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1 Introduction

An important issue in mathematical models of disease dynamics is to find out under which

conditions the disease can be endemic (permanent over long periods of time) or go extinct.

The mathematical study of these types of questions commenced with the early work of

Kermack and McKendrick in [11, 12]. Their work is in fact the root of two classical epidemic

models, namely, SIR and SIRS models and their variants. Then much attention has been

drawn to analyzing, predicting the spread, and designing controls of infectious diseases in

host populations (see, for example, [1, 2, 8, 9, 21] for the deterministic models, and [5, 4,

6, 10] for the stochastic cases). As is well-known, the quarantine/isolation is an important

strategy for the control and elimination of infectious diseases. Such as, in order to control

SARS, two-strain avian influenza, childhood diseases, the Middle East respiratory syndrome,

Ebola epidemics, Dengue epidemic, H1N1 flu epidemic, Hepatitis B and C, Tuberculosis, the

government of nations are the first to use isolation. Therefore, there are various types of

classical epidemic models with quarantine/isolation are introduced and investigated (see

[3, 17, 22, 23] and the references therein). X. Zhang et al. [23] considered the stochastic

SIQS epidemic model with isolation
dS(t) =

(
α− βS(t)I(t)− µS(t) + γ1I(t) + γ2Q(t))dt+ σ1S(t)dB1(t)

dI(t) =
(
βS(t)I(t)− (µ+ ρ1 + γ1 + γ3)I(t))dt+ σ2I(t)dB2(t)

dQ(t) = (γ3I(t)− (µ+ ρ2 + γ2)Q(t))dt+ σ3Q(t)dB3(t),

(1.1)

where α the per capita birth and immigration rate of the susceptibles; µ is the per capita

disease-free death rate; ρ1 and ρ2 are the excess per capita death rate of infective and

quarantine class respectively; γ1 and γ2 are the rates at which individuals recover and return

to susceptible from infective and quarantine class respectively; γ3 is the rate for individuals

leaving the infective class for the quarantine class; B1(t), B2(t) and B3(t) are mutually

independent Brownian motions and σ1, σ2, σ3 are the intensities of the white noises. In that

paper, authors provided the classification for the extinction and persistence of the disease

based on the reproduction number R̂ = αβ
µ(µ+ρ1+γ1+γ3)

− σ2
2

2(µ+ρ1+γ1+γ3)
. They showed that if

(S(t), I(t), Q(t)) is any solution of (1.1) with initial value (u, v, w) ∈ R3
+, then

• when µ > σ2

2
and R̂ < 1,

lim
ln I(t)

t
≤ (µ+ ρ1 + γ1 + γ3)(R̂− 1), lim

t→∞
〈S(t)〉 =

α

µ
; lim
t→∞
〈Q(t)〉 = 0;
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• in case µ > σ2

2
and R̂ > 1,

lim
t→∞
〈S(t)〉 =

α

µ
− (µ+ ρ1 + γ1 + γ3)(R̂− 1)

β
; lim
t→∞
〈I(t)〉 =

(µ+ ρ1 + γ1 + γ3)(R̂− 1)

β( (µ+ρ2)γ3
µ(µ+ρ2+γ2)

+ µ+ρ1
µ

)
;

lim
t→∞
〈Q(t)〉 =

γ3
µ+ ρ2 + γ2

(µ+ ρ1 + γ1 + γ3)(R̂− 1)

β( (µ+ρ2)γ3
µ(µ+ρ2+γ2)

+ µ+ρ1
µ

)
,

where < f(t) >= 1
t

∫ t
0
f(τ)dτ and σ2 = max{σ2

1, σ
2
2, σ

2
3}.

Condition µ > σ2

2
tells us that the intensities of noises must be small enough. In our

opinion, this assumption is rather restrictive and it is easy to give examples where it can not

be satisfied.

The aim of this paper is to remove this condition and improve obtained results. We

classify the model by using the same reproduction number R̂ but without the condition

µ > σ2

2
. Moreover, in case R̂ < 1, we consider not only the average permanence of susceptible

individuals and the average extinction of quarantine individuals as in [23] but also study

almost sure convergence to 0 at the exponential rate. In the case of permanence of the disease

R̂ > 1, the strongly stochastic permanence and existence of ergodic stationary probability

measure are proved. Only the critical case R̂ = 0 is not studied in this paper. Our findings are

considered as a sufficient conditions and almost surely necessary conditions for permanence

and extinction of diseases. Similar results hold true for some stochastic SIR models can be

seen in [4, 5] and for stochastic SIRS model in [16, 20].

Noting that, in almost existent literature on this topic they often derived the sufficient

condition for the permanence and extinction of diseases, there is a gap between the necessary

and sufficient conditions for the permanence of the system.

The most difficulty we have to face to obtain these results is unable to use the stochastic

comparison theorem to dominate the solutions of (1.1) with the solution of the boundary

equation. Therefore, the technique used in [4, 5] is no longer valid and it need being improved.

The rest of the paper is arranged as follows. Section 2 derives a threshold that is used

to classify the extinction and permanence of the disease. To establish the desired results,

via the dynamics on the boundary we obtain a threshold R̂ that enables us to determine the

long term behavior of the solution. Precisely, it is shown that if R̂ < 1, the disease will decay

in an exponential rate. In case R̂ > 1, the solution converges to a stationary distribution in

total variation, that means the disease is permanent. The ergodicity of the solution process

3



is also proved. Finally, Section 3 is devoted to some discussion and comparison to existing

results in the literature. Some numerical examples are provided to illustrate our results.

