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Abstract. In this paper, we study the asymptotic behavior of solutions to the three-dimensional incom-

pressible Navier-Stokes-α equations with periodic boundary conditions and non-potential body forces. We

prove that if the body force possesses a large-time asymptotic expansion or, resp., finite asymptotic approx-
imation in Sobolev-Gevrey spaces in terms of polynomial and decaying exponential functions of time, then

any weak solution admits an asymptotic expansion, or resp., finite asymptotic approximation of the same
type. The result obtained reveals precisely how the structure of the force influences the asymptotic behavior

of the solutions.

1. Introduction

In this paper, we consider the following 3D Navier-Stokes-α (NS-α) equations introduced in [16] with
space periodic boundary conditions

∂tv − ν∆v +∇p = u× (∇× v) + f, x ∈ Ω, t > 0,

v = u− α2∆u,

∇ · u = ∇ · v = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where u = u(x, t) represents the unknown ”filtered” fluid velocity vector, p = p(x, t) is the unknown ”filtered”
pressure and the body force f = f(x, t); the positive constant ν is the kinematic viscosity and α is a length
scale parameter that represents the width of the filter. At the limit α = 0, we obtain the three-dimensional
Navier-Stokes equations with periodic boundary conditions.

We assume that u, f and p are periodic in each direction with period 2π, we denote by Ω the cube of
period (0, 2π)3. From (1.1) one can easily see, after integration by parts, that

d

dt

∫
Ω

(u− α2∆u)dx =

∫
Ω

f(x, t)dx.

On the other hand, because of the spatial periodicity of the solution, we have
∫

Ω
∆udx = 0. As a result, we

have
d

dt

∫
Ω

udx =

∫
Ω

f(x, t)dx,

that is, the mean of the solution is invariant provided the mean of the forcing term is zero. In this paper we
will consider forcing terms and initial values with spatial means that are zero, i.e., we will assume∫

Ω

u0(x)dx =

∫
Ω

f(x, t)dx = 0

and hence ∫
Ω

u(x, t)dx = 0. (1.2)

Current scientific methods and tools are unable to compute either the turbulent behavior of three-
dimensional fluids or via direct numerical simulation due to the large range of scales of motion that need to be
resolved when the Reynolds number is high. Over the last decades, several turbulence models have been pro-
posed for capturing the physical phenomenon of turbulence at computably low resolution. Navier-Stokes-α
equations (also known as the viscous Camassa-Holm equations or the Lagrangian-averaged Navier-Stokes-α)
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is considered as a closure model of turbulence by modifying the nonlinearity in the Navier-Stokes equations
to stop the cascading of turbulence at scales smaller than a certain length, but without introducing any
extra dissipation (see [20], [25] and references therein for a nice detailed description of the development of
the NS-α model).

The inviscid (ν = 0) case, known as the Lagrangian averaged Euler (LAE-α) or Euler-α equations,
was introduced in [19] as a natural mathematical generalization of the integrable inviscid 1D Camassa-
Holm equation discovered in [5] through a variational formulation. In [16], the authors first added viscous
dissipation to the equations, they argued on physical grounds that the momentum u + α2Au rather than
the velocity u, need be diffused. In the past years, the existence and long-time behavior of solutions to the
NS-α equations have attracted the attention of many mathematicians. In bounded domains with Dirichlet
or periodic boundary conditions, there are many results on the existence of solutions and existence of global
attractors for NS-α equations, see e.g. [8, 16, 22, 26, 30] and references therein. The time decay rates of
solutions on the whole space were investigated in [4] and more recently in [3]. The numerical simulations of
both forced and decaying isotropic turbulence using the NS-α model were investigated in [7, 28]. We also
refer the interested reader to [1, 23] for recent results on the data assimilation to the NS-α equations with
periodic boundary conditions and to [2] for the optimal control problem of the 3D viscous Camassa-Holm
equations.

In studying the dynamics of Navier-Stokes equations, the function u(x, t) of several variables can be viewed
as a function of t valued in some functional space. For time-dependent functions of such type, their asymptotic
properties, as time goes to infinity, can be understood most precisely if some form of asymptotic expansion is
established. In recent decades, there has been a great deal of interest dedicated to the large time behavior of
solutions of the Navier-Stokes equations. In an early work, Dyer and Edmunds [9] prove that any non-trivial,
regular solution u has |u(t)|2 bounded below by an exponential function of t. However, this answer is far from
being definitive in describing the exact asymptotic behavior of a non-trivial, regular solution. Later, Foias
and Saut established a description of the large time behavior of solutions of the Navier-Stokes equations with
potential forces. They proved that in bounded or periodic domains the regular, non-trivial solutions of the
Navier-Stokes equations decay exponentially at an exact rate which is an eigenvalue of the Stokes operator
(see [13]). They go on to show the corresponding normal form which provides a complete description of
the large time behavior of solutions in [14, 15]. After these works, a number of subsequent studies on this
expansion, as well as the associated normal form of the Navier-Stokes equations, its normalization map, and
invariant nonlinear manifolds have been studied extensively in [10, 11, 12, 24, 27] and references therein. To
the best of our knowledge, however, there are no results on the asymptotic expansion for solutions of NS-α
equations. This is our motivation.

The type of asymptotic expansion that we study here is defined as follows.

Definition 1.1. Let X be a real vector space.

(i) An X-valued polynomial is a function t ∈ R 7→
∑d
n=1 ant

n, for some d ≥ 0, and an’s belonging to X.
(ii) When (X, ‖ · ‖X) is a normed space, a function g : (0,∞)→ X is said to have the asymptotic expansion

g(t) ∼
∞∑
n=1

gn(t)e−nt in X, (1.3)

where gn(t)’s are X-valued polynomials, if for all N ≥ 1, there exists εN > 0 such that

‖g(t)−
N∑
n=1

gn(t)e−nt‖X = O(e−(N+εN )t) as t→∞.

The notation, O(f(t)), above is defined as

Ψ(t) = O
(
f(t)

)
as t→∞ if and only if ∃T,C > 0,Ψ(t) ≤ Cf(t),∀t > T,

where Ψ and f are non-negative scalar quantities. We note that the times T , and constants C may depend
on the parameters appearing in f .

In this paper, following the general lines of the strategy introduced in [18], we study the asymptotic
behavior of the solution u(x, t) as t→∞ for a certain class of forces f(x, t) belonging to a Sobolev-Gevrey
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space Gρ,σ for any ρ ≥ 1/2 and σ ≥ 0. More precisely, if

f(t) ∼
∞∑
n=1

fn(t)e−νnt in Gρ,σ,

then any weak solution u(t) of (1.1) will admit the following expansion

u(t) ∼
∞∑
n=1

qn(t)e−νnt in Gρ,σ. (1.4)

This expansion indicate how each term in the expansion of the force integrates into the expansion of the
solution. On the other hand, when f(t) have a finite asymptotic approximation, then we show that the
corresponding solution, u(t), admits a finite sum approximation of the same type. The main contribution
of the result is Theorem 4.1, that is for each σ > 0 and N ≥ 1, the estimate (4.11) is conjectured and then
proved, by induction in N , to hold true for all ρ ≥ 1/2. This is crucial due to the estimate of the nonlinear
term B(u, v) which always requires the regularity of one more derivative u or v. However, since the Gevrey
norm in |u|0,σ for any σ > 0 is stronger than all Sobolev norms |Aρu| (see (3.3)), this obstacle becomes a non
issue. When α = 0, we formally obtain the results on asymptotic expansion for solutions of the Navier-Stokes
equations with non-potential body forces [18]. Moreover, our results recover the case when the force f(x, t)
is potential, i.e., f(x, t) = −∇φ(x, t), for some scale function φ(x, t) (because of its vanishing when we apply
the Leray projection P(−∇φ) = 0). It is also noticed that our arguments can be applied to some other NS-α
models, such as Leray-α model [6], the modified Leray-α model [21].

The paper is organized as follows. In Section 2, for convenience of the reader, we recall some auxiliary
results on function spaces and inequalities for the nonlinear terms related to the NS-α equations. Section
3 contains some basic inequalities for Sobolev and Gevrey norms, estimates for nonlinear term B(u, v) and
the exponential decay for the weak solutions in Sobolev and Gevrey spaces (Propositions 3.1 and 3.2). In
Section 4, the asymptotic expansion (1.4) is obtained, either as an infinite sum in Theorem 4.1, or a finite
sum in Theorem 4.2.

2. Preliminaries

We will denote by (·, ·) and | · |, respectively, the scalar product and the associated norm in L2(Ω)3, and by
(∇u,∇v) the scalar product in L2(Ω)3 of the gradients of u and v. We consider the scalar product in H1

0 (Ω)3

defined by ((u, v)) = (∇u,∇v), for u, v ∈ H1
0 (Ω)3, and its associated norm, which is in fact equivalent to the

usual gradient norm, will be denoted by ‖ · ‖.
Let us define the spaces

V =

{
u = 2π-periodic trigonometric polynomial vector fields,∇ · u = 0,

∫
Ω

udx = 0

}
,

Lp(Ω) = Lp(Ω)3, Hs(Ω) = Hs(Ω)3, H1
0(Ω) = H1

0 (Ω)3.

