is a monomial in P,:[E), then z € B(k—s 9
Hence, B(Z—s 2) is the set of all the admissible monomials in P;”  (k—5,2). If zis a
monomial in P,j_4(k—5, 2),thenz =y ...27 ... xk,4m§ with1 <14,j <k—4,1#j.
If i =1 then

2 2 1 2
T = E Ty...Tp . Tp—aT; + 9q (xl...xk_4mj).
2<t<k—4
Hence, z is inadmissible. If j = 1,7 = 2, then
3 2 4 1/,.3
xr = g TIX2 e Xy o Th—a + X]To . Th—a + Sq (X7T2 . . Th—4).
3<t<k—4

This equality shows that x is inadmissible. If i > 1 and x # z323w3 ... 25_4, then
x is of the form x = z2?(fifi—1)(2) with 1 < t < i < k — 4 and 2z a spike in
Py_g. According to Peterson [9], z;2? is admissible. So, by Proposition x
is also admissible. Hence, 3&7 12) is the set of all the admissible monomials in

Pl (k—5,2).
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2. 22, xp_3 with 1 <

If z is a monomial in P 4(k — 5,2), then z = x1...27... 5

i<j<k—3 Ifi=1, then

2 2 1 2
T = E Ty...xy ... Tf . Tp—3 + 5q (xl...xj...mk,g).
2<t<h—3, t£]

Hence, z is inadmissible. If x = 1232324 ... 23, then

T = E .1'1...5(,‘?....7,‘?...33]6,3

2<s<t<k—3, (s,t)#(2,3)

+ 8¢t (#iwe ... 2p—3) + S (2172 . . T—3).

So, x is inadmissible. If i > 1 and = # xw%x%u ...Zk_3, then the monomial z is
of the form x = y(f1fs—1fi—afu—3)(z) with z =x1... 27 € Pr_7, 1 <s <t <
u < k — 3 and either y = x1222422 or y = x12,2222. We have proved in [I5] that

y is admissible. Hence, using Proposition x is also admissible.

Thus, we have proved that B(J; 2) is the set of all the admissible monomials in
Pr(k —5,2), hence dim QP (k — 5,2) = |§E‘;2)| fork—5<r<k—-3 Bya
direct computation, we obtain \B&_5)2)| = (*77), ‘B&—4,2)| = (k—5)> — 1 and

\B(Z% 2)| = (k;4) — 1. Hence, using Proposition we get

dimQPy 1 (k—5,2) = Y (k ; 1) dim QP (k —5,2)

k—5<r<k—3
_(k=1)(k—6) (k
=S4/
The proposition is proved. |

By combining Theorem [I.4] Propositions we obtain a lower bound for
dim(QP),, which extends the one in [I0].

Theorem 4.3. Let n = (k — 1)(2¢ — 1) with d a positive integer. If k > T and
d > 2, then

@, > 3° (%) (i () « U0 (1) 5 (4),

v=1
where p = min{k,d} and ¢ = min{k,d — 1}.

This result implies the one in our work [10] for k > 7.

k—6\ (k41
Proposition 4.4. If k > 9, then dim QPy_1(k —7,1,1) = ( 2 6) < g >

Proof. We observe that PF(k—7,1,1) = 0 for either » < k—7 or r > k—5. Hence,
using Proposition [2.11| we have

dim QP 1 (k- 7,1,1) = > (k;1>dimQPj(k7,1,1).

k—7<r<k—5
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Suppose that k£ > 9. Then we set
3&77)1) = {331582 Th— 73?2158;12 1 <ip <9<k — 7} C P]:;7(k -7,1, 1)7
B?;C—G,l) = {$13}2 ...ajk_GJ??Z 12 < Zl §i2 S k—6}
1 k—6} C Pl s(k—17,1,1),
k—5}C Pl (k—17,1,1).

