THE HIT PROBLEM FOR THE POLYNOMIAL ALGEBRA IN CERTAIN DEGREES

NGUYỄN SUM

Abstract

Let $P_{k}:=\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial algebra over the prime field of two elements, \mathbb{F}_{2}, in k variables $x_{1}, x_{2}, \ldots, x_{k}$, each of degree 1 .

We study the hit problem, set up by Frank Peterson, of finding a minimal set of generators for P_{k} as a module over the mod-2 Steenrod algebra. In this paper, we extend our results in [10] on the hit problem in degree $(k-1)\left(2^{d}-1\right)$ with $k \geqslant 6$.

1. Introduction

Let P_{k} be the graded polynomial algebra $\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$, with the degree of each x_{i} being 1. This algebra arises as the cohomology with coefficients in \mathbb{F}_{2} of an elementary abelian 2-group of rank k. Then, P_{k} is a module over the mod2 Steenrod algebra, \mathcal{A}. The action of \mathcal{A} on P_{k} is determined by the elementary properties of the Steenrod operations $S q^{i}$ and subject to the Cartan formula (see Steenrod and Epstein [14]).

The Peterson hit problem in algebraic topology asks for a minimal generating set for the polynomial algebra P_{k} as a module over the Steenrod algebra. Equivalently, we want to find a vector space basis for $Q P_{k}:=P_{k} / \mathcal{A}^{+} P_{k}=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k}$ in each degree, where \mathcal{A}^{+}is the augmentation ideal of \mathcal{A}.

The vector space $Q P_{k}$ was explicitly calculated by Peterson [9] for $k=1,2$, by Kameko [4] for $k=3$, and by us [15] for $k=4$. Recently, the hit problem and it's applications to representations of general linear groups have been presented in the books of Walker and Wood [18, 19 .

From the results of Wood [20] and Kameko [4], the hit problem is reduced to the case of degree n of the form

$$
\begin{equation*}
n=s\left(2^{d}-1\right)+2^{d} m \tag{1.1}
\end{equation*}
$$

where s, d, m are certain non-negative integers, $1 \leqslant s<k$ and $\mu(m)<s$. Here, by $\mu(m)$ one means the smallest number r for which it is possible to write $m=$ $\sum_{1 \leqslant i \leqslant r}\left(2^{u_{i}}-1\right)$ with $u_{i}>0$. For $s=k-1$ and $m>0$, the problem was studied by Crabb and Hubbuck [2], Nam [8], Repka and Selick [12], Walker and Wood [17] and the present author [15]. For $s=k-1$ and $m=0$, it is partially studied by Mothebe [5] 6] and by Phúc and Sum [10, 11]. In this case, the problem was explicitly calculated for $k \leqslant 5$.

[^0]In this paper, we extend our results in [10] on the hit problem in degree n of the form (1.1) with $s=k-1, m=0, k \geqslant 6$ and $d \geqslant 2$.

Denote by $\left(Q P_{k}\right)_{n}$ the subspace of $Q P_{k}$ consisting of the classes represented by the homogeneous polynomials of degree n in P_{k}. Carlisle and Wood showed in [1] that the dimension of the vector space $\left(Q P_{k}\right)_{n}$ is uniformly bounded by a number depended only on k. Moreover, base on our results in [15), we can show that for d big enough, this dimension does not depend on d.

For a positive integer a, denote by $\alpha(a)$ the number of ones in dyadic expansion of a and by $\zeta(a)$ the greatest integer u such that a is divisible by 2^{u}. That means $a=2^{\zeta(a)} b$ with b an odd integer.

Theorem 1.1. Let $n=(k-1)\left(2^{d}-1\right)$ with d a positive integer and let $d(k)=$ $k-1-\alpha(k-1)-\zeta(k-1)$. If $d \geqslant d(k)+k-1$ and $k \geqslant 4$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{(k-1)\left(2^{d(k)}-1\right)}
$$

For $k=4$, we have $d(4)=1, \operatorname{dim}\left(Q P_{3}\right)_{3}=7$. Hence, by Theorrem 1.1.

$$
\left.\operatorname{dim}\left(Q P_{4}\right)_{3\left(2^{d}-1\right)}=\left(2^{4}-1\right) \times 7=105, \text { for all } d \geqslant 4,(\text { see Sum } 15]\right)
$$

For $k=5$, we have $d(5)=1$, $\operatorname{dim}\left(Q P_{4}\right)_{4}=21$. Hence, $\operatorname{dim}\left(Q P_{5}\right)_{4\left(2^{d}-1\right)}=\left(2^{5}-\right.$ 1) $\times 21=651$ for all $d \geqslant 5$, (see Phúc and Sum [11]). For $k=6$, we have $d(6)=3$, and $5\left(2^{d(6)}-1\right)=35$.

Proposition 1.2 (Hưng [3]). We have $\operatorname{dim}\left(Q P_{5}\right)_{35}=1117$.
Hưng proved this result in [3] by using a computer computation. However, the detailed proof were unpublished at the time of the writing. We have also proved this proposition by using Kameko's method in 4. However, the proof is a hard work. It will be published in detail elsewhere.

Combining Theorem 1.1 and Proposition 1.2 we obtain the following.
Corollary 1.3. Let $n=5\left(2^{d}-1\right)$ with d a positive integer. If $d \geqslant 8$, then

$$
\operatorname{dim}\left(Q P_{6}\right)_{n}=\left(2^{6}-1\right) \times 1117=70371
$$

For any $k \geqslant 7$ and $d \geqslant 2$, we extend our result in [10] on a lower bound for $\operatorname{dim}\left(Q P_{k}\right)_{n}$.

Let ω be a weight vector of degree $\operatorname{deg} \omega=m$ and $Q P_{k}(\omega)$ be the quotient of $\left(Q P_{k}\right)_{m}$ associated with ω (see Section 2) We prove the following.

Theorem 1.4. Let $n=(k-1)\left(2^{d}-1\right)$ with d a positive integer. If $d \geqslant 2$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}>\left(\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)\right) \sum_{u=1}^{\min \{k, d-1\}}\binom{k}{u}+\binom{k}{\min \{k, d\}} .
$$

By explicitly computing the space $Q P_{k-1}(\omega)$ for some ω we see that this result implies our result in [10, hence it is also implies Mothebe's result in [5, 6].

In Section 2 we recall some needed information on admissible monomials in P_{k} and Singer's criterion on hit monomials. The proofs of the main results will be presented in Section 3. At the end of Section 3. we show that if $d \geqslant d(k)+k-1$, then Theorem 1.1 implies Theorem 4.13

2. Preliminaries

In this section, we recall some results on the admissible monomials and the hit monomials from Kameko [4], Mothebe and Uys [7] and Singer [13], which will be used in the next section.

Notation 2.1. We denote $\mathbb{N}_{k}=\{1,2, \ldots, k\}$ and

$$
X_{\mathbb{J}}=X_{\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}}=\prod_{j \in \mathbb{N}_{k} \backslash \mathbb{J}} x_{j}, \quad \mathbb{J}=\left\{j_{1}, j_{2}, \ldots, j_{s}\right\} \subset \mathbb{N}_{k},
$$

In particular, $X_{\mathbb{N}_{k}}=1, X_{\emptyset}=x_{1} x_{2} \ldots x_{k}, X_{j}=x_{1} \ldots \hat{x}_{j} \ldots x_{k}, 1 \leqslant j \leqslant k$, and $X:=X_{k} \in P_{k-1}$.

Let $\alpha_{i}(a)$ denote the i-th coefficient in dyadic expansion of a non-negative integer a. That means $a=\alpha_{0}(a) 2^{0}+\alpha_{1}(a) 2^{1}+\alpha_{2}(a) 2^{2}+\ldots$, for $\alpha_{i}(a)=0$ or 1 with $i \geqslant 0$.

For a monomial $x \in P_{k}$, we write $x=x_{1}^{\nu_{1}(x)} x_{2}^{\nu_{2}(x)} \ldots x_{k}^{\nu_{k}(x)}$. Set $\mathbb{J}_{t}(x)=\{j \in$ $\left.\mathbb{N}_{k}: \alpha_{t}\left(\nu_{j}(x)\right)=0\right\}$, for $t \geqslant 0$. Then, we have $x=\prod_{t \geqslant 0} X_{\mathbb{J}_{t}(x)}^{2^{t}}$.

Definition 2.2. A weight vector ω is a sequence of non-negative integers $\left(\omega_{1}, \omega_{2}, \ldots\right.$, $\left.\omega_{i}, \ldots\right)$ such that $\omega_{i}=0$ for $i \gg 0$. For a monomial x in P_{k}, define two sequences associated with x by

$$
\omega(x)=\left(\omega_{1}(x), \omega_{2}(x), \ldots, \omega_{i}(x), \ldots\right), \quad \sigma(x)=\left(\nu_{1}(x), \nu_{2}(x), \ldots, \nu_{k}(x)\right)
$$

where $\omega_{i}(x)=\sum_{1 \leqslant j \leqslant k} \alpha_{i-1}\left(\nu_{j}(x)\right)=\operatorname{deg} X_{\mathbb{J}_{i-1}(x)}, i \geqslant 1$. The sequences $\omega(x)$ and $\sigma(x)$ are respectively called the weight vector and the exponent vector of x.

The sets of the weight vectors and the exponent vectors are given the left lexicographical order. For weight vectors $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ and $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$, we define $\operatorname{deg} \omega=\sum_{i>0} 2^{i-1} \omega_{i}$, the length $\ell(\omega)=\max \left\{i: \omega_{i}>0\right\}$, the concatenation $\omega \mid \eta=\left(\omega_{1}, \ldots, \omega_{r}, \eta_{1}, \eta_{2}, \ldots\right)$ if $\ell(\omega)=r$ and $\left.(a)\right|^{b}=(a)|(a)| \ldots \mid(a),(b$ times of (a)'s), where a, b are positive integers. Denote by $P_{k}(\omega)$ the subspace of P_{k} spanned by monomials y such that $\operatorname{deg} y=\operatorname{deg} \omega$ and $\omega(y) \leqslant \omega$, and by $P_{k}^{-}(\omega)$ the subspace of $P_{k}(\omega)$ spanned by monomials y such that $\omega(y)<\omega$.

