NULL CONTROLLABILITY WITH CONSTRAINTS ON THE STATE FOR A SEMILINEAR NONLOCAL PARABOLIC SYSTEM

CUNG THE ANH ${ }^{\natural}$, LE TRAN TINH AND VU MANH TOI

Abstract

This paper is addressed to study a null controllability problem with finite number of constraints on the state for a parabolic system with local and nonlocal nonlinearities. We first transform the linearized problem into an equivalent problem of null controllability problem with constraint on the control. Then, by using a suitable Carleman inequality adapted to the constraint we get the null controllability with constraint on the control. Then, the main result is proved by an application of a fixed-point method.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N},\left(N \in \mathbb{N}_{+}\right)$be a bounded open set with boundary $\partial \Omega$ of class C^{2}. For a time $T>0$, we set $Q=\Omega \times(0, T), \Sigma=\partial \Omega \times(0, T)$.

We are concerned with the following initial boundary valued problem for a parabolic coupled system with nonlinear terms of local and nonlocal kinds

$$
\begin{cases}y_{t}-a\left(\int_{\Omega} y d x, \int_{\Omega} z d x\right) \Delta y+f(y, z)=v 1_{\omega} & \text { in } \quad Q, \tag{1.1}\\ z_{t}-b\left(\int_{\Omega} y d x, \int_{\Omega} z d x\right) \Delta z+g(y, z)=0 & \text { in } Q, \\ y=z=0 & \text { on } \Sigma, \\ y(x, 0)=y_{0}(x), z(x, 0)=z_{0}(x) & \text { in } \Omega,\end{cases}
$$

where v is the control, (y, z) is the state and 1_{ω} is the characteristic function of a non-empty open subset ω of Ω. Moreover, $a(r, s), b(r, s), f(r, s)$ and $g(r, s)$ are C^{1} functions with bounded derivatives and satisfy

$$
\begin{equation*}
0<L_{1} \leq a(r, s) ; b(r, s) \leq L_{2}<+\infty, \forall(r, s) \in \mathbb{R} \times \mathbb{R} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(0,0)=g(0,0)=0 \tag{1.3}
\end{equation*}
$$

and there exist positive constants c_{0} and T_{0} such that

$$
\begin{equation*}
\left|\frac{\partial g}{\partial y}\right| \geq c_{0}>0 \text { in } \omega \times\left(0, T_{0}\right) . \tag{1.4}
\end{equation*}
$$

This condition implies 2.5 which needs to get Lemma 2.5
As in [11], if $y_{0}, z_{0} \in L^{2}(\Omega), v \in L^{2}(Q)$, the functions a, b, f and g satisfy (1.2)-1.3), then the system (1.1) admits a unique weak solution (y, z) satisfying

$$
(y, z) \in\left(L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C\left([0, T] ; L^{2}(\Omega)\right)\right)^{2},\left(y_{t}, z_{t}\right) \in\left(L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right)^{2}
$$

[^0]The system 1.1 is said to be nonlocal in view of structure of the diffusion coefficients. It appears in some phenomena which nonlocal terms appear naturally. To this respect, let us list several examples of real physical models as follows.

In the case of migration of populations such as the bacteria in a container, we can find in practice that, see 4, 18,

$$
a=a\left(\int_{\Omega} y(x, t) d x, \int_{\Omega} z(x, t) d x, \int_{\Omega} \nabla y(x, t) d x, \int_{\Omega} \nabla z(x, t) d x\right) .
$$

In the case of reaction-diffusion equations, see [3] the nonlocal coefficient can be found by form

$$
a=a(\langle h, y(., t)\rangle,\langle k, z(., t)\rangle),
$$

where h, k are continuous linear form on $L^{2}(\Omega)$.
In the case of hyperbolic equations, we also find the terms of this kind, see 12 for instance

$$
a=a\left(\int_{\Omega}|\nabla y|^{2} d x, \int_{\Omega}|\nabla z|^{2} d x\right)
$$

We can find more details from the above references. In addition, we refer [5, 8] and the references therein. In last decade, the control of reaction-diffusion system has attracted the interest of the control community. The controllability of nonlinear parabolic systems have been studied by many authors in recent years. In case of $a=b=1$, the null controllability of some reaction-diffusion systems are studied (see [1, 9, 10, 17]). In [5], the authors obtained the local null controllability and numerical experiments of 1.1). In [8, for $a=b=1$, the author has proved the null controllability with constraints on the state of the reaction-diffusion system. In this paper, we focus on the null controllability problem with a finite number of constraints on the state that we describe now.

