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Abstract. In this paper we study an optimal control problem for the three-

dimensional magnetohydrodynamic-α model (MHD-α) in bounded domains
with distributed controls. We first prove the existence of optimal solutions,

and then we establish the first-order necessary as well as second-order sufficient

optimality conditions.

1. Introduction

Magnetohydrodynamics (MHD) is the branch of continuum mechanics that stud-
ies the macroscopic interaction of electrically conducting fluids and electromag-
netic fields. The subject is of great interest for its numerous practical applications
which includes motion of liquid metals, fusion technology, design of novel subma-
rine propulsion devices and plasma physics. The motion of Newtonian fluids is
governed by the Navier-Stokes equations and electromagnetic effects are governed
by Maxwell’s equations. Under a number of physical assumptions valid for the prob-
lems of interest, these two general systems can be reduced to the MHD system, see
e.g. [9, 19, 23].

Because of the success of Navier-Stokes-α model in producing solutions in ex-
cellent agreement with empirical data for a wide range of large Reynolds numbers
and flow in infinite channels or pipes, it is natural to consider such a kind of regu-
larization for magnetohydrodynamic models as well. In [20], Linshiz and Titi have
suggested several MHD-α models. For instance, filtering the velocity field but not
the magnetic field, we get the following MHD-α model

∂tv − ν∆v +∇
(
p+
|B|2

2

)
= u× (∇× v) + (B · ∇)B + h1, in Ω× (0, T ),

∂tB − η∆B + (u · ∇)B − (B · ∇)u = h2, in Ω× (0, T ),

v = u− α2∆u, in Ω× (0, T ),

∇ · u = ∇ · v = ∇ ·B = 0, in Ω× (0, T ),

u = ∆u = 0, B · n = 0, on ∂Ω× (0, T ),

u(x, 0) = u0(x), B(x, 0) = B0(x), in Ω.

(1.1)
Here u = u(x, t) is the velocity of the particle of fluid which is at point x at time
t, B = B(x, t) is the magnetic field at point x at time t, p = p(x, t) stands for
the pressure of the fluid, ν > 0 is the kinematic viscosity coefficient, η > 0 is
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the constant magnetic diffusivity, n is the outer normal to ∂Ω and α is a length
scale parameter. When α = 0 we formally recover the 3D classical MHD equations
in [23].

In recent years, the existence and long-time behavior of solutions to this MHD-α
model have attracted the attention of many mathematicians. In [20], Linshiz and
Titi have shown a global existence result in a three-dimensional periodic box when
ν > 0 and η > 0, while Fan and Ozawa [10] and Liu [21] have achieved the same
result in the whole space R2 for both cases (ν = 1, η = 0) and (ν = 0, η = 1). More
recently, in [32], Zhou and Fan also established the regularity criteria to guarantee
the existence of smooth solutions for higher dimensional case. For the long-time
behavior of solutions, the existence and regularity of a finite-dimensional global
attractor were proved by Catania in [6] and Anh et. al. in [3] in the case of three-
dimensional periodic box, and the time decay rate in L2(R3) of solutions was proved
by Jiang and Fan in [17]. When B = 0, the above MHD-α model reduces to the
well-known Navier-Stokes-α equations, for which many results on the existence of
solutions and global attractor were achieved, see e.g. [8, 11, 16, 22] and references
therein, and decay rates of solutions on the whole space were investigated in [5].
We also refer the interested reader to [7, 18, 31] for results related to other MHD-α
models.

The main goal of this paper is to prove the existence of optimal solutions and
establish the first-order necessary as well as the second-order sufficient optimality
conditions for an optimal control problem for the 3D MHD-α model in bounded
domains with Dirichlet boundary conditions, the situation has a more physical
meaning than the case of periodic boundary conditions. Optimal control of fluids
to alter flows to achieve a desired effect remains an active research area due to its
importance for the design and performance of fluid dynamical systems. The past
decade has seen significant developments in theoretical and computational analysis
in this area, see e.g. [1, 12, 25]. Especially, optimal control problems for the Navier-
Stokes equations and 2D MHD equations have been studied extensively during the
past years, see e.g. [13, 14, 15, 28, 29, 30] and references therein. However, to the
best of our knowledge, optimal control of 3D MHD-α models has not been studied
before. This is the main motivation of the present paper.

The mathematical description of the optimal control problem we study is as
follows. Let Ω be a bounded domain in R3 with boundary ∂Ω of class C2, and
we denote the space-time cylinder by Q = Ω× (0, T ). Let h = (h1, h2) denote the
control belongs to an admissible set Uad, which is an arbitrary non-empty closed

convex subset in
(
L2(Q)

)3 × (L2(Q)
)3

. For given T > 0, the cost functional is
defined by

J(z, h) =
αT
2

∫
Ω

|z(x, T )− zT (x)|2dx+
αQ
2

∫∫
Q

|z(x, t)− zQ(x, t)|2dxdt

+
γ

2

∫∫
Q

|h(x, t)|2dxdt,
(1.2)

where z = (u,B), zT and zQ denote some desired statements of pair of velocity and
magnetic fields, the coefficients αT , αQ are non-negative real numbers, where at
least one is positive to get a non-trivial objective functional, and the regularization
parameter γ measuring the cost of the control is a positive number. We wish to
minimize the functional (1.2) subject to the 3D MHD-α model (1.1).
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Our first goal in this paper is to show the existence of optimal solutions of
problem (1.1) and establish the first-order necessary optimality conditions. Our
second goal is to derive the second-order sufficient optimality conditions. It is
worthy noticing that our approach allows that the set of admissible controls is an

arbitrary non-empty closed convex subset in
(
L2(Q)

)3× (L2(Q)
)3

, not necessary a
box constraint as in [28, 29], and it seems to be more natural and does not require
the use of Lagrange functional. Such an approach has also been used recently in [2]
for an optimal control problem with control constraints of the 3D Navier-Stokes-
Voigt equations. Although the approach and techniques we use in the present paper
are similar to those in [2] (and in fact they are standard techniques in optimal
control of PDEs), due to the complexity of nonlinear terms in the MHD-α model,
our arguments here are more involved.

The rest of the paper is structured as follows. In Section 2, for convenience of the
reader, we recall some auxiliary results on function spaces and inequalities for the
nonlinear terms related to the MHD-α model and the existence and uniqueness of
solutions to problem (1.1). Section 3 proves the existence of optimal solutions. The
first-order necessary optimality condition is given in Section 4. In the last section
we derive a second-order sufficient optimality condition.

2. Preliminaries

2.1. Function spaces and inequalities for the nonlinear terms. We denote

L2(Ω) =
(
L2(Ω)

)3
, Hm(Ω) =

(
Hm(Ω)

)3
, Hm0 (Ω) =

(
Hm

0 (Ω)
)3
.

The spaces used in the theory of the MHD-α model are a combination of spaces
used for the Navier-Stokes equations and spaces used in the theory of Maxwell
equations. They are

V1 = {v ∈
(
C∞0 (Ω)

)3
: ∇ · v = 0},

V1 = closure of V1 in the H1
0(Ω) norm,

H1 = closure of V1 in the L2(Ω) norm,

V2 = {θ ∈
(
C∞(Ω̄)

)3
: ∇ · θ = 0; θ · n|∂Ω = 0},

V2 = closure of V2 in the H1(Ω) norm,

H2 = closure of V2 in the L2(Ω) norm = H1.

So that V ′k := H−1(Ω) is the topological dual of Vk (k = 1, 2). The spaces Hk (k =
1, 2) are endowed with the inner product and the norm of L2(Ω) are denoted by
(·, ·) and | · |, respectively.

The inner product and norm in V1 are given by

((u, ũ))1 =
3∑
i=1

∫
Ω
∇ui · ∇ũidx, ∀u, ũ ∈ V1,

‖u‖1 = ((u, u))
1/2
1 , ∀u ∈ V1.

Due to the Poincaré inequality, this norm is equivalent to the usual one in H1
0(Ω).

The inner product and norm in V2 are given by

((B, B̃))2 =
3∑
i=1

∫
Ω

∇Bi · ∇B̃idx, ∀B, B̃ ∈ V2,

‖B‖2 = ((B,B))
1/2
2 , ∀B ∈ V2.
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By using the Poincaré-Wirtinger inequality, the above bilinear form defines a norm
which is equivalent to that induced by H1(Ω) on V2.