Definition 2.3. Let ω be a weight vector and f, g two polynomials of the same degree in P_{k}.
i) $f \equiv g$ if and only if $f-g \in \mathcal{A}^{+} P_{k}$. If $f \equiv 0$, then f is said to be hit.
ii) $f \equiv_{\omega} g$ if and only if $f-g \in \mathcal{A}^{+} P_{k}+P_{k}^{-}(\omega)$.

Obviously, the relations \equiv and \equiv_{ω} are equivalence ones. Denote by $Q P_{k}(\omega)$ the quotient of $P_{k}(\omega)$ by the equivalence relation \equiv_{ω}. Then, we have $\left(Q P_{k}\right)_{n} \cong$ $\bigoplus_{\operatorname{deg} \omega=n} Q P_{k}(\omega)$ (see Walker and Wood [18]).

Let $G L_{n}$ be the general linear group over the field \mathbb{F}_{2}. This group acts naturally on P_{n} by matrix substitution. Since the two actions of \mathcal{A} and $G L_{n}$ upon P_{n} commute with each other, there is an inherited action of $G L_{n}$ on $Q P_{n}$.

We note that the weight vector of a monomial is invariant under the permutation of the generators x_{i}, hence $Q P_{k}(\omega)$ is an Σ_{k}-module, where $\Sigma_{k} \subset G L_{k}$ is the symmetric group. Furthermore, we have the following.

Proposition 2.4 (See Sum [16]). For any weight vector ω, the space $Q P_{k}(\omega)$ is an $G L_{k}$-module.

For a polynomial $f \in P_{k}(\omega)$, we denote by $[f]_{\omega}$ the class in $Q P_{k}(\omega)$ represented by f. Denote by $|S|$ the cardinal of a set S.

Definition 2.5. Let x, y be monomials of the same degree in P_{k}. We say that $x<y$ if and only if one of the following holds:
i) $\omega(x)<\omega(y)$;
ii) $\omega(x)=\omega(y)$ and $\sigma(x)<\sigma(y)$.

Definition 2.6. A monomial x is said to be inadmissible if there exist monomials $y_{1}, y_{2}, \ldots, y_{m}$ such that $y_{t}<x$ for $t=1,2, \ldots, m$ and $x-\sum_{t=1}^{m} y_{t} \in \mathcal{A}^{+} P_{k}$.

A monomial x is said to be admissible if it is not inadmissible.
Obviously, the set of all admissible monomials of degree n in P_{k} is a minimal set of \mathcal{A}-generators for P_{k} in degree n.

For $1 \leqslant i \leqslant k$, define a homomorphism $f_{i}: P_{k-1} \rightarrow P_{k}$ of \mathcal{A}-algebras by substituting $f_{i}\left(x_{j}\right)=x_{j}$ for $1 \leqslant j<i$ and $f_{i}\left(x_{j}\right)=x_{j+1}$ for $i \leqslant j<k$.

Proposition 2.7 (See Mothebe and Uys [7]). Let i, d be positive integers such that $1 \leqslant i \leqslant k$. If x is an admissible monomial in P_{k-1} then $x_{i}^{2^{d}-1} f_{i}(x)$ is also an admissible monomial in P_{k}.

Now, we recall Singer's criterion on the hit monomials in P_{k}.
Definition 2.8. A monomial z in P_{k} is called a spike if $\nu_{j}(z)=2^{d_{j}}-1$ for d_{j} a non-negative integer and $j=1,2, \ldots, k$. If z is a spike with $d_{1}>d_{2}>\ldots>d_{r-1} \geqslant$ $d_{r}>0$ and $d_{j}=0$ for $j>r$, then it is called a minimal spike.

In [13], Singer showed that if $\mu(n) \leqslant k$, then there exists a unique minimal spike of degree n in P_{k}.

Theorem 2.9 (See Singer [13]). Suppose $x \in P_{k}$ is a monomial of degree n, where $\mu(n) \leqslant k$. Let z be the minimal spike of degree n. If $\omega(x)<\omega(z)$, then x is hit.

This result implies the one of Wood [20.
Theorem 2.10 (See Wood [20]). Let n be a positive integer. If $\mu(n)>k$, then $\left(Q P_{k}\right)_{n}=0$.

For $1 \leqslant r \leqslant k$, set $P_{r}^{+}=\left\langle\left\{x=x_{1}^{\nu_{1}(x)} x_{2}^{\nu_{2}(x)} \ldots x_{r}^{\nu_{r}(x)}: \nu_{i}(x)>0,1 \leqslant i \leqslant r\right\}\right\rangle$. Then, P_{r}^{+}is an \mathcal{A}-submodule of P_{k}. For $J=\left(j_{1}, j_{2}, \ldots, j_{r}\right): 1 \leqslant j_{1}<\ldots<$ $j_{r} \leqslant k$, we define a monomorphism $\theta_{J}: P_{r} \rightarrow P_{k}$ of \mathcal{A}-algebras by substituting $\theta_{J}\left(x_{t}\right)=x_{j_{t}}$ for $1 \leqslant t \leqslant r$. It is easy to see that, for any weight vector ω, $Q \theta_{J}\left(P_{r}^{+}\right)(\omega) \cong Q P_{r}^{+}(\omega)$. So, by a simple computation using Theorem 2.10 we get the following.

Proposition 2.11 (See Walker and Wood [18]). For a weight vector ω of degree n, we have a direct summand decomposition of the \mathbb{F}_{2}-vector spaces

$$
Q P_{k}(\omega)=\bigoplus_{\mu(n) \leqslant r \leqslant k \ell(J)=r} \bigoplus_{\ell} Q \theta_{J}\left(P_{r}^{+}\right)(\omega)
$$

where $\ell(J)$ is the length of J. Consequently

$$
\operatorname{dim} Q P_{k}(\omega)=\sum_{\mu(n) \leqslant r \leqslant k}\binom{k}{r} \operatorname{dim} Q P_{r}^{+}(\omega)
$$

3. Proofs of main results

First of all, we recall a construction for \mathcal{A}-generators of P_{k}. Denote

$$
\mathcal{N}_{k}=\left\{(i ; I) ; I=\left(i_{1}, i_{2}, \ldots, i_{r}\right), 1 \leqslant i<i_{1}<\ldots<i_{r} \leqslant k, 0 \leqslant r<k\right\} .
$$

Definition 3.1 (See Sum [15]). Let $(i ; I) \in \mathcal{N}_{k}, x_{(I, u)}=x_{i_{u}}^{2^{r-1}+\ldots+2^{r-u}} \prod_{u<t \leqslant r} x_{i_{t}}^{2^{r-t}}$ for $r=\ell(I)>0$, For any monomial x in P_{k-1}, we define the monomial $\phi_{(i ; I)}(x)$ in P_{k} by setting

$$
\phi_{(i ; I)}(x)= \begin{cases}f_{i}(x), & \text { if } r=\ell(I)=0, \\ \left(x_{i}^{2^{r}-1} f_{i}(x)\right) / x_{(I, u)}, & \text { if there exists } 1 \leqslant u \leqslant r \text { such that } \\ & \nu_{i_{1}-1}(x)=\ldots=\nu_{i_{(u-1)}-1}(x)=2^{r}-1, \\ & \nu_{i_{u}-1}(x)>2^{r}-1, \\ & \alpha_{r-t}\left(\nu_{i_{u}-1}(x)\right)=1, \forall t, 1 \leqslant t \leqslant u, \\ & \alpha_{r-t}\left(\nu_{i_{t}-1}(x)\right)=1, \forall t, u<t \leqslant r, \\ 0, & \text { otherwise. }\end{cases}
$$

The following is needed for the proof of Theorem 1.1.
Theorem 3.2 (See Sum [15, Proposition 3.3]). Let $n=\sum_{i=1}^{k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}:=d \geqslant k-1 \geqslant 3$, and let $m=\sum_{i=1}^{k-2}\left(2^{d_{i}-d_{k-1}}-1\right)$. If $B_{k-1}(m)$ is a minimal set of generators for \mathcal{A}-module P_{k-1} in degree m, then

$$
B_{k}(n)=\bigcup_{(i ; I) \in \mathcal{N}_{k}}\left\{\phi_{(i ; I)}\left(X_{k}^{2^{d}-1} z^{2^{d}}\right): z \in B_{k-1}(m)\right\}
$$

is also a minimal set of generators for \mathcal{A}-module P_{k} in degree n. Consequently $\operatorname{dim}\left(Q P_{k}\right)_{n}=\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{m}$.

Let n, m be as is Theorem 3.2 Walker and Wood [19] defined a duplication map $\delta:\left(Q P_{k}\right)_{n} \rightarrow\left(Q P_{k}\right)_{2 n+k-1}$. It is induced by a linear map $\bar{\delta}:\left(P_{k}\right)_{n} \rightarrow\left(P_{k}\right)_{2 n+k-1}$ determined on monomials by $\bar{\delta}(x)=X_{\mathbb{J}_{0}(x)} x^{2}$ if $\omega_{1}(x)=k-1$ and $\bar{\delta}(x)=0$ if $\omega_{1}(x)<k-1$. They have proved in [19, Theorem 1.3] that if $d_{k-1} \geqslant 2$, then δ is an epimorphism.

According to Theorem 3.2 if $d_{k-1} \geqslant k-1 \geqslant 3$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\operatorname{dim}\left(Q P_{k}\right)_{2 n+k-1}=\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{m}
$$

Hence, one gets the following.
Corollary 3.3. Let $k \geqslant 4$ and n be as is Theorem 3.2. If $d_{k-1} \geqslant k-1$, then the duplication map $\delta:\left(Q P_{k}\right)_{n} \rightarrow\left(Q P_{k}\right)_{2 n+k-1}$ is an isomorphism.