For any fixed $M \in \mathbb{N}_{+}$, we consider $e_{i} \in L^{2}(Q), i=1, \ldots, M$ are such that

$$
\begin{equation*}
\left\{e_{i} 1_{\omega}\right\}_{i=1}^{M} \quad \text { are linearly independent. } \tag{1.5}
\end{equation*}
$$

It will be said that the problem (1.1) is null controllable with a finite number of constraints on the state at time T if given $e_{i} \in L^{2}(Q), i=1, \ldots, M$, satisfy (1.5), and $y_{0}, z_{0} \in L^{2}(\Omega)$, there exists control $v \in L^{2}(Q)$ such that the associated states (y, z) satisfy

$$
\begin{equation*}
y(x, T)=z(x, T)=0 \quad \text { in } \quad \Omega \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{Q} z e_{i} d x d t=0, \quad \text { for } i=1, \ldots, M \tag{1.7}
\end{equation*}
$$

Our approach is based on earlier works on the local and global null controllability of parabolic equations and systems (see [5, 6, 8, [13, 14, 16]). The main tool to establish such a result is a Carleman estimate. Let us now give the main result and explain the methods used in the paper. We will prove following theorem.
Theorem 1.1. Let Ω be a bounded open subset of \mathbb{R}^{N} with boundary $\partial \Omega$ of class C^{2} and $e_{i} \in L^{2}(Q), i=1, \ldots, M$ verifying 1.5). Assume that $y_{0}, z_{0} \in L^{2}(\Omega)$, one can find a control $v \in L^{2}(Q)$ such that the solution (y, z) of (1.1) satisfies 1.6) and 1.7).

This paper is in keeping with the idea of the framework can be found in [8, 13 , and it is organized as follows. In Section 2, we prove the null controllability with
constraints on the state of the linearized system by reducing to the null controllability with constraints on the control. The null controllability with constraint on the control of the linearized system is based on a new adapted Carleman estimate for an adjoint system respectively. The last section gives the null controllability with constraints on the state of the nonlinear system by using the null controllability of the linearized system and a fixed-point method.

Throughout this paper we use C to denote various constants, which may change from line to line. When the dependence of the constant on some index is important we highlight it in the notation.

2. Null controllability of the linearized system at Zero with CONSTRAINTS ON THE STATE

Since we prove the main result by using a fixed-point argument, we need to analyze first the controllability of the linearized system. For any fixed $(\widehat{y}, \widehat{z}) \in$ $\left(L^{2}(Q)\right)^{2}$, using the condition (1.2), we have the following linearized system of (1.1) at $(\widehat{y}, \widehat{z})$,

$$
\begin{cases}y_{t}-a \Delta y+A_{1} y+B_{1} z=v 1_{\omega} & \text { in } Q \tag{2.1}\\ z_{t}-b \Delta z+A_{2} y+B_{2} z=0 & \text { in } Q \\ y=z=0 & \text { on } \Sigma, \\ y(x, 0)=y_{0}(x), z(x, 0)=z_{0}(x) & \text { in } \Omega\end{cases}
$$

where

$$
\begin{align*}
& a=a\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right), b=b\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right), \\
& A_{1}=\int_{0}^{1} \frac{\partial f(\lambda \widehat{y}, \lambda \widehat{z})}{\partial y} d \lambda, B_{1}=\int_{0}^{1} \frac{\partial f(\lambda \widehat{y}, \lambda \widehat{z})}{\partial z} d \lambda, \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
A_{2}=\int_{0}^{1} \frac{\partial g(\lambda \widehat{y}, \lambda \widehat{z})}{\partial y} d \lambda, B_{2}=\int_{0}^{1} \frac{\partial g(\lambda \widehat{y}, \lambda \widehat{z})}{\partial z} d \lambda, \tag{2.3}
\end{equation*}
$$

Due to the condition 1.2 we have

$$
a, b \in\left[L_{1}, L_{2}\right] .
$$

Since $f(r, s)$ and $g(r, s)$ are real C^{1} function with bounded derivatives, then $A_{1}, A_{2}, B_{1}, B_{2}$ satisfy

$$
\begin{align*}
& \left\|A_{i}(\widehat{y}, \widehat{z})\right\|_{L^{\infty}(Q)} \leq K, \quad i=1,2 \\
& \left\|B_{i}(\widehat{y}, \widehat{z})\right\|_{L^{\infty}(Q)} \leq K, \quad i=1,2 \tag{2.4}
\end{align*}
$$

with some positive constant K, and it follows from (1.4) that

$$
\begin{equation*}
\left|A_{2}\right| \geq c_{0}>0 \text { in } \omega \times\left(0, T_{0}\right) \tag{2.5}
\end{equation*}
$$

If $\left(y_{0}, z_{0}\right) \in\left(L^{2}(\Omega)\right)^{2}$ and $v \in L^{2}(Q)$, then it is well-know that the problem 2.1) also has a unique solution $(y, z) \in\left(C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)\right)^{2}$.