2 Threshold between extinction and permanence

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with the filtration {Ft}t≥0 satisfying

the usual condition, i.e., it is increasing and right continuous while F0 contains all P-null

sets. Let B1, B2, B3 be independent Ft-adapted, Brownian motions, R3,◦
+ := {(x, y, z) : x >

0, y > 0, > 0}. We consider the equation (1.1). The existence of uniquely a global solution

(Su,v,w(t), Iu,v,w(t), Qu,v,w(t)), t ≥ 0 to (1.1) has been provided in [23]. Moreover, the domain

R3,◦ is invariant in the sense that if (Su,v,w(t), Iu,v,w(t), Qu,v,w(t)) ∈ R3,◦, ∀ t ≥ 0 provided

(u, v, w) ∈ R3,◦.

In the following, we denote z = (u, v, w) and write (Sz(t), Iz(t), Qz(t)) or (S(t), I(t), Q(t))

for (Su,v,w(t), Iu,v,w(t), Qu,v,w(t)) if there is no confusion.

It is easy to see that if I(0) = 0 then I(t) = 0 for all t > 0 and the first equation of (1.1)

becomes the equation on the boundary,

dS̃0(t) = (α− µS̃0(t))dt+ σ1S̃
0(t)dB1(t). (2.1)

Let S̃0
u(t) be the solution to (2.1) with initial value S̃0

u(0) = u > 0. It is noted that we

can not use the comparison theorem to get Sz(t) ≤ S̃0
u(t) ∀t ≥ 0 as in [5]. By solving the

Fokker-Planck equation, it is easy to see that (2.1) has a unique stationary distribution, say

µ0, with density

f ∗(x) =
ba

Γ(a)
x−(a+1)e

−b
x , x > 0 (2.2)

where a =
2µ+σ2

1

σ2
1
, b = 2α

σ2
1

and Γ(·) is the Gamma function. The strong law of large numbers

[18, Theorem 3.16, p. 46] says that

lim
t→∞

1

t

∫ t

0

S̃0
u(s)ds =

∫ ∞
0

xf ∗(x)dx =
α

µ
a.s. (2.3)

From the second equation of (1.1) we have

ln Iz(t)

t
=

ln Iz(0)

t
+
β

t

∫ t

0

(
Sz(s)ds− (µ+ ρ1 + γ1 + γ3)−

σ2
2

2
) + σ2

B2(t)

t
.

The Lyapunov exponent λ = lim supt→∞
ln Iz(t)

t
of Iz(t) can be calculated from this equation.

Intuitively, if λ < 0 then limt→∞ Iz(t) = 0, which implies that Sz(t) ≈ S̃0
u(t). Thus, we
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expect that

lim
s→∞

1

t

∫ t

0

Sz(s)ds ≈ lim
s→∞

1

t

∫ t

0

S̃0
u(s)ds =

α

µ
.

Therefore, a candidate of λ can be recommended as

λ := lim
t→∞

β

t

∫ t

0

S̃0
u(s)ds−

(
µ+ ρ1 + γ1 + γ3 +

σ2
2

2

)
=
αβ

µ
−
(
c2 +

σ2
2

2

)
, (2.4)

where c2 = µ+ ρ1 + γ1 + γ3, when it is negative.

In the following we study λ because it plays the same role as R̂ since R̂ < 1 or R̂ > 1 is

equivalent to λ < 0 or λ > 0.

2.1 Case 1: λ < 0 (or R̂ < 1)

Theorem 2.1. If λ < 0, then for any initial value z = (u, v, w) ∈ R3,◦
+ we have

P
{

lim
t→∞

ln Iz(t)

t
= λ < 0, lim

t→∞

lnQz(t)

t
= max

{
−
(
c3 +

σ2
3

2

)
, λ
}}

= 1, (2.5)

and

P

{
lim
t→∞

ln |Sz(t)− S̃0
u(t)|

t
≤ max

{
−
(
µ+

σ2
1

2

)
;−
(
µ+

σ2
3

2

)
;λ

}}
= 1, (2.6)

where c3 = µ+ ρ2 + γ2.

To proof this theorem, firstly, we present the following lemmas.

Lemma 2.2. For 0 < p <
2µ

σ2
, there exists Mp > 0 such that

lim sup
t→∞

E(Sz(t) + Iz(t) +Qz(t))
1+p ≤Mp. (2.7)

Further, for any H, ε, T > 0, there exists MH,ε,T > 0 such that

P{Sz(t) + Iz(t) +Qz(t) ≤MH,ε,T , t ∈ [0, T ]} ≥ 1− ε, z = (u, v, w) ∈ [0, H]3. (2.8)

Proof. Consider the Lyapunov function V (u, v, w) = (u+v+w)1+p. The differential operator

LV (u, v, w) associated to the equation (1.1) is given by

LV (u, v, w) = (1 + p)(u+ v + w)p(α− µ(u+ v + w)− ρ1v − ρ2w)

+
(1 + p)p

2
(u+ v + w)p−1(σ2

1x
2 + σ2

2y
2 + σ3

3z
2)

≤ (1 + p)(u+ v + w)p(α− µ(u+ v + w)) +
(1 + p)pσ2

2
(u+ v + w)1+p.
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Therefore,

LV (u, v, w) ≤ K1 −K2V (u, v, w), (2.9)

where 0 < p <
2µ

σ2
and 0 < K2 < (1 + p)

(
µ− pσ2

2

)
and

K1 = sup
(u,v,w)∈R3

+

{LV (u, v, w) +K2V (u, v, w)} <∞.