We can now prove Theorem 1.1.
Proof of Theorem 1.1. Set $s=\alpha(k-1)$. Then

$$
k-1=2^{c_{1}}+2^{c_{2}}+\ldots+2^{c_{s-1}}+2^{c_{s}}
$$

where $c_{1}>c_{2}>\ldots>c_{s-1}>c_{s}=\zeta(k-1) \geqslant 0$. Then, we have

$$
\begin{aligned}
n & =(k-1)\left(2^{d}-1\right)=2^{d+c_{1}}+2^{d+c_{2}}+\ldots+2^{d+c_{s-1}}+2^{d+c_{s}}-k+1 \\
& =\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)
\end{aligned}
$$

where

$$
d_{i}= \begin{cases}d+c_{i}, & 1 \leqslant i<s \\ d+c_{s}-i+s-1, & s \leqslant i \leqslant k-2 \\ d_{k-2}=d+c_{s}-k+s+1=d-d(k), & i=k-1\end{cases}
$$

It is easy to see that $d_{1}>d_{2}>\ldots>d_{k-2}=d_{k-1}=d-d(k)$. If $d \geqslant d(k)+k-1$ and $k \geqslant 4$, then $d_{k-1}=d-d(k) \geqslant k-1 \geqslant 3$. According to Theorem 3.2 we have

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{m}
$$

where

$$
\begin{aligned}
m & =\sum_{1 \leqslant i \leqslant k-2}\left(2^{d_{i}-d_{k-1}}-1\right) \\
& =2^{c_{1}+d(k)}+2^{c_{2}+d(k)}+\ldots+2^{c_{s}+d(k)}-k+1 \\
& =(k-1)\left(2^{d(k)}-1\right)
\end{aligned}
$$

The theorem is proved.
For $1 \leqslant q \leqslant k$, we set $\mathcal{N}_{k, q}=\left\{(i ; I) \in \mathcal{N}_{k}: \ell(I)<q\right\}$, then $\left|\mathcal{N}_{k, q}\right|=\sum_{u=1}^{q}\binom{k}{u}$.
Proposition 3.4. Let b be a positive integer. If ω is a weight vector of degree m with $\mu(m) \leqslant k-1$, then the set

$$
\bigcup_{(i ; I) \in \mathcal{N}_{k, q}}\left\{\left[\phi_{(i ; I)}\left(X^{2^{b}-1} z^{2^{b}}\right)\right]_{\left.(k-1)\right|^{b} \mid \omega}: z \in B_{k-1}(\omega)\right\}
$$

is linearly independent in $Q P_{k}\left(\left.(k-1)\right|^{b} \mid \omega\right)$, where $B_{k-1}(\omega)$ is the set of all the admissible monomials of weight vector ω in P_{k-1} and $q=\min \{k, b\}$. Consequently

$$
\operatorname{dim} Q P_{k}\left(\left.(k-1)\right|^{b} \mid \omega\right) \geqslant \operatorname{dim}\left(Q P_{k-1}(\omega)\right) \sum_{u=1}^{q}\binom{k}{u}
$$

We recall a result in our work [10] which is used for the proof of the proposition.
Definition 3.5. For any $(i ; I) \in \mathcal{N}_{k}$, we define the homomorphism $p_{(i ; I)}: P_{k} \rightarrow$ P_{k-1} of algebras by substituting

$$
p_{(i ; I)}\left(x_{j}\right)= \begin{cases}x_{j}, & \text { if } 1 \leqslant j<i \\ \sum_{s \in I} x_{s-1}, & \text { if } j=i \\ x_{j-1}, & \text { if } i<j \leqslant k\end{cases}
$$

Then, $p_{(i ; I)}$ is a homomorphism of \mathcal{A}-modules. In particular, for $I=\emptyset, p_{(i ; \emptyset)}\left(x_{i}\right)=0$ and $p_{(i ; I)}\left(f_{i}(y)\right)=y$ for any $y \in P_{k-1}$.

Lemma 3.6 (See Phúc and Sum [10]). If x is a monomial in P_{k}, then $p_{(i ; I)}(x) \in$ $P_{k-1}(\omega(x))$. So, $p_{(i ; I)}$ passes to a homomorphism from $Q P_{k}(\omega)$ to $Q P_{k-1}(\omega)$ for any weight vector ω.

Proof of Proposition 3.4. Suppose there is a linear relation

$$
S:=\sum_{((i ; I), z) \in \mathcal{N}_{k, q} \times B_{k}(\omega)} \gamma_{(i ; I), z} \phi_{(i ; I)}\left(X^{2^{d-1}-1} z^{2^{d-1}}\right) \equiv_{\left.(k-1)\right|^{b} \mid \omega} 0
$$

where $\gamma_{(i ; I), z} \in \mathbb{F}_{2}$. We prove $\gamma_{(j ; J), z}=0$ for all $(j ; J) \in \mathcal{N}_{k, q}$ and $z \in B_{k}(\omega)$. We prove this by induction on $m=\ell(J)$. Let $(i ; I) \in \mathcal{N}_{k, q}$. Since $r=\ell(I)<$
$q=\min \{k, b\}$ and $x_{i}^{2^{r}-1} f_{i}\left(X^{2^{d-1}-1}\right)$ is divisible by $x_{(I, 1)}$, using Definition 3.1, we easily obtain

$$
\phi_{(i ; I)}\left(X^{2^{b}-1} z^{2^{b}}\right)=\phi_{(i ; I)}\left(X^{2^{d-1}-1}\right) f_{i}\left(z^{2^{d-1}}\right)
$$

It is easy to see that if $g \in P_{k-1}^{-}\left(\left.(k-1)\right|^{b}\right)$, then $g z^{2^{b}} \in P_{k-1}^{-}\left(\left.(k-1)\right|^{b} \mid \omega\right)$; if $(i ; I) \subset(j ; \emptyset)$, then $(i ; I)=(j ; \emptyset)$; by Lemma 3.6 $p_{(j ; \emptyset)}(\mathcal{S}) \equiv_{\left.(k-1)\right|^{b} \mid \omega} 0$. Hence, using Lemma 3.7 in [15], we obtain

$$
p_{(j, \emptyset)}(\mathcal{S}) \equiv{ }_{\left.(k-1)\right|^{b} \mid \omega} \sum_{z \in C_{k}} \gamma_{(j ; \emptyset), z} X^{2^{d-1}-1} z^{2^{d-1}} \equiv{ }_{\left.(k-1)\right|^{b} \mid \omega} 0
$$

Since z is admissible in $P_{k-1}, X^{2^{d-1}-1} z^{2^{d-1}}$ is also admissible in P_{k-1}. Hence, the last relation implies $\gamma_{(j ; \emptyset), z}=0$ for all $z \in B_{k}(\omega)$.

Suppose $0<m<q$ and $\gamma_{(i ; I), z}=0$ for all $z \in B_{k}(\omega)$ and $(i ; I) \in \mathcal{N}_{k, q}$ with $\ell(I)<$ m. Let $(j ; J) \in \mathcal{N}_{k, q}$ with $\ell(J)=m$. According to Lemma 3.6 $p_{(j ; J)}(\mathcal{S}) \equiv{ }_{\left.(k-1)\right|^{b} \mid \omega}$ 0 ; if $(i ; I) \in \mathcal{N}_{k, q}, \ell(I) \geqslant m$ and $(i ; I) \subset(j ; J)$, then $(i ; I)=(j ; J)$. Hence, using Lemma 3.7 in [15] and the inductive hypothesis, we obtain

$$
p_{(j, J)}(\mathcal{S}) \equiv{ }_{\left.(k-1)\right|^{b} \mid \omega} \sum_{z \in B_{k}(\omega)} \gamma_{(j ; J), z} X^{2^{d-1}-1} z^{2^{d-1}} \equiv_{\left.(k-1)\right|^{b} \mid \omega} 0
$$

From this equality, one gets $\gamma_{(j ; J), z}=0$ for all $z \in B_{k}(\omega)$. The proposition is proved.

Proof of Theorem 1.4 Set $\omega(d)=\left.(k-1)\right|^{d-2} \mid(k-3, k-4,2)$, we have $\operatorname{deg}(\omega(d))=$ $(k-1)\left(2^{d}-1\right)$. Observe that for any $k \geqslant 7$, the monomials

$$
z=x_{1}^{2^{d+1}-1} x_{2}^{2^{d+1}-1} x_{3}^{2^{d}-1} \ldots x_{k-4}^{2^{d}-1} x_{k-3}^{2^{d-1}-1} x_{k-2}^{2^{d-2}-1} x_{k-1}^{2^{d-2}-1} \in P_{k-1} \subset P_{k}
$$

and $f_{1}(z) \in P_{k}$ are the spikes of the same weight vector $\omega(d)$, hence we get $\operatorname{dim} Q P_{k}(\omega(d)) \geqslant 2$. If ω is a weight vector of degree $k-1$, then $\operatorname{deg}\left(\left.(k-1)\right|^{d-1} \mid \omega\right)=$ $(k-1)\left(2^{d}-1\right)$. If $d>k$, then $\min \{k, d-1\}=\min \{k, d\}=k$ and $\binom{k}{\min \{k, d\}}=1<$ $\operatorname{dim} Q P_{k}(\omega(d))$. Hence, from the above equalities and Proposition 3.4, we get

$$
\begin{aligned}
\operatorname{dim}\left(Q P_{k}\right)_{n} & =\sum_{\operatorname{deg} \eta=n} \operatorname{dim} Q P_{k}(\eta) \\
& \geqslant \sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k}\left(\left.(k-1)\right|^{d-1} \mid \omega\right)+\operatorname{dim} Q P_{k}(\omega(d)) \\
& >\left(\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)\right) \sum_{u=1}^{k}\binom{k}{u}+1 \\
& =\left(\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)\right) \sum_{u=1}^{\min \{k, d-1\}}\binom{k}{u}+\binom{k}{\min \{k, d\}} .
\end{aligned}
$$

Suppose $d \leqslant k$, then $\min \{k, d-1\}=d-1, \min \{k, d\}=d$ and $\left.(k-1)\right|^{d-1} \mid(k-1)=$ $\left.(k-1)\right|^{d}$. According to Phúc and Sum [10, Proposition 3.7], we have

$$
\operatorname{dim} Q P_{k}\left(\left.(k-1)\right|^{d}\right)=\sum_{t=1}^{d}\binom{k}{t}=\sum_{t=1}^{d-1}\binom{k}{t}+\binom{k}{d}
$$

Since $\operatorname{dim} Q P_{k}(\omega(d))>0$ and $\operatorname{dim} Q P_{k-1}((k-1))=1$, combining the above equalities and Proposition 3.4 gives

$$
\begin{aligned}
\operatorname{dim}\left(Q P_{k}\right)_{n} & \geqslant \sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k}\left(\left.(k-1)\right|^{d-1} \mid \omega\right)+\operatorname{dim} Q P_{k}(\omega(d)) \\
& >\left(\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)\right) \sum_{u=1}^{d-1}\binom{k}{u}+\binom{k}{d}
\end{aligned}
$$

The theorem is proved.