We denote by H the closure of V in L2(Ω), and by V the closure of V in H1
0(Ω). Then, H is a Hilbert space

equipped with the inner product of L2(Ω), and V is a Hilbert space equipped with the inner product of
H1

0(Ω).
We use the following embeddings and identification

V ⊂ H ≡ H ′ ⊂ V ′

where each space is dense in the next one, and the embeddings are compact.
We denote P the orthogonal (Leray) projection in L2(Ω) onto H and by A the Stokes operator, with

domain D(A) = H2(Ω) ∩ V , defined by Au = −P(∆u),∀u ∈ D(A). The operator A can be extended
continuously to be defined on V with values in V ′ such that

〈Au,w〉V ′ = ((u,w)), for u,w ∈ V.

Similarly, the operator A2 can be defined on D(A) with values in D(A)′, the dual space of the Hilbert space
D(A), such that

〈A2u,w〉D(A)′ = (Au,Aw), for every u,w ∈ D(A).
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Notice that in the case of periodic boundary condition A = −∆ is a selfadjoint positive operator with
compact inverse. Hence the space H has an orthonormal basis {wj}∞j=1 of eigenfunctions of A, i.e.,

Awj = λjwj , j = 1, 2, · · · .
It is known that the spectrum of the Stokes operator A is σ(A) = {λj : j ∈ N}, where λj is strictly increasing
in j and is an eigenvalue of A. In fact, these eigenvalues have the form |k|2 with k ∈ Z3 \ {0}. Note that
σ(A) ⊂ N and 1 ∈ σ(A), hence, the additive semigroup generated by σ(A) is N.

By virtue of Poincaré inequality one can show that there is a constant c > 0, such that

c|Au| ≤ ‖u‖H2(Ω) ≤ c−1|Au|, ∀u ∈ D(A)

and so D(A) is a Hilbert space with the scalar product (u, v)D(A) = (Au,Av).
The orthogonal projection in H on the linear span of w1, · · · , wm will be denoted by

Pm = R1 +R2 + · · ·+Rm,

where Rn will stand for the orthogonal projection in H on the eigenspace of A corresponding to n if n ∈ σ(A),
or otherwise Rn = 0. Then, we have of course

RiRj = 0 if i 6= j and R1 +R2 + · · · = I.

For ρ, σ ∈ R and u =
∑
k 6=0

û(k)eik·x, define

Aρu =
∑
k 6=0

|k|2ρû(k)eik·x,

AρeσA
1/2

u =
∑
k 6=0

|k|2ρeσ|k|û(k)eik·x,

where û(k) denotes the Fourier coefficient of u at wavenumber k.
We then define the Gevrey spaces by

Gρ,σ = D(AρeσA
1/2

) =
{
u ∈ H : |u|ρ,σ := |AρeσA

1/2

u| <∞
}

and the domain of the fractional operator Aρ by

D(Aρ) = Gρ,0 = {u ∈ H : |Aρu| = |u|ρ,0 <∞} .
Thanks to the zero-average condition (1.2), the norm |Am/2u| is equivalent to ‖u‖Hm(Ω) on the space

D(Am/2) for m = 0, 1, 2, .... Note that D(A0) = H, D(A1/2) = V and the spaces Gρ,σ are decreasing in ρ
and σ.

Denote for σ ∈ R the space

E∞,σ =
⋂
ρ≥0

Gρ,σ =
⋂
m∈N

Gm,σ.

We will say that an asymptotic expansion (1.3) holds in E∞,σ if it holds in Gρ,σ for all ρ ≥ 0.
Let us also denote by Pρ,σ the space of Gρ,σ-valued polynomials in case ρ ∈ R, and the space of E∞,σ-

valued polynomials in case ρ =∞.
We define the trilinear form b by

b(u, v, w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx,

whenever the integrals make sense. It is easy to check that if u, v, w ∈ V , then

b(u, v, w) = −b(u,w, v).

Hence
b(u, v, v) = 0.

We now consider the trilinear form defined by

b(u, v, w) = b(u, v, w)− b(w, v, u), ∀(u, v, w) ∈ D(A)× L2(Ω)×H1
0(Ω),

and we define a continuous bilinear operator B from V × V into V ′ by

〈B(u, v), w〉 = b(u, v, w).
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Next, using the identity

u · ∇v +

3∑
j=1

vj∇uj = −u× (∇× v) +∇(u · v)

and using the fact that ∇ · u = 0, it is immediate to check that(
− u× (∇× v), w

)
=
(
u · ∇v, w

)
+
(
v · ∇uT , w

)
= b(u, v, w) + b(w, u, v) = b(u, v, w).

We also have the trilinear form b satisfies

b(u, v, w) = −b(w, v, u), (u, v, w) ∈ D(A)× L2(Ω)×D(A),

and consequently,

b(u, v, u) = 0, for all (u, v) ∈ D(A)× L2(Ω). (2.1)

By applying the Leray projection P to (1.1) and use the above notation to obtain the equivalent system
of equations 

∂tv + νAv + B(u, v) = Pf, x ∈ Ω, t > 0,

v = u− α2∆u,

∇ · u = ∇ · v = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(2.2)

We will assume that Pf = f , otherwise we add the gradient part of f to the modified pressure and rename
Pf by f .

Definition 2.1. Let f ∈ L2(0, T ;V ′). For given T > 0, u0 ∈ V (or v0 ∈ V ′), a function

u ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) with
du

dt
∈ L2(0, T ;H)

or equivalently

v ∈ C([0, T ];V ′) ∩ L2(0, T ;H) with
dv

dt
∈ L2(0, T ;D(A)′)

is said to be a weak solution to problem (2.2) in the interval (0, T ) if it satisfies〈
d

dt
v, w

〉
D(A)′

+ ν 〈Av,w〉D(A)′ + 〈B(u, v), w〉D(A)′ = (f, w) (2.3)

for every w ∈ D(A) and for almost every t ∈ [0, T ].

3. Exponential decay in Gevrey and Sobolev spaces

In this section, we derive the exponential decay for weak solutions in both Gevrey and Sobolev spaces,
particular. First, we state some basic inequalities concerning the Gevrey and Sobolev norms.

For all ρ, σ ≥ 0,

|u| ≤ |Aρu| (Poincaré’s inequality), (3.1)

and

|u| ≤ e−σ|eσA
1/2

u|. (3.2)

When ρ, σ > 0, one has

max
x≥0

(x2ρe−σx) =

(
2ρ

eσ

)2ρ

,

hence

|Aρu| ≤ |(Aρe−σA
1/2

)eσA
1/2

u| ≤
(

2ρ

eσ

)2ρ

|eσA
1/2

u|. (3.3)

Lemma 3.1. Let σ ≥ 0 and ρ ≥ 1/2. There exists an absolute constant K > 1, independent of ρ, σ, such
that

|B(u, v)|ρ,σ ≤ Kρ|u|ρ+1/2,σ|v|ρ+1/2,σ, ∀u, v ∈ Gρ+1/2,σ. (3.4)
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Proof. The proof is mainly based on the work of Hoang and Martinez [17].
Let u, v, w be in H with

u =
∑
k∈Z3

uke
ik·x, v =

∑
l∈Z3

vle
il·x, w =

∑
m∈Z3

wme
im·x.

Define the scalar functions

u∗ =
∑
k∈Z3

|uk|eik·x, v∗ =
∑
l∈Z3

|vl|eil·x, w∗ =
∑
m∈Z3

|wm|eim·x,

where

|uk| = eρ|k|uk, |vl| = eρ|l|vl, |wm| = eρ|m|wm.

Then

|Aρu| = |(−∆)ρu∗| for all ρ ≥ 0.

We have

〈AρeσA
1/2

B(u, v), w〉 = (2π)3i
∑

k+l+m=0

|m|2ρeσ|m|
(

(uk · l)(vl · wm) + (wm · l)(vl · uk)
)
.

Therefore ∣∣∣〈AρeσA1/2

B(u, v), w〉
∣∣∣ ≤ 16π3

∑
k+l+m=0

|m|2ρeσ|m||l||uk||vl||wm|.

By using the same arguments in the proof of [17, Lemma 2.1] we deduce∣∣∣〈AρeσA1/2

B(u, v), w〉
∣∣∣ ≤ Kρ|u|ρ+1/2,σ|v|ρ+1/2,σ|w|, for ρ ≥ 1/2,

and, hence, we obtain (3.4). �

Remark 3.1. As a consequence of Lemma 3.1, we have

B(Gρ+1/2,σ, Gρ+1/2,σ) ⊂ Gρ,σ for ρ ≥ 1/2, σ > 0, (3.5)

B(E∞,σ, E∞,σ) ⊂ E∞,σ for σ ≥ 0. (3.6)

Next, we will establish the global existence of the solution in Gevrey spaces and its exponential decay as
time goes to infinity.