The adjoint system of 2.1 is given by

$$
\begin{cases}-\varrho_{t}-a \Delta \varrho+A_{1} \varrho+A_{2} \psi=0 & \text { in } Q \tag{2.6}\\ -\psi_{t}-b \Delta \psi+B_{1} \varrho+B_{2} \psi=0 & \text { in } Q \\ \varrho=\psi=0 & \text { on } \Sigma \\ \varrho(x, T)=\varrho_{T}(x), \quad \psi(x, T)=\psi_{T}(x) & \text { in } \Omega\end{cases}
$$

We consider the null controllability with a finite number of constraints on the state as follows: Given $y_{0}, z_{0} \in L^{2}(\Omega)$ and $e_{i} \in L^{2}(Q), i=1, \ldots, M$ verifying (1.5). Find $v \in L^{2}(Q)$ such that the solution of 2.1 satisfies 1.6 and 1.7.

In case of $a=b=1,[10$ has considered the null controllability of 2.1 and [16] has considered its null controllability with constraint on the control. The null controllability with a finite number of constraints on the sate has studied by Gao 8]. However, the term $A_{2} \geq c_{0}>0$ was required. To our situation, we will relax restriction, i.e., $\left|A_{2}\right| \geq c_{0}>0$. Moreover, the diffusion coefficients still depends on time. By exploiting wisely some estimates used by authors (see [7, 8, 10]), we still achieve the same results. To make it clear, let us give the main ideas.

We will need some well-known results from Fursikov [7] (see also [6]) that will be used subsequently. Let ω^{\prime} be a subdomain of ω such that $\omega^{\prime} \Subset \omega \Subset \Omega$, there exists a function $\beta \in C^{2}(\bar{\Omega})$ without critical points in $\overline{\Omega \backslash \omega^{\prime}}$ satisfying

$$
\frac{\partial \beta}{\partial \nu} \leq 0, \quad \text { on } \partial \Omega
$$

and

$$
\min _{x \in \bar{\Omega} \backslash \omega^{\prime}}|\nabla \beta(x)|>0, \quad \min _{x \in \bar{\Omega}} \beta(x) \geq \max \left\{\frac{3}{4}\|\beta\|_{L^{\infty}(\Omega)}, \ln 3\right\}
$$

where ν denotes the outward unit normal to $\partial \Omega$. We adopt the following notations with parameters $\lambda>0$ and $\tau>0$:

$$
\begin{aligned}
& \varphi(x, t)=\frac{e^{\lambda \beta(x)}}{t(T-t)}, \quad \alpha(x, t)=\tau \frac{e^{\frac{4}{3} \lambda\|\beta\|_{L^{\infty}(\Omega)}-e^{\lambda \beta(x)}}}{t(T-t)} \\
& \theta=e^{\alpha}, \quad \gamma^{2}=e^{(2-r) \alpha}, \quad E^{2}=\sum_{i=1}^{M}\left\|e_{i}\right\|_{L^{\infty}(Q)}^{2} . \\
& L^{2}=\left\|A_{1}\right\|_{L^{\infty}(Q)}^{2}+\left\|A_{2}\right\|_{L^{\infty}(Q)}^{2}+\left\|B_{1}\right\|_{L^{\infty}(Q)}^{2}+\left\|B_{2}\right\|_{L^{\infty}(Q)}^{2} .
\end{aligned}
$$

The main result of this section is the following theorem.
Theorem 2.1. Let Ω be a bounded open subset of \mathbb{R}^{N} with boundary $\partial \Omega$ of class C^{2} and $e_{i} \in L^{2}(Q), i=1, \ldots, M$ verifying (1.5). For every $y_{0}, z_{0} \in L^{2}(\Omega)$, one can find a control $v \in L^{2}(Q)$ such that the solution (y, z) of (2.1) satisfies (1.6) and 1.7).
2.1. Equivalence to the controllability problem with constraint on the control. In this section, we transform the linearized problem into an equivalent linear problem of null controllability with constraint on the control. The argument of the proof is inspired the work by Gao [8]. Therefore, by following step by step (see [8, Lemmas 2.3-2.6, Proposition 4.1]), we will obtain the same results, so we omit the proofs here and state the main results as follows.

Lemma 2.1. The functions $\left\{p_{i} 1_{\omega}\right\}_{i=1, \ldots, M}$ are linearly independent, where $\left(p_{i}, q_{i}\right)$ are the solutions of the following systems.

$$
\begin{cases}-p_{i t}-a \Delta p_{i}+A_{1} p_{i}+A_{2} q_{i}=0 & \text { in } Q \tag{2.7}\\ -q_{i t}-b \Delta q_{i}+B_{1} p_{i}+B_{2} q_{i}=e_{i} & \text { in } Q \\ p_{i}(x, t)=q_{i}(x, t)=0 & \text { on } \Sigma \\ p_{i}(x, T)=q_{i}(x, T)=0 & \text { in } \Omega\end{cases}
$$

Moreover, the functions $\left\{\theta^{-1} p_{i} 1_{\omega}\right\}_{i=1, \ldots, M}$ are also linearly independent.