U{z;.. 4 T 6:52

5 2 4 .
B(j;c—&l) ={$1---$i1---$i2-~-33k— :2< 1 <9

< <2 <
<

Let = be a monomial in P -(k—7,1,1), then z = z129 ... 24— 71@211:22 with 1 <

i1,i2 < k— 7. If iy > iy, then ¥ = S¢*(z122 ... Tp_ 7x121x12)+ smaller monomials.
Hence, z is inadmissible. If i; = iy then x is a spike, hence z is admissible. If
i1 < 19, then z = gc?’lez(filfirl)(z) with z = x1...25_9 € Pr_g. According to
Peterson [9], mf’le’z is admissible, so using Proposition x is also admissible.

This means that B(k 7.1y 18 the set of all admissible monomials in Pt (k—17,1,1).
Let z € P,:rfﬁ(k 7,1,1), then either = x7 .. .x%l ...xk,ﬁxi orr=uax...ck

12

...’I}k,G.’Ei with 1 < 41,40 < k—6. If iy > i and z = z1...x 2 R/ i 633212’
then z = Sq2(x1 2 Th_6T? )+ smaller monomlals if 44 > 12 and T =
xl...x?z. T 63: then r = Sq¢*(ry .. xQ Th_6T? ')+ smaller monomials; if
r=122T9... Tp_ gx , then = = Sq'(z; .. xk_ﬁxm) + smaller monomials, hence z
is inadmissible. If i zl =iy > 1, then z = @120 (f1fi,—1)(21... 2x_g). Since z1af
is admissible, by Proposition x is admissible. If x =z ... 22 ... xk_6x?2 with

i1
1 < i1 < ig, then

xlel'“xm(flle lfzg 2)( )

with z = 21...2x_9. According to Kameko [4], x1z2 22 is admissible, so us-
1712

ing Proposition x is admissible. Suppose x = mlxg...mfz...mk,(,le with
1 < iy < ig. Ifip = 1,ip = 2, then @ = adasas(fififi)(x1... 1), if iy =
1 iQ > 2, then z = $?$2$i2(f1f1fi2,2>($1....’Ek,g), if 1 < i < io, then x =

w123 xt (fifi—1fin—2)(@1 ... 2x—9). According to Kameko [], x3z3z3, x?mgx

111 i2?
xlel xi are admissible. By Proposition z is admissible. Thus, we have proved
that B(k 6,1) is the set of all admissible monomials in Pl o(k—17,1,1).

Let  be a monomial in P,” ;(k—7,1,1), then x = 1 ...22 ... 2} ... x4_5 with

1<iy <ig <k—5.Ifi; =1, thenx = Sq'(z; .. x4 ... Zx—5)+ smaller monomials,
hence z is inadmissible. If 1 < ¢; then x = zlx“zlz(flf“ 1fin—2)(T1 ... T—g)-

According to Kameko [4], xlzflez is admissible. So, by Proposition x is
admissible.

Thus, we have proved that B(t 1 is the set of all admissible monomials in P (k—
7,1,1), hence dim QP (k — 7,1,1) = |B(+T yh for k=7 <r < k-5 A direct
computation shows that

kE—6 k—6 = k—6
Bcen = (75 °) B =2("5 ) 1Bt = (5 °):

Now using Proposition [2.11} we obtain
. k — k—6\/k+1
dim Py (k—7,1,1) = Y < )B(T1|—( )( 6 )
k—7<r<k-5

The proposition is proved. O
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Remarlf 4.5. We have B(-E,l) = {27}, B(E,l) = {z12323}. Since x3z3 = 7,28,
we get B&l) = {2128}, hence dimQP;(1,1,1) = (I) + (;) + (?7)) =63 < 84 =

(8;6) (82;1). So, Proposition is not true for k = 8.