Proposition 3.1. Let δ ∈ (0, 1), λ ∈ (1− δ, 1] and σ ≥ 0, ρ ≥ 1/2. Define the positive numbers

C0 =
να4δ

2Kρ(1 + α2)(2 + α2)
and C1 = C0να

√
δ(λ+ δ − 1).

Suppose that

|Aρ+1/2u0| ≤ C0 (3.7)

and

|f(t)|ρ−1,σ ≤ C1e
−νλt, ∀t ≥ 0. (3.8)

Then there exists a unique solution u(t) of (2.2) that satisfies u ∈ C([0,∞), D(Aρ+1/2)) and

|u(t)|2ρ,σ + α2|u(t)|2ρ+1/2,σ ≤ C
2
0 (2 + α2)e−2ν(1−δ)t, ∀t ≥ t∗, (3.9)

where t∗ =
8σ

νδ
. Moreover, one has for all t ≥ t∗ that∫ t+1

t

(
|u(s)|2ρ+1/2,σ + α2|u(s)|2ρ+1,σ

)
ds ≤ 3 + α2

2ν(1− δ)
C2

0e
−2ν(1−δ)t. (3.10)

Proof. We use the Galerkin approximations and the standard passage to the limit (see e.g. [29]) to prove
global existence and to establish the necessary a priori estimates.

Part I: case σ > 0. Let ϕ(t) be a function in C∞(R) such that ϕ(t) = 0 for t ≤ 0, ϕ(t) > 0 for t > 0,
ϕ(t) = σ for t ≥ t∗, and

0 < ϕ′(t) < 2
σ

t∗
=

1

4
νδ for all t ∈ (0, t∗).
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From the first two equations of (2.2), we have

d

dt

(
Aρeϕ(t)A1/2

(u(t) + α2Au(t))
)
− ϕ′(t)A1/2Aρeϕ(t)A1/2

(u+ α2Au)

+ νAρeϕ(t)A1/2

A(u+ α2Au) +Aρeϕ(t)A1/2

B(u, u+ α2Au) = Aρeϕ(t)A1/2

f.

(3.11)

Taking inner product of the equation (3.11) with Aρeϕ(t)A1/2

u(t) gives

1

2

d

dt
(|u|2ρ,ϕ(t) + α2|A1/2u|2ρ,ϕ(t)) + ν(|A1/2u|2ρ,ϕ(t) + α2|Au|2ρ,ϕ(t)) = 〈Aρeϕ(t)A1/2

f,Aρeϕ(t)A1/2

u〉

+ ϕ′(t)〈Aρ+1/2eϕ(t)A1/2

(u+ α2Au), Aρeϕ(t)A1/2

u〉 − 〈Aρeϕ(t)A1/2

B(u, u+ α2Au), Aρeϕ(t)A1/2

u〉
(3.12)

Applying the Cauchy and Poincaré inequalities and Lemma 3.1 to the terms on the right-hand side to obtain∣∣ϕ′(t)〈Aρ+1/2eϕ(t)A1/2

u,Aρeϕ(t)A1/2

u〉
∣∣ ≤ 1

4
νδ|A1/2u|ρ,ϕ(t)|u|ρ,ϕ(t) ≤ νδ|A1/2u|2ρ,ϕ(t),

α2
∣∣ϕ′(t)〈Aρ+1/2eϕ(t)A1/2

Au,Aρeϕ(t)A1/2

u〉
∣∣ ≤ α2

4
νδ|Au|ρ,ϕ(t)|A1/2u|ρ,ϕ(t) ≤

α2

4
νδ|Au|2ρ,ϕ(t),∣∣− 〈Aρeϕ(t)A1/2

B(u, u+ α2Au), Aρeϕ(t)A1/2

u〉
∣∣ =

∣∣〈Aρ−1/2eϕ(t)A1/2

B(u, u+ α2Au), Aρ+1/2eϕ(t)A1/2

u〉
∣∣

≤ Kρ|u|ρ,ϕ(t)|(u+ α2Au)|ρ,ϕ(t)|Au|ρ,ϕ(t)

≤ Kρ(1 + α2)|A1/2u|ρ,ϕ(t)|Au|2ρ,ϕ(t),

and ∣∣〈Aρeϕ(t)A1/2

f,Aρeϕ(t)A1/2

u〉
∣∣ ≤ |f |ρ−1,ϕ(t)|u|ρ+1,ϕ(t)

≤ 1

να2δ
|f |2ρ−1,ϕ(t) +

να2δ

4
|u|2ρ+1,ϕ(t).

From all estimates above, inserting all of them on the right-hand side of (3.12), we obtain

d

dt
(|u|2ρ,ϕ(t) + α2|A1/2u|2ρ,ϕ(t)) + 2ν(1− δ)|A1/2u|2ρ,ϕ(t)

+ 2να2

(
1− δ

2
−Kρ 1 + α2

να2
|A1/2u|ρ,ϕ(t)

)
|Au|2ρ,ϕ(t) ≤

2

να2δ
|f |2ρ−1,ϕ(t).

(3.13)

We claim that

Kρ 1 + α2

να2
|A1/2u(t)|ρ,ϕ(t) ≤ δ/2, ∀t ≥ 0. (3.14)

Suppose (3.14) is not true, then by (3.7), there exists T ∈ (0,∞) such that

Kρ 1 + α2

να2
|A1/2u(t)|ρ,ϕ(t) < δ/2, ∀t ∈ [0, T ) (3.15)

and

Kρ 1 + α2

να2
|A1/2u(T )|ρ,ϕ(T ) = δ/2. (3.16)

By (3.15) and (3.8), we have for t ∈ (0, T ) that

d

dt
(|u|2ρ,ϕ(t) + α2|A1/2u|2ρ,ϕ(t)) + 2ν(1− δ)(|A1/2u|2ρ,ϕ(t) + α2|Au|2ρ,ϕ(t)) ≤

2

να2δ
|f |2ρ−1,ϕ(t) ≤

2C2
1

να2δ
e−2νλt.

(3.17)
Applying the Gronwall inequality in (3.17), we deduce for all t ∈ (0, T ) that

|u(t)|2ρ,ϕ(t) + α2|A1/2u(t)|2ρ,ϕ(t) ≤ e
−2ν(1−δ)t(|u0|2ρ,0 + α2|A1/2u0|2ρ,0) +

2C2
1

να2δ
e−2ν(1−δ)t

∫ t

0

e−2ν(λ+δ−1)sds

≤ e−2ν(1−δ)t(|u0|2ρ,0 + α2|A1/2u0|2ρ,0) +
C2

1

ν2α2δ(λ+ δ − 1)
e−2ν(1−δ)t

≤ (|u0|2ρ,0 + α2|A1/2u0|2ρ,0 + C2
0 )e−2ν(1−δ)t.

Combining this with condition (3.7) for the initial data, we obtain

|u(t)|2ρ,ϕ(t) + α2|A1/2u(t)|2ρ,ϕ(t) ≤ (2 + α2)C2
0e
−2ν(1−δ)t (3.18)
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or

|A1/2u(t)|ρ,ϕ(t) ≤ C0

√
2 + α2

α
e−ν(1−δ)t, for all t ∈ (0, T ). (3.19)

In particular, letting t→ T− in (3.19) gives

lim
t→T−

|A1/2u(t)|ρ,ϕ(t) ≤
√

2 + α2

α
C0 <

2 + α2

α2
C0 =

να2δ

2Kρ(1 + α2)
,

which contradicts (3.16). Therefore, (3.15) holds true. Consequently, we obtain (3.19). Since ϕ(t) = σ for
t ≥ t∗, from (3.18) we deduce (3.9).

For t ≥ t∗, integrating (3.17) from t to t+ 1 gives

2ν(1− δ)
∫ t+1

t

(|A1/2u(s)|2ρ,σ + α2|Au(s)|2ρ,σ)ds ≤ |u(t)|2ρ,σ + α2|A1/2u(t)|2ρ,σ +
2C2

1

να2δ

∫ t+1

t

e−2νλsds

≤ (2 + α2)C2
0e
−2ν(1−δ)t +

C2
1

ν2α2δλ
e−2νλt

≤ (2 + α2 +
λ+ δ − 1

λ
)C2

0e
−2ν(1−δ)t ≤ (3 + α2)C2

0e
−2ν(1−δ)t.

Thus, we obtain (3.10).
Part II: case σ = 0. We use the same arguments in Part I without using the function ϕ(t). Here, we

provide some necessary calculations. First, using Sobolev norms, we have

d

dt
(|Aρu|2 + α2|Aρ+1/2u|2) + 2ν(1− δ)|Aρ+1/2u|2

+ 2να2

(
1− δ

2
−Kρ 1 + α2

να2
|Aρ+1/2u|

)
|Aρ+1u|2 ≤ 1

να2δ
|Aρ−1f |2.