We define

$$
\begin{align*}
& \mathcal{U}=\operatorname{span}\left\{p_{1} 1_{\omega}, p_{2} 1_{\omega}, \ldots, p_{M} 1_{\omega}\right\} \\
& \mathcal{U}_{\theta}=\theta^{-1} \mathcal{U} \tag{2.8}
\end{align*}
$$

where $\left(p_{i}, q_{i}\right)$ is the solution to 2.7 .
Lemma 2.2. If (p, q) is the solution of the following system

$$
\begin{cases}-p_{t}-a \Delta p+A_{1} p+A_{2} q=0 & \text { in } \quad \omega \times(0, T), \\ -q_{t}-b \Delta q+B_{1} p+B_{2} q=0 & \text { in } \quad \omega \times(0, T), \\ \left.p\right|_{\omega} \in \mathcal{U} & \end{cases}
$$

Then p, q are identically zero in $\omega \times(0, T)$.
Lemma 2.3. Let $y_{0}, z_{0} \in L^{2}(\Omega)$. There then exists a unique $v_{0} \in \mathcal{U}_{\theta}$ such that

$$
\begin{equation*}
-\int_{\Omega} y_{0} p_{i}(0) d x-\int_{\Omega} z_{0} q_{i}(0) d x=\iint_{\omega \times(0, T)} v_{0} p_{i} d x d t \tag{2.9}
\end{equation*}
$$

for $i=1, \ldots, M$, and where $\left(p_{i}, q_{i}\right)$ are solution to (2.7). Moreover, there exists a constant $C=C(\Omega, T, L, E)$ such that

$$
\begin{aligned}
&\left\|v_{0}\right\|_{L^{2}(\omega \times(0, T))} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \\
&\left\|\theta v_{0}\right\|_{L^{2}(\omega \times(0, T))} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) .
\end{aligned}
$$

Proposition 2.1. Let $y_{0}, z_{0} \in L^{2}(\Omega), \mathcal{U}$ and \mathcal{U}_{θ} be defined in (2.8). The null controllability problem with constraints on the state (2.1), 1.6), 1.7) is equivalent to the following null controllability problem with constraint on the control: Given $v_{0} \in \mathcal{U}_{\theta}$ verifying $\sqrt{2.9}$, find $v_{\theta} \in L^{2}(\omega \times(0, T))$ such that

$$
\begin{equation*}
v_{\theta} \in \mathcal{U}^{\perp}, \tag{2.10}
\end{equation*}
$$

and the solution to

$$
\begin{cases}y_{t}-a \Delta y+A_{1} y+B_{1} z=\left(v_{0}+v_{\theta}\right) 1_{\omega} & \text { in } Q \tag{2.11}\\ z_{t}-b \Delta z+A_{2} y+B_{2} z=0 & \text { in } Q \\ y(x, t)=z(x, t)=0 & \text { on } \Sigma \\ y(x, 0)=y_{0}(x), z(x, 0)=z_{0}(x) & \text { in } \Omega\end{cases}
$$

satisfies (1.6).
2.2. Null controllability of the linearized system with constraint on the control. Thanks to Proposition 2.1, we only focus on solving the null controllability problem with constraint on the control $2.10,2.11$ and 1.6 . To do this, we use a Carleman inequality adapted to the constraint (2.10).

We begin with the following backward parabolic equation

$$
\begin{cases}\xi_{t}+\mu(t) \Delta \xi=h(x, t) & \text { in } Q \tag{2.12}\\ \xi=0 & \text { on } \Sigma\end{cases}
$$

where $\mu(t)$ is a positive, bounded and continuously differentiable function, and $h \in L^{2}(Q)$.

Denoting
$I(\lambda, s, \tau, \xi)=\iint_{Q} \varphi^{2 s-1} e^{-2 \alpha}\left[\lambda^{-1}\left(\left|\xi_{t}\right|^{2}+|\Delta \xi|^{2}\right)+\lambda \tau^{2} \varphi^{2}|\nabla \xi|^{2}+\lambda^{4} \tau^{4} \varphi^{4}|\xi|^{2}\right] d x d t$.
for positive constants λ, s, τ. Because of the properties of $\mu(t)$, we imitate step by step of the proof of Theorem 7.1 in [7, p. 288], we get the following result.
Lemma 2.4. Let ξ and h satisfy the problem (2.12), and let $s \geq-3$. There exist $\lambda_{0}>0, \tau_{0}>0$ and a positive constant C such that, for $\lambda \geq \lambda_{0}, \tau \geq \tau_{0}$, we have

$$
I(\lambda, s, \tau, \xi) \leq C\left[\tau \iint_{Q} \varphi^{2 s} e^{-2 \alpha}|h|^{2} d x d t+\lambda^{4} \tau^{4} \iint_{\omega^{\prime} \times(0, T)} \varphi^{2 s+3} e^{-2 \alpha}|\xi|^{2} d x d t\right]
$$

Furthermore, similarly to 10, Lemma 2, Theorem 3] (see aslo [16, Lemma 2.3, Theorem 2.4, Corollary 2.5]), we also have the following result.