We denote by A1 the Stokes operator, with domain D(A1) = H2(Ω)∩V1, defined
by A1u = −P(∆u),∀u ∈ D(A1), where P is the Leray projection, i.e. the projection
operator from L2(Ω) onto H1. Furthermore, A−1

1 is a compact linear operator on
H1 and |A1 · | is a norm on D(A1) that is equivalent to H2-norm.

Then we introduce the linear nonnegative unbounded operator on H2

A2B = −∆B, ∀B ∈ D(A2) = H2(Ω).

Observe that A−1
2 is a compact linear operator on H2 and we endow D(A2) with

the norm |A2 · | which is equivalent to the H2-norm.

By the classical spectrum theorem, there exist sequences {λ(i)
j }∞j=1, i = 1, 2,

0 < λ
(i)
1 ≤ λ

(i)
2 ≤ · · · ≤ λ

(i)
j ≤ · · · , λ

(i)
j → +∞, as j →∞,

and family of elements {e(1)
j }∞j=1 of V1 which are orthogonal in H1 and {e(2)

j }∞j=1 of
V2 which are orthogonal in H2 such that

Aie
(i)
j = λ

(i)
j e

(i)
j , ∀j ∈ N, i = 1, 2.

Similarly, when A1u = 0 on ∂Ω, the operator A2
1 can be defined on D(A1) with

values in D(A1)′, the dual space of the Hilbert space D(A1), such that

〈A2
1u, ũ〉D(A1)′ = (A1u,A1ũ), for every u, ũ ∈ D(A1).

We consider the trilinear form b given by

b(u, v, w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx, ∀w ∈ Vk, k = 1, 2, (2.1)

whenever the integrals make sense. Then we define a continuous bilinear operator
B : Vk × Vk → V ′k, k = 1, 2, with

〈B(u, v), w〉 = b(u, v, w),∀u, v, w ∈ Vk.

It is easy to check that if u, v, w ∈ Vk, k = 1, 2, then

b(u, v, w) = −b(u,w, v). (2.2)

Hence

b(u, v, v) = 0. (2.3)

Using Hölder’s inequality, Sobolev’s inequalities in R3,

‖u‖L4(Ω) ≤ c‖u‖
1/4
L2(Ω)‖u‖

3/4
H1(Ω),

‖u‖L3(Ω) ≤ c‖u‖
1/2
L2(Ω)‖u‖

1/2
H1(Ω), and

‖u‖L6(Ω) ≤ c‖u‖H1(Ω), for every u ∈ H1(Ω),

as in [26, 27], one can prove the following lemma.
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Lemma 2.1. For k = 1, 2, we have

|b(u, v, w)| ≤ c



‖u‖k‖v‖k‖w‖k, ∀u, v, w ∈ Vk,
‖u‖k|v||Akw|, ∀u ∈ Vk, v ∈ Hk, w ∈ D(Ak),

‖u‖1/2k |Aku|1/2|v|‖w‖k, ∀u ∈ D(Ak), v ∈ Hk, w ∈ Vk,
‖u‖1/2k |Aku|1/2‖v‖k|w|, ∀u ∈ D(Ak), v ∈ Vk, w ∈ Hk,

‖u‖k‖v‖1/2k |Akv|1/2|w|, ∀u ∈ Vk, v ∈ D(Ak), w ∈ Hk,

|u|‖v‖k|Akw|, ∀u ∈ Hk, v ∈ Vk, w ∈ D(Ak).

(2.4)

Now, if u ∈ D(Ak), then ∇uT ∈
(
H1(Ω)

)3×3
↪→
(
L6(Ω)

)3×3
, and consequently,

for v ∈ L2(Ω), we have that v · ∇uT =
∑3
j=1 vj∇uj ∈ L3/2(Ω) ↪→ H−1(Ω), with

〈
v · ∇uT , w

〉
=

3∑
i,j=1

∫
Ω

wi
∂uj
∂xi

vj , ∀w ∈ Vk, k = 1, 2.

We now consider the trilinear form defined by

b(u, v, w) = b(u, v, w)− b(w, v, u), ∀(u, v, w) ∈ D(Ak)×Hk × Vk, k = 1, 2, (2.5)

and we define a continuous bilinear operator B̃ from V1 × V1 into V ′1 with

〈B̃(u, v), w〉 = b(u, v, w).

Next, using the identity

(u · ∇)v +

3∑
j=1

vj∇uj = −u× (∇× v) +∇(u · v)

and using that ∇ · u = 0, it is immediate to check that(
− u× (∇× v), w

)
=
(
(u · ∇)v, w

)
+
(
v · ∇uT , w

)
= b(u, v, w) + b(w, u, v) = b(u, v, w).

Next, we have the following result.

Lemma 2.2. [20, Lemma 2.1] For k = 1, 2, the trilinear form b satisfies

b(u, v, w) = −b(w, v, u), ∀u, v, w ∈ Vk,

and consequently,

b(u, v, u) = 0, for all u, v ∈ Vk. (2.6)

Furthermore, we have

|b(u, v, w)| ≤ c


|u|‖v‖k‖w‖1/2k |Akw|1/2, ∀u ∈ Hk, v ∈ Vk, w ∈ D(Ak),

‖u‖k‖v‖k|w|1/2‖w‖1/2k , ∀u, v, w ∈ Vk,(
|u|1/2‖u‖1/2k |v||Akw|+ ‖u‖k|v|‖w‖

1/2
k |Akw|1/2

)
,

∀u ∈ Vk, v ∈ Hk, w ∈ D(Ak).
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2.2. Existence and uniqueness of solutions to the 3D MHD-α model. We
rewrite problem (1.1) as a functional equation

∂tv + νA1v + B̃(u, v) = B(B,B) + h1 in D(A1)′,

v = u+ α2A1u,

∂tB + ηA2B + B(u,B)− B(B, u) = h2 in V ′2 ,

u(0) = u0, B(0) = B0.

(2.7)

Definition 2.3. Let h ∈ L2(0, T ;L2(Ω) × L2(Ω)) and given (u0, B0) ∈ (V1, H2).
For any T > 0, a weak solution of (2.7) on the interval [0, T ], with (u(0), B(0)) =
(u0, B0), is a pair of functions (u,B) such that

u ∈ C([0, T ];V1) ∩ L2(0, T ;D(A1)) with ∂tu ∈ L2(0, T ;H1),

B ∈ C([0, T ];H2) ∩ L2(0, T ;V2) with ∂tB ∈ L2(0, T ;V ′2)

satisfying〈
d

dt
(u+ α2A1u), w

〉
D(A1)′

+ ν
〈
u+ α2A1u,A1w

〉
D(A1)′

+
〈
B̃(u, u+ α2A1u), w

〉
D(A1)′

= (B(B,B), w) + (h1, w),〈
d

dt
B, θ

〉
V ′2

+ η((B, θ))2 + (B(u,B), θ)− (B(B, u), θ) = (h2, θ),

(2.8)

for every w ∈ D(A1), θ ∈ V2 and for almost every t ∈ [0, T ].
Here, the equation (2.8) is understood in the following sense: for almost every
t0, t ∈ [0, T ] and for all (w, θ) ∈ D(A)× V2 we have

(u(t) + α2A1u(t), w)− (u(t0) + α2A1u(t0), w) + ν

∫ t

t0

(u(s) + α2A1u(s), A1w)ds

+

∫ t

t0

〈
B̃(u(s), u(s) + α2A1u(s)), w

〉
D(A1)′

ds

=

∫ t

t0

(B(B(s), B(s)), w)ds+

∫ t

t0

(h1(s), w)ds,

(B(t), θ)− (B(t0), θ) + η

∫ t

t0

((B(s), θ))2ds

+

∫ t

t0

(B(u(s), B(s)), θ)ds =

∫ t

t0

(B(B(s), u(s)), θ)ds+

∫ t

t0

(h2(s), θ)ds.

The following global well-posedness result can be proved similarly to the case of
periodic boundary conditions in [20].

Theorem 2.4. Let (u0, B0) ∈ V1×H2 and h = (h1, h2) ∈ L2(0, T ;L2(Ω)×L2(Ω)).
Then there exists a unique weak solution (u,B) of (2.7) on the interval (0, T ).
Moreover, if (u0, B0) ∈ D(A1)×V2 then there exists a unique strong solution (u,B)
of (2.7) satisfying

u ∈ C([0, T ];D(A1)) ∩ L2(0, T ;D(A
3/2
1 )),

B ∈ C([0, T ];V2) ∩ L2(0, T ;D(A2)).
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3. Existence of optimal solutions

We can now reformulate the given optimal control problem by using the above
operators.