By using standard arguments as proof of [5, Lemma 2.3], we obtain

lim sup
t→∞

E(V (Sz(t), Iz(t), Qz(t))) ≤
K1

K2

:= Mp.

Thus we get (2.7).

To prove (2.8) we consider a sequence of stopping times

ηk = inf{t ≥ 0 : Sz(t) + Iz(t) +Qz(t) ≥ k}; k ∈ N.

From (2.9) we have

k1+pP{ηk ≤ T} = E [V (Sz(ηk ∧ T ), Iz(ηk ∧ T ), Qz(ηk ∧ T ))]

≤ V (u, v, w) + E
∫ T

0

LV (Sz(ηk ∧ t), Iz(ηk ∧ t), Qz(ηk ∧ t))dt

≤ V (u, v, w) +K1E[ηk ∧ T ] ≤ V (u, v, w) +K1T.

It implies that there exists a k large enough such that P{ηk ≥ T} ≥ 1− ε. Hence,

P {Sz(t) + Iz(t) +Qz(t) ≤ k, ∀ t ∈ [0, T ]} = P{ηk ≥ T} ≥ 1− ε.

It means that (2.8) holds. Lemma is proved.

Lemma 2.3. Let θ =
λ̃µ

10β(γ1 + γ2)
with λ̃ = min{−λ, c3 +

σ2
3

2
} and assume that λ < 0.

Then, for any ε > 0 and H > 0, there exists an 0 < h ≤ θ
2
such that for all z = (u, v, w) ∈

[0, H]× [0, h]× [0, h], we have

P
{

lim
t→∞

Iz(t) = lim
t→∞

Qz(t) = 0
}
≥ 1− ε, (2.10)

P
{

lim sup
t→∞

1

t

∫ t

0

Sz(τ)dτ ≤ α + (γ1 + γ2)θ

µ

}
≥ 1− ε. (2.11)
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Proof. Consider a perturbed equation of (2.1)

dS̃θ(t) =
(
α + (γ1 + γ2)θ − µS̃θ(t)

)
dt+ σ1S̃

θ(t)dB1(t). (2.12)

By a similar argument, the equation (2.12) has an invariant probability measure, say µθ,

with density

f ∗θ (x) =
ba11

Γ(a1)
x−(a1+1)e

−b1
x , x > 0,

where a1 =
2µ+σ2

1

σ2
1
, b1 = 2(α+(γ1+γ2)θ)

σ2
1

. Therefore, the solution S̃θu with the initial condition

S̃θ(0) = u > 0 satisfies the estimates

lim
t→∞

1

t

∫ t

0

S̃θu(s)ds =
α + (γ1 + γ2)θ

µ
a.s. (2.13)

and

lim
t→∞

1

t

∫ t

0

1

S̃θu(τ)
dτ =

2µ+ σ2
1

2(α + (γ1 + γ2)θ)
, a.s. (2.14)

From (2.13), for any ε > 0, there exists a T1 > 0 such that P(ΩH
1 ) ≥ 1− ε

4
, where

Ωu
1 =

{
ω :

1

t

∫ t

0

S̃θu(τ)dτ ≤ α + (γ1 + γ2)θ

µ
+

λ̃

10
for all t ≥ T1

}
.

Since S̃θu(s) ≤ S̃θH(s), s ≥ 0 almost surely for u ≤ H, P(Ωu
1) ≥ 1 − ε

4
for all u ∈ [0, H]. The

strong law of large numbers for Brownian motion

lim
t→∞

Bk(t)

t
= 0 a.s. for k = 1, 2, 3, (2.15)

implies that P(Ω2) ≥ 1− ε
4
, where

Ω2 =

{
ω :
|σkBk|
t
≤ λ̃

10
, for all t ≥ T2, k = 1, 2, 3

}
for some T2 > 0.

We can choose T ≥ max{T1, T2} such that

γ3 exp{−1
2
λ̃T}

c3 + 1
2
σ2
3 − 3

5
λ̃
≤ 1. (2.16)

By virtue of Lemma 2.2, there exists an M = M(ε, T,H) > 0 such that

P(Ω3) ≥ 1− ε

4
, for all, (u, v, w) ∈ R3

+ with u+ v + w ≤ H,

where

Ω3 =

{
ω :

∫ T

0

βSz(τ)dτ ≤M

}
. (2.17)
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Moreover, we can choose M sufficiently large such that

P(Ω4) ≥ 1− ε

4
where Ω4 = {ω : |σkBk(t)| ≤M, for all t ∈ [0, T ] and k = 1, 2, 3}. (2.18)

Let h > 0 be sufficiently small such that

heM

1 + γ3
e(c3+

σ23
2
)T+3M

c3 +
σ2
3

2

 ≤ θ

2
. (2.19)

Define a stopping time

τ̃ = inf{t ≥ 0 : Qz(t) ≥ θ}. (2.20)

It yields from the second equation of (1.1) that

Iz(t) = Iz(0) exp

{∫ t

0

βSz(τ)dτ −
(
c2 +

σ2
2

2

)
t+ σ2B2(t)

}
. (2.21)

Therefore, on Ω3 ∩ Ω4, we have

Iz(0)e−M−
(
c2+

σ22
2

)
T ≤ Iz(t) ≤ Iz(0)e2M for all t ∈ [0, T ]. (2.22)

Furthermore,

Qz(t) = Θ(t)

[
Qz(0) +

∫ t

0

γ3Iz(τ)Θ−1(τ)dτ

]
(2.23)

with

Θ(t) = e−
(
c3+

σ23
2

)
t+σ3B3(t). (2.24)

It is seen that on Ω4 there holds

Θ(t) ≤ eσ3B3(t) ≤ eM , for all t ∈ [0, T ].