(3.20)

From (3.14), (3.8) and (3.7), we have for t ∈ (0, T ) that

|Aρu|2 + α2|Aρ+1/2u|2 ≤ e−2ν(1−δ)t(|Aρu0|2 + α2|Aρ+1/2u0|2) +
C2

1

να2δ
e−2ν(1−δ)t

∫ t

0

e−2ν(λ+δ−1)sds

≤ e−2ν(1−δ)t(|u0|2ρ,0 + α2|A1/2u0|2ρ,0) +
C2

1

2ν2α2δ(λ+ δ − 1)
e−2ν(1−δ)t

≤ (|u0|2ρ,0 + α2|A1/2u0|2ρ,0 + C2
0 )e−2ν(1−δ)t.

This implies T =∞ and then also proves (3.9). And for t ≥ t∗, from the inequality above, we also have

2ν(1− δ)
∫ t+1

t

(|Aρ+1/2u(s)|2 + α2|Aρ+1u(s)|2)ds ≤ |Aρu(t)|2 + α2|Aρ+1/2u(t)|2 +
C2

1

να2δ

∫ t+1

t

e−2νλsds

≤ (2 + α2)C2
0e
−2ν(1−δ)t +

C2
1

2ν2α2δλ
e−2νλt

≤ (2 + α2 +
λ+ δ − 1

λ
)C2

0e
−2ν(1−δ)t ≤ (3 + α2)C2

0e
−2ν(1−δ)t,

hence we get (3.10) and the proof is complete. �

Remark 3.2. Proposition 3.1 provides information of decay rates of the solution and the particular effect
on it from the body force.

Next, we will give estimate for the Gevrey norms of the weak solution of problem (2.2) with the optimal
exponential decay for large time.

Proposition 3.2. Assume that there are numbers M,κ0 > 0 suth that

|f(t)| ≤Me−ν(1+κ0)t/2, for all t ≥ 0, (3.21)

and, additionally, that there are σ ≥ 0, ρ ≥ 1/2 and λ0 ∈ (0, 1) such that

|f(t)|ρ,σ = O(e−νλ0t) as t→∞. (3.22)
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Let u(t) be a weak solution of (2.2). Then, for any δ ∈ (1−λ0, 1) there exist T ∗ > 0 and a positive constant
K0 = max(K2,K3) such that

|u(t)|ρ+3/2,σ ≤ K0e
−ν(1−δ)t, for all t ≥ T ∗, (3.23)

where K2,K3 are positive numbers in the proof below.

Proof. Taking inner product of (2.2) with u and using the orthogonality property (2.1), the Cauchy and
Poincaré inequalities, we have

d

dt
(|u|2 + α2‖u‖2) + ν(‖u‖2 + α2|Au|2) ≤ 1

ν
‖f‖2V ′ . (3.24)

Applying Gronwall’s inequality, we obtain

|u(t)|2 + α2‖u(t)‖2 ≤ e−νt(|u0|2 + α2‖u0‖2) +
e−νt

ν

∫ t

0

eνs‖f(s)‖2V ′ds, ∀t > 0.

From (3.21), we deduce

|u(t)|2 + α2‖u(t)‖2 ≤ e−νt(|u0|2 + α2‖u0‖2 +
M2

ν2κ0
), ∀t > 0. (3.25)

Moreover, by integrating (3.24) over (t0, t) with t ≥ t0 ≥ 0 we obtain

|u(t)|2 + α2‖u(t)‖2 + ν

∫ t

t0

(‖u(s)‖2 + α2|Au(s)|2)ds ≤ |u(t0)|2 + α2‖u(t0)‖2 +
1

ν

∫ t

t0

‖f(s)‖2V ′ds.

Using (3.25) and (3.21) we get

ν

∫ t0+1

t0

(‖u(s)‖2 + α2|Au(s)|2)ds ≤ e−νt0
(
|u0|2 + α2‖u0‖2 +

M2

ν2κ0

)
+

M2

ν2(1 + κ0)
e−ν(1+κ0)t0

≤ e−νt0
(
|u0|2 + α2‖u0‖2 +

2M2

ν2κ0

)
.

(3.26)

For any t ≥ 0, let {tn}∞n=1 be a sequence in (0,∞) converging to t such that (3.26) holds for t0 = tn.
Then letting n→∞ yields

ν

∫ t+1

t

(‖u(s)‖2 + α2|Au(s)|2)ds ≤ e−νt
(
|u0|2 + α2‖u0‖2 +

2M2

ν2κ0

)
. (3.27)

Define λ =
1− δ + λ0

2
∈ (1− δ, λ0). We consider each case σ > 0 and σ = 0 in turn.

(i) Case σ > 0. By (3.27) and (3.22), there exists t0 > 0 such that

|Au(t0)| < C0(ν, α,M, κ0),

and

|f(t)|−1/2,σ ≤ C1(δ, λ)e−νλt, ∀t ≥ t0.
Applying Proposition 3.1 to ρ := 1/2 we obtain

|u(t)|21/2,σ + α2|u(t)|21,σ ≤ K1e
−2ν(1−δ)t, ∀t ≥ t0 + t∗ = t0 +

8σ

νδ
,

where K1 := C0(ν, α,M, κ0)(2 + α2). Then, by using (3.3), for all t ≥ t0 + t∗, we have that

|Aρ+3/2u(t)| ≤
(

2ρ+ 1

eσ

)2ρ+1

|u|1,σ ≤
(

2ρ+ 1

eσ

)2ρ+1

K1e
−ν(1−δ)t. (3.28)

Next, from (3.28) and (3.22), we deduce that there exists a sufficiently large T0 > t0 + t∗ such that

|Aρ+3/2u(T0)| < C0(ρ, σ, e,K1),

and

|f(t)|ρ,σ ≤ C1(δ, λ)e−νλt, ∀t ≥ T0.

Applying Proposition 3.1 again to ρ := ρ+ 1 we obtain that there exists T ∗ > T0 + t∗ so that

|u(t)|2ρ+1,σ + α2|u(t)|2ρ+3/2,σ ≤ K2e
−2ν(1−δ)t, ∀t ≥ T ∗,
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where K2 := C2
0 (ρ, σ, e,K1)(2 + α2). This implies (3.23) and completes the proof of Case (i).

(ii) Case σ = 0. We will apply Proposition 3.1 recursively to obtain the exponential decay for u(t) in
higher Sobolev norms.

For j ∈ N, suppose

lim
t→∞

να2

∫ t+1

t

|A(j+1)/2u(s)|2ds = 0, (3.29)

and

|Aj/2−1f(t)| = O(e−νλ0t) as t→∞. (3.30)

Then there exists T > 0 so that

|A(j+1)/2u(T )| ≤ C0(j, ν, α),

and

|Aj/2−1f(t)| ≤ C1(j, δ, λ)e−νλt, ∀t ≥ T.
Applying Proposition 3.1 to ρ := j/2, σ := 0, we get

|Aj/2u(t)|2 + α2|A(j+1)/2u(t)|2 ≤ C0(j, ν, α)(2 + α2)e−2ν(1−δ)t ≤ K1e
−2ν(1−δ)t, ∀t ≥ T,

where K1 := C0(j, ν, α)(2 + α2) and∫ t+1

t

(
|A(j+1)/2u(s)|2 + α2|A(j+2)/2u(s)|2

)
ds = O(e−2ν(1−δ)t) as t→∞. (3.31)

Notice that, (3.27) implies that (3.29) holds true for j = 1. Let 2 ≤ m ∈ N be given such that

ρ ≤ m

2
< ρ+

1

2
. (3.32)

Then we have (m − 1)/2 < ρ. Hence, from (3.22), condition (3.30) is satisfied for j = 1, 2, · · · ,m + 1. We
now repeat the arguments from (3.29) to (3.31) for j = 1, 2, · · · ,m+ 1. Particularly, as j = m+ 1 we obtain
from (3.31) that∫ t+1

t

(
|A(m+2)/2u(s)|2 + α2|A(m+3)/2u(s)|2

)
ds = O(e−2ν(1−δ)t) as t→∞.

Since ρ ≤ m/2, this implies∫ t+1

t

(
|Aρ+1u(s)|2 + α2|Aρ+3/2u(s)|2

)
ds = O(e−2ν(1−δ)t) as t→∞. (3.33)

Thus, together with (3.22), there is T1 ≥ T such that

|Aρ+3/2u(T1)| < C0(ρ, α, ν),

and

|f(t)|ρ,σ ≤ C1(ρ, δ, λ)e−νλt, ∀t ≥ T1.