Problem P: Find minJ(z, h), z = (u,B) subject to the state equations
∂tv + νA1v + B̃(u, v) = B(B,B) + h1 in L2(0, T ;D(A1)′),

∂tB + ηA2B + B(u,B) = B(B, u) + h2 in L2(0, T ;V ′2),

v = u+ α2A1u,

u(0) = u0 in V1, B(0) = B0 in H2,

(3.1)

and the control h = (h1, h2) belongs to the admissible set Uad, which is a non-empty

convex and closed subset in
(
L2(Q)

)3 × (L2(Q)
)3

.
We call a pair (z, h) of states and control admissible if it satisfies Problem P.

First, we will prove the existence of an optimal solution.

Theorem 3.1. There exists an optimal control solution to Problem P.

Proof. The proof is very standard in the theory of optimal control of PDEs, so we
only sketch it here.

The set of admissible controls is non-empty and bounded in
(
L2(Q)

)3×(L2(Q)
)3

.

For every control in
(
L2(Q)

)3 × (L2(Q)
)3

, by Theorem 2.4, there exists a unique
weak solution of the state equation in Problem P. Furthermore, the functional J
is bounded from below, J(z, h) ≥ 0 for every admissible (z, h). Hence, there exists
the infimum of J over all admissible controls and states

0 ≤ J := inf
(z,h) admissible

J(z, h) ≤ ∞.

Moreover, there is a minimizing sequence (zm, hm) of admissible pairs such that
J(zm, hm)→ J for m→∞.

From the convergence we see that the set {J(zm, hm)} is bounded. This implies

that the set {hm} is bounded in
(
L2(Q)

)3×(L2(Q)
)3

. Consequently, we can assume

that it converges weakly to some h∗ ∈
(
L2(Q)

)3× (L2(Q)
)3

. The set of admissible

control is convex and closed in
(
L2(Q)

)3 × (L2(Q)
)3

, so it is weakly closed, thus
the control h∗ is admissible, i.e., h∗ ∈ Uad.

Moreover, it is standard to check that the sequence {zm} belongs to a bounded
set in L2(0, T ;D(A1)× V2) and hence we can assume that zm converges weakly to
some z∗ ∈ L2(0, T ;D(A1) × V2). By using arguments as in Part D of the proof of
Theorem 3.1 in [20], one can show that the pair (z∗, h∗) satisfies the state equation
(3.1), that is, it is admissible.

Finally, it remains to show J = J(z∗, h∗). The objective functional consists of
several norm squares, thus it is weakly lower semicontinuous which implies that

J(z∗, h∗) ≤ lim inf J(zm, hm) = J.

Since (z∗, h∗) is admissible, and J is the infimum over all admissible controls and
states, it follows that J = J(z∗, h∗). Thus, we have completed the proof. �

4. First-order necessary optimality conditions

First, we recall some definitions from Convex Analysis. Let X be a Hilbert
space with the inner product denoted by (·, ·) and U be a convex subset of X. Let
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NU (h), TU (h) denote the normal cone and the polar cone of tangents of U at the
point h ∈ U respectively, i.e.,

NU (h) = {y ∈ X : (y, ζ − h) ≤ 0, ∀ζ ∈ U},
TU (h) = {y ∈ X : (y, ζ) ≤ 0, ∀ζ ∈ NU (h)}.

An element ω ∈ X is called a feasible direction at h ∈ U if there exists δ > 0 such
that h+ εω ∈ U holds for all ε ∈ (0, δ).

The cone of feasible direction at h ∈ U will be denoted by FU (h). Since U is
convex, we have that (see [4])

FU (h) = TU (h). (4.1)

We apply these notations to the case X =
(
L2(Q)

)3 × (L2(Q)
)3
, U = Uad and

h = h∗.

Definition 4.1. A control h∗ is said to be locally optimal if there exists a constant
ρ > 0 such that

J(z∗, h∗) ≤ J(z, h)

holds for all h ∈ Uad with ‖h − h∗‖(L2(Q))3×(L2(Q))3 ≤ ρ. Here, z∗ = (u∗, B∗) and
z = (u,B) denote the states associated with h∗ and h, respectively.

Next, following the general lines of the approach in [2], we will establish the
first-order necessary optimality conditions.

Consider the adjoint equations

−∂t(λ+ α2A1λ) + νA1(λ+ α2A1λ)− (u∗ · ∇)(λ+ α2A1λ)

+λ · ∇(u∗ + α2A1u
∗)T + α2(∆u∗ · ∇)λ+ 2α2(∇̃u∗ · ∇)(∇̃λ)

−α2(∆λ · ∇)u∗ − 2α2(∇̃λ · ∇)(∇̃u∗)
+ω · ∇(B∗)T + (B∗ · ∇)ω = αQ(u∗ − uQ), x ∈ Ω, t > 0,

−∂tω + ηA2ω − (u∗ · ∇)ω − ω · ∇(u∗)T

+(B∗ · ∇)λ− λ · ∇(B∗)T = αQ(B∗ −BQ), x ∈ Ω, t > 0,

∇ · λ = ∇ · ω = 0, x ∈ Ω, t > 0,

λ = ∆λ = 0, ω · n = 0, x ∈ ∂Ω, t > 0,

λ(T ) + α2A1λ(T ) = αT (u∗(T )− uT ), ω(T ) = αT (B∗(T )−BT ), x ∈ Ω.

(4.2)

Definition 4.2. A pair of function (λ, ω) ∈ L∞(0, T ;V1×H2)∩L2(0, T ;D(A1)×V2)
with (∂tλ, ∂tω) ∈ L2(0, T ;H1 × V ′2) is called a weak solution to the adjoint system
(4.2) on the interval (0, T ) if it satisfies

〈∂t(λ(t) + α2A1λ(t)), w〉D(A)′ = −〈Gu∗(t), w〉D(A)′ , for a.e. t ∈ (0, T ),

(λ(T ) + α2A1λ(T ), w) = αT (u∗(T )− uT , w),

〈∂tω, θ〉V ′2 = −〈GB∗(t), θ〉V ′2 , for a.e. t ∈ (0, T ),

(ω(T ), θ) = αT (B∗(T )−BT , θ),
for all test functions w ∈ D(A1) and θ ∈ V2. Here

Gu∗(t) := αQ(u∗ − uQ)− νA1(λ+ α2A1λ) + (u∗ · ∇)(λ+ α2A1λ)− λ · ∇(u∗ + α2A1u
∗)T

− α2(∆u∗ · ∇)λ− 2α2(∇̃u∗ · ∇)(∇̃λ) + α2(∆λ · ∇)u∗ + 2α2(∇̃λ · ∇)(∇̃u∗)
− ω · ∇(B∗)T − (B∗ · ∇)ω,
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GB∗(t) := αQ(B∗ −BQ)− ηA2ω + (u∗ · ∇)ω + ω · ∇(u∗)T − (B∗ · ∇)λ+ λ · ∇(B∗)T ,

and we adopt the notation ∇̃u = (∇u1,∇u2,∇u3).

Remark 4.3. Later, we will consider many linearized systems, including systems
(4.5), (4.6), (5.2), (5.4) and (5.5) below. The weak solutions of these systems are
defined similarly as in Definition 2.3. Using the same arguments as in the proof of
Theorem 3.1 in [20], we can prove the existence and uniqueness of a weak solution
to these linearized systems and the proof is simpler than that in the nonlinear case
due to the linearity of the system, so we will omit the details.

In the proof of the following first-order necessary optimality condition, we par-
ticularly show the well-posedness of the adjoint equations (4.2). The proof is based
on the operator theory.

Theorem 4.4. Let (z∗, h∗) be an optimal solution to Problem P. Then there exists
y = (λ, ω), which is the weak solution of the adjoint equations (4.2). Moreover, we
have ∫∫

Q

(y + γh∗) · hdxdt ≥ 0, ∀h ∈ TUad
(h∗). (4.3)

As a special case, the variational inequality∫∫
Q

(y + γh∗) · (ζ − h∗) ≥ 0, ∀ζ ∈ Uad (4.4)

is satisfied.