4. Some applications

Base on Theorem 1.4, we can extend our results in [10 by explicitly computing the spaces $Q P_{k-1}(\omega)$ with some weight vectors ω of degree $k-1$.

Consider the weight vectors $(k-1-2 t-4 \varepsilon, t, \varepsilon)$ with $\epsilon=0,1$ and $k-1-2 t-4 \varepsilon \geqslant t$. We recall the following result in our work [10] for the case $t=1, \varepsilon=0$.

Proposition 4.1 (Phúc and Sum [10]). For any $k \geqslant 4$,

$$
\operatorname{dim} Q P_{k-1}(k-3,1)=(k-3)\binom{k}{2}
$$

Now we compute $Q P_{k-1}(k-5,2)$ for the case $t=2, \varepsilon=0$.
Proposition 4.2. For $k \geqslant 7$, $\operatorname{dim} Q P_{k-1}(k-5,2)=\frac{(k-1)(k-6)}{2}\binom{k}{4}$.
Proof. Observe that $P_{r}^{+}(k-5,2)=0$ for either $r<k-5$ or $r>k-3$. We denote

$$
\begin{aligned}
\tilde{B}_{(k-5,2)}^{+} & =\left\{x_{1} x_{2} \ldots x_{k-5} x_{i}^{2} x_{j}^{2}: 1 \leqslant i<j \leqslant k-5\right\}, \\
\tilde{B}_{(k-4,2)}^{+} & =\left\{x_{1} \ldots x_{i}^{2} \ldots x_{k-4} x_{j}^{2}: 1 \leqslant i, j \leqslant k-4,2 \leqslant i \neq j\right\} \backslash\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{k-4}\right\}, \\
\tilde{B}_{(k-3,2)}^{+} & =\left\{x_{1} \ldots x_{i}^{2} \ldots x_{j}^{2} \ldots x_{k-3}: 2 \leqslant i<j \leqslant k-3\right\} \backslash\left\{x_{1} x_{2}^{2} x_{3}^{2} x_{4} \ldots x_{k-3}\right\} .
\end{aligned}
$$

It is easy to see that $\tilde{B}_{(r, 2)}^{+} \subset P_{r}^{+}(k-5,2)$ for $k-5 \leqslant r \leqslant k-3$.
If $x \in \tilde{B}_{(k-5,2)}^{+}$, then x is a spike. According to Phúc and Sum [10, Lemma 2.7], x is admissible. Obviously, if x is a monomial in P_{k-5}^{+}, then $x \in \tilde{B}_{(k-5,2)}^{+}$. Hence, $\tilde{B}_{(k-5,2)}^{+}$is the set of all the admissible monomials in $P_{k-5}^{+}(k-5,2)$. If x is a monomial in $P_{k-4}^{+}(k-5,2)$, then $x=x_{1} \ldots x_{i}^{2} \ldots x_{k-4} x_{j}^{2}$ with $1 \leqslant i, j \leqslant k-4, i \neq j$. If $i=1$ then

$$
x=\sum_{2 \leqslant t \leqslant k-4} x_{1} \ldots x_{t}^{2} \ldots x_{k-4} x_{j}^{2}+S q^{1}\left(x_{1} \ldots x_{k-4} x_{j}^{2}\right) .
$$

Hence, x is inadmissible. If $j=1, i=2$, then

$$
x=\sum_{3 \leqslant t \leqslant k-4} x_{1}^{3} x_{2} \ldots x_{t}^{2} \ldots x_{k-4}+x_{1}^{4} x_{2} \ldots x_{k-4}+S q^{1}\left(x_{1}^{3} x_{2} \ldots x_{k-4}\right)
$$

This equality shows that x is inadmissible. If $i>1$ and $x \neq x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{k-4}$, then x is of the form $x=x_{t} x_{i}^{2}\left(f_{t} f_{i-1}\right)(z)$ with $1 \leqslant t<i \leqslant k-4$ and z a spike in P_{k-6}. According to Peterson [9], $x_{t} x_{i}^{2}$ is admissible. So, by Proposition 2.7, x is also admissible. Hence, $\tilde{B}_{(k-4,2)}^{+}$is the set of all the admissible monomials in $P_{k-4}^{+}(k-5,2)$.

If x is a monomial in $P_{k-3}^{+}(k-5,2)$, then $x=x_{1} \ldots x_{i}^{2} \ldots x_{j}^{2} \ldots x_{k-3}$ with $1 \leqslant$ $i<j \leqslant k-3$. If $i=1$, then

$$
x=\sum_{2 \leqslant t \leqslant k-3, t \neq j} x_{1} \ldots x_{t}^{2} \ldots x_{j}^{2} \ldots x_{k-3}+S q^{1}\left(x_{1} \ldots x_{j}^{2} \ldots x_{k-3}\right)
$$

Hence, x is inadmissible. If $x=x_{1} x_{2}^{2} x_{3}^{2} x_{4} \ldots x_{k-3}$, then

$$
\begin{aligned}
& x=\sum_{2 \leqslant s<t \leqslant k-3,(s, t) \neq(2,3)} x_{1} \ldots x_{s}^{2} \ldots x_{t}^{2} \ldots x_{k-3} \\
&+S q^{1}\left(x_{1}^{2} x_{2} \ldots x_{k-3}\right)+S q^{2}\left(x_{1} x_{2} \ldots x_{k-3}\right)
\end{aligned}
$$

So, x is inadmissible. If $i>1$ and $x \neq x_{1} x_{2}^{2} x_{3}^{2} x_{4} \ldots x_{k-3}$, then the monomial x is of the form $x=y\left(f_{1} f_{s-1} f_{t-2} f_{u-3}\right)(z)$ with $z=x_{1} \ldots x_{k-7} \in P_{k-7}, 1<s<t<$ $u \leqslant k-3$ and either $y=x_{1} x_{s}^{2} x_{t} x_{u}^{2}$ or $y=x_{1} x_{s} x_{t}^{2} x_{u}^{2}$. We have proved in [15] that y is admissible. Hence, using Proposition 2.7, x is also admissible.

Thus, we have proved that $\tilde{B}_{(r, 2)}^{+}$is the set of all the admissible monomials in $P_{r}^{+}(k-5,2)$, hence $\operatorname{dim} Q P_{r}^{+}(k-5,2)=\left|\tilde{B}_{(r, 2)}^{+}\right|$for $k-5 \leqslant r \leqslant k-3$. By a direct computation, we obtain $\left|\tilde{B}_{(k-5,2)}^{+}\right|=\binom{k-5}{2},\left|\tilde{B}_{(k-4,2)}^{+}\right|=(k-5)^{2}-1$ and $\left|\tilde{B}_{(k-3,2)}^{+}\right|=\binom{k-4}{2}-1$. Hence, using Proposition 2.11, we get

$$
\begin{aligned}
\operatorname{dim} Q P_{k-1}(k-5,2) & =\sum_{k-5 \leqslant r \leqslant k-3}\binom{k-1}{r} \operatorname{dim} Q P_{r}^{+}(k-5,2) \\
& =\frac{(k-1)(k-6)}{2}\binom{k}{4}
\end{aligned}
$$

The proposition is proved.
By combining Theorem 1.4, Propositions 4.1, 4.2 we obtain a lower bound for $\operatorname{dim}\left(Q P_{k}\right)_{n}$ which extends the one in [10].

Theorem 4.3. Let $n=(k-1)\left(2^{d}-1\right)$ with d a positive integer. If $k \geqslant 7$ and $d \geqslant 2$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}>\sum_{u=1}^{p}\binom{k}{u}+\left((k-3)\binom{k}{2}+\frac{(k-1)(k-6)}{2}\binom{k}{4}\right) \sum_{v=1}^{q}\binom{k}{v}
$$

where $p=\min \{k, d\}$ and $q=\min \{k, d-1\}$.
This result implies the one in our work 10 for $k \geqslant 7$.
Proposition 4.4. If $k \geqslant 9$, then $\operatorname{dim} Q P_{k-1}(k-7,1,1)=\binom{k-6}{2}\binom{k+1}{6}$.
Proof. We observe that $P_{r}^{+}(k-7,1,1)=0$ for either $r<k-7$ or $r>k-5$. Hence, using Proposition 2.11 we have

$$
\operatorname{dim} Q P_{k-1}(k-7,1,1)=\sum_{k-7 \leqslant r \leqslant k-5}\binom{k-1}{r} \operatorname{dim} Q P_{r}^{+}(k-7,1,1)
$$

Suppose that $k \geqslant 9$. Then we set

$$
\begin{aligned}
\bar{B}_{(k-7,1)}^{+}= & \left\{x_{1} x_{2} \ldots x_{k-7} x_{i_{1}}^{2} x_{i_{2}}^{4}: 1 \leqslant i_{1} \leqslant i_{2} \leqslant k-7\right\} \subset P_{k-7}^{+}(k-7,1,1) \\
\bar{B}_{(k-6,1)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{4}: 2 \leqslant i_{1} \leqslant i_{2} \leqslant k-6\right\} \\
& \cup\left\{x_{1} \ldots x_{i_{2}}^{4} \ldots x_{k-6} x_{i_{1}}^{2}: 1 \leqslant i_{1}<i_{2} \leqslant k-6\right\} \subset P_{k-6}^{+}(k-7,1,1) \\
\bar{B}_{(k-5,1)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{4} \ldots x_{k-5}: 2 \leqslant i_{1}<i_{2} \leqslant k-5\right\} \subset P_{k-5}^{+}(k-7,1,1) .
\end{aligned}
$$

Let x be a monomial in $P_{k-7}^{+}(k-7,1,1)$, then $x=x_{1} x_{2} \ldots x_{k-7} x_{i_{1}}^{2} x_{i_{2}}^{4}$ with $1 \leqslant$ $i_{1}, i_{2} \leqslant k-7$. If $i_{1}>i_{2}$, then $x=S q^{2}\left(x_{1} x_{2} \ldots x_{k-7} x_{i_{1}}^{2} x_{i_{2}}^{2}\right)+$ smaller monomials. Hence, x is inadmissible. If $i_{1}=i_{2}$ then x is a spike, hence x is admissible. If $i_{1}<i_{2}$, then $x=x_{i_{1}}^{3} x_{i_{2}}^{5}\left(f_{i_{1}} f_{i_{2}-1}\right)(z)$ with $z=x_{1} \ldots x_{k-9} \in P_{k-9}$. According to Peterson [9], $x_{i_{1}}^{3} x_{i_{2}}^{5}$ is admissible, so using Proposition 2.7, x is also admissible. This means that $\bar{B}_{(k-7,1)}^{+}$is the set of all admissible monomials in $P_{k-7}^{+}(k-7,1,1)$.