Lemma 2.5. Let (ϱ, ψ) be the solution to 2.6) and C is determined in Lemma 2.4. For any $\lambda \geq \lambda_{0}, \tau \geq \tau_{1}:=\frac{T^{2}}{4}\left(\frac{C}{\lambda_{0}^{4}}\right)^{1 / 3} L^{2 / 3}$ and $s \geq-3$, the following inequality

$$
\iint_{Q}\left(|\varrho|^{2}+|\psi|^{2}\right) \zeta^{2 s+3} e^{-2 \alpha} d x d t \leq C \lambda^{4} \iint_{\omega^{\prime} \times(0, T)}\left(|\varrho|^{2}+|\psi|^{2}\right) \zeta^{2 s+3} e^{-2 \alpha} d x d t
$$

holds. Moreover, for all $r \in[0,2)$, there exists a constant $C=C\left(T, L, c_{0}, r\right)$ such that

$$
\begin{equation*}
\iint_{Q}\left(|\varrho|^{2}+|\psi|^{2}\right) e^{-2 \alpha} d x d t \leq C \iint_{\omega \times(0, T)}|\varrho|^{2} e^{-r \alpha} d x d t \tag{2.13}
\end{equation*}
$$

We now prove the following Carleman inequality.
Lemma 2.6. (Adapted Carleman inequality). There exists a positive constant C such that for all the (ϱ, ψ) which is the solution to 2.6)
$\int_{\Omega}\left(|\varrho(0)|^{2}+|\psi(0)|^{2}\right) d x+\iint_{Q} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t$, where P is the orthogonal projection operator from $L^{2}(\omega \times(0, T))$ into \mathcal{U}.
Proof. It follows from 2.13 that

$$
\iint_{Q} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{\omega \times(0, T)} \frac{e^{(2-r) \alpha}}{\theta^{2}}|\varrho|^{2} d x d t
$$

where $\theta^{-2}=e^{-2 \alpha}$ and $r \in[0,2)$. Then replacing $\gamma^{2}=e^{(2-r) \alpha}$ and using the boundedness of θ^{-2}, we obtain that

$$
\begin{equation*}
\iint_{Q} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}\right|^{2} d x d t \tag{2.14}
\end{equation*}
$$

We first prove that there exists a positive constant C such that

$$
\begin{equation*}
\iint_{Q} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t \tag{2.15}
\end{equation*}
$$

We argue by contradiction, i.e., suppose that 2.15 does not hold. Then for any n, there exists $\varrho_{T}^{n}(x), \psi_{T}^{n}(x) \in L^{2}(\Omega)$ satisfying

$$
\begin{gather*}
\iint_{Q} \theta^{-2}\left(\left|\varrho_{n}\right|^{2}+\left|\psi_{n}\right|^{2}\right) d x d t=1 \tag{2.16}\\
\iint_{Q} \gamma^{2}\left|\varrho_{n} 1_{\omega}-P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t<\frac{1}{n} \tag{2.17}
\end{gather*}
$$

where $\left(\varrho_{n}, \psi_{n}\right)$ is the solution to

$$
\begin{cases}L_{a}^{*}\left(\varrho_{n}, \psi_{n}\right)=0 & \text { in } Q \tag{2.18}\\ L_{b}^{*}\left(\varrho_{n}, \psi_{n}\right)=0 & \text { in } Q \\ \varrho_{n}(x, t)=\psi_{n}(x, t)=0 & \text { on } \Sigma \\ \varrho_{n}(x, T)=\varrho_{T}^{n}(x), \psi_{n}(x, T)=\psi_{T}^{n}(x) & \text { in } \Omega\end{cases}
$$

where

$$
\begin{aligned}
& L_{a}^{*}\left(\varrho_{n}, \psi_{n}\right)=-\varrho_{n t}-a \Delta \varrho_{n}+A_{1} \varrho_{n}+A_{2} \psi_{n} \\
& L_{b}^{*}\left(\varrho_{n}, \psi_{n}\right)=-\psi_{n t}-b \Delta \psi_{n}+B_{1} \varrho_{n}+B_{2} \psi_{n}
\end{aligned}
$$