Proof. Let h be a feasible direction at h∗. Taking h = h∗ + βh, we have h ∈ Uad
with a small enough β ∈ R+. Let z be the state associated with h. We can then
write (where s = (w, θ) and sβ = (wβ , θβ))

z = z∗ + βs+ βsβ

with s is a weak solution of the equations

∂t(w + α2A1w) + νA1(w + α2A1w) + B̃(u∗, w + α2A1w)

+B̃(w, u∗ + α2A1u
∗) = B(B∗, θ) + B(θ,B∗) + h1, x ∈ Ω, t > 0,

∂tθ + ηA2θ + B(u∗, θ)− B(θ, u∗) + B(w,B∗)− B(B∗, w) = h2, x ∈ Ω, t > 0,

∇ · w = ∇ · θ = 0, x ∈ Ω, t > 0,

w = ∆w = 0, θ · n = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω,

(4.5)
and sβ is a weak solution of the equations

∂t(wβ + α2A1wβ) + νA1(wβ + α2A1wβ) + B̃(u∗, wβ + α2A1wβ)

+B̃(wβ , u
∗ + α2A1u

∗) + βWβ = B(B∗, θβ) + B(θβ , B
∗), x ∈ Ω, t > 0,

∂tθβ + ηA2θβ + B(u∗, θβ)− B(θβ , u
∗) + B(wβ , B

∗)− B(B∗, wβ) = βΨβ , x ∈ Ω, t > 0,

∇ · wβ = ∇ · θβ = 0, x ∈ Ω, t > 0,

wβ = ∆wβ = 0, θβ · n = 0, x ∈ ∂Ω, t > 0,

wβ(x, 0) = 0, θβ(x, 0) = 0, x ∈ Ω.

(4.6)
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Here, we have used the following notations:

Wβ : = B̃(w,w + α2A1w) + B̃(wβ , wβ + α2A1wβ) + B̃(w,wβ + α2A1wβ)

+ B̃(wβ , w + α2A1w)−
[
B(θ, θβ) + B(θβ , θ) + B(θ, θ) + B(θβ , θβ)

]
,

Ψβ : = B(θ, w)− B(w, θ) + B(θβ , w)− B(w, θβ)

+ B(θ, wβ)− B(wβ , θ) + B(θβ , wβ)− B(wβ , θβ).

Indeed, by using similar arguments as in Theorem 3.1 in [20], we can prove that
(4.5) has a unique weak solution (w, θ) ∈ C([0, T ];V1 ×H2)∩L2(0, T ;D(A1)× V2)
with (∂tw, ∂tθ) ∈ L2(0, T ;H1 × V ′2), and that for any β > 0, (4.6) also possesses
exactly one weak solution (wβ , θβ) ∈ C([0, T ];V1 ×H2)∩L2(0, T ;D(A1)× V2) and
(∂twβ , ∂tθβ) ∈ L2(0, T ;H1 × V ′2).

Next, we will show sβ → (0, 0) in L2(0, T ;V1 × H2) as β → 0+. We begin by
taking the inner product of the both first and second equations of (4.6) by wβ and
θβ , respectively, then adding the resulting equations and using (2.2), (2.3), (2.6),
we deduce the identity

1

2

d

dt
(|wβ |2 + α2‖wβ‖21 + |θβ |2) + ν(‖wβ‖21 + α2|A1wβ |2) + η‖θβ‖22

= −b(u∗, wβ + α2A1wβ , wβ) + b(θβ , B
∗, wβ) + b(θβ , u

∗, wβ) + b(θ, θ, wβ) + b(θβ , w, θβ)

− β
[
b(w,w + α2A1w,wβ) + b(w,wβ + α2A1wβ , wβ)− b(θβ , θ, wβ)− b(w, θβ , θ)

]
.

(4.7)
Before we proceed with estimating all the terms on the right-hand side of (4.7).
From now on, throughout the paper, c will denote a generic positive constant (de-

pending only on ν, η, λ
(1)
1 , α) which can take different values, sometimes even within

the same line. Since u∗, w ∈ C([0, T ];V1), B∗, θ ∈ C([0, T ];H2), using Lemma 2.2,
Poincaré and Cauchy inequalities, we estimate the first, second, sixth, seventh,
eighth and nineth terms on the right-hand side of (4.7), as follows:

|b(u∗, wβ + α2A1wβ , wβ)| ≤ c‖u∗‖1‖wβ‖1/21 |A1wβ |1/2|wβ + α2A1wβ |

≤ c‖wβ‖21 +
να2

16
|A1wβ |2,

|b(θβ , B∗, wβ)| ≤ c|B∗|‖θβ‖2‖wβ‖1/21 |A1wβ |1/2 ≤ c‖wβ‖21 +
να2

16
|A1wβ |2 +

η

16
‖θβ‖22.

Similarly, we have

|βb(w,w + α2A1w,wβ)| ≤ cβ‖w‖1‖wβ‖1/21 |A1wβ |1/2|w + α2A1w|
≤ β‖wβ‖1|A1wβ |+ cβ|A1w|2

≤ c‖wβ‖21 + cβ2|A1w|2 +
να2

16
|A1wβ |2,

|βb(w,wβ + α2A1wβ , wβ)| ≤ cβ‖w‖1‖wβ‖1/21 |A1wβ |1/2|wβ + α2A1wβ |

≤ cβ4‖wβ‖21 +
να2

16
|A1wβ |2,

and

|βb(θβ , θ, wβ)| ≤ c|θ|‖θβ‖2‖wβ‖1/21 |A1wβ |1/2 ≤ cβ4‖wβ‖21 +
να2

8
|A1wβ |2 +

η

16
‖θβ‖22,
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|βb(w, θβ , θ)| ≤ cβ|θ|‖θβ‖2|A1w| ≤ cβ2|A1w|2 +
η

16
‖θβ‖22.

Beside, by using Lemma 2.1 and the Cauchy inequality, we have

|b(θβ , u∗, wβ)| ≤ c|u∗|‖θβ‖2‖wβ‖1/21 |A1wβ |1/2 ≤ c‖wβ‖21 +
να2

8
|A1wβ |2 +

η

16
‖θβ‖22,

|b(θ, θ, wβ)| ≤ c|θ|‖θ‖2‖wβ‖1 ≤ c‖θ‖22 +
ν

2
‖wβ‖21,

and
|b(θβ , w, θβ)| ≤ c|θβ |‖θβ‖2‖w‖1 ≤ c|θβ |2 +

η

4
‖θβ‖22.

From all estimates above, inserting all of them on the right-hand side of (4.7), we
obtain after straightforward transformations that

d

dt
(|wβ |2 + α2‖wβ‖21 + |θβ |2) ≤ c1β2(|A1w|2 + ‖θ‖22) + c2(1 + β4)(‖wβ‖2 + |θβ |2)

≤ c1(|A1w|2 + ‖θ‖22) + c2(1 + β4)(|wβ |2 + α2‖wβ‖21 + |θβ |2).

Notice that, with the initial w0 = 0 ∈ D(A1) and θ0 = 0 ∈ V2, from Theorem 2.4,
we have that (w, θ) ∈ C([0, T ];D(A1)× V2). Then, applying Gronwall’s inequality,
we deduce

|wβ(t)|2 + α2‖wβ(t)‖21 + |θβ |2 ≤
c1β

2

c2(1 + β4)
exp(c2(1 + β4)t)− c1β

2

c2(1 + β4)
.

Hence

‖wβ‖2C([0,T ];H1) +α2‖wβ‖2C([0,T ];V1) +‖θβ‖2C([0,T ];H2) ≤
c1β

2

c2(1 + β4)2
exp(c(1+β4)T ),

and so ‖wβ‖2C([0,T ];V1) → 0, ‖θβ‖2C([0,T ];H2) → 0 as β → 0+.

Second, we will show that the linear adjoint equation (4.2) possesses a weak
solution y = (λ, ω) that belongs to L∞(0, T ;V1 ×H2) ∩ L2(0, T ;D(A1)× V2) with
∂ty = (∂tλ, ∂tω) ∈ L2(0, T ;H1 × V ′2). We define W0 as a closed linear space of
W 1,2(0, T ;H1 × V ′2) ∩ L2(0, T ;D(A1)× V2) by

W0 =
{

(u,B) ∈L2(0, T ;D(A1)× V2),

(∂tu, ∂tB) ∈ L2(0, T ;H1 × V ′2) : (u(0), B(0)) = (0, 0)
}
.