Let $x \in P_{k-6}^{+}(k-7,1,1)$, then either $x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{4}$ or $x=x_{1} \ldots x_{i_{2}}^{4}$ $\ldots x_{k-6} x_{i_{1}}^{2}$ with $1 \leqslant i_{1}, i_{2} \leqslant k-6$. If $i_{1}>i_{2}$ and $x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{4}$, then $x=S q^{2}\left(x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{2}\right)+$ smaller monomials; if $i_{1}>i_{2}$ and $x=$ $x_{1} \ldots x_{i_{2}}^{4} \ldots x_{k-6} x_{i_{1}}^{2}$, then $x=S q^{2}\left(x_{1} \ldots x_{i_{2}}^{2} \ldots x_{k-6} x_{i_{1}}^{2}\right)+$ smaller monomials; if $x=x_{1}^{2} x_{2} \ldots x_{k-6} x_{i_{2}}^{4}$, then $x=S q^{1}\left(x_{1} \ldots x_{k-6} x_{i_{2}}^{4}\right)+$ smaller monomials, hence x is inadmissible. If $i_{1}=i_{2}>1$, then $x=x_{1} x_{i_{1}}^{6}\left(f_{1} f_{i_{1}-1}\right)\left(x_{1} \ldots x_{k-8}\right)$. Since $x_{1} x_{i_{1}}^{6}$ is admissible, by Proposition 2.7, x is admissible. If $x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{4}$ with $1<i_{1}<i_{2}$, then

$$
x=x_{1} x_{i_{1}}^{2} x_{i_{2}}^{5}\left(f_{1} f_{i_{1}-1} f_{i_{2}-2}\right)(z)
$$

with $z=x_{1} \ldots x_{k-9}$. According to Kameko [4], $x_{1} x_{i_{1}}^{2} x_{i_{2}}^{5}$ is admissible, so using Proposition 2.7, x is admissible. Suppose $x=x_{1} x_{2} \ldots x_{i_{2}}^{4} \ldots x_{k-6} x_{i_{1}}^{2}$ with $1 \leqslant i_{1}<i_{2}$. If $i_{1}=1, i_{2}=2$, then $x=x_{1}^{3} x_{2}^{4} x_{3}\left(f_{1} f_{1} f_{1}\right)\left(x_{1} \ldots x_{k-9}\right)$, if $i_{1}=$ $1, i_{2}>2$, then $x=x_{1}^{3} x_{2} x_{i_{2}}^{4}\left(f_{1} f_{1} f_{i_{2}-2}\right)\left(x_{1} \ldots x_{k-9}\right)$, if $1<i_{1}<i_{2}$, then $x=$ $x_{1} x_{i_{1}}^{3} x_{i_{2}}^{4}\left(f_{1} f_{i_{1}-1} f_{i_{2}-2}\right)\left(x_{1} \ldots x_{k-9}\right)$. According to Kameko [4], $x_{1}^{3} x_{2}^{4} x_{3}, x_{1}^{3} x_{2} x_{i_{2}}^{4}$, $x_{1} x_{i_{1}}^{3} x_{i_{2}}^{4}$ are admissible. By Proposition 2.7. x is admissible. Thus, we have proved that $\bar{B}_{(k-6,1)}^{+}$is the set of all admissible monomials in $P_{k-6}^{+}(k-7,1,1)$.

Let x be a monomial in $P_{k-5}^{+}(k-7,1,1)$, then $x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{4} \ldots x_{k-5}$ with $1 \leqslant i_{1}<i_{2} \leqslant k-5$. If $i_{1}=1$, then $x=S q^{1}\left(x_{1} \ldots x_{i_{2}}^{4} \ldots x_{k-5}\right)+$ smaller monomials, hence x is inadmissible. If $1<i_{1}$ then $x=x_{1} x_{i_{1}}^{2} x_{i_{2}}^{4}\left(f_{1} f_{i_{1}-1} f_{i_{2}-2}\right)\left(x_{1} \ldots x_{k-8}\right)$. According to Kameko [4, $x_{1} x_{i_{1}}^{2} x_{i_{2}}^{4}$ is admissible. So, by Proposition 2.7. x is admissible.

Thus, we have proved that $\bar{B}_{(r, 1)}^{+}$is the set of all admissible monomials in $P_{r}^{+}(k-$ $7,1,1)$, hence $\operatorname{dim} Q P_{r}^{+}(k-7,1,1)=\left|\bar{B}_{(r, 1)}^{+}\right|$, for $k-7 \leqslant r \leqslant k-5$. A direct computation shows that

$$
\left|\bar{B}_{(k-7,1)}^{+}\right|=\binom{k-6}{2},\left|\bar{B}_{(k-6,1)}^{+}\right|=2\binom{k-6}{2},\left|\bar{B}_{(k-5,1)}^{+}\right|=\binom{k-6}{2} .
$$

Now using Proposition 2.11 we obtain

$$
\operatorname{dim} P_{k-1}(k-7,1,1)=\sum_{k-7 \leqslant r \leqslant k-5}\binom{k-1}{r}\left|\bar{B}_{(r, 1)}^{+}\right|=\binom{k-6}{2}\binom{k+1}{6}
$$

The proposition is proved.

Remark 4.5. We have $\bar{B}_{(1,1)}^{+}=\left\{x_{1}^{7}\right\}, \bar{B}_{(3,1)}^{+}=\left\{x_{1} x_{2}^{2} x_{3}^{4}\right\}$. Since $x_{1}^{3} x_{2}^{4} \equiv x_{1} x_{2}^{6}$, we get $\bar{B}_{(2,1)}^{+}=\left\{x_{1} x_{2}^{6}\right\}$, hence $\operatorname{dim} Q P_{7}(1,1,1)=\binom{7}{1}+\binom{7}{2}+\binom{7}{3}=63<84=$ $\binom{8-6}{2}\binom{8+1}{6}$. So, Proposition 4.4 is not true for $k=8$.
Proposition 4.6. If $k \geqslant 10$, then

$$
\operatorname{dim} Q P_{k-1}(k-7,3)=\frac{(k-5)(k-7)\left(k^{3}-9 k^{2}+14 k-36\right)}{180}\binom{k}{4}
$$

Proof. Note that $P_{r}^{+}(k-7,3)=0$ for either $r<k-7$ or $r>k-4$. Hence, using Proposition 2.11 we have

$$
\operatorname{dim} Q P_{k-1}(k-7,3)=\sum_{k-7 \leqslant r \leqslant k-4}\binom{k-1}{r} \operatorname{dim} Q P_{r}^{+}(k-7,3)
$$

We set

$$
\begin{aligned}
\tilde{B}_{(k-7,3)}^{+}= & \left\{x_{1} x_{2} \ldots x_{k-7} x_{i_{1}}^{2} x_{i_{2}}^{2} x_{i_{3}}^{2}: 1 \leqslant i_{1}<i_{2}<i_{3} \leqslant k-7\right\} \subset P_{k-7}^{+} \\
\tilde{B}_{(k-6,3)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{2} x_{i_{3}}^{2}: 2 \leqslant i_{1} \leqslant k-6,1 \leqslant i_{2}<i_{3} \leqslant k-6, i_{2}, i_{3}\right. \\
& \left.\neq i_{1}\right\} \backslash\left(\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{k-6} x_{i_{3}}^{2}: 3 \leqslant i_{3} \leqslant k-6\right\} \cup\left\{x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4} \ldots x_{k-6}\right\}\right), \\
\tilde{B}_{(k-5,3)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-5} x_{i_{3}}^{2}: 2 \leqslant i_{1}<i_{2} \leqslant k-5,1 \leqslant i_{3} \leqslant k-5, i_{3}\right. \\
& \left.\neq i_{1}, i_{2}\right\} \backslash\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{i_{2}}^{2} \ldots x_{k-5}: 3 \leqslant i_{2} \leqslant k-5\right\} \subset P_{k-5}^{+}, \\
\tilde{B}_{(k-4,3)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{k-4}: 2 \leqslant i_{1}<i_{2}<i_{3} \leqslant k-4\right\} \subset P_{k-4}^{+} .
\end{aligned}
$$

We have $\tilde{B}_{(r, 3)}^{+} \subset P_{r}^{+}$for $k-7 \leqslant r \leqslant k-4$.
If $x \in \tilde{B}_{(k-7,3)}^{+}$, then x is a spike, hence x is admissible. Obviously, if x is a monomial in P_{k-7}^{+}then $x \in \tilde{B}_{(k-7,3)}^{+}$. Hence, $\tilde{B}_{(k-7,3)}^{+}$is the set of all the admissible monomials in $P_{k-7}^{+}(k-7,3)$.