Thanks to the Cauchy inequality, for all $n \in \mathbb{N}^{*}$, we have
$\iint_{Q} \theta^{-2}\left|P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t \leq 2\left(\iint_{Q} \theta^{-2}\left|\varrho_{n} 1_{\omega}\right|^{2} d x d t+\iint_{Q} \theta^{-2}\left|\varrho_{n} 1_{\omega}-P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t\right)$.
Since θ^{-2} and γ^{-2} are bounded then it follows from 2.16, and 2.17 that there exists a positive constant C satisfying

$$
\iint_{Q} \theta^{-2}\left|P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t \leq C
$$

Since $P \varrho_{n} \in \mathcal{U}$ and \mathcal{U} is finite dimensional subspace of $L^{2}(\omega \times(0, T))$, we deduce that

$$
\begin{equation*}
\iint_{Q}\left|P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t \leq C \tag{2.19}
\end{equation*}
$$

On the other hand,

$$
\iint_{Q}\left|\varrho_{n} 1_{\omega}\right|^{2} d x d t \leq 2\left(\iint_{Q}\left|P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t+\iint_{Q}\left|\varrho_{n} 1_{\omega}-P\left(\varrho_{n} 1_{\omega}\right)\right|^{2} d x d t\right)
$$

According to 2.17) and 2.19, we infer from the last inequality that there exists a positive constant C satisfying

$$
\iint_{Q}\left|\varrho_{n} 1_{\omega}\right|^{2} d x d t \leq C
$$

Consequently, we can extract a subsequence of $\left\{\varrho_{n} 1_{\omega}\right\}$ (still denoted by $\left\{\varrho_{n} 1_{\omega}\right\}$) and $\varrho 1_{\omega} \in L^{2}(\omega \times(0, T))$ such that

$$
\begin{equation*}
\varrho_{n} 1_{\omega} \rightharpoonup \varrho 1_{\omega} \quad \text { in } \quad L^{2}(\omega \times(0, T)) . \tag{2.20}
\end{equation*}
$$

Since $P\left(\varrho_{n} 1_{\omega}\right)$ belongs to \mathcal{U}, an application of Lemma 2.3 in [13] with $H=L^{2}(\omega \times$ $(0, T)), p_{i}^{n}=p_{i} 1_{\omega}$ and $h^{n}=P\left(\varrho_{n} 1_{\omega}\right)$ leads to

$$
\begin{equation*}
P\left(\varrho_{n} 1_{\omega}\right) \rightarrow P\left(\varrho 1_{\omega}\right) \quad \text { in } \quad L^{2}(\omega \times(0, T)) . \tag{2.21}
\end{equation*}
$$

On the other hand, it follows from 2.17 that

$$
\gamma\left(\varrho_{n} 1_{\omega}-P\left(\varrho_{n} 1_{\omega}\right)\right) \rightarrow 0 \quad \text { in } \quad L^{2}(\omega \times(0, T)),
$$

and therefore,

$$
\begin{equation*}
\varrho_{n} 1_{\omega}-P\left(\varrho_{n} 1_{\omega}\right) \rightarrow 0 \quad \text { in } \quad L^{2}(\omega \times(0, T)) \tag{2.22}
\end{equation*}
$$

Putting (2.22) together with 2.21, we obtain

$$
\begin{equation*}
\varrho_{n} 1_{\omega} \rightarrow P\left(\varrho 1_{\omega}\right) \quad \text { in } \quad L^{2}(\omega \times(0, T)) \tag{2.23}
\end{equation*}
$$

From 2.20 and 2.23 we deduce $P\left(\varrho 1_{\omega}\right)=\varrho 1_{\omega}$. This means that $\varrho 1_{\omega} \in \mathcal{U}$ and

$$
\begin{equation*}
\varrho_{n} 1_{\omega} \rightarrow \varrho 1_{\omega} \quad \text { in } \quad L^{2}(\omega \times(0, T)) . \tag{2.24}
\end{equation*}
$$

Let us go back 2.16, as a result

$$
\iint_{Q} \theta^{-2}\left|\varrho_{n}\right|^{2} d x d t \leq 1, \quad \iint_{Q} \theta^{-2}\left|\psi_{n}\right|^{2} d x d t \leq 1
$$

Thanks to the boundedness of θ^{-2}, we can extrapolate that $\left\{\varrho_{n}\right\},\left\{\psi_{n}\right\}$ are also bounded in $L^{2}(\Omega \times(\varepsilon, T-\varepsilon))$ for every $\varepsilon \in(0, T)$. Therefore, we can extract subsequences of $\left\{\varrho_{n}\right\}$ and $\left\{\psi_{n}\right\}$ (still denoted by $\left\{\varrho_{n}\right\},\left\{\psi_{n}\right\}$) such that

$$
\begin{array}{ll}
\varrho_{n} \rightharpoonup \varrho & \text { in } \quad L^{2}(\Omega \times(\varepsilon, T-\varepsilon)) \\
\psi_{n} \rightharpoonup \psi & \text { in }
\end{array} \quad L^{2}(\Omega \times(\varepsilon, T-\varepsilon)) .
$$