Hence, by (2.22) it yields that∫ t

0

γ3Iz(τ)Θ−1(τ)dτ ≤ Iz(0)γ3

∫ t

0

e(c3+
σ23
2
)τ+3Mdτ ≤ Iz(0)γ3

e(c3+
σ23
2
)T+3M

c3 +
σ2
3

2

(2.25)

for all t ∈ [0, T ] and ω ∈ Ω3 ∩ Ω4. As a result, if Iz(0), Qz(0) ∈ [0, h) then

Qz(t) ≤ eM

Qz(0) + Iz(0)γ3
e(c3+

σ23
2
)T+3M

c3 +
σ2
3

2

 ≤ eM

h+ hγ3
e(c3+

σ23
2
)T+3M

c3 +
σ2
3

2

 ≤ θ

2
(2.26)

for all t ∈ [0, T ], ω ∈ Ω3 ∩ Ω4. Thus, if z ∈ [0, H]× [0, h)× [0, h) then

τ̃ > T, for all ω ∈ Ω3 ∩ Ω4. (2.27)
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We are going to provide that

τ̃ =∞, for almost every ω ∈ ∩4i=1Ωi. (2.28)

or any initial value z ∈ [0, H]× [0, h)× [0, h). Indeed, for t ∈ [T, τ̃) we have Sz(τ) ≤ S̃θu(τ)

for all τ ∈ [0, t], which implies that for almost every ω ∈ ∩4k=0Ωk,

Iz(t) = Iz(0) exp

{∫ t

0

βSz(τ)dτ −
(
c2 +

σ2
2

2

)
t+ σ2B(t)

}
≤ Iz(0) exp

{∫ t

0

βS̃θu(τ)dτ −
(
c2 +

σ2
2

2

)
t+ σ2B(t)

}
≤ Iz(0) exp

{
β

(
α + (γ1 + γ2)θ

µ
+

λ̃

10

)
t−
(
c2 +

σ2
2

2

)
t+

λ̃

10
t

}

= Iz(0) exp

{
λt+

3λ̃t

10

}
≤ h exp

{
−7λ̃t

10

}
. (2.29)

With t ≥ T we can rewrite (2.23) as

Qz(t) = Θ(t)

[
Qz(0) +

∫ T

0

γ3Iz(τ)Θ−1(τ)dτ

]
+ Θ(t)

∫ t

T

γ3Iz(τ)Θ−1(τ)dτ. (2.30)

On the set ω ∈ Ω2, it is seen

exp

{
−

(
c3 +

σ2
3

2
+

λ̃

10

)
t

}
≤ Θ(t) ≤ exp

{
−

(
c3 +

σ2
3

2
− λ̃

10

)
t

}
, ∀ t ≥ T. (2.31)

Combining (2.29) and (2.31) obtain that for z ∈ [0, H]× [0, h)× [0, h)

Θ(t)

∫ t

T

γ3Iz(τ)Θ−1(τ)dτ ≤ γ3Iz(0) exp

{
−

(
c3 +

σ2
3

2
− λ̃

10

)
t

}∫ t

T

exp

{(
c3 +

σ2
3

2
− 3λ̃

5

)
τ

}
dτ

≤ γ3Iz(0) exp

{
−

(
c3 +

σ2
3

2
− λ̃

10

)
t

}
exp

{(
c3 +

σ2
3

2
− 3λ̃

5

)
t
}

c3 +
σ2
3

2
− 3λ̃

5

≤ γ3h
exp{− λ̃t

2
}

c3 +
σ2
3

2
− 3λ̃

5

≤ h, (2.32)

where the last inequality follows from (2.16). Let n be any integer greater than T . From

(2.26), (2.30) and (2.32), it follows that for any (u, v, w) ∈ [0, H] × [0, h) × [0, h) and for

almost every ω ∈ ∩4k=1Ωk and t ∈ [0, n ∧ τ̃)

Qz(t) ≤
θ

2
+ h < θ.
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This implies that τ̃ ≥ n for almost every ω ∈ ∩4
k=1Ωk. Since n is arbitrary, we get (2.28).

Further, it follows from (2.30) (2.31) and (2.32) that

Qz(t) ≤ e−(c3+
σ23
2
− λ̃

10
)t

h+ γ3h
exp

{
(c3 +

σ2
3

2
− 3λ̃

5
)T
}

c3 +
σ2
3

2
− 3λ̃

5

+ γ3h
exp{−1

2
λ̃t}

c3 + 1
2
σ2
3 − 3

5
λ̃

(2.33)

on ∩4k=1Ωk. Using (2.28) and letting t→∞ in (2.29) and (2.33) obtain

lim
t→∞

Iz(t) = lim
t→∞

Qz(t) = 0 (2.34)

for any initial value z ∈ [0, H] × [0, h) × [0, h) and for almost every ω ∈ ∩4k=1Ωk. It is clear

that P(∩4k=1Ωk) ≥ 1 − ε. Thus, we obtain (2.10). Moreover, from (2.28) and comparison

theorem we can see that Sz(s) ≤ S̃θ(s) for all s ∈ [0,∞) and ω ∈ ∩4k=1Ωk. Therefore,

lim sup
t→∞

1

t

∫ t

0

Sz(τ)dτ ≤ lim
t→∞

1

t

∫ t

0

S̃θ(τ)dτ =
α + (γ1 + γ2)θ

µ
on ∩4k=1 Ωk. (2.35)

This gets (2.11) and hence the proof of lemma is completed.