Defining an operator S : W0 → L2(0, T ;D(A1)′ × V ′2) by

Sχ := χ, χ = (w, θ) and χ = (w, θ),

where

w := ∂t(w + α2A1w) + νA1(w + α2A1w) + B̃(u∗, w + α2A1w)

+ B̃(w, u∗ + α2A1u
∗) + B(w,B∗)− B(B∗, w),

θ := ∂tθ + ηA2θ + B(u∗, θ)− B(θ, u∗)− B(B∗, θ)− B(θ,B∗),

can be consider as elements of L2(0, T ;D(A1)′) and L2(0, T ;V ′2), respectively, by〈
∂t(w + α2A1w) + νA1w, w̃

〉
L2(0,T ;D(A1)′)

:=

∫ T

0

(∂tw(t), w̃(t))dt+ α2

∫ T

0

((∂tw(t), w̃(t)))1dt+ ν

∫ T

0

((w(t), w̃(t)))1dt,

〈
B̃(u∗, w + α2A1w), w̃

〉
L2(0,T ;D(A1)′)

:=

∫ T

0

b
(
u∗(t), w(t) + α2A1w(t), w̃(t)

)
dt,
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〈
B̃(w, u∗ + α2A1u

∗), w̃
〉
L2(0,T ;D(A1)′)

:=

∫ T

0

b
(
w(t), u∗(t) + α2A1u

∗(t), w̃(t)
)
dt,

〈
B(w,B∗)− B(B∗, w), w̃

〉
L2(0,T ;D(A1)′)

:=

∫ T

0

b
(
B∗(t), w̃(t), w(t)

)
dt,

for w̃ ∈ L2(0, T ;D(A)), and〈
∂tθ + ηA2θ, θ̃

〉
L2(0,T ;V ′2 )

:=

∫ T

0

(∂tθ(t), θ̃(t))dt+ η

∫ T

0

((θ(t), θ̃(t)))2dt,

〈
B(u∗, θ)− B(θ, u∗), θ̃

〉
L2(0,T ;V ′2 )

:=

∫ T

0

b(θ(t), θ̃(t), u∗(t))dt,

〈
B(B∗, θ) + B(θ,B∗), θ̃

〉
L2(0,T ;V ′2 )

:=

∫ T

0

[
b(B∗(t), θ(t), θ̃(t)) + b(θ(t), B∗(t), θ̃(t))

]
dt.

Then S is an isomorphism, so the adjoint operator S∗ : L2(0, T ;D(A1)×V2)→W ∗0
is also an isomorphism. Hence, for any g ∈ W ∗0 , there exists a unique y = (λ, ω) ∈
L2(0, T ;D(A1) × V2) such that S∗y = g in W ∗0 . For any φ = (φ1, φ2) ∈ W0, we
have

〈S∗y, φ〉W∗0 = 〈g, φ〉W∗0 ,
which implies that

〈Sφ, y〉L2(0,T ;D(A1)′×V ′2 ) = 〈g, φ〉W∗0 . (4.8)

Consider g1 = (g1u∗ , g1B∗) = αQ(u∗−uQ, B∗−BQ) ∈ L2(0, T ;L2(Ω)×L2(Ω))∩W ∗0
and g2 = (g2u∗ , g2B∗) = αT (u∗(T )− uT , B∗(T )−BT ) ∈W ∗0 defined by

〈g1, φ〉W∗0 = αQ

∫∫
Q

[(
u∗(x, t)− uQ

)
φ1(t) +

(
B∗(x, t)−BQ

)
φ2(t)

]
dxdt,

〈g2, φ〉W∗0 = αT

∫
Ω

[(
u∗(T )− uT

)
φ1(T ) +

(
B∗(T )−BT

)
φ2(T )

]
dx,

for φ ∈W0. From the equations

− ∂t(λ+ α2A1λ) + νA1(λ+ α2A1λ)− (u∗ · ∇)(λ+ α2A1λ)

+ λ · ∇(u∗ + α2A1u
∗)T + α2(∆u∗ · ∇)λ+ 2α2(∇̃u∗ · ∇)(∇̃λ)

− α2(∆λ·)∇u∗ − 2α2(∇̃λ · ∇)(∇̃u∗) + ω · ∇(B∗)T + (B∗ · ∇)ω = g1u∗

(4.9)

and

− ∂tω + ηA2ω − (u∗ · ∇)ω − ω · ∇(u∗)T + (B∗ · ∇)λ− λ · ∇(B∗)T = g1B∗ , (4.10)

we will prove that for g1 ∈ L2(0, T ;L2(Ω)×L2(Ω)) then (∂tλ, ∂tω) ∈ L2(0, T ;H1×
V ′2). To this aim we have to estimate some terms. Since λ ∈ L2(0, T ;D(A1)), the
first term A1(λ+ α2A1λ) is in L2(0, T ;D(A1)′). Next, for all v ∈ L2(0, T ;D(A1)),
by using (2.4), we estimate the rest terms in (4.9) as follows∣∣∣〈−(u∗ · ∇)(λ+ α2A1λ)+λ · ∇(u∗ + α2A1u

∗)T , v〉D(A1)′

∣∣∣
≤ c(‖u∗‖1|λ+ α2A1λ|+ ‖λ‖1|u∗ + α2A1u

∗)|)‖v‖H2(Ω),∣∣∣〈α2(∆u∗ · ∇)λ+ 2α2(∇̃u∗ · ∇)(∇̃λ), v〉D(A1)′

∣∣∣ ≤ c|A1u
∗|‖λ‖1‖v‖H2(Ω),∣∣∣〈−α2(∆λ · ∇)u∗ − 2α2(∇̃λ · ∇)(∇̃u∗), v〉D(A1)′

∣∣∣ ≤ c|A1λ|‖u∗‖1‖v‖H2(Ω),
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and ∣∣(ω · ∇(B∗)T + (B∗ · ∇)ω, v
)∣∣ ≤ c‖ω‖2|B∗|‖v‖H2(Ω).

Beside, it is easy to deduce the term A2ω is in L2(0, T ;V ′2) and by using (2.4), for
all ϕ ∈ L2(0, T ;V2), we also have the estimates of the terms in (4.10)∣∣(− (u∗ · ∇)ω − ω · ∇(u∗)T , ϕ

)∣∣ ≤ ‖u∗‖1‖ω‖2‖ϕ‖2,∣∣((B∗ · ∇)λ− λ · ∇(B∗)T , ϕ
)∣∣ ≤ |B∗||A1λ|‖ϕ‖2.

For convenience, we set

Gu∗(t) := g1u∗ − νA1(λ+ α2A1λ) + (u∗ · ∇)(λ+ α2A1λ)− λ · ∇(u∗ + α2A1u
∗)T

− α2(∆u∗ · ∇)λ− 2α2(∇̃u∗ · ∇)(∇̃λ) + α2(∆λ · ∇)u∗ + 2α2(∇̃λ · ∇)(∇̃u∗)
− ω · ∇(B∗)T − (B∗ · ∇)ω,

GB∗(t) := g1B∗ − ηA2ω + (u∗ · ∇)ω + ω · ∇(u∗)T − (B∗ · ∇)λ+ λ · ∇(B∗)T .

Then, by using the boundedness of (u∗, B∗) and (λ, ω) in L∞(0, T ;V1 × H2) ∩
L2(0, T ;D(A1) × V2), we deduce that (Gu∗(t), GB∗(t)) ∈ L2(0, T ;D(A1)′ × V ′2).
Take g = g1 + g2 in (4.8), we get

〈∂t(φ1 + α2A1φ1), λ〉L2(0,T ;D(A1)′)

= 〈g1u∗ , φ1〉L2(0,T ;D(A1)′) + 〈g2u∗ , φ1〉L2(0,T ;D(A1)′ −
〈
νA1(φ1 + α2A1φ1), λ

〉
L2(0,T ;D(A1)′)

−
〈
B̃(u∗, φ1 + α2A1φ1) + B̃(φ1, u

∗ + α2A1u
∗) + B(φ1, B

∗)− B(B∗, φ1), λ
〉
L2(0,T ;D(A1)′)

,

〈∂tφ2, ω〉L2(0,T ;V ′2 ) = 〈g1B∗ , φ2〉L2(0,T ;V ′2 ) + 〈g2B∗ , φ2〉L2(0,T ;V ′2 )

−
〈
ηA2φ2 + B(u∗, φ2)− B(φ2, u

∗)− B(B∗, φ2)− B(φ2, B
∗), ω

〉
L2(0,T ;V ′2 )

.