Proposition 4.6. If k > 10, then
(k —5)(k —7)(k® — 9k + 14k — 36) (k)

dim QPy_1(k —7,3) = 0 A

Proof. Note that P;F(k —7,3) = 0 for either r < k — 7 or r > k — 4. Hence, using
Proposition we have

dimQPy 1 (k—7,3)= ) (k ; 1) dim QP (k —7,3).

k—7<r<k—4
We set
5+ _ 2,22 . : . . +
B(k7773) ={mxo. . wp_rxj xjw;, 01 <iy <ip <iz<k—-T}C P,

5 2 2,2 . , - .
B(J;_&g) ={o...2; ... opex,7;, 12 < i1 <k —6,1<idp <iz < k—6,iy,13

#il}\({xi’xgxg...mk_ﬁxfg 13 < iy <k —6}U{aizizira. ..z 6}),
Bl sg ={w1.af . af, o anosa?, 12 <0 <i2 <k —5,1<ig <k 5,43
<

~X
%il,ig}\{mi’l‘gxgg...l‘i...l‘k_5Z igSk—5}CP]:;5,

3
2 .’132....’Ek_4:2<i1<i2<i3<k—4}CP]:i4.

R+ _ 2
B(k—4,3) ={wy... .27 .2, . xp,

We have B

(T:,))CPT‘Ir for k—7<r<k—A4.

If x € 3&77’3), then x is a spike, hence x is admissible. Obviously, if = is a
monomial in P,j_7 then x € 3&77’3). Hence, é(tcfns) is the set of all the admissible
monomials in P . (k —7,3).

Ifz e 3&76’3), then x = 251%21 f1(fi,—1(2)) with z a spike in Py_g. Since z1x
admissible, by Proposition x is also admissible. If x is a monomial in P,:'_G(k —
7, 3), then x = ;.. .17121 .. ~$k—6x122-75i3 with 1 < il,ig,ig <k-— 6,i2,i3 7£ il,ig <
iz. If iy = 1 then x = Sq*(z1 .. .xk,gmfzxi) + smaller monomials. Hence, x is
inadmissible. If iy = 1,4; = 2 then 2 = Sq* (2522 . .. xk,(;xi)—i— smaller monomials.
This equality shows that x is inadmissible. If i3 = 1,i3 = 2,47 = 3 then x =
Sq' (x}a3xs ... xp_ex?,)+ smaller monomials. So, z is inadmissible. Thus, we have

showed that B}

2

i s

is the set of all the admissible monomials in P, s(k — 7, 3).

(k—6,3)
If z € B(",;_573), then © = yf1(fu—1(fo—2fw—-3(2))), where 1 < u < v < w, y
is one of the monomials: z$w, 2222, miada22?, via2ade?, vi222223 and 2 =

Z1...Z5—9 € Pr_og. We have proved in [I5] that y is admissible. Hence, by
Proposition 2 is also admissible. Let 2 be a monomial in P,j_5(k - 7,3).

If z ¢ B(+k—5,3)’ then either x = 2225 mi ...mk,5x33, 9,93 > 1,19 # i3 or x =
33, xi e Tp_s, g > 2. If o = 222, xfz ...xk,g,fo, then # = Sq'(x; . xfz
... &p—sx7,)+ smaller monomials. If x = x$23... 27 ... 24_s5, then z = S¢* (x3x,
.. .x?z ...Zk_5)+ smaller monomials. Hence, x is inadmissible.

If z € B(",;_473), then = yf1(fu—1(fo—2fw-3(2))), where 1 < u < v < w,
y = m22222? and z = x1...75_8 € Py_g. We have proved in [I5] that y is

admissible. Hence, by Proposition x is also admissible. If x € P,:'_4(k -17,3)
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and z ¢ B(';_4,3), then © = zfxy...a? ... 2} ... xp_y with 1 <iy < iy < k—4
So, we get @ = Sq'(x1...27 ...x} ...xp_4)+ smaller monomials. Hence, z is
inadmissible.

We have proved that B(J; 3) is the set of all admissible monomials in PH(k-1,3),
hence we obtain dim QP (k —7,3) = |BE’; 3)|, for k —7 <r <k—4. By a direct

computation, we get

1B, :<k—7>,|3+ )|:(k_9><k—6>:<k—6><k—7><k—9>

k—17,3) 3 (k—6,3 )

Bigs) = -0t 7) < B g - (7).