Applying Proposition 3.1 to ρ := ρ+ 1 we obtain that there exists T ∗ > T1 so that

|u(t)|2ρ+1,σ + α2|u(t)|2ρ+3/2,σ ≤ K3e
−2ν(1−δ)t, ∀t ≥ T ∗,

where K3 := C0(ρ, α, ν)(2 + α2). This implies (3.23) and completes the proof of Case (ii). �

Corollary 3.1. Let the assumptions of Proposition 3.2 be fulfilled. Then

|B(u(t), v(t))|ρ,σ ≤ Kρ(1 + α2)K2
0e
−2ν(1−δ)t, for all t ≥ T ∗. (3.34)

Proof. We deduce from the Lemma 3.1 that

|B(u(t), v(t))|ρ,σ ≤ Kρ(1 + α2)|u|ρ+1/2,σ|u|ρ+3/2,σ, ∀t ≥ 0,

where v = u+ α2Au. Apply the Poincaré inequality, we obtain (3.34) with the use of (3.23). �

The next lemma is a building block of the construction of the polynomials qn(t)’s. It summarizes and
reformulates the facts used in [14] and [18, Lemma 4.2].
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Lemma 3.2. Let (X, ‖ · ‖X) be a Banach space. Suppose y(t) is a function in C([0,∞);X) that solves the
following ODE

y′(t) + βy(t) = p(t) + g(t)

in the X-valued distribution sense on (0,∞). Here, β ∈ R is a fixed constant, p(t) is X-valued polynomial
in t, and g ∈ L1(0, T ;X) satisfies

‖g(t)‖X ≤Me−δt, ∀t ≥ 0, for some M, δ > 0.

Define q(t) for t ∈ R by

q(t) =


e−βt

∫ t
−∞ eβsp(s)ds if β > 0,

y(0) +
∫∞

0
g(s)ds+

∫ t
0
p(s)ds if β = 0,

−e−βt
∫∞
t
eβsp(s)ds if β < 0.

Then q(t) is an X-valued polynomial of degree at most deg(p) + 1 that satisfies

q′(t) + βq(t) = p(t), t ∈ R,
and the following estimates hold:
(i) If β > 0 then

‖y(t)− q(t)‖X ≤
(
‖y(0)− q(0)‖X +

M

|β − δ|

)
e−min(δ,β)t, t ≥ 0, for β 6= δ,

and
‖y(t)− q(t)‖X ≤ (‖y(0)− q(0)‖X +Mt) e−δt, t ≥ 0, for β = δ.

(ii) If β = 0 then

‖y(t)− q(t)‖X ≤
M

δ
e−δt, t ≥ 0.

(iii) If β < 0 and lim
t→∞

(
eβty(t)

)
= 0, then

‖y(t)− q(t)‖X ≤
M

|β|+ δ
e−δt, t ≥ 0.

4. Main results

We start by providing the following elementary identities: for β > 0, integer d ≥ 0 and t ∈ R.∫ t

−∞
sdeβsds =

eβt

β

d∑
n=0

(−1)d−nd!

n!βd−n
tn, (4.1)

∫ ∞
t

sde−βsds =
e−βt

β

d∑
n=0

d!

n!βd−n
tn. (4.2)

Theorem 4.1. Assume that there exist a number σ0 ≥ 0 and polynomials fn ∈ P∞,σ0 for all n ≥ 1, such
that f(t) has the asymptotic expansion

f(t) ∼
∞∑
n=1

fn(t)e−νnt in E∞,σ0 . (4.3)

Let u(t) be a weak solution of (2.2). Then
(i) There exist polynomials qn ∈ P∞,σ0 for all n ≥ 1, such that u(t) has the asymptotic expansion

u(t) ∼
∞∑
n=1

qn(t)e−νnt in E∞,σ0 , (4.4)

Moreover, the mappings
un(t) := qn(t)e−νnt and Fn(t) := fn(t)e−νnt (4.5)

satisfy the following ordinary differential equations in the space E∞,σ0

d

dt
vn(t) + νAvn(t) +

∑
i,j≥1
i+j=n

B(ui(t), vj(t)) = Fn(t), t ∈ R,∀n ≥ 1 (4.6)
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where vn = un + α2Aun.
(ii) If all fn(t)’s belong to V, then so do all qn(t)’s and the ODEs (4.6) hold in V.

Remark 4.1. Observe that since the expansion (4.3) is an infinite sum, it immediately implies the following
remainder estimate:∣∣∣∣∣f(t)−

N∑
n=1

fn(t)e−νnt

∣∣∣∣∣
ρ,σ0

≤
∣∣∣fN+1(t)e−ν(N+1)t

∣∣∣
ρ,σ0

+

∣∣∣∣∣f(t)−
N+1∑
n=1

fn(t)e−νnt

∣∣∣∣∣
ρ,σ0

= O
(
e−ν(N+ε)t

)
+O

(
e−ν(N+1+δN+1,ρ)t

)
,

which holds for each N ≥ 1, ρ ≥ 0, ε ∈ (0, 1) and some δN+1,ρ ∈ (0, 1). Therefore, we have for each N ≥ 1
and ρ ≥ 0, there exists a number δN,ρ ∈ (0, 1) such that∣∣∣∣∣f(t)−

N∑
n=1

fn(t)e−νnt

∣∣∣∣∣
ρ,σ0

= O
(
e−ν(N+δN,ρ)t

)
as t→∞. (4.7)

Thus, we have the following consequences:
(i) The relation (4.7) implies for each ρ ≥ 0 that f(t) belongs to Gρ,σ0

for t large.
(ii) Note that, when N = 1, the function f(t) itself satisfies∣∣f(t)− f1(t)e−νt

∣∣
ρ,σ0

= O(e−ν(1+δ1,ρ)t).

Since f1(t) is a polynomial, it follows that

|f(t)|ρ,σ0
= O(e−νλt), ∀λ ∈ (0, 1) and ∀ρ ≥ 0. (4.8)

Consequently, for any ε > 0, ρ ≥ 0 and λ ∈ (0, 1), applying (4.8) with (λ+ 1)/2 replacing λ, it follows that
there is T > 0 such that

|f(t)|ρ,σ0
≤ εe−νλt ∀t ≥ T. (4.9)

(iii) Combining (4.8) for ρ = 0, with f ∈ L2(0, T ;H), we assume, without loss of generality, for each λ ∈ (0, 1)
that

|f(t)| ≤Mλe
−νλt, ∀t ≥ 0, for some Mλ > 0. (4.10)

Similarly, the expansion (4.4) implies for any N ≥ 1 and ρ ≥ 0 that∣∣∣∣∣u(t)−
N∑
n=1

qn(t)e−νnt

∣∣∣∣∣
ρ,σ0

= O
(
e−ν(N+ε)t

)
as t→∞,∀ε ∈ (0, 1).

Proof. (i) It suffices to prove that there exist polynomials qn’s for all n ≥ 1 such that for each N ≥ 1, the
following properties (H1), (H2) and (H3) hold true:
(H1) qN ∈ P∞,σ0 ,
(H2) For ρ ≥ 1/2, ∣∣∣∣∣u(t)−

N∑
n=1

qn(t)e−νnt

∣∣∣∣∣
ρ,σ0

= O(e−ν(N+ε)t) as t→∞,∀ε ∈ (0, δ∗N,ρ), (4.11)

where the number δ∗n,ρ’s, for ρ ≥ 1/2, are defined recursively by

δ∗n,ρ =

{
δ1,ρ for n = 1,

min(δn,ρ, δ
∗
n−1,ρ+3/2), for n ≥ 2.

(H3) The ODE (4.6) holds in E∞,σ0 for n = N .
We prove these statements by constructing the polynomials qN (t)’s recursively.

Base case: N = 1. Let k ≥ 1. By taking w ∈ RkH in the weak formulation (2.3), we obtain

d

dt
Rku+ νkRku =

1

1 + α2k
Rk

(
f(t)− B(u(t), v(t))

)
in RkH, for a.e. t ∈ (0,∞). (4.12)
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Let w0(t) = eνtu(t) and w0,k(t) = Rkw0(t). Since u ∈ C([0, T ];H), we also have w0,k ∈ C([0, T ];RkH). It
follows from (4.12) that

d

dt
w0,k + ν(k − 1)w0,k =

1

1 + α2k

(
Rkf1 +RkH0(t)

)
, in RkH, for a.e. t ∈ (0,∞), (4.13)

where

H0(t) = eνt
(
f(t)− F1(t)− B(u(t), v(t))

)
, (4.14)

with F1 is defined in (4.5) and Rkf1(t) is an RkH-valued polynomial in t.
Let ρ ≥ 1/2 be fixed. By using (4.7) for N = 1 and applying Corollary 3.1 with the use of (4.9), in fact

that (3.22) holds for σ = σ0, ρ ≥ 1/2 and λ0 ∈ (0, 1), we have for δ = (1− δ1,ρ)/4 that there are T0 > 0 and
D0 ≥ 1 such that for t ≥ T0,

eνt|f(t)− F1(t)|ρ,σ0
≤ D0e

−νδ1,ρt, (4.15)

eνt|B(u(t), v(t))|ρ,σ0 ≤ KρK2
0 (1 + α2)eν(2δ−1)t ≤ Je−ν(1+δ1,ρ)t/2 ≤ Je−νδ1,ρt, (4.16)

where J := KρK2
0 (1 + α2). Then, by putting D1 = max(D0, J), we have

|H0(t)|ρ,σ0 ≤ D1e
−νδ1,ρt, ∀t ≥ T0. (4.17)