This deduces that
〈∂t(φ1 + α2A1φ1), λ〉L2(0,T ;D(A1)′)

=
〈
Gu∗(t), φ1

〉
L2(0,T ;D(A1)′)

+ αT (u∗(T )− uT , φ1(T )),

〈∂tφ2, ω〉L2(0,T ;V ′2 ) =
〈
GB∗(t), φ2

〉
L2(0,T ;V ′2 )

+ αT (B∗(T )−BT , φ2(T )).

(4.11)
For (v, ϕ) ∈ D(A1) × V2, set φ(t) = (ρ1(t)v, ρ2(t)ϕ) with ρ1(t), ρ2(t) ∈ C∞0 (0, T ),
we have φ ∈W0. In (4.11), taking φ1(t) = ρ1(t)v and φ2(t) = ρ2(t)ϕ, we obtain∫ T

0

ρ′1(t)〈v + α2A1v, λ〉D(A1)′dt =

∫ T

0

ρ1(t)
〈
Gu∗(t), v

〉
D(A1)′

dt,∫ T

0

ρ′2(t)〈ϕ, ω〉V ′2dt =

∫ T

0

ρ2(t)
〈
GB∗(t), ϕ

〉
V ′2
dt.

(4.12)

Moreover, we have∫ T

0

ρ′1(t)〈v + α2A1v, λ〉D(A1)′dt =

∫ T

0

ρ′1(t)〈λ+ α2A1λ, v〉D(A1)′dt

= −
∫ T

0

ρ1(t)〈∂t(λ(t) + α2A1λ(t)), v〉D(A1)′dt,∫ T

0

ρ′2(t)〈ϕ, ω〉V ′2dt =

∫ T

0

ρ′2(t)〈ω, ϕ〉V ′2dt = −
∫ T

0

ρ2(t)〈∂tω(t), ϕ〉V ′2dt.
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This and (4.12) give that

∫ T

0

ρ1(t)〈∂t(λ(t) + α2A1λ(t)), v〉D(A1)′dt = −
∫ T

0

ρ1(t)
〈
Gu∗(t), v

〉
D(A1)′

dt,∫ T

0

ρ2(t)〈∂tω(t), ϕ〉V ′2dt = −
∫ T

0

ρ2(t)
〈
GB∗(t), ϕ

〉
V ′2
dt

for all ρ1(t), ρ2(t) ∈ C∞0 (0, T ). Thus, we obtain

{
〈∂t(λ(t) + α2A1λ(t)), v〉D(A1)′ = −

〈
Gu∗(t), v

〉
D(A1)′

,

〈∂tω(t), ϕ〉V ′2 = −
〈
GB∗(t), ϕ

〉
V ′2

(4.13)

for all (v, ϕ) ∈ D(A1) × V2 and for a.e. t ∈ (0, T ). In other words, we have
the existence and representation of the derivative

(
∂t(λ(t) + α2A1λ(t)), ∂tω

)
=

−(Gu∗(t), GB∗(t)) in the sense of vector-valued distributions. In the previous con-
siderations we found (Gu∗(t), GB∗(t)) ∈ L2(0, T ;D(A1)′ × V ′2), which allows us to
conclude that ∂tλ ∈ L2(0, T ;H1) and ∂tω ∈ L2(0, T ;V ′2).

Next, integrating by parts in the left-hand side of the first and second equations
in (4.11), we get



〈
λ(T ) + α2A1λ(T ), φ1(T )

〉
D(A1)′

− 〈∂t(λ(t) + α2A1λ(t)), φ1〉L2(0,T ;D(A1)′)

=
〈
Gu∗(t), φ1

〉
L2(0,T ;D(A1)′)

+ αT (u∗(T )− uT , φ1(T )),〈
ω(T ), φ2(T )

〉
V ′2
− 〈∂tω, φ2〉L2(0,T ;V ′2 )

=
〈
GB∗(t), φ2

〉
L2(0,T ;V ′2 )

+ αT (B∗(T )−BT , φ2(T )).

(4.14)
Taking v = φ1(t) and ϕ = φ2(t) in (4.13), then integrating from 0 to T and using
(4.14), we get〈

λ(T ) + α2A1λ(T ), φ1(T )
〉
D(A1)′

= αT (u∗(T )− uT , φ1(T )),〈
ω(T ), φ2(T )

〉
V ′2

= αT (B∗(T )−BT , φ2(T )),

for all φ = (φ1, φ2) ∈W0. Since φ(T ) is arbitrary in D(A1)×V2, (λ, ω) satisfies the
last equation in (4.2). This and (4.13) imply that (λ, ω) is a weak solutions of the
equations (4.2).

Finally, we will establish a necessary optimality condition. By hypothesis, J(z, h)−
J(z∗, h∗) ≥ 0. On the other hand,

J(z, h)− J(z∗, h∗) =β

(
αT

∫
Ω

s(x, T ) ·
(
z∗(x, T )− zT (x)

)
dx

+ αQ

∫∫
Q

s(x, t) ·
(
z∗(x, t)− zQ(x, t)

)
dxdt

+ γ

∫∫
Q

h∗(x, t) · h(x, t)dxdt

)
+ βZβ ,
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where

Zβ =β

(
αT
2

∫
Ω

|s(x, T ) + sβ(x, T )|2dx+
αQ
2

∫∫
Q

|s(x, t) + sβ(x, t)|2dxdt

+
γ

2

∫∫
Q

|h(x, t)|2dxdt
)

+ αT

∫
Ω

sβ(x, T ) ·
(
z∗(x, T )− zT (x)

)
dx

+ αQ

∫∫
Q

sβ(x, t) ·
(
z∗(x, t)− zQ(x, t)

)
dxdt.

(4.15)

Since s, sβ ∈ C([0, T ];V1 ×H2) and h ∈ L2(0, T ;L2(Ω)× L2(Ω)), we have the first
three integral terms of Zβ tend to 0 as β → 0+. Moreover, since the boundedness
of z∗ in C([0, T ];H1×H2) and sβ → (0, 0) in C([0, T ];V1×H2) as β → 0+, we have
the last two integral terms of (4.15) also tend to 0 as β → 0+. As a result, we have
Zβ → 0 as β → 0+.

Dividing J(z, h)− J(z∗, h∗) by β and taking limits as β → 0+, we obtain

αT

∫
Ω

s(x, T ) · (z∗(x, T )− zT (x))dx+ αQ

∫∫
Q

s(x, t) ·
(
z∗(x, t)− zQ(x, t)

)
dxdt

+ γ

∫∫
Q

h∗(x, t) · h(x, t)dxdt ≥ 0.

(4.16)
Multiplying the first equation of (4.2) and (4.5) by w and λ, the second equation
of (4.2) and (4.5) by θ and ω, respectively, then integrating over Q and using
integration by parts yield the following identity

αT

∫
Ω

s(x, T ) · (z∗(x, T )− zT (x))dx+ αQ

∫∫
Q

s(x, t) · (z∗(x, t)− zQ(x, t))dxdt

=

∫∫
Q

y(x, t) · h(x, t)dxdt.

This together with (4.16) give the inequality∫∫
Q

(y + γh∗) · hdxdt ≥ 0. (4.17)

The inequality (4.17) must hold for any feasible direction h at h∗. For any ζ ∈ Uad,
ζ − h∗ is a feasible direction, so we can take h = ζ − h∗ and get (4.4). From (4.1),
(4.17) imply (4.3) and we have completed the proof. �

5. Second-order sufficient optimality conditions

In this section, we will show the second-order sufficient optimality conditions for
Problem P.

Theorem 5.1. Let (z∗, h∗) be the admissible pair and suppose that (z∗, h∗) satis-
fies, together with the adjoint state y = (λ, ω), the first-order necessary optimality
conditions, i.e., the equations (4.2) and the inequality (4.3). Furthermore, we as-
sume that the pair (z∗, h∗) satisfies the following assumption, in the sequel called



16 C.T. ANH, D.T. SON

the second-order sufficient condition. Then, it holds

αT
2

∫
Ω

|s(x, T )|2dx+
αQ
2

∫∫
Q

|s(x, t)|2dxdt+
γ

2

∫∫
Q

|h(x, t)|2dxdt

+

∫ T

0

(
b(θ(t), θ(t), λ(t))− b(w(t), w(t) + α2A1w(t), λ(t))

)
dt

+

∫ T

0

b(w(t), ω(t), θ(t))dt > 0,

(5.1)

for all h ∈ TUad
(h∗) ∩ C(h∗), where

C(h∗) =

{
h ∈

(
L2(Q)

)3 × (L2(Q)
)3

:

∫∫
Q

(y + γh∗) · hdxdt = 0

}
and s = (w, θ) is the unique solution of the following problem

∂t(w + α2A1w) + νA1(w + α2A1w) + B̃(u∗, w + α2A1w)

+B̃(w, u∗ + α2A1u
∗) = B(B∗, θ) + B(θ,B∗) + h1, x ∈ Ω, t > 0,

∂tθ + ηA2θ + B(u∗, θ)− B(θ, u∗) + B(w,B∗)− B(B∗, w) = h2, x ∈ Ω, t > 0,

∇ · w = ∇ · θ = 0, x ∈ Ω, t > 0,

w = ∆w = 0, θ · n = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω.