Now, applying Proposition we obtain
. kE—1\, =
dim QP 1(k—7,3)= > < > 1BE )]

k—r<r<k—4 N
_ (k—=5)(k— 7)(16*18—09];2 + 14k — 36) (lz) — a(k).
The proof is completed. O
Remark 4.7. Since B(J;,s) = B(ES) =0, Proposition@ holds for kK = 9. We have
B(JE’?)) = B&B) = B(g)?)) = () and |B(JZ,3)| = 1, hence dimQP;(1,3) = (Z) =35>

14 = a(8). So, Proposition is not true for k = 8. Since QP;(0,3) = 0, the
proposition holds for k = 7.

Proposition 4.8. Ifk > 13, then

(k —1)(k — 10)(k* — 20k + 129k? — 354k + 840) (k)

dim QP (k —9,4) = 1344 6

We need the following for the proof of this proposition.
Lemma 4.9. The following monomials are admissible in Pg:
ay = Ilﬂjg.f%IZIgIg, as = legllfgl‘ingg,
a3 = T334 0202, ay = viririviesTi.

Proof. We prove the lemma by showing that {a1,as, as, a4} is the set of all admis-
sible monomials in P (2,4). Let 2 be a monomial in Py (2,4), then

x:xl...xi...fo...xfs...xi...x@, 1< <ig<ig<iygy <6.
If i, = 1, then =z = Sql(xl...mfz ...m?s...mi...xg)—l— smaller monomials. If i; >

1,44 < 6, then
r = myrsriririve = Sqt (218¢ (xy . . . x6))
+ Sq*(z1...26) + smaller monomials.

Hence, x is inadmissible. Thus, we have proved that if x is admissible, then z is
one of the monomials a1, as, az,as. Now we prove the set

{la1](2,4), [a2](2,4), [a2](2,4), [a4] (2,4) }
is linearly independent in C)Pgr (2,4). Suppose there is a linear relation

S =101 + Y202 + Y303 + Y404 =(2,4) 0, (4.1)
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with v, € Fa, 1 < u < 4. By applying the homomorphism P,y  Po — P5 to the
relation (4.1) for 1 < j < 6, we get

pa,2)(S) =24y (2 + 73 + )i Teaizial =4 0,
(S) =@ (n+3+ 74)331352%5”45”% =24 0,
4 (8) =@ (m +72+ Va)T1 BT

(S

) =24 (11 + 72 + 3)w105030503 =24 0.

P@,3)

2,4) 0,
P(1,5)

We have prove in [15] that the monomial z123x32% is admissible in P;. Hence, by
Proposition the monomials z3xox3z3a2, riaiadaia, vix3aiata?, vyadadaia?
are admissible in P5. So, from the above equalities we get v, = 0 for 1 < ¢ < 4.

The lemma is proved. (Il
We now prove Proposition

Proof of Proposition[{.8 Observe that Pt (k — 9,4) = 0 for either r < k — 9 or
r > k — 5. Hence, using Proposition we have

dimQPy 1 (k—9,4) = ) (k ; 1) dim QP (k —9,4).

k—9<r<k—5
We set
+ 2.2 2.2 . . . . :
B(,c 94) = ={z122. . wp_gxy i wi vy, 0 1 <y < <z <y <k -9},

(k_874):{a:1...x2 Th_grlata? 1 2<i1 <k—8,1<iy<iz3<iys<k-—8,

k3 1277137714
in,is, 04 # i1} \ ({zi23zs. . 2y 8x13 27 13< iz <ig <k—8}
U{afadadmy ... op_sa?, 1 4 <iy <k — 8} U {afzdadaias ... zp_s}),
B(J; 74) = {zlelxi L Tp_ 7x13 224:2<z1 <ia<k—-7,1<i3<is <
k—T,i3,i4 # 1,02} \ ({xlemg 2 L Tp— 7m 13 <o,y < k—1,
iy #io} U{aladadmy . 2l w7 1 A<in <k —T}),
B(EiGA) :{xl...xfl...x?2...x?3...xk,6xi4 2< 1 < <ig<k—6,
1<y < k—06,i4 #iy,19,i3}
\{afadws.. 2} ... 2l . xp_:3 <y <ig < k— 6},