We deduce that

$$
\varrho_{n} \rightarrow \varrho, \quad \psi_{n} \rightarrow \psi \quad \text { in } \quad \mathcal{D}^{\prime}(Q)
$$

Moreover, $L_{a}^{*}\left(\varrho_{n}, \psi_{n}\right), L_{b}^{*}\left(\varrho_{n}, \psi_{n}\right)$ are also weakly continuous in $\mathcal{D}(Q)$. It means

$$
\begin{aligned}
& L_{a}^{*}\left(\varrho_{n}, \psi_{n}\right) \rightarrow L_{a}^{*}(\varrho, \psi) \quad \text { in } \quad \mathcal{D}^{\prime}(Q) . \\
& L_{b}^{*}\left(\varrho_{n}, \psi_{n}\right) \rightarrow L_{b}^{*}(\varrho, \psi) \quad \text { in } \quad \mathcal{D}^{\prime}(Q) .
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{a}^{*}(\varrho, \psi)=-\varrho_{t}-a \Delta \varrho+A_{1} \varrho+A_{2} \psi \\
& L_{b}^{*}(\varrho, \psi)=-\psi_{t}-b \Delta \psi+B_{1} \varrho+B_{2} \psi
\end{aligned}
$$

It follows from 2.18 that

$$
\begin{cases}L_{a}^{*}(\varrho, \psi)=0 & \text { in } \quad \omega \times(0, T), \\ L_{b}^{*}(\varrho, \psi)=0 & \text { in } \quad \omega \times(0, T) \\ \varrho 1_{\omega} \in \mathcal{U}\end{cases}
$$

Thanks to Lemma 2.2, we obtain that $\varrho=\psi=0$ in $\omega \times(0, T)$. Therefore, it follows from (2.24) that

$$
\varrho_{n} 1_{\omega} \rightarrow 0 \quad \text { in } \quad L^{2}(\omega \times(0, T)) .
$$

Because of 2.14 , we deduce that

$$
\iint_{Q} \theta^{-2}\left(\left|\varrho_{n}\right|^{2}+\left|\psi_{n}\right|^{2}\right) d x d t \rightarrow 0
$$

which is a contradiction with 2.16 .
Next, we prove that

$$
\int_{\Omega}\left(|\varrho(0)|^{2}+|\psi(0)|^{2}\right) d x \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t
$$

On a time interval $[T / 4,3 T / 4]$, we have

$$
\alpha(x, t)=\tau \frac{e^{\frac{4}{3} \lambda\|\beta\|_{L^{\infty}(\Omega)}}-e^{\lambda \beta(x)}}{t(T-t)} \leq \tau e^{\frac{4}{3} \lambda\|\beta\|_{L^{\infty}(\Omega)}}(4 / T)^{2}
$$

Thus

$$
\theta^{-1}=e^{-\alpha} \geq e^{-\tau e^{\frac{4}{3} \lambda\|\beta\|_{L} \infty(\Omega)}(4 / T)^{2}}
$$

We deduce the existence of a positive constant C such that

$$
\int_{T / 4}^{3 T / 4} \int_{\Omega} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \geq C \int_{T / 4}^{3 T / 4} \int_{\Omega}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t
$$

Moreover, it follows from 2.15 that

$$
\int_{T / 4}^{3 T / 4} \int_{\Omega} \theta^{-2}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t
$$

So,

$$
\begin{equation*}
\int_{T / 4}^{3 T / 4} \int_{\Omega}\left(|\varrho|^{2}+|\psi|^{2}\right) d x d t \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t \tag{2.25}
\end{equation*}
$$

We consider the following function

$$
\left\{\begin{array}{l}
\ell(t) \in C^{\infty}([0, T]), \quad 0 \leq \ell \leq 1 \\
\ell \equiv 1, \quad \forall t \in[0, T / 4] \\
\ell \equiv 0, \quad \forall t \in[3 T / 4, T]
\end{array}\right.
$$

and with $\delta \in \mathbb{R}$, we define

$$
\begin{align*}
& \widehat{\varrho}(x, t)=\ell(t) e^{-\delta t} \varrho(x, t) \\
& \widehat{\psi}(x, t)=\ell(t) e^{-\delta t} \psi(x, t) \tag{2.26}
\end{align*}
$$