(5.2)
Then there exists ε > 0 and ρ > 0 such that

J(z, h) ≥ J(z∗, h∗) + ε‖h− h∗‖2(L2(Q))3×(L2(Q))3 (5.3)

holds for all admissible pairs (z, h) with ‖h−h∗‖2(L2(Q))3×(L2(Q))3 ≤ ρ. In particular,

h∗ is a locally optimal control with associated state z∗.

Proof. Let h be in FUad∩(h∗+C(h∗)). Take h = h∗+βh, we have h ∈ Uad∩(h∗+C(h∗))
with small enough β ∈ R+. Let z be a state associated to h. We can write (where

s = (w, θ), s̃ = (w̃, θ̃) and sβ = (wβ , θβ))

z = z∗ + βs+
β2

2
s̃+ β2sβ

with s̃ is a weak solution of the following equations

∂t(w̃ + α2A1w̃) + νA1(w̃ + α2A1w̃)

+B̃(u∗, w̃ + α2A1w̃) + B̃(w̃, u∗ + α2A1u
∗)

−B(B∗, θ̃)− B(θ̃, B∗) = −2B̃(w,w + α2A1w) + 2B(θ, θ), x ∈ Ω, t > 0,

∂tθ̃ + ηA2θ̃ + B(u∗, θ̃)− B(θ̃, u∗)

+B(w̃, B∗)− B(B∗, w̃) = 2B(θ, w)− 2B(w, θ), x ∈ Ω, t > 0,

∇ · w̃ = ∇ · θ̃ = 0, x ∈ Ω, t > 0,

w̃ = ∆w̃ = 0, θ̃ · n = 0, x ∈ ∂Ω, t > 0,

w̃(x, 0) = 0, θ̃(x, 0) = 0, x ∈ Ω,

(5.4)
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and sβ is a weak solution of the following equations

∂t(wβ + α2A1wβ) + νA1(wβ + α2A1wβ)

+B̃(u∗, wβ + α2A1wβ) + B̃(wβ , u
∗ + α2A1u

∗)

+βB̃(w,wβ + α2A1wβ) + βB̃(wβ , w + α2A1w)

+
β

2
B̃(w, w̃ + α2A1w̃) +

β

2
B̃(w̃, w + α2A1w)

+
β2

2
B̃(wβ , w̃ + α2A1w̃) +

β2

2
B̃(w̃, wβ + α2A1wβ)

+β2B̃(wβ , wβ + α2A1wβ) +
β2

4
B̃(w̃, w̃ + α2A1w̃)

= B(B∗, θβ) + B(θβ , B
∗) + βB(θ, θβ) + βB(θβ , θ)

+
β

2
B(θ, θ̃) +

β

2
B(θ̃, θ) +

β2

2
B(θ̃, θβ) +

β2

2
B(θβ , θ̃)

+β2B(θβ , θβ) +
β2

4
B(θ̃, θ̃), x ∈ Ω, t > 0,

∂tθβ + ηA2θβ + B(u∗, θβ)− B(θβ , u
∗) + B(wβ , B

∗)− B(B∗, wβ)

+β
(
B(w, θβ)− B(θβ , w) + B(wβ , θ)− B(θ, wβ)

)
+
β

2

(
B(w, θ̃)− B(θ̃, w) + B(w̃, θ)− B(θ, w̃)

)
+
β2

2

(
B(w̃, θβ)− B(θβ , w̃) + B(wβ , θ̃)− B(θ̃, wβ)

)
+β2

(
B(wβ , θβ)− B(θβ , wβ)

)
+
β2

4

(
B(w̃, θ̃)− B(θ̃, w̃)

)
= 0, x ∈ Ω, t > 0,

∇ · wβ = ∇ · θβ = 0, x ∈ Ω, t > 0,

wβ = ∆wβ = 0, θβ · n = 0, x ∈ ∂Ω, t > 0,

wβ(x, 0) = 0, θβ(x, 0) = 0, x ∈ Ω.

(5.5)
By using similar arguments as in the proof of Theorem 3.1 in [20], we can show that
(5.4) possesses exactly one weak solution s̃ ∈ C([0, T ];V1×H2)∩L2(0, T ;D(A1)×V2)
with ∂ts̃ ∈ L2(0, T ;H1 × V ′2), and that for any β > 0, (5.5) also has a unique weak
solution sβ ∈ C([0, T ];V1×H2)∩L2(0, T ;D(A1)×V2) and ∂tsβ ∈ L2(0, T ;H1×V ′2).

Analogously as the proof of Theorem 4.4, we obtain sβ → (0, 0) in C([0, T ];V1×
H2) as β → 0+. On the other hand

J(z, h)− J(z∗, h∗) =β

(
αT

∫
Ω

s(x, T ) ·
(
z∗(x, T )− zT (x)

)
dx

+ αQ

∫∫
Q

s(x, t) ·
(
z∗(x, t)− zQ(x, t)

)
dxdt

+ γ

∫∫
Q

h∗(x, t) · h(x, t)dxdt

)
+ β2

(
αT
2

∫
Ω

(
|s(x, T )|2 + s̃(x, T ) ·

(
z∗(x, T )− zT (x)

))
dx

+
αQ
2

∫∫
Q

(
|s(x, t)|2 + s̃(x, t) ·

(
z∗(x, t)− zQ(x, t)

))
dxdt

+
γ

2

∫∫
Q

|h(x, t)|2dxdt
)

+ β2Zβ
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= β

∫∫
Q

(y + γh∗) · hdxdt

+ β2

(
αT
2

∫
Ω

(
|s(x, T )|2 + s̃(x, T ) ·

(
z∗(x, T )− zT (x)

))
dx

+
αQ
2

∫∫
Q

(
|s(x, t)|2 + s̃(x, t) ·

(
z∗(x, t)− zQ(x, t)

))
dxdt

+
γ

2

∫∫
Q

|h(x, t)|2dxdt
)

+ β2Zβ .

Multiplying the first and second equations of (4.2) by w̃ and θ̃ pointwise with
respect to time, respectively, and integrating from 0 to T , then integrating by parts
we obtain∫ T

0

(
(λ, ∂tw̃) + α2((λ, ∂tw̃))1

)
dt+ ν

∫ T

0

(
((λ, w̃))1 + α2(A1λ,A1w̃)

)
dt

+

∫ T

0

(
b(u∗, w̃ + α2A1w̃, λ) + b(w̃, u∗ + α2A1u

∗, λ)
)
dt−

∫ T

0

(
b(B∗, θ̃, λ) + b(θ̃, B∗, λ)

)
dt

=

∫∫
Q

αQ(u∗ − uQ) · w̃dxdt+
(
λ(T ), w̃(T )

)
+ α2

((
λ(T ), w̃(T )

))
1
,∫ T

0

(ω, ∂tθ̃)dt+ η

∫ T

0

((ω, θ̃))2dt+

∫ T

0

(
b(u∗, θ̃, ω)− b(θ̃, u∗, ω)

)
dt

+

∫ T

0

(
b(w̃, B∗, ω)− b(B∗, w̃, ω)

)
dt =

∫∫
Q

αQ(B∗ −BQ) · θ̃dxdt+
(
ω(T ), θ̃(T )

)
.

(5.6)
Multiplying the first and second equations of (5.4) by λ and ω pointwise with
respect to time, respectively, and then integrating from 0 to T , by using (2.2), (2.5)
and from (5.6), we deduce

2

∫ T

0

(
b(θ(t), θ(t), λ(t))− b(w(t), w(t) + α2A1w(t), λ(t))

)
dt

=

∫∫
Q

αQ(u∗ − uQ) · w̃dxdt+
(
λ(T ), w̃(T )

)
+ α2

((
λ(T ), w̃(T )

))
1
,

2

∫ T

0

b(w(t), ω(t), θ(t))dt =

∫∫
Q

αQ(B∗ −BQ) · θ̃dxdt+
(
ω(T ), θ̃(T )

)
.