R+ _ 2 2 2 2 .
B(k_574)—{xl...l’il....’L‘Z-2....Z‘Z-B....’EZ-4....’E]€,5.2 1 <t <izg<ig<k-— 5}

\ {z23r3iaies ... ap s}

By arguments similar to the ones in the proof of Proposition .6 we can prove that

B(J; 4 1s the set of all the admissible monomials in QP (k—9,4) for k—9 < r < k—6.

Let z € B(k 540 Then @ = y(fifi,—1fi,—2fis—3fi,—afis—5)(2), where y is one
of the monomials:

2,2 ,2 2 2 2,2 .2 2,2 2.2 2,2 .2 2
TN, 5, Ty TG Ty TITG, Tig Ty X5 Ty T1XG, Ty, Tig T Ty s T1T5, Ty Ty Ty Ty

with 1 <i1 <is<ig<ig<is<k—5and z=x1...25-11 € Pr_11- By Lemma
y is admissible. So, by Proposition x is also admissible.
Now let # be a monomial in P;f (k — 9,4), then

2 2 2 2
T=T1. X Ty Ty X Tp—p L Sl < <y <y < k—5



14 NGUYEN SUM

Ifiy = 1, thenx = Sq'(xy ...z}, ...z}, ...z} ... xx_5)+ smaller monomials. Hence,

x is inadmissible. If z = z1x323232276 ... 745, then
=S¢ (235¢* (v ... xx_5)) + Sq*(z1 ... v_5) + smaller monomials.

This equality shows that z is inadmissible.
Thus, we have proved that B( 2 is the set of all the admissible monomials in

QPF(k—9,4), so we get dim QP (k —9,4) = |BE(J;)4)|7 fork—9<r<k-5 Bya
direct computation, we obtain

~ k—9 k—8
|B(j;9’4)|:( ) |B(k 84)|_(k_12)< 3 )»

k—7\(k—-10 k—8
Binol= (5 7)("5) 1Banl =t (7).

e = (k-6 (k= 5)(k— 10)(k* — 15k + 60)
(k—5,4) 4 24 .

By using Proposition |2.11] we obtain

dim QP_1(k—9,4) = Z (k )|B(r4>|

k—9<r<k—5
k—1)(k —10)(k* — 20k3 + 129k% — 354k + 840) [k
B o 1344 6/)
The proposition is proved. d
Remark 4.10. We have B(3 " B(Z y = (), hence Proposition E holds for
k = 12. Since B(2 g = B('g g = B( =0 |B(5 »l =5 |B(274)| = 4, we get

dim QPio(2,4) = 5(*°) +4(%Y) = 2100 > 1980 = b(11). Hence, Proposition
is not true for £ = 11. By a simple computation, we have QPy(1,4) = 0, hence
Proposition is also true for k = 10.

Proposition 4.11. If k > 11, then

dim QP—1(k—9,2,1) = (k —1)(k —8)(k — 10) <k + 1)'

3 8

Proof. Note that P;F(k—9,2,1) = 0 for either » < k—9 or r > k — 6. Hence, using
Proposition we have

k—1
dimQPy 1 (k—9,2,1) = Y ( )dimQPj(k—g,m).
k—9<r<k—6 "