We now identify the components of the desired polynomial, q1(t), belonging to each eigenspace RkH.
Case k = 1: Applying Lemma 3.2 (ii) to equation (4.13) with X = R1H, ‖ · ‖X = | · |ρ,σ0 , β = 0,

y(t) = w0,1(T0 + t), p(t) =
1

1 + α2
R1f1(T0 + t), g(t) =

1

1 + α2
R1H0(T0 + t),

we infer that there is an R1H-valued polynomial q1,1(t) such that for any t ≥ 0

|w0,1(T0 + t)− q1,1(t)|ρ,σ0 ≤
D1

νδ1,ρ(1 + α2)
e−νδ1,ρt,

hence

|R1w0(t)− q1,1(t− T0)|ρ,σ0
≤ D1e

νδ1,ρT0

νδ1,ρ(1 + α2)
e−νδ1,ρt, ∀t ≥ T0, (4.18)

and

q1,1(t) = R1w0(T0) +
1

1 + α2

(∫ ∞
0

R1H0(T0 + s)ds+

∫ t

0

R1f1(T0 + s)ds

)
.

Thanks to (4.17), the improper integral
1

1 + α2

∫∞
0
R1H0(T0 + s)ds exists and belongs to R1H. Thus

q1,1(t) = ξ1 +
1

1 + α2

∫ t

0

R1f1(T0 + s)ds for some ξ1 ∈ R1H. (4.19)

Case k ≥ 2: We apply Lemma 3.2 (i) to equation (4.13) with X = RkH, ‖ · ‖X = | · |ρ,σ0
, β = ν(k− 1) >

νδ1,ρ and

y(t) = w0,k(T0 + t), p(t) =
1

1 + α2k
Rkf1(T0 + t), g(t) =

1

1 + α2k
RkH0(T0 + t).

In particular, there is an RkH-valued polynomial, q1,k(t), such that for all t ≥ T0

|Rkw0(t)− q1,k(t− T0)|ρ,σ0
≤ e−νδ1,ρ(t−T0)

(
|Rkw0(T0)|ρ,σ0

+ |q1,k(0)|ρ,σ0
+

D1

ν(k − 1− δ1,ρ)(1 + α2)

)
,

(4.20)
and

q1,k(t) =
e−ν(k−1)t

1 + α2k

∫ t

−∞
eν(k−1)sRkf1(T0 + s)ds, for k ≥ 2. (4.21)

We now define the polynomial q1(t)

q1(t) =

∞∑
k=1

q1,k(t− T0), t ∈ R. (4.22)
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Next, we prove that q1 ∈ P∞,σ0 . Write

f1(T0 + t) =

m∑
d=0

adt
d, for some ad ∈ E∞,σ0 .

By (4.19), we have that R1q1(T0 + t) = q1,1(t) is a V-valued polynomial, and hence,

the mapping t 7→ R1q1(T0 + t) belongs to P∞,σ0 . (4.23)

We consider the remaining part (I −R1)q1(T0 + t). By using the formula (4.1)

(I −R1)q1(T0 + t) =

∞∑
k=2

q1,k(t) =

∞∑
k=2

e−ν(k−1)t

1 + α2k

∫ t

−∞
eν(k−1)s

(
m∑
d=0

Rkads
d

)
ds

=

∞∑
k=2

1

ν(k − 1)(1 + α2k)

m∑
d=0

d∑
n=0

(−1)d−nd!

n![ν(k − 1)]d−n
tnRkad

=

∞∑
k=2

1

ν(k − 1)(1 + α2k)

d∑
n=0

(
m∑
d=n

(−1)d−nd!

n![ν(k − 1)]d−n
Rkad

)
tn =

d∑
n=0

bnt
n,

where the coefficient bn, 0 ≤ n ≤ d is

bn =

∞∑
k=2

1

ν(k − 1)(1 + α2k)

(
m∑
d=n

(−1)d−nd!

n![ν(k − 1)]d−n
Rkad

)
.

For any θ ≥ 0, we have

|bn|2θ+2,σ0
= |A2bn|2θ,σ0

=
1

ν2

∞∑
k=2

∣∣∣∣∣ 1

(k − 1)(1 + α2k)

m∑
d=n

(−1)d−nd!

n![ν(k − 1)]d−n
k2.Rkad

∣∣∣∣∣
2

θ,σ0

≤ 1

ν2

∞∑
k=2

(
k2

(k − 1)(1 + α2k)

)2
(

m∑
d=n

m!

n!νd−n
|Rkad|θ,σ0

)2

≤ 16(m!)2

ν2(n!)2(1 + 2α2)2

∞∑
k=2

m∑
d=n

1

ν2(d−n)

m∑
d=n

|Rkad|2θ,σ0
.

Thus

|bn|2θ+2,σ0
≤ 16(m!)2

ν2(n!)2(1 + 2α2)2

m∑
d=n

1

ν2(d−n)

m∑
d=n

|(I −R1)ad|2θ,σ0
<∞. (4.24)

Hence, bn ∈ E∞,σ0 for all 0 ≤ n ≤ d, and the mapping t 7→ (I − R1)q1(T0 + t) belongs to P∞,σ0 . This,
together with (4.23) implies that the mapping t 7→ q1(T0 + t) belongs to P∞,σ0 and we obtain that t 7→ q1(t)
belongs to P∞,σ0 as well.

Next, we estimate |u(t)− q1(t)e−νt|ρ,σ0
. From (4.18) we have

|R1(w0(t)− q1(t))|ρ,σ0 = O(e−νδ1,ρt). (4.25)

Moreover, by (4.20) we deduce that

∞∑
k=2

|Rk(w0(t)− q1(t))|2ρ,σ0
≤ 3e2νδ1,ρT0e−2νδ1,ρt

∞∑
k=2

(
|Rkw0(T0)|2ρ,σ0

+ |Rkq1(T0)|2ρ,σ0
+

D2
1(1 + α2)−2

ν2(k − 1− δ1,ρ)2

)
≤ D2

2e
−2νδ1,ρt,

for all t ≥ T0 and

D2
2 = 3e2νδ1,ρT0

(
|(I −R1)w0(T0)|2ρ,σ0

+ |(I −R1)q1(T0)|2ρ,σ0
+

D2
1

ν2(1 + α2)2

∞∑
k=2

1

(k − 1− δ1,ρ)2

)
<∞.

This implies

|(I −R1)(w0(t)− q1(t))|ρ,σ0
≤ D2e

−νδ1,ρt, ∀t ≥ T0. (4.26)
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Combining (4.25) with (4.26) yields

|w0(t)− q1(t)|ρ,σ0
= O(e−νδ1,ρt),

and consequently,

|u(t)− q1(t)e−νt|ρ,σ0
= O(e−ν(1+δ1,ρ)t), (4.27)

where the polynomial q1(t) is independent of ρ, thus the same q1(t) satisfies (4.27) for all ρ ≥ 1/2, which
proves (H2) for N = 1.

We next establish the ODE (4.6). By Lemma 3.2, we have the polynomial q1(t) satisfies

d

dt
(1 + α2k)Rkq1(T0 + t) + ν(k − 1)(1 + α2k)Rkq1(T0 + t) = Rkf1(T0 + t), ∀k ≥ 1 and ∀t ∈ R

or

d

dt
(I + α2A)Rkq1(T0 + t) + ν(k − 1)(I + α2A)Rkq1(T0 + t) = Rkf1(T0 + t), ∀k ≥ 1 and ∀t ∈ R. (4.28)

For each θ ≥ 0, we have A2q1(T0 + t) and f1(T0 + t) belong to Gθ,σ0
. Hence, we can sum over k in (4.28)

and obtain
d

dt
(q1(t) + α2Aq1(t)) + ν(A− 1)(q1(t) + α2Aq1(t)) = f1(t) in Gθ,σ0 ,∀t ∈ R,

which implies that the differential equation (4.6) holds in E∞,σ0 . And q1 satisfies (H1), (H2) and (H3) for
N = 1.

Recursive step. Let N ≥ 1. Suppose that there already exist q1, q2, · · · , qN ∈ P∞,σ0 that satisfies (H2)
and the ODE (4.6) holds in E∞,σ0 for each n = 1, 2, · · · , N . We will construct a polynomial qN+1(t) that
satisfies (H1), (H2) and (H3) for n = N + 1.

Let ρ ≥ 1/2 be given and ε∗ ∈ (0, δ∗N+1,ρ) arbitrary. Define

uN =

N∑
n=1

un and eN = u− uN ,

vN =

N∑
n=1

vn and rN = v − vN ,

where vn = un + α2Aun and v = u+ α2Au. By assumption (H2) we deduce

|eN (t)|ρ+3/2,σ0
= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N,ρ+3/2),

|rN (t)|ρ+1/2,σ0
= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N,ρ+3/2).