From this and the last equation of (4.2), we get

αT

∫
Ω

s̃(x, T ) ·
(
z∗(x, T )− zT (x)

)
dx+ αQ

∫∫
Q

s̃(x, t) ·
(
z∗(x, t)− zQ(x, t)

)
dxdt

= 2

∫ T

0

(
b(θ(t), θ(t), λ(t))− b(w(t), w(t) + α2A1w(t), λ(t))

)
dt

+ 2

∫ T

0

b(w(t), ω(t), θ(t))dt.
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Thus, we deduce

J(z, h)− J(z∗, h∗) = β

∫∫
Q

(y + γh∗) · hdxdt

+ β2

(
αT
2

∫
Ω

|s(x, T )|2dx+
αQ
2

∫∫
Q

|s(x, t)|2dxdt+
γ

2

∫∫
Q

|h(x, t)|2dxdt

+

∫ T

0

(
b(θ(t), θ(t), λ(t))− b(w(t), w(t) + α2A1w(t), λ(t))

)
dt

+

∫ T

0

b(w(t), ω(t), θ(t))dt

)
+ β2Zβ .

(5.7)

Next, we set

q(s, h) =
αT
2

∫
Ω

|s(x, T )|2dx+
αQ
2

∫∫
Q

|s(x, t)|2dxdt+
γ

2

∫∫
Q

|h(x, t)|2dxdt

+

∫ T

0

(
b(θ(t), θ(t), λ(t))− b(w(t), w(t) + α2A1w(t), λ(t))

)
dt

+

∫ T

0

b(w(t), ω(t), θ(t))dt,

where h ∈
(
L2(Q)

)3 × (L2(Q)
)3

and s is the unique solution to the problem (5.2).
Let us suppose that the first-order necessary and the second-order sufficient

conditions are satisfied, whereas (5.3) does not hold. Then for all ε > 0 and ρ > 0
there exists hε,ρ ∈ Uad with ‖hε,ρ − h∗‖(L2(Q))3×(L2(Q))3 ≤ ρ and

J(zε,ρ, hε,ρ) < J(z∗, h∗) + ε‖hε,ρ − h∗‖2(
L2(Q)

)3
×
(
L2(Q)

)3 ,
where zε,ρ is the state associated with hε,ρ. Hence, for any k ∈ Z+, let us choose
εk = ρk = 1/k and zk = zε,ρ, hk = hε,ρ, then we have

J(zk, hk) < J(z∗, h∗) +
1

k
‖hk − h∗‖2(L2(Q))3×(L2(Q))3 (5.8)

and ‖hk − h∗‖(L2(Q))3×(L2(Q))3 <
1

k
.

By the construction, it follows that hk → h∗ in
(
L2(Q)

)3 × (L2(Q)
)3

as k →
∞. Hence, we can write hk = h∗ + tkhk, where tk > 0, hk ∈ FUad

(h∗) and

‖hk‖(L2(Q))3×(L2(Q))3 = 1 and tk → 0 as k → ∞. Because of the boundedness

of the set of these {hk} in (L2(Q))3 × (L2(Q))3, we can extract a subsequence
denoted again by {hk} converging weakly in TUad

(h∗) ⊂ (L2(Q))3 × (L2(Q))3 to

some limit ĥ. The set TUad
(h∗) is convex and closed, so it is weakly closed, therefore

ĥ ∈ TUad
(h∗). Moreover, by Theorem 2.4, there exists a unique solution sk to the

problem (5.2) with the right-hand side of the first two equations hk. And we obtain
that the set {sk} is bounded in L2(0, T ;D(A1)×V2) and {∂tsk} ∈ L2(0, T ;H1×V ′2).
Thus, we can extract subsequence (again indexed with k) {sk} converging weakly
to ŝ ∈ L2(0, T ;D(A1)× V2), ∂tŝ ∈ L2(0, T ;H1 × V ′2). By the Compactness Lemma

(see [24]) we deduce sk → ŝ in
(
L2(Q)

)3 × (L2(Q)
)3

as k → ∞. It follows that ŝ
is the unique solution to the problem (5.2) with the right-hand side of the first two

equations ĥ. We will show that ĥ ∈ C(h∗) and q(ŝ, ĥ) ≤ 0, which contradicts (5.1)
and so we get the claim.
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Using the first-order necessary optimality condition (4.3), we have that∫∫
Q

n · ĥdxdt ≥ 0, (5.9)

where n = y + γh∗. As in (5.7), we can write

J(zk, hk) = J(z∗, h∗) + tk

∫∫
Q

n · hkdxdt+ t2kq(sk, hk) + t2kZk,

where Zk → 0 as k →∞. From (5.8) and ‖hk‖(L2(Q))3×(L2(Q))3 = 1, we obtain

tk

∫∫
Q

n · hkdxdt+ t2kq(sk, hk) + t2kZk <
t2k
k
. (5.10)

This implies ∫∫
Q

n · hkdxdt <
tk
k
− tkq(sk, hk)− tkZk. (5.11)

From the boundedness of {hk} and {sk} in
(
L2(Q)

)3× (L2(Q)
)3

and C([0, T ];V1×
H2) ∩ L2(0, T ;D(A1) × V2), respectively, there exists a constant M > 0 such that
|q(sk, hk)| ≤M for all k. Passing limit in (5.11) we obtain∫∫

Q

n · ĥdxdt ≤ 0.

This and (5.9) imply that ĥ ∈ C(h∗). Since ĥ ∈ TUad
(h∗), we conclude that ĥ ∈

TUad
(h∗) ∩ C(h∗). Finally, we have to show that q(ŝ, ĥ) ≤ 0.

Since hk ∈ FUad
(h∗) ⊂ TUad

(h∗), by the first order necessary condition (4.3), we

deduce that
∫∫
Q
n · hkdxdt ≥ 0. From (5.10), we have that

q(sk, hk) <
1

k
− Zk.

Set q∗(s, h) = q(s, h)− γ

2

∫∫
Q
|h(x, t)|2dxdt, we will show that

q∗(sk, hk)→ q∗(ŝ, ĥ), as k →∞. (5.12)

Since sk → ŝ weakly in L2(0, T ;D(A1)×V2), follow the lines in the proof of Theorem
2.4, we have∫ T

0

b
(
wk(t), wk(t) + α2A1wk(t), λ(t)

)
dt→

∫ T

0

b
(
ŵ(t), ŵ(t) + α2A1ŵ(t), λ(t)

)
dt,∫ T

0

b
(
θk(t), θk(t), λ(t)

)
dt→

∫ T

0

b
(
θ̂(t), θ̂(t), λ(t)

)
dt,

and ∫ T

0

b
(
wk(t), ω(t), θk(t)

)
dt =

∫ T

0

[
b
(
θk(t), wk(t), ω

)
− b
(
wk(t), θk(t), ω

)]
dt

→
∫ T

0

[
b
(
θ̂(t), ŵ(t), ω

)
− b
(
ŵ(t), θ̂(t), ω

)]
dt =

∫ T

0

b
(
ŵ(t), ω(t), θ̂(t)

)
dt.

Moreover, sk → ŝ in
(
L2(Q)

)3 × (L2(Q)
)3

, we have

αQ
2

∫∫
Q

|sk(x, t)|2dxdt→ αQ
2

∫∫
Q

|ŝ(x, t)|2dxdt.
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Besides, with the initial θ0 = 0 ∈ V2, from Theorem 2.4, we have that θ ∈
C([0, T ];V2), together with the boundedness of w in C([0, T ];V1), we deduce sk → ŝ
weakly in C([0, T ];V1 × V2) and from the fact that V1 × V2 is compactly embebded
in H1 ×H2, we get sk(T )→ ŝ(T ) in H1 ×H2. Thus, we obtain (5.12).

Finally, we have hk → ĥ weakly in
(
L2(Q)

)3×(L2(Q)
)3

and ‖hk‖(L2(Q))3×(L2(Q))3 =

1, then ‖ĥ‖(L2(Q))3×(L2(Q))3 ≤ 1. Therefore,

q(ŝ, ĥ) ≤ lim
k→∞

q(sk, hk) ≤ 0,

which contradicts (5.1) and we finish the proof. �
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