We set
B(";C 92):{x1x2 T 9:5“33122334 :1<ip <ia<k—94 <iz<k-—9},
B, g0 = ({21 Tp_sxh,wy, 12 < iy <idp < k—8,iy <ig <k —8}
u{x1 a7 . owposrl w11 <y <ip <k —8,i <iz < k—8}
U{xy.. ST flez:1<i1<i2§k—8,i1<i3<k—8,

is # o)) \ {ztadzs .. wp_sa 1 1 < i<k —8},
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BFI; 72)—({561...17121...13122...13k_7$412<21<ZQ k—7,i1<i3<k—7}
k=71 <is<k—T1,

i1 <ip < k—28,

U{Il...l'zzl...l':é S Tp— 7:5 1< <ig <
i3#iQ}U{$1...$Z‘2...$?3....’Ek,7x~ 1<
i1 <ig < k—T,iz # 22}) \ ({xlfz:%xg:m e xk_7,x1xgz§x4 . Tp_7,
T12325, . rxt A< <k~ T}
U{zizsaies. . ap_r, afadzs .. 2l xp7 13 <<k —T}),

D, 2 2 4 .
BE’/;—&Q) :{xl...ajil...xiQ...xiS...xk_fg:2§21 <127Z3\k—6,227é23}

\{z12daiaies .. g, miwiadey .2t xp g4 <i<k— 6}
By an analogous arguments to the previous ones, we can show that B(r 2) is the

set of all admissible monomials in PF(k —9,2,1) for kK —9 < r < k — 6. Hence,

dim QPF(k—9,2,1) = |B(+T 2)| for k—9 < r < k—6. By a direct computation, we
get
k—38
Bl =2("3 ") 1Bl = (k- 8206 10),
(k—6)(k—8)(k —10)

|B(k: 72|:(k_7)(k_8)(k 10), |Bk 62)‘

3
So, we obtain
dimQPy 1 (k—9,2,1) = Y (k ) 1B o
k—9<r<k—6
(k—1)(k—8)(k—10) [k+1
B 3 < 8 )
This completes the proof. ([l

Remark 4.12. For k = 10, we have proved in [I5] that QP4(1,2,1) = 0. So, this
implies QP,(1,2,1) =0, £ = 1,2,3. Using Proposition one gets QPy(1,2,1) =
0. Hence, Proposition holds for k = 10.

By a direct computation using Theorem [I.4] Propositions 1] (.2} [4.4] [4.6] [4.8]
and the relation (kgtl) = (2t) + thzﬂ-z (2( k ) for t > 0, we easily obtain a

t—1)
new lower bound for dim(QP),,.

Theorem 4.13. Let n = (k — 1)(2¢ — 1) with d a positive integer. If k > 10 and
d > 2, then

min{k,d—1} L L
di Py) ” ,
miom. > (300(1) "% () (unten)
where
1, u =0,
k — 3, u=1,
k}‘) 4 3 2

Chu = 21k*+175k 1;:851@ +1984k—3744 uw=2,
(k—6)(k—17) + (k—1)(k—10)(k*— 2Ok3+193k2—1250k+3912) w=3

2 1344
(k—=1)(k 38)(/f 1) u = 4.
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Remark 4.14. Let d(k) be as in Theorem and let w(d(k)) be as in the proof
of Theorem By an elementary computation, we can show that d(k) > 3 for
any k > 6. If d > d(k) + k — 1, then d > k, min{k,d} = min{k,d — 1} = k and
25:1 (Z) =28 — 1. If w is a weight vector with degw = k — 1, then deg((k —
D4R =tw) = (k — 1)(2") — 1), dim QPs—1((k — 1)|?P 1 |w) = dim QPy_1(w),
dim QPy_1(w(d(k))) > 0 and (min?k,d}) =1 < 2¥ — 1. According to Theorem

we have

dlm(QPk)n = (Qk — 1) dim(QPk_l)(k_l)(Qd(k)_l)

> -1 > dimQPei((k - 1)[*®w)

degw=k—1
+ dim QPy_1 (w(d(k)))

>@2F-1) > dimQP(w)+2" -1

degw=k—1
min{k,d—1} k i
di Py .
7 dengkl i QP () ; (u> * <min{k7d}>

This shows that Theorem [I.1] implies Theorem hence it also implies Theorem
E13
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