(4.29)

Subtracting (4.6) for n = 1, 2, · · · , N from (2.2), we have

d

dt
(eN + α2AeN ) + νA(eN + α2AeN ) + B(u, v)−

∑
1≤i,j
i+j≤N

B(ui, vj) = f −
N∑
n=1

Fn, (4.30)

where the functions Fn’s are defined in (4.5). We reformulate (4.30) as

d

dt
(eN + α2AeN ) + νA(eN + α2AeN ) +

∑
i+j=N+1

B(ui, vj) = FN+1 + hN , (4.31)

where

hN = −B(u, v) +
∑

1≤i,j≤N
i+j≤N+1

B(ui, vj) + f −
N+1∑
n=1

Fn

= −
(
B(u, v)− B(uN , vN )

)
−

B(uN , vN )−
∑

1≤i,j≤N
i+j≤N+1

B(ui, vj)

+

(
f −

N+1∑
n=1

Fn

)
.
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Then we can rewrite hN as

hN = −B(eN , v)− B(uN , rN )−
∑

1≤i,j≤N
i+j≥N+2

B(ui, vj) + FN+1, (4.32)

where

FN+1(t) = f(t)−
N+1∑
n=1

Fn(t).

By assumption (4.3) we have

|FN+1(t)|ρ,σ0
= O(e−ν(N+1+δN+1,ρ)t) = O(e−ν(N+1+ε∗)t). (4.33)

And it easy to deduce from (3.34) that for δ ∈ (0, 1),∑
1≤i,j≤N
i+j≥N+2

|B(ui, vj)|ρ,σ0
=

∑
1≤i,j≤N
i+j≥N+2

e−ν(i+j)t|B(qi, (I + α2A)qj)|ρ,σ0

= O(e−ν(N+2+2(1−δ))t) = O(e−ν(N+1+ε∗)t).

(4.34)

Take ε ∈ (ε∗, δ∗N+1,ρ) ⊂ (0, δ∗N,ρ+3/2) in (4.29), and set δ = ε− ε∗ ∈ (0, 1). Then we have from (3.23) that

|uN (t)|ρ+3/2,σ0
= O(e−ν(1−δ)t) and |u(t)|ρ+3/2,σ0

= O(e−ν(1−δ)t).

Since v = (I + α2A)u and (I + α2A) is a bounded linear operator from D(Aρ+3/2) to D(Aρ+1/2), thus, we
deduce

|vN (t)|ρ+1/2,σ0
= O(e−ν(1−δ)t) and |v(t)|ρ+1/2,σ0

= O(e−ν(1−δ)t). (4.35)

By Corollary 3.1 and estimates (4.29), (4.35), it follows that

|B(eN , v)|ρ,σ0 = O(e−ν(N+ε+1−δ)t) = O(e−ν(N+1+ε∗)t),

|B(uN , rN )|ρ,σ0
= O(e−ν(N+ε+1−δ)t) = O(e−ν(N+1+ε∗)t).

(4.36)

Therefore, by (4.32)-(4.34) and (4.36), we obtain

|hN (t)|ρ,σ0 = O(e−ν(N+1+ε∗)t). (4.37)

Next, by using the weak formulation (4.31), and then taking the test function w ∈ RkH, we obtain

d

dt
(1+α2k)RkeN +νk(1+α2k)RkeN +

∑
i+j=N+1

RkB(ui, vj) = RkFN+1 +RkhN in RkH, for a.e. t ∈ (0,∞).

(4.38)
Let wN (t) = eν(N+1)teN (t) and wN,k = RkwN (t). Then we have from (4.38) that

d

dt
wN,k + ν(k − (N + 1))wN,k =

1

1 + α2k

(
RkfN+1 − eν(N+1)t

∑
i+j=N+1

RkB(ui, vj) + eν(N+1)tRkhN (t)
)
.

From (4.37) we obtain

eν(N+1)t|RkhN (t)|ρ,σ0
= O(e−νε

∗t).

Then there exists TN > 0 and D3 > 0 such that

eν(N+1)t|RkhN (t)|ρ,σ0
≤ D3e

−νε∗t, ∀t ≥ TN . (4.39)

Moreover, since u ∈ C([0, T ];H), each wN,k(t) is continuous from [0,∞) to RkH. We apply Lemma 3.2 with
X = RkH, ‖ · ‖X = | · |ρ,σ0

, constant β = ν(k − (N + 1)), solution y(t) = wN,k(TN + t), polynomial

p(t) =
1

1 + α2k

RkfN+1(TN + t)− eν(N+1)t
∑

i+j=N+1

RkB
(
ui(TN + t), vj(TN + t)

) ,
and function g(t) =

1

1 + α2k
eν(N+1)tRkhN (t).

Case k ≤ N : We have β < 0 and (4.29) implies

lim
t→∞

(eβty(t)) = lim
t→∞

(eβ(t−TN )wN,k(t)) = e−βTN lim
t→∞

eνktRkeN (t) = 0.
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Then, by applying Lemma 3.2 (iii), there is a RkH-valued polynomial q
N+1,k(t) such that

|RkwN (t)− qN+1,k(t− TN )|ρ,σ0 = O(e−νε
∗t), ∀t ≥ TN . (4.40)

Case k = N + 1: We have β = 0, and Lemma 3.2 (ii) implies that there is a RN+1H-valued polynomial
qN+1,N+1(t) such that for any t ≥ TN

|RN+1wN (t)− qN+1,N+1(t− TN )|ρ,σ0
= O(e−νε

∗t). (4.41)

Case k ≥ N + 2: Then β = ν(k− (N + 1)) > νε∗ and by applying Lemma 3.2 (i), there is a RkH-valued
polynomial q

N+1,k(t) such that for all t ≥ TN
|RkwN (t)− qN+1,k(t− TN )|ρ,σ0

≤ eνε
∗TN e−νε

∗t

(
|RkwN (TN )|ρ,σ0

+ |qN+1,k(0)|ρ,σ0
+

D3

ν(1 + α2)
(
k − (N + 1)− ε∗

)) . (4.42)

We define

qN+1(t) =

∞∑
k=1

qN+1,k(t− TN ), t ∈ R.

It follows from (4.3) that fN+1 ∈ P∞,σ0 and from the recursive assumptions that qi, qj ∈ P∞,σ0 for 1 ≤
i, j ≤ N , then from (3.6) we obtain

fN+1 −
∑

i+j=N+1

B(qi, (I + α2A)qj) ∈ P∞,σ0 .

By repeating the proof that shows q1 ∈ P∞,σ0 , we can prove that qN+1 ∈ P∞,σ0 .
Next, we estimate eN+1(t). From (4.41) and (4.40), we deduce

|PN+1(wN (t)− qN+1(t))|ρ,σ0
= O(e−νε

∗t). (4.43)

Squaring (4.42) and summing over k ≥ N + 2, we obtain for t ≥ TN that

|(I − PN+1)(wN (t)− qN+1(t))|ρ,σ0
=

∞∑
k=N+2

|Rk(wN (t)− qN+1(t))|2ρ,σ0

≤ 3e2νε∗TN e−2νε∗t

( ∞∑
k=N+2

|RkwN (TN )|2ρ,σ0
+

∞∑
k=N+2

|RkqN+1(TN )|2ρ,σ0
+

∞∑
k=N+2

D2
3(1 + α2)−2

ν(k − (N + 1)− ε∗)2

)
.

Since the last three sums in the inequality above are finite, we obtain

|(I − PN+1)(wN (t)− qN+1(t))|ρ,σ0 = O(e−νε
∗t). (4.44)

From (4.43) and (4.44), we have

|wN (t)− qN+1(t)|ρ,σ0 = O(e−νε
∗t). (4.45)

Thus
|eN+1(t)|ρ,σ0 = |eN (t)− e−ν(N+1)tqN+1(t)|ρ,σ0 = O(e−ν(N+1+ε∗)t). (4.46)

Thanks to (4.45), the polynomial qN+1(t) is independent of ρ and ε∗. Hence, (4.46) holds for any ρ ≥ 1/2
and ε∗ ∈ (0, δ∗N+1), which proves (H2) with n = N + 1.

Finally, we establish the ODE (4.6) for n = N + 1. By Lemma 3.2, we have the polynomial qN+1(t)
satisfies

d

dt
(I + α2A)RkqN+1(TN + t) + ν(k − (N + 1))(I + α2A)RkqN+1(TN + t)

= RkfN+1(TN + t)−
∑

i+j=N+1

RkB
(
qi(TN + t), (I + α2A)qj(TN + t)

)
, ∀k ≥ 1, t ∈ R.