Proof of Theorem 2.1. Since the system (1.1) is non degenerate, it is either recurrent or

transient with a probability 1 (see Kliemann [14, Proposition 3.1]). Therefore, (2.34) takes

place with a probability 1. Consider random accupation measure

Π̃t(A) :=
1

t

∫ t

0

1{(Sz(τ),Iz(τ),Qz(τ)∈A}dτ, t > 0, A ∈ B(R3
+).

By using [7, Lemma 5.7], we can show that with probability 1, any weak limit of Π̃t as

t → ∞ is an invariant probability measure of process (Sz(t), Iz(t), Qz(t) in R3
+. From (2.7)

and (2.34), it is seen that the family of measures {Π̃t(·, ω), t ≥ 0} is tight in R3
+ for almost

sure ω ∈ Ω and any weak limit of Π̃t(·) as t → ∞ must have support on R+ × {0} × {0}.
Clearly, on R+×{0}×{0}, the process (Sz(t), Iz(t), Qz(t) has an unique invariant probability

measure µ0 × δ{0} × δ{0}, where δ{0} is the Dirac measure with mass at 0. As a result,

lim
t→∞

Π̃t(·) = µ0 × δ{0} × δ{0}, a.s.

On the other hand, the function x 7→ x1+p is µ0-integrable whenever 0 < p <
2µ

σ2
and{

1
t

∫ t
0
Sz(τ)dτ : t > 0

}
is uniformly integrable for almost sure ω ∈ Ω. Thus, there exists the

limit

lim
t→∞

1

t

∫ t

0

Sz(τ)dτ =

∫
R+

xµ0(dx) =
α

µ
a.s. (2.36)
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From the second equation of (1.1) and Itô formula we obtain

ln Iz(t)

t
=

ln Iz(0)

t
+ β

1

t

∫ t

0

Sz(τ)dτ −
(
c2 +

σ2
2

2

)
+ σ2

B(t)

t
.

Therefore, it follows from (2.36) that

lim
t→∞

ln Iz(t)

t
= λ for almost sure ω ∈ Ω. (2.37)

Thus, for any ε > 0 sufficiently small, there are two random variables η1, η2 such that

η1e
(λ−ε)t ≤ Iz(t) ≤ η2e

(λ+ε)t for all t > 0.

Further, there exists the limit

lim
t→∞

ln Θ(t)

t
= −

(
c3 +

σ2
3

2

)
a.s,

which implies there are two positive random variables ξ1, ξ2 satisfying

ξ12e
−
(
c3+

σ23
2
+ε

)
t
≤ Θ(t) ≤ ξ2e

−
(
c3+

σ23
2
−ε
)
t
a.s for all t > 0.

Hence, from (2.23) we get

ξ1e
−
(
c3+

σ23
2
+ε

)
t

[
Qz(0) +

η1
ξ2

∫ t

0

e

(
λ+c3+

σ23
2
−2ε

)
τ
dτ

]

≤ Qz(t) ≤ ξ2e
−
(
c3+

σ23
2
−ε
)
t

[
Qz(0) +

η2
ξ1

∫ t

0

e

(
λ+c3+

σ23
2
+2ε

)
τ
dτ

]
,

which implies that

max

{
λ,−

(
c3 +

σ2
3

2

)}
− 2ε ≤ lim inf

t→∞

lnQz(t)

t

≤ lim sup
t→∞

lnQz(t)

t
≤ max

{
λ,−

(
c3 +

σ2
3

2

)}
+ 2ε a.s.

Thus,

lim
t→∞

lnQz(t)

t
= max

{
λ,−

(
c3 +

σ2
3

2

)}
a.s. (2.38)

On the other hand, consider the stopping time

ζn = inf

{
t ≥ n : Sz(t) + Iz(t) +Qz(t) = max

n≤τ≤n+1
[Sz(τ) + Iz(τ) +Qz(τ)]

}
.

11



From (2.9) we have

E
[

max
n≤τ≤n+1

((Sz(τ) + Iz(τ) +Qz(τ))1+p
]

= E [V (Sz(ζn), Iz(ζn), Qz(ζn)]

≤ EV (Sz(n), Iz(n), Qz(n)) + E
∫ ζn

n

LV (Sz(t), Iz(t, Qz(t)) dt

≤ EV (Sz(n), Iz(n), Qz(n)) +K1E[ζn − n] ≤ EV (Sz(n), Iz(n), Qz(n)) +K1.

Thus,

E sup
n≤t≤n+1

V (Sz(t), Iz(t), Qz(t)) ≤ EVz(S(n), Iz(n), Qz(n)) +K1 ≤ K +K1, (2.39)

where K = supt≥0 EV (Sz(t), Iz(t), Qz(t)) <∞ by Lemma 2.2. For any ε > 0 and n ∈ N put

An =

{
ω :

ln(supn≤t≤n+1 Sz(t))

n
≥ ε

}
.