If $x \in \tilde{B}_{(k-6,3)}^{+}$, then $x=x_{1} x_{i_{1}}^{2} f_{1}\left(f_{i_{1}-1}(z)\right)$ with z a spike in P_{k-8}. Since $x_{1} x_{i_{1}}^{2}$ is admissible, by Proposition 2.7. x is also admissible. If x is a monomial in $P_{k-6}^{+}(k-$ 7,3), then $x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-6} x_{i_{2}}^{2} x_{i_{3}}$ with $1 \leqslant i_{1}, i_{2}, i_{3} \leqslant k-6, i_{2}, i_{3} \neq i_{1}, i_{2}<$ i_{3}. If $i_{1}=1$ then $x=S q^{1}\left(x_{1} \ldots x_{k-6} x_{i_{2}}^{2} x_{i_{3}}^{2}\right)+$ smaller monomials. Hence, x is inadmissible. If $i_{2}=1, i_{1}=2$ then $x=S q^{1}\left(x_{1}^{3} x_{2} \ldots x_{k-6} x_{i_{3}}^{2}\right)+$ smaller monomials. This equality shows that x is inadmissible. If $i_{2}=1, i_{3}=2, i_{1}=3$ then $x=$ $S q^{1}\left(x_{1}^{3} x_{2}^{3} x_{3} \ldots x_{k-6} x_{i_{3}}^{2}\right)+$ smaller monomials. So, x is inadmissible. Thus, we have showed that $\tilde{B}_{(k-6,3)}^{+}$is the set of all the admissible monomials in $P_{k-6}^{+}(k-7,3)$.

If $x \in \tilde{B}_{(k-5,3)}^{+}$, then $x=y f_{1}\left(f_{u-1}\left(f_{v-2} f_{w-3}(z)\right)\right)$, where $1<u<v<w, y$ is one of the monomials: $x_{1}^{3} x_{u} x_{v}^{2} x_{w}^{2}, x_{1} x_{u}^{3} x_{v}^{2} x_{w}^{2}, x_{1} x_{u}^{2} x_{v}^{3} x_{w}^{2}, x_{1} x_{u}^{2} x_{v}^{2} x_{w}^{3}$ and $z=$ $x_{1} \ldots x_{k-9} \in P_{k-9}$. We have proved in [15] that y is admissible. Hence, by Proposition 2.7. x is also admissible. Let x be a monomial in $P_{k-5}^{+}(k-7,3)$. If $x \notin \tilde{B}_{(k-5,3)}^{+}$, then either $x=x_{1}^{2} x_{2} \ldots x_{i_{2}}^{2} \ldots x_{k-5} x_{i_{3}}^{2}, i_{2}, i_{3}>1, i_{2} \neq i_{3}$ or $x=$ $x_{1}^{3} x_{2}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-5}, i_{2}>2$. If $x=x_{1}^{2} x_{2} \ldots x_{i_{2}}^{2} \ldots x_{k-5} x_{i_{3}}^{2}$, then $x=S q^{1}\left(x_{1} \ldots x_{i_{2}}^{2}\right.$ $\left.\ldots x_{k-5} x_{i_{3}}^{2}\right)+$ smaller monomials. If $x=x_{1}^{3} x_{2}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-5}$, then $x=S q^{1}\left(x_{1}^{3} x_{2}\right.$ $\left.\ldots x_{i_{2}}^{2} \ldots x_{k-5}\right)+$ smaller monomials. Hence, x is inadmissible.

If $x \in \tilde{B}_{(k-4,3)}^{+}$, then $x=y f_{1}\left(f_{u-1}\left(f_{v-2} f_{w-3}(z)\right)\right)$, where $1<u<v<w$, $y=x_{1} x_{u}^{2} x_{v}^{2} x_{w}^{2}$ and $z=x_{1} \ldots x_{k-8} \in P_{k-8}$. We have proved in [15] that y is admissible. Hence, by Proposition $2.7, x$ is also admissible. If $x \in P_{k-4}^{+}(k-7,3)$
and $x \notin \tilde{B}_{(k-4,3)}^{+}$, then $x=x_{1}^{2} x_{2} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-4}$ with $1<i_{1}<i_{2} \leqslant k-4$. So, we get $x=S q^{1}\left(x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-4}\right)+$ smaller monomials. Hence, x is inadmissible.

We have proved that $\tilde{B}_{(r, 3)}^{+}$is the set of all admissible monomials in $P_{r}^{+}(k-7,3)$, hence we obtain $\operatorname{dim} Q P_{r}^{+}(k-7,3)=\left|\tilde{B}_{(r, 3)}^{+}\right|$, for $k-7 \leqslant r \leqslant k-4$. By a direct computation, we get

$$
\begin{aligned}
& \left|\tilde{B}_{(k-7,3)}^{+}\right|=\binom{k-7}{3},\left|\tilde{B}_{(k-6,3)}^{+}\right|=(k-9)\binom{k-6}{2}=\frac{(k-6)(k-7)(k-9)}{2} \\
& \left|\tilde{B}_{(k-5,3)}^{+}\right|=(k-5)\binom{k-7}{2}=\frac{(k-5)(k-7)(k-8)}{2},\left|\tilde{B}_{(k-4,3)}^{+}\right|=\binom{k-5}{3}
\end{aligned}
$$

Now, applying Proposition 2.11, we obtain

$$
\begin{aligned}
\operatorname{dim} Q P_{k-1}(k-7,3) & =\sum_{k-7 \leqslant r \leqslant k-4}\binom{k-1}{r}\left|\tilde{B}_{(r, 3)}^{+}\right| \\
& =\frac{(k-5)(k-7)\left(k^{3}-9 k^{2}+14 k-36\right)}{180}\binom{k}{4}:=a(k)
\end{aligned}
$$

The proof is completed.
Remark 4.7. Since $\tilde{B}_{(2,3)}^{+}=\tilde{B}_{(3,3)}^{+}=\emptyset$, Proposition 4.6 holds for $k=9$. We have $\tilde{B}_{(1,3)}^{+}=\tilde{B}_{(2,3)}^{+}=\tilde{B}_{(3,3)}^{+}=\emptyset$ and $\left|\tilde{B}_{(4,3)}^{+}\right|=1$, hence $\operatorname{dim} Q P_{7}(1,3)=\binom{7}{4}=35>$ $14=a(8)$. So, Proposition 4.6 is not true for $k=8$. Since $Q P_{7}(0,3)=0$, the proposition holds for $k=7$.

Proposition 4.8. If $k \geqslant 13$, then
$\operatorname{dim} Q P_{k-1}(k-9,4)=\frac{(k-1)(k-10)\left(k^{4}-20 k^{3}+129 k^{2}-354 k+840\right)}{1344}\binom{k}{6}$.
We need the following for the proof of this proposition.
Lemma 4.9. The following monomials are admissible in P_{6} :

$$
\begin{aligned}
& a_{1}=x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6}^{2}, a_{2}=x_{1} x_{2}^{2} x_{3} x_{4}^{2} x_{5}^{2} x_{6}^{2} \\
& a_{3}=x_{1} x_{2}^{2} x_{3}^{2} x_{4} x_{5}^{2} x_{6}^{2}, a_{4}=x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5} x_{6}^{2}
\end{aligned}
$$

Proof. We prove the lemma by showing that $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is the set of all admissible monomials in $P_{6}^{+}(2,4)$. Let x be a monomial in $P_{6}^{+}(2,4)$, then

$$
x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{i_{4}}^{2} \ldots x_{6}, 1 \leqslant i_{1}<i_{2}<i_{3}<i_{4} \leqslant 6
$$

If $i_{1}=1$, then $x=S q^{1}\left(x_{1} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{i_{4}}^{2} \ldots x_{6}\right)+$ smaller monomials. If $i_{1}>$ $1, i_{4}<6$, then

$$
\begin{aligned}
x= & x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6}=S q^{1}\left(x_{1}^{2} S q^{2}\left(x_{2} \ldots x_{6}\right)\right) \\
& +S q^{4}\left(x_{1} \ldots x_{6}\right)+\text { smaller monomials } .
\end{aligned}
$$

Hence, x is inadmissible. Thus, we have proved that if x is admissible, then x is one of the monomials $a_{1}, a_{2}, a_{3}, a_{4}$. Now we prove the set

$$
\left\{\left[a_{1}\right]_{(2,4)},\left[a_{2}\right]_{(2,4)},\left[a_{2}\right]_{(2,4)},\left[a_{4}\right]_{(2,4)}\right\}
$$

is linearly independent in $Q P_{6}^{+}(2,4)$. Suppose there is a linear relation

$$
\begin{equation*}
S:=\gamma_{1} a_{1}+\gamma_{2} a_{2}+\gamma_{3} a_{3}+\gamma_{4} a_{4} \equiv_{(2,4)} 0 \tag{4.1}
\end{equation*}
$$

with $\gamma_{u} \in \mathbb{F}_{2}, 1 \leqslant u \leqslant 4$. By applying the homomorphism $p_{(1, j)}: P_{6} \rightarrow P_{5}$ to the relation 4.1 for $1<j<6$, we get

$$
\begin{aligned}
& p_{(1,2)}(S) \equiv_{(2,4)}\left(\gamma_{2}+\gamma_{3}+\gamma_{4}\right) x_{1}^{3} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} \equiv_{(2,4)} 0 \\
& p_{(1,3)}(S) \equiv_{(2,4)}\left(\gamma_{1}+\gamma_{3}+\gamma_{4}\right) x_{1} x_{2}^{3} x_{3}^{2} x_{4}^{2} x_{5}^{2} \equiv_{(2,4)} 0 \\
& p_{(1,4)}(S) \equiv_{(2,4)}\left(\gamma_{1}+\gamma_{2}+\gamma_{4}\right) x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{2} x_{5}^{2} \equiv_{(2,4)} 0 \\
& p_{(1,5)}(S) \equiv_{(2,4)}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{3} x_{5}^{2} \equiv_{(2,4)} 0 .
\end{aligned}
$$

We have prove in [15] that the monomial $x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2}$ is admissible in P_{4}. Hence, by Proposition 2.7. the monomials $x_{1}^{3} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}, x_{1} x_{2}^{3} x_{3}^{2} x_{4}^{2} x_{5}^{2}, x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{2} x_{5}^{2}, x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{3} x_{5}^{2}$ are admissible in P_{5}. So, from the above equalities we get $\gamma_{i}=0$ for $1 \leqslant i \leqslant 4$. The lemma is proved.