This implies for k ≥ 1, we have

d

dt
(RkuN+1(t) + α2ARkuN+1(t)) + νA(RkuN+1(t) + α2ARkuN+1(t))

+
∑

i+j=N+1

RkB(ui(t), vj(t)) = RkFN+1(t), t ∈ R.
(4.47)
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For any θ ≥ 0, since AvN+1(t),
∑

i+j=N+1

B(ui(t), vj(t)) and FN+1(t) belong to Gθ,σ0 . Then, we sum over k

in (4.47) and obtain

d

dt
vN+1(t) + νAvN+1(t) +

∑
i+j=N+1

B(ui(t), vj(t)) = FN+1(t), in Gθ,σ0 ,∀t ∈ R.

Therefore, the ODE (4.6) holds in E∞,σ0 for n = N + 1. This completes the recursive step and hence we
have the completed proof of (i).

(ii) Since f1 ∈ V, there exists N1 ≥ 1 such that f1 ∈ RN1H. From (4.21), we deduce

q1,k(t) = 0, ∀k > N1.

Then

q1(t) =

N1∑
k=1

q1,k(t− T0) ∈ RN1H.

For the recursive step, the functions fN+1 ∈ V and qi, qj ∈ V for 1 ≤ i, j,≤ N , then we have

fN+1 −
∑
i+j

B(qi, (I + α2A)qj) ∈ V.

Hence qN+1,k 6= 0 for at most finitely many k, and the fact that each qN+1,k ∈ V, we have qN+1(t) is also in
V. �

Finally, in the case f(t) only possesses a finite asymptotic approximation, we will prove that the strong
solution also admits a finite asymptotic approximation of the same type.

Theorem 4.2. Suppose there exist an integer N∗ ≥ 1, a nonnegative number σ0, a real number θ∗ ≥ ρ∗ ≥
3N∗/2 and for any 1 ≤ n ≤ N∗, number δn ∈ (0, 1) and polynomials fn ∈ Pθn,σ0 , such that∣∣∣∣∣f(t)−

N∑
n=1

fn(t)e−νnt

∣∣∣∣∣
ρN ,σ0

= O(e−ν(N+δN )t) as t→∞, (4.48)

for 1 ≤ N ≤ N∗ and

θn = θ∗ − 3n− 1

2
, ρn = ρ∗ − 3n− 1

2
.

Let u(t) be a weak solution of (2.2). Then
(i) There exist polynomials qn ∈ Pθn+2,σ0 , for 1 ≤ n ≤ N∗ such that∣∣∣∣∣u(t)−

N∑
n=1

qn(t)e−νnt

∣∣∣∣∣
ρN ,σ0

= O(e−ν(N+ε)t) as t→∞,∀ε ∈ (0, δ∗N ), (4.49)

for 1 ≤ N ≤ N∗ and δ∗N = min{δ1, δ2, . . . , δN}. Moreover, the ODEs (4.6) hold in Gθn,σ0
for 1 ≤ n ≤ N∗

where
un(t) := qn(t)e−νnt, Fn(t) := fn(t)e−νnt.

(ii) If all fn(t)’s belong to V, respectively E∞,σ0 , then so do all qn(t)’s and the ODEs (4.6) hold in V,
respectively E∞,σ0 .

Proof. We adapt from the proof of Theorem 4.1 so we only show some necessary modifications. We prove
part (i), while part (ii) is similar to the one in Theorem 4.1 so we omitted here.

By (4.48) with N = 1

eνt|f(t)− F1(t)|ρ∗,σ0
= O(e−δ1,ρ∗ t), (4.50)

and
|f(t)|ρ∗,σ0

≤ |f1(t)|ρ∗,σ0
e−νt + |f(t)− f1(t)e−νt|ρ∗,σ0

= O(e−νλt), ∀λ ∈ (0, 1).

Then, by applying Corollary 3.1, we have

|B(u(t), v(t))|ρ∗,σ0
= O(e−2ν(1−δ)t), ∀δ ∈ (0, 1). (4.51)

Base case N = 1: By using the same arguments in case N = 1 of proof of Theorem 4.1 with ρ = ρ∗ and
θ = θ∗, we deduce the existence and definition of q1(t) are similar to (4.19), (4.21) and (4.22). Moreover,
since f1 ∈ Pθ,σ0 , the same proof (see (4.23) and (4.24)) yields q1 ∈ Pθ+2,σ0 .
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If N∗ = 1, then the proof is finished here. We now consider N∗ ≥ 2.
Recursive step: Let 1 ≤ N ≤ N∗ − 1. Assume there already exist qn ∈ Pθn,σ0 for 1 ≤ n ≤ N such that

|eN (t)|θN ,σ0
:=

∣∣∣∣∣u(t)−
N∑
n=1

qn(t)e−νnt

∣∣∣∣∣
θN ,σ0

= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N ),

|rN (t)|θN−1,σ0
:=

∣∣∣∣∣v(t)−
N∑
n=1

vn(t)

∣∣∣∣∣
θN−1,σ0

= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N ),

(4.52)

where vn = un + α2Aun, v = u+ α2Au and the ODEs (4.6) hold in GθN ,σ0
for n = 1, 2, · · · , N .

Put

ρ = ρN+1 = ρN − 3/2 ≥ 1/2, and θ = θN+1 = θN − 3/2 ≥ 1/2. (4.53)

Notice that for n = 1, 2, · · · , N , we have θn ≥ ρn ≥ 1/2 and both θn, ρn are decreasing. hence

un(t), qn(t) ∈ Gθn,σ0
⊂ GθN ,σ0

= Gθ+3/2,σ0
⊂ GρN ,σ0

= Gρ+3/2,σ0
, ∀t ∈ R. (4.54)

Then, from (4.52), we have

|eN (t)|ρ+3/2,σ0
= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N ),

|rN (t)|ρ+1/2,σ0
= O(e−ν(N+ε)t), ∀ε ∈ (0, δ∗N ).

(4.55)

We now construct a polynomial qN+1 ∈ Pθ+2,σ0 such that (4.49) holds true with n = N + 1 and the ODE
(4.6) holds in GθN+1,σ0

= Gθ,σ0
.

We use the same steps of construction qN+1(t) as in the proof of Theorem (4.1) with the use of ρ, θ in
(4.53).

Estimate of function hN (t) defined by (4.32). Let ε∗ ∈ (0, δ∗N+1). By (4.48) with n = N + 1, we have∣∣∣∣∣f(t)−
N+1∑
n=1

Fn(t)

∣∣∣∣∣
ρ,σ0

= O(e−ν(N+1+δN+1)t) = O(e−ν(N+1+ε∗)t). (4.56)

Thanks to (4.54) and Corollary 3.1, we obtain∑
1≤i,j≤N
i+j≤N+2

|B(ui, vj)|ρ,σ0
=

∑
1≤i,j≤N
i+j≤N+2

e−ν(i+j)t|B(qi, (I + α2A)qj)|ρ,σ0

= O(e−ν(N+2+2(1−δ))t) = O(e−ν(N+1+ε∗)t).

(4.57)

Take ε ∈ (ε∗, δ∗N+1) ⊂ (0, δ∗N ) in (4.55) and δ = ε− ε∗ ∈ (0, 1), we have∣∣∣∣∣
N∑
n=1

un(t)

∣∣∣∣∣
ρ+3/2,σ0

=

∣∣∣∣∣
N∑
n=1

un(t)

∣∣∣∣∣
ρN ,σ0

= O(e−ν(1−δ)t), (4.58)

and by applying Proposition 3.2, we also have

|u(t)|ρ+3/2,σ0
≤ |u(t)|ρ∗+3/2,σ0

= O(e−ν(1−δ)t). (4.59)

By Corollary 3.1 and the estimates (4.55), (4.58) and (4.59), we deduce

|B (eN , v)|ρ,σ0
= O(e−ν(N+ε+1−δ)t) = O(e−ν(N+1+ε∗)t),∣∣∣∣∣B

(
N∑
n=1

un, rN

)∣∣∣∣∣
ρ,σ0

= O(e−ν(N+ε+1−δ)t) = O(e−ν(N+1+ε∗)t),

and then we obtain (4.37) again.
Since fN+1 ∈ Pθ,σ0 , from (4.54) and the fact that qi, qj ∈ Pθ+2,σ0 for 1 ≤ i, j ≤ N , then we have from

(3.5) that

fN+1 −
∑

i+j=N+1

B(qi, (I + α2A)qj) ∈ Pθ,σ0 .
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Repeating the same proof as for q1 implies that qN+1 ∈ Pθ+2,σ0 and∣∣∣∣∣u(t)−
N+1∑
n=1

qn(t)e−νnt

∣∣∣∣∣
ρ,σ0

= |eN (t)− e−ν(N+1)tqN+1(t)|ρ,σ0 = O(e−ν(N+1+ε∗)t).

Since this holds for any ε∗ ∈ (0, δ∗N+1), we deduce (4.49) with n = N + 1.
We also have the same result for the ODE (4.6) with n = N +1, noting that the ODE now holds in Gθ,σ0

.
And this finishes the recursive step or we have the completed proof. �
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