By virtue of (2.39)
∞∑
n+1

P(An) ≤ (K +K1)
∞∑
n+1

e−εn <∞.

Therefore, Borell-Canteli Lemma says that

lim sup
n→∞

ln
[
supn≤t≤n+1 Sz(t)

]
n

≤ 0 a.s.

In particular,

lim sup
t→∞

lnSz(t)

t
≤ 0 a.s.. (2.40)

Hence,

lim sup
t→∞

lnSz(t) + ln Iz(t)

t
≤ lim sup

t→∞

ln Iz(t)

t
≤ λ < 0.

As a result, for any ε1 > 0, there exists a positive random variable ξ such that

Sz(t)Iz(t) ≤ ξe(λ+
ε1
4
)t, ∀ t ≥ 0. (2.41)

In order to show that Sz(t) converges to S̃0
u(t), we consider

d(S̃0
u(t)−Sz(t)) = [−µ(S̃0

u(t)−Sz(t))+βSz(t)Iz(t)−γ1Iz(t)−γ2Qz(t)]dt+σ1(S̃
0
u(t)−Sz(t))dB1(t).

(2.42)

Denote

ϑ(t) = exp

{(
µ+

σ2
1

2

)
t− σ1B1(t)

}
.
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Using constant-variation formula, it implies from (2.50) that

S̃0
u(t)− Sz(t) = βϑ−1(t)

∫ t

0

ϑ(s)[Sz(τ)Iz(τ)− γ1Iz(τ)− γ2Qz(τ)]dτ.

It implies that

−βϑ−1(t)
∫ t

0

ϑ(s)[γ1Iz(τ) + γ2Qz(τ)]dτ ≤ S̃0
u(t)− Sz(t) ≤ βϑ−1(t)

∫ t

0

ϑ(s)Sz(τ)Iz(τ)]dτ.

(2.43)

Let λ = max{−(c3 +
σ2
3

2
);λ} and let λ̂ > max{−(µ+

σ2
1

2
);λ} be arbitrary. We choose ε1 > 0

such that λ̂− ε1 > max{−(µ+
σ2
1

2
);λ}. Since limt→∞

lnϑ(t)
t

= µ+
σ2
1

2
, there are two positive

random variables ξ1, ξ2 satisfying

ξ1e
(µ+

σ21
2
− ε1

4
)t ≤ ϑ(t) ≤ ξ2e

(
µ+

σ21
2
+
ε1
4

)
t. (2.44)

As a result of (2.37) and (2.38), there exists a random variables ξ3 such that

Iz(t) ∨Qz(t) ≤ ξ3e
(λ+

ε1
4
)t (2.45)

From (2.41), (2.43), (2.44) and (2.45), we gete−λ̂t(S̃0
u(t)− Sz(t)) ≥ −Γ1e

(−λ̂−(µ+σ21
2
)+

ε1
4
)t
∫ t
0
e

(
λ+µ+

σ21
2
+
ε1
2

)
sds,

e−λ̂t(S̃0
u(t)− Sz(t)) ≤ Γe(−λ̂−(µ+

σ21
2
)+

ε1
4
)t
∫ t
0
e

(
λ+µ+

σ21
2
+
ε1
2

)
sds,

where Γ1 = β(γ1+γ2)ξ2ξ3
ξ1

and Γ2 = βξξ2
ξ1

. Using L’Hospital rule obtains
lim sup
t→∞

e−λ̂t(S̃0
u(t)− Sz(t)) ≥ − lim

t→∞
Γ1e

(−λ̂−(µ+σ21
2
)+

ε1
4
)t
∫ t
0
e

(
λ+µ+

σ21
2
+
ε1
2

)
s
ds = 0

lim sup
t→∞

e−λ̂t(S̃0
u(t)− Sz(t)) ≤ lim

t→∞
Γ2e

(−λ̂−(µ+σ21
2
)+

ε1
4
)t
∫ t
0
e

(
λ+µ+

σ21
2
+
ε1
2

)
s
ds = 0

Thus,

lim
t→∞

e−λ̂t(S̃0
u(t)− Sz(t)) = 0 a.s.

The proof is complete.

2.2 Case 2: λ > 0 (or R̂ > 1)

Theorem 2.4. Let (Sz(t), Iz(t), Qz(t)) be the solution to the equation (1.1) with initial value

z = (u, v, w) ∈ R3
+, v > 0. If λ > 0 (or R̂ > 1), the model is strongly stochastically permanent

in the sense that for any ε > 0, there exists δ > 0 such that

lim inf
t→∞

P{min{Sz(t), Iz(t), Qz(t)} ≥ δ} > 1− ε, (2.46)
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To proof Theorem 2.4 we need following lemmas.

Lemma 2.5. For any 0 < ~ < H <∞, T > 1 and ε > 0, there exists δ̂ = δ̂(H, ~, T, ε) such

that

P{min{Sz(t), Iz(t), Qz(t)} ≥ δ̂,∀t ∈ [T, 2T ]} > 1− ε (2.47)

holds for all initial value z = (u, v, w) ∈ [0, H]× [~, H]× [0, H].