We now prove Proposition 4.8
Proof of Proposition 4.8, Observe that $P_{r}^{+}(k-9,4)=0$ for either $r<k-9$ or $r>k-5$. Hence, using Proposition 2.11 we have

$$
\operatorname{dim} Q P_{k-1}(k-9,4)=\sum_{k-9 \leqslant r \leqslant k-5}\binom{k-1}{r} \operatorname{dim} Q P_{r}^{+}(k-9,4)
$$

We set

$$
\begin{aligned}
\tilde{B}_{(k-9,4)}^{+}= & \left\{x_{1} x_{2} \ldots x_{k-9} x_{i_{1}}^{2} x_{i_{2}}^{2} x_{i_{3}}^{2} x_{i_{4}}^{2}: 1 \leqslant i_{1}<i_{2}<i_{3}<i_{4} \leqslant k-9\right\} \\
\tilde{B}_{(k-8,4)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-8} x_{i_{2}}^{2} x_{i_{3}}^{2} x_{i_{4}}^{2}: 2 \leqslant i_{1} \leqslant k-8,1 \leqslant i_{2}<i_{3}<i_{4} \leqslant k-8\right. \\
& \left.i_{2}, i_{3}, i_{4} \neq i_{1}\right\} \backslash\left(\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{k-8} x_{i_{3}}^{2} x_{i_{4}}^{2}: 3 \leqslant i_{3}<i_{4} \leqslant k-8\right\}\right. \\
& \left.\cup\left\{x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4} \ldots x_{k-8} x_{i_{4}}^{2}: 4 \leqslant i_{4} \leqslant k-8\right\} \cup\left\{x_{1}^{3} x_{2}^{3} x_{3}^{3} x_{4}^{2} x_{5} \ldots x_{k-8}\right\}\right) \\
\tilde{B}_{(k-7,4)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-7} x_{i_{3}}^{2} x_{i_{4}}^{2}: 2 \leqslant i_{1}<i_{2} \leqslant k-7,1 \leqslant i_{3}<i_{4} \leqslant\right. \\
& \left.k-7, i_{3}, i_{4} \neq i_{1}, i_{2}\right\} \backslash\left(\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{i_{2}}^{2} \ldots x_{k-7} x_{i_{4}}^{2}: 3 \leqslant i_{2}, i_{4} \leqslant k-7,\right.\right. \\
& \left.\left.i_{4} \neq i_{2}\right\} \cup\left\{x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4} \ldots x_{i_{4}}^{2} \ldots x_{k-7}: 4 \leqslant i_{4} \leqslant k-7\right\}\right) \\
\tilde{B}_{(k-6,4)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{k-6} x_{i_{4}}^{2}: 2 \leqslant i_{1}<i_{2}<i_{3} \leqslant k-6\right. \\
& \left.1 \leqslant i_{4} \leqslant k-6, i_{4} \neq i_{1}, i_{2}, i_{3}\right\} \\
& \backslash\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{k-6}: 3 \leqslant i_{2}<i_{3} \leqslant k-6\right\}, \\
\tilde{B}_{(k-5,4)}^{+}= & \left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{i_{4}}^{2} \ldots x_{k-5}: 2 \leqslant i_{1}<i_{2}<i_{3}<i_{4} \leqslant k-5\right\} \\
& \left.\backslash x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6} \ldots x_{k-5}\right\} .
\end{aligned}
$$

By arguments similar to the ones in the proof of Proposition 4.6 we can prove that $\tilde{B}_{(r, 4)}^{+}$is the set of all the admissible monomials in $Q P_{r}^{+}(k-9,4)$ for $k-9 \leqslant r \leqslant k-6$.

Let $x \in \tilde{B}_{(k-5,4)}^{+}$. Then $x=y\left(f_{1} f_{i_{1}-1} f_{i_{2}-2} f_{i_{3}-3} f_{i_{4}-4} f_{i_{5}-5}\right)(z)$, where y is one of the monomials:

$$
x_{1} x_{i_{1}} x_{i_{2}}^{2} x_{i_{3}}^{2} x_{i_{4}}^{2} x_{i_{5}}^{2}, x_{1} x_{i_{1}}^{2} x_{i_{2}} x_{i_{3}}^{2} x_{i_{4}}^{2} x_{i_{5}}^{2}, x_{1} x_{i_{1}}^{2} x_{i_{2}}^{2} x_{i_{3}} x_{i_{4}}^{2} x_{i_{5}}^{2}, x_{1} x_{i_{1}}^{2} x_{i_{2}}^{2} x_{i_{3}}^{2} x_{i_{4}} x_{i_{5}}^{2}
$$

with $1<i_{1}<i_{2}<i_{3}<i_{4}<i_{5} \leqslant k-5$ and $z=x_{1} \ldots x_{k-11} \in P_{k-11}$. By Lemma 4.9, y is admissible. So, by Proposition 2.7, x is also admissible.

Now let x be a monomial in $P_{k-5}^{+}(k-9,4)$, then

$$
x=x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{i_{4}}^{2} \ldots x_{k-5}: 1 \leqslant i_{1}<i_{2}<i_{3}<i_{4} \leqslant k-5
$$

If $i_{1}=1$, then $x=S q^{1}\left(x_{1} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{2} \ldots x_{i_{4}}^{2} \ldots x_{k-5}\right)+$ smaller monomials. Hence, x is inadmissible. If $x=x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6} \ldots x_{k-5}$, then

$$
x=S q^{1}\left(x_{1}^{2} S q^{2}\left(x_{2} \ldots x_{k-5}\right)\right)+S q^{4}\left(x_{1} \ldots x_{k-5}\right)+\text { smaller monomials } .
$$

This equality shows that x is inadmissible.
Thus, we have proved that $\tilde{B}_{(r, 4)}^{+}$is the set of all the admissible monomials in $Q P_{r}^{+}(k-9,4)$, so we get $\operatorname{dim} Q P_{r}^{+}(k-9,4)=\left|\tilde{B}_{(r, 4)}^{+}\right|$, for $k-9 \leqslant r \leqslant k-5$. By a direct computation, we obtain

$$
\begin{aligned}
\left|\tilde{B}_{(k-9,4)}^{+}\right| & =\binom{k-9}{4},\left|\tilde{B}_{(k-8,4)}^{+}\right|=(k-12)\binom{k-8}{3} \\
\left|\tilde{B}_{(k-7,4)}^{+}\right| & =\binom{k-7}{2}\binom{k-10}{2},\left|\tilde{B}_{(k-6,4)}^{+}\right|=(k-6)\binom{k-8}{3} \\
\left|\tilde{B}_{(k-5,4)}^{+}\right| & =\binom{k-6}{4}-1=\frac{(k-5)(k-10)\left(k^{2}-15 k+60\right)}{24}
\end{aligned}
$$

By using Proposition 2.11 we obtain

$$
\begin{aligned}
\operatorname{dim} Q P_{k-1}(k-9,4) & =\sum_{k-9 \leqslant r \leqslant k-5}\binom{k-1}{r}\left|\tilde{B}_{(r, 4)}^{+}\right| \\
& =b(k):=\frac{(k-1)(k-10)\left(k^{4}-20 k^{3}+129 k^{2}-354 k+840\right)}{1344}\binom{k}{6} .
\end{aligned}
$$

The proposition is proved.
Remark 4.10. We have $\tilde{B}_{(3,4)}^{+}=\tilde{B}_{(4,4)}^{+}=\emptyset$, hence Proposition 4.8 holds for $k=12$. Since $\tilde{B}_{(2,4)}^{+}=\tilde{B}_{(3,4)}^{+}=\tilde{B}_{(4,4)}^{+}=\emptyset,\left|\tilde{B}_{(5,4)}^{+}\right|=5,\left|\tilde{B}_{(6,4)}^{+}\right|=4$, we get $\operatorname{dim} Q P_{10}(2,4)=5\binom{10}{5}+4\binom{10}{6}=2100>1980=b(11)$. Hence, Proposition 4.8 is not true for $k=11$. By a simple computation, we have $Q P_{9}(1,4)=0$, hence Proposition 4.8 is also true for $k=10$.

Proposition 4.11. If $k \geqslant 11$, then

$$
\operatorname{dim} Q P_{k-1}(k-9,2,1)=\frac{(k-1)(k-8)(k-10)}{3}\binom{k+1}{8} .
$$

Proof. Note that $P_{r}^{+}(k-9,2,1)=0$ for either $r<k-9$ or $r>k-6$. Hence, using Proposition 2.11 we have

$$
\operatorname{dim} Q P_{k-1}(k-9,2,1)=\sum_{k-9 \leqslant r \leqslant k-6}\binom{k-1}{r} \operatorname{dim} Q P_{r}^{+}(k-9,2,1)
$$

We set

$$
\begin{aligned}
& \bar{B}_{(k-9,2)}^{+}=\left\{x_{1} x_{2} \ldots x_{k-9} x_{i_{1}}^{2} x_{i_{2}}^{2} x_{i_{3}}^{4}: 1 \leqslant i_{1}<i_{2} \leqslant k-9, i_{1} \leqslant i_{3} \leqslant k-9\right\} \\
& \bar{B}_{(k-8,2)}^{+}=\left(\left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{k-8} x_{i_{2}}^{2} x_{i_{3}}^{4}: 2 \leqslant i_{1}<i_{2} \leqslant k-8, i_{1} \leqslant i_{3} \leqslant k-8\right\}\right. \\
& \cup\left\{x_{1} \ldots x_{i_{2}}^{2} \ldots x_{k-8} x_{i_{1}}^{2} x_{i_{3}}^{4}: 1 \leqslant i_{1}<i_{2} \leqslant k-8, i_{1} \leqslant i_{3} \leqslant k-8\right\} \\
& \cup\left\{x_{1} \ldots x_{i_{3}}^{4} \ldots x_{k-8} x_{i_{1}}^{2} x_{i_{2}}^{2}: 1 \leqslant i_{1}<i_{2} \leqslant k-8, i_{1}<i_{3} \leqslant k-8,\right. \\
&\left.\left.i_{3} \neq i_{2}\right\}\right) \backslash\left\{x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{k-8} x_{i}^{4}: 1 \leqslant i \leqslant k-8\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \bar{B}_{(k-7,2)}^{+}=\left(\left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{k-7} x_{i_{3}}^{4}: 2 \leqslant i_{1}<i_{2} \leqslant k-7, i_{1} \leqslant i_{3} \leqslant k-7\right\}\right. \\
& \cup\left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{3}}^{4} \ldots x_{k-7} x_{i_{2}}^{2}: 1 \leqslant i_{1}<i_{2} \leqslant k-7, i_{1}<i_{3} \leqslant k-7\right. \\
&\left.i_{3} \neq i_{2}\right\} \cup\left\{x_{1} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{4} \ldots x_{k-7} x_{i_{1}}^{2}: 1 \leqslant i_{1}<i_{2} \leqslant k-8\right. \\
&\left.\left.i_{1}<i_{3} \leqslant k-7, i_{3} \neq i_{2}\right\}\right) \backslash\left(\left\{x_{1} x_{2}^{2} x_{3}^{6} x_{4} \ldots x_{k-7}, x_{1} x_{2}^{6} x_{3}^{2} x_{4} \ldots x_{k-7}\right.\right. \\
&\left.x_{1} x_{2}^{2} x_{3}^{2} x_{4} \ldots x_{k-7} x_{i}^{4}: 4 \leqslant i \leqslant k-7\right\} \\
&\left.\cup\left\{x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4} \ldots x_{k-7}, x_{1}^{3} x_{2}^{2} x_{3} \ldots x_{i}^{4} \ldots x_{k-7}: 3 \leqslant i \leqslant k-7\right\}\right), \\
& \bar{B}_{(k-6,2)}^{+}=\left\{x_{1} \ldots x_{i_{1}}^{2} \ldots x_{i_{2}}^{2} \ldots x_{i_{3}}^{4} \ldots x_{k-6}: 2 \leqslant i_{1}<i_{2}, i_{3} \leqslant k-6, i_{2} \neq i_{3}\right\} \\
& \backslash\left\{x_{1} x_{2}^{2} x_{3}^{4} x_{4}^{2} x_{5} \ldots x_{k-6}, x_{1} x_{2}^{2} x_{3}^{2} x_{4} \ldots x_{i}^{4} \ldots x_{k-6}: 4 \leqslant i \leqslant k-6\right\} .
\end{aligned}
$$