Proof. Recall from the proof of Lemma 2.3 that there exist an M̃ such that Pz(Ω̃) > 1 − ε
2

where

Ω̃ =
{
ω : sup

t∈[0,2T ]
|σkBk(t)| ∨

∫ t

0

Sz(τ)dτ < M̃
}
. (2.48)

Similar to (2.22), we have

Iz(0)e−M̃−(2c2+σ2
2)T ≤ Iz(t) ≤ Iz(0)e2M̃ for all t ∈ [0, 2T ]. (2.49)

Therefore, on Ω̃ we have

Iz(t) ≥ Iz(0)e−M̃−(2c2+σ
2
2)T := δ1 for all t ∈ [0, 2T ]. (2.50)

It implies from (2.24) and (2.48), that

e−(2c3+σ3)T−M̃ ≤ Θ(t) ≤ eM̃ , for almost surely ω ∈ Ω̃ and t ∈ [0, 2T ]. (2.51)

Combining (2.23), (2.51), we obtain

Qz(t) ≥ e−(2c3+σ3)T−M̃
[
Qz(0) +

∫ t

0

γ3δ1e
−M̃dτ

]
≥ γ3δ1Te

−(2c3+σ3)T−2M̃ =: δ2 for all t ∈ [T, 2T ]. (2.52)

On the other hand,

Sz(t) = Ψ(t)

(
Sz(0) +

∫ t

0

Ψ−1(τ)(α + γ1Iz(τ) + γ2Qz(τ))dτ

)
, (2.53)

where

Ψ(t) = exp

{
−β
∫ t

0

Iz(τ)dτ −
(
µ+

σ2
1

2

)
t+ σ1B1(t)

}
.

In view of (2.49), for almost sure ω ∈ Ω̃, we have

exp
{
−2βHTe2M̃ − (2µ+ σ2

1)T − M̃
}
≤ Ψ(t) ≤ exp

{
M̃
}
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Therefore,

Sz(t) ≥ Ψ(t)

∫ t

0

αΨ−1(τ)dτ ≥ T exp
{
−2βHTe2M̃ − (2µ+ σ2

1)T − 2M̃
}

:= δ3, ∀ t ∈ [T ; 2T ].

By putting δ̂ = min{δ1, δ2, δ3}, we see that min{Sz(t), Iz(t), Qz(t)} > δ̂ for all t ∈ [T, 2T ] on

Ω̃. The proof is completed.

Lemma 2.6. Let (Sz(t), Iz(t), Qz(t)) be the solution to equation (1.1) with initial value

z = (u, v, w) ∈ R3
+. If λ > 0 (or R̂ > 1), there exist θ > 0 and H = H(θ) such that

lim sup
t→∞

EI−θz (t) ≤ H for any (u, v, w) ∈ R3
+, v > 0. (2.54)

Proof. Since Iz(0) = 0 then Iz(t) = 0 and Sz(t) ≡ S̃0(t)) for all t ≥ 0. Therefore from (2.3),

(2.4) and Feller properties, there exist δ4 > 0 such that

lim
t→∞

1

t

∫ t

0

βE[Sz(τ)]dτ −
(
c2 +

σ2
2

2

)
≥ 3λ

4
uniformly in z = (u, v, w) ∈ R3

+, v ≤ δ4.

Thus, we can find a constant T sufficient large satisfying∫ T

0

βE[Sz(τ)]dτ −
(
c2 +

σ2
2

2

)
T ≥ λT

2
uniformly in z = (u, v, w) ∈ R3

+, v ≤ δ4 (2.55)

By using Itô formula and (2.55), for z = (u, v, w) ∈ R3
+, v ≤ δ4, we have

E ln Iz(T ) ≥ ln v +
λT

2
(2.56)

Consider the Lyapunov function Vθ(u, v, w) = v−θ, where θ is a positive constant. We have

LVθ(u, v, w) = −θv−θ
[
βu−

(
µ+ ρ1 + γ1 + γ3 −

θ + 1

2
σ2
2

)]
≤ HθVθ(u, v, w),

where Hθ = θ (µ+ ρ1 + γ1 + γ3) . Thus, by using Itô’s formula and taking expectation both

sides, we obtain

EI−θz (t) ≤ v−θ exp(Hθt) for any t ≥ 0, z = (u, v, w) ∈ R3
+, v > 0. (2.57)

From Lemma 2.2 and (2.57), we obtain

E
(
Iz(t) + I−1z (t)

)
≤ H <∞ for all 0 ≤ t ≤ T.
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Applying [7, Lemma 3.5, pp. 1912] yields that the that the log-Laplace transform lnEφ,iI−θz (T )

is twice differentiable on [0, 1
2
) and there is a constant H2 such that

lnEI−θz (T ) ≤ −E ln Iz(T )θ +H2θ
2. (2.58)

By combining (2.56) with (2.58), we arrive at

EI−θz (T ) ≤ v−θ exp(−λθT
4

) for (u, v, w) ∈ R3
+, v < δ4.

with a sufficiently small θ. This inequality and (2.57) imply that

EI−θz (T ) ≤ qv−θ + κ for all (u, v, w) ∈ R3
+, v > 0,

where κ = δ−θ4 exp
(
λθT
4

)
and q = exp

(
− λθT

4

)
.

By using standard arguments as proof of [20, Theorem 2.2], we obtain (2.54).

Proof of Theorem 2.4. In view of (2.54), for any ε > 0 there exists δ5 > 0 and a sufficiently

large k ∈ N such that

P{Iz(kT ) ≥ δ5} ≥ 1− ε. (2.59)

By combining (2.59), Lemma 2.5, and the Markov property of the solution, we have

P{min{Sz(t), Iz(t), Qz(t)} ≥ δ̂,∀t ∈ [(k+1)T, (k+2)T ]} > 1−ε for any (u, v, w) ∈ R3
+, v > 0.

Letting k →∞ in this estimate yields (2.54). The proof is completed.

From (2.46) implies that for all ε > 0, there exists δ > 0 such that

lim inf
t→∞

1

t

∫ t

0

E
[
1{Sz(τ)≥δ,Iz(τ)≥δ,Qz(τ)≥δ}

]
dτ ≥ 1− ε

4
(2.60)

Let H > 4Mp

ε
. We also have from (2.7) that

lim sup
t→∞

1

t

∫ t

0

E1{max{Sz(τ),Iz(τ),Qz(τ)}≥H}dτ ≤ lim sup
t→∞

1

t

∫ t

0

E1{Sz(τ)+Iz(τ)+Qz(τ)≥H}dτ

≤ 1

H1+p
lim sup
t→∞

1

t

∫ t

0

E(Sz(τ) + Iz(τ) +Qz(τ))1+pdτ ≤ Mp

H1+p
≤ ε

4
. (2.61)

It follows from (2.60) and (2.61) that for all ε ∈ (0, 1) we can choose H sufficiently large and

δ sufficiently small such that

lim inf
t→∞

1

t

∫ t

0

E1{(Sz(τ),Iz(τ),Qz(t))∈D}dτ ≥ 1− ε > 0, (2.62)

16



where D = {(u, v, w) : δ ≤ u, v, w ≤ H}. By virtue of the invariance of R3,◦
+ = {(x, y, z) :

x, y, z > 0} under equation (1.1), we can consider the Markov process (Sz(t), Iz(t), Qz(t))

on the state space R3,◦
+ . It is easy to show that (Sz(t), Iz(t), Qz(t)) has the Feller property.

Thus, in view of inequality (2.62) and the compactness of D in R3,◦
+ , we implies that there

is an invariant probability measure π∗ on M (see [19] or [15]). By the independence of

B1(t), B2(t), B3(t), it implies that R3,◦
+ is the support of π∗. Hence, the invariant probability

is unique and the strong law of large numbers holds; see [13, Theorems 3.1, 3.3]. We have

the following result.

Theorem 2.7. If λ > 0, soluion (Sz(t), Iz(t), Qz(t)) of the equation (1.1) has a unique

invariant probability measure π∗ with support R3,◦
+ . Moreover,

(a) For any π∗-integrable f(x, y, z) : R2,◦
+ → R, we have

lim
t→∞

1

t

∫ t

0

f(Sz(τ), Iz(τ), Qz(τ))dτ =

∫
f(x, y, z)π∗(dx, dy.dz)a.s.

(b) For all initial value (u, v, w) ∈ R3,◦
+ ,

lim
t→∞
‖P (t, (u, v, w), ·)− π∗(·)‖ = 0,

where P (t, (u, v, w), ·) is the transition probability of (Sz(t), Iz(t), Qz(t)) and ‖ · ‖ is the
total variation norm.

3 Discussion and Numerical Examples

We have shown that the extinction and permanence of the disease in a stochastic SIQS

model with isolation can be determined by the sign of a threshold value λ. Only the critical

case λ = 0 is not studied in this paper. To illustrate the significance of our results, let us

compare our results with those in [23]. Firstly, our results can be proved without the appeal

to the condition µ > σ2

2
. Moreover, in case R̂ < 1, instead of convergence in mean, we prove

that the system (1.1) approximates to disease free case and Sz(t) converges almost surely

to S̃0(t) at an exponential rate. In case R̂ > 1 we prove that the disease is permanent and

a stationary distribution exists. Of course, this result follows the persistence in mean as in

[23, Theorem 4, p. 370]. Let us finish this paper by providing some numerical examples.
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Example 3.1. Consider (1.1) with parameters α = 4, β = 2, µ = 2, ρ1 = 1, ρ2 = 0.25, γ1 =

0.5, γ2 = 0.25, γ3 = 1, σ1 = 1, and σ2 = 2.5 and σ3 = 2. With these paramaters condition

µ >
max{σ2

i ,i=1,3}
2

is not satisfied. Direct calculation shows that λ = −3.625 < 0. By virtue of

Theorem 2.1, lim
t→∞

ln Iz(t)

t
= −3.625, lim

t→∞

lnQz(t)

t
= −3 and lim

t→∞

ln |Sz(t)− S̃0(t)|
t

≤ −2.5.

This claim is supported by Figures 1. That is, the population will eventually have no disease

and Sz(t) convergence to S̃0(t) at exponental rate.

Figure 1: Estimated paths of
ln Iz(t)

t
(in red line),

lnQz(t)

t
(in ping line) and

ln |Sz(t)− S̃0
u(t)|

t
(in blue line) in Example 3.1.

Example 3.2. Consider (1.1) with parameters α = 5, β = 5, µ = 1, ρ1 = 0.5, ρ2 = 0.25, γ1 =

0.5, γ2 = 0.25, γ3 = 1.5, σ1 = 1, and σ2 = 2.5, σ3 = 1, . For these parameters, the conditions

µ >
max{σ2

i ,i=1,3}
2

is also not satisfied. We obtain λ = 18.375 > 0, As a result of Theorem

2.4, model is strongly stochastically permanent. A sample path of (Sz(t), Iz(t), Qz(t)) is

described in Figures 2

Figure 2: Trajectories of (Sz(t), Iz(t), Qz(t)) in Example 3.2.
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