By an analogous arguments to the previous ones, we can show that $\bar{B}_{(r, 2)}^{+}$is the set of all admissible monomials in $P_{r}^{+}(k-9,2,1)$ for $k-9 \leqslant r \leqslant k-6$. Hence, $\operatorname{dim} Q P_{r}^{+}(k-9,2,1)=\left|\bar{B}_{(r, 2)}^{+}\right|$for $k-9 \leqslant r \leqslant k-6$. By a direct computation, we get

$$
\begin{aligned}
\left|\bar{B}_{(k-9,2)}^{+}\right| & =2\binom{k-8}{3},\left|\bar{B}_{(k-8,2)}^{+}\right|=(k-8)^{2}(k-10), \\
\left|\bar{B}_{(k-7,2)}^{+}\right| & =(k-7)(k-8)(k-10),\left|\bar{B}_{(k-6,2)}^{+}\right|=\frac{(k-6)(k-8)(k-10)}{3} .
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
\operatorname{dim} Q P_{k-1}(k-9,2,1) & =\sum_{k-9 \leqslant r \leqslant k-6}\binom{k-1}{r}\left|\bar{B}_{(r, 2)}^{+}\right| \\
& =\frac{(k-1)(k-8)(k-10)}{3}\binom{k+1}{8} .
\end{aligned}
$$

This completes the proof.
Remark 4.12. For $k=10$, we have proved in [15] that $Q P_{4}(1,2,1)=0$. So, this implies $Q P_{\ell}(1,2,1)=0, \ell=1,2,3$. Using Proposition 2.11 one gets $Q P_{9}(1,2,1)=$ 0 . Hence, Proposition 4.11 holds for $k=10$.

By a direct computation using Theorem 1.4 Propositions 4.1, 4.2, 4.4, 4.6, 4.8 4.11 and the relation $\binom{k+1}{2 t}=\binom{k}{2 t}+\frac{k-2 t+2}{2 t-1}\binom{k}{2(t-1)}$ for $t>0$, we easily obtain a new lower bound for $\operatorname{dim}(Q P)_{n}$.

Theorem 4.13. Let $n=(k-1)\left(2^{d}-1\right)$ with d a positive integer. If $k \geqslant 10$ and $d \geqslant 2$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}>\left(\sum_{u=0}^{4} C_{k, u}\binom{k}{2 u}\right) \sum_{v=1}^{\min \{k, d-1\}}\binom{k}{v}+\binom{k}{\min \{k, d\}}
$$

where

$$
C_{k, u}= \begin{cases}1, & u=0 \\ k-3, & u=1, \\ \frac{k^{5}-21 k^{4}+175 k^{3}-735 k^{2}+1984 k-3744}{180}, & u=2, \\ \frac{(k-6)(k-7)}{2}+\frac{(k-1)(k-10)\left(k^{4}-20 k^{3}+193 k^{2}-1250 k+3912\right)}{1344}, & u=3 \\ \frac{(k-1)(k-8)(k-10)}{3}, & u=4\end{cases}
$$

Remark 4.14. Let $d(k)$ be as in Theorem 1.1 and let $\omega(d(k))$ be as in the proof of Theorem 1.4 By an elementary computation, we can show that $d(k) \geqslant 3$ for any $k \geqslant 6$. If $d \geqslant d(k)+k-1$, then $d>k$, $\min \{k, d\}=\min \{k, d-1\}=k$ and $\sum_{u=1}^{k}\binom{k}{u}=2^{k}-1$. If ω is a weight vector with $\operatorname{deg} \omega=k-1$, then $\operatorname{deg}((k-$ 1) $\left.\left.\right|^{d(k)-1} \mid \omega\right)=(k-1)\left(2^{d(k)}-1\right), \operatorname{dim} Q P_{k-1}\left(\left.(k-1)\right|^{d(k)-1} \mid \omega\right)=\operatorname{dim} Q P_{k-1}(\omega)$, $\operatorname{dim} Q P_{k-1}(\omega(d(k)))>0$ and $(\underset{\min \{k, d\}}{k})=1<2^{k}-1$. According to Theorem 1.1. we have

$$
\begin{aligned}
\operatorname{dim}\left(Q P_{k}\right)_{n}= & \left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{(k-1)\left(2^{d(k)}-1\right)} \\
\geqslant & \left(2^{k}-1\right)\left(\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}\left(\left.(k-1)\right|^{d(k)-1} \mid \omega\right)\right. \\
& \left.+\operatorname{dim} Q P_{k-1}(\omega(d(k)))\right) \\
\geqslant & \left(2^{k}-1\right) \sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)+2^{k}-1 \\
> & \left.\sum_{\operatorname{deg} \omega=k-1} \operatorname{dim} Q P_{k-1}(\omega)\right) \sum_{u=1}^{\min \{k, d-1\}}\binom{k}{u}+\binom{k}{\min \{k, d\}}
\end{aligned}
$$

This shows that Theorem 1.1 implies Theorem 1.4, hence it also implies Theorem 4.13

Acknowledgment

The paper was completed when the author was visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM) in 2019. He would like to thank the VIASM for convenient working condition and kind hospitality.

References

[1] D. P. Carlisle and R. M. W. Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, in: N. Ray and G. Walker (ed.), Adams Memorial Symposium on Algebraic Topology 2, (Manchester, 1990), in: London Math. Soc. Lecture Notes Ser., Cambridge Univ. Press, Cambridge, vol. 176, 1992, pp. 203-216, MR1232207.
[2] M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra II, in: Algebraic Topology: New Trend in Localization and Periodicity, (Sant Feliu de Guíxols, 1994), in: Progr. Math., Birkhäuser Verlag, Basel, Switzerland, vol. 136, 1996, pp. 143-154, MR1397726.
[3] N. H. V. Hưng, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005) 4065-4089. MR2159700
[4] M. Kameko, Products of projective spaces as Steenrod modules, PhD Thesis, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990. 29 pp, MR2638633.
[5] M. F. Mothebe, Generators of the polynomial algebra $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ as a module over the Steenrod algebra, PhD Thesis, The University of Manchester, UK, 1997.
[6] M. F. Mothebe, Dimension result for the polynomial algebra $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ as a module over the Steenrod algebra, Int. J. Math. Math. Sci. 2013, Art. ID 150704, 6 pp., MR3144989.
[7] M. F. Mothebe and L. Uys, Some relations between admissible monomials for the polynomial algebra, Int. J. Math. Math. Sci. 2015, Art. ID 235806, 7 pp., MR3388909.
[8] T. N. Nam, \mathcal{A}-générateurs génériques pour l'algèbre polynomiale, Adv. Math. 186 (2004) 334-362, MR2073910.
[9] F. P. Peterson, Generators of $H^{*}\left(\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}\right)$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. No. 833 (1987) 55-89.
[10] Đ. V. Phúc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1035-1040, MR3419856.
[11] Đ. V. Phúc and N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017) 149-162, MR3595451.
[12] J. Repka and P. Selick, On the subalgebra of $H_{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n} ; \mathbb{F}_{2}\right)$ annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998) 273-288, MR1617199.
[13] W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991) 577-583, MR1045150.
[14] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics Studies 50, Princeton University Press, Princeton N.J (1962), MR0145525.
[15] N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015) 432-489, MR3318156.
[16] N. Sum, The hit problem and the algebraic transfer in some degrees, East-West J. Math. 20 (2018) 158-179, MR3996704.
[17] G. Walker and R. M. W. Wood, Flag modules and the hit problem for the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 147 (2009) 143-171, MR2507313.
[18] G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod algebra, Vol. 1: The Peterson hit problem, London Mathematical Society Lecture Note Series 441, Cambridge University Press, 2018, MR3729477.
[19] G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod algebra. Vol. 2. Representations of $\operatorname{GL}\left(n, \mathbb{F}_{2}\right)$, London Mathematical Society Lecture Note Series, 442. Cambridge University Press, 2018, MR3729478.
[20] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989) 307-309, MR0974986.

Department of Mathematics and Applications, Sài Gòn University, 273 An Dương Vương, District 5, Hồ Chí Minh city, Viet Nam

E-mail address: nguyensum@sgu.edu.vn

[^0]: 2010 Mathematics Subject Classification. Primary 55S10; Secondary 55S05, 55T15.
 Key words and phrases. Steenrod operation, Peterson hit problem, polynomial algebra.
 The author was supported in part by the National Foundation for Science and Technology Development (NAFOSTED) of Viet Nam under the grant number 101.04-2017.05.