We see that

$$
\begin{align*}
& \left.\widehat{\varrho}\right|_{\Sigma}=\left.\widehat{\psi}\right|_{\Sigma}=0, \\
& \widehat{\varrho}(x, 0)=\varrho(x, 0), \quad \widehat{\psi}(x, 0)=\psi(x, 0), \tag{2.27}\\
& \widehat{\varrho}(x, T)=\widehat{\psi}(x, T)=0 .
\end{align*}
$$

From 2.26 one gets that

$$
\begin{cases}-\frac{\partial \widehat{\varrho}}{\partial t}-a \Delta \widehat{\varrho}+\left(A_{1}-\delta\right) \widehat{\varrho}+A_{2} \widehat{\psi} & =-\ell^{\prime} e^{-\delta t} \varrho \\ -\frac{\partial \psi}{\partial t}-b \Delta \widehat{\psi}+B_{1} \widehat{\varrho}+\left(B_{2}-\delta\right) \widehat{\psi} & =-\ell^{\prime} e^{-\delta t} \psi\end{cases}
$$

Taking inner product of both equations with respect to $\widehat{\varrho}, \widehat{\psi}$, then integrating by parts over Q, we get

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\widehat{\varrho}(0)|^{2} d x+\iint_{Q} a|\nabla \widehat{\varrho}|^{2} d x d t & +\iint_{Q}\left(A_{1}-\delta\right)|\widehat{\varrho}|^{2} d x d t \\
& +\iint_{Q} A_{2} \widehat{\varrho} \widehat{\psi} d x d t=-\iint_{Q} \ell^{\prime} \varrho \widehat{\varrho} e^{-\delta t} d x d t
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\widehat{\psi}(0)|^{2} d x+\iint_{Q} b|\nabla \widehat{\psi}|^{2} d x d t & +\iint_{Q} B_{1} \widehat{\varrho} \widehat{\psi} d x d t \\
& +\iint_{Q}\left(B_{2}-\delta\right)|\widehat{\psi}|^{2} d x d t=-\iint_{Q} \ell^{\prime} \psi \widehat{\psi} e^{-\delta t} d x d t
\end{aligned}
$$

Summing these equations and using the Young inequality leads to

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}\left(|\widehat{\varrho}(0)|^{2}+|\widehat{\psi}(0)|^{2}\right) d x+ & \iint_{Q} a|\nabla \widehat{\varrho}|^{2} d x d t+\iint_{Q} b|\nabla \widehat{\psi}|^{2} d x d t \\
+ & \iint_{Q}\left(A_{1}-\delta\right)|\widehat{\varrho}|^{2} d x d t+\iint_{Q}\left(B_{2}-\delta\right)|\widehat{\psi}|^{2} d x d t \\
= & -\iint_{Q}\left(A_{2} \widehat{\varrho} \widehat{\psi}+B_{1} \widehat{\varrho} \widehat{\psi}\right) d x d t \\
& -\iint_{Q}\left(\ell^{\prime} \ell|\varrho|^{2}+\ell^{\prime} \ell|\psi|^{2}\right) e^{-2 \delta t} d x d t \\
\leq & \frac{1}{2} \iint_{Q}|\widehat{\varrho}|^{2} d x d t+\frac{1}{2} \iint_{Q}\left|A_{2} \widehat{\psi}\right|^{2} d x d t \\
& +\frac{1}{2} \iint_{Q}\left|B_{1} \widehat{\varrho}\right|^{2} d x d t+\frac{1}{2} \iint_{Q}|\widehat{\psi}|^{2} d x d t \\
& +\iint_{Q}\left(|\varrho|^{2}+|\psi|^{2}\right)\left|\ell^{\prime} \ell\right| e^{-2 \delta t} d x d t
\end{aligned}
$$

So, we get that

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left(|\widehat{\varrho}(0)|^{2}+|\widehat{\psi}(0)|^{2}\right) d x+\iint_{Q} a|\nabla \widehat{\varrho}|^{2} d x d t+\iint_{Q} b|\nabla \widehat{\psi}|^{2} d x d t \\
& +\iint_{Q}\left(A_{1}-\delta-\frac{1}{2}-\frac{B_{1}^{2}}{2}\right)|\widehat{\varrho}|^{2} d x d t+\iint_{Q}\left(B_{2}-\delta-\frac{1}{2}-\frac{A_{2}^{2}}{2}\right)|\widehat{\psi}|^{2} d x d t \\
& \leq \iint_{Q}\left(|\varrho|^{2}+|\psi|^{2}\right)\left|\ell^{\prime} \ell\right| e^{-2 \delta t} d x d t \tag{2.28}
\end{align*}
$$

We now choose

$$
\delta \leq-\min \left\{\left\|A_{1}\right\|_{L^{\infty}(Q)}+\frac{1}{2}+\frac{\left\|B_{1}\right\|_{L^{\infty}(Q)}^{2}}{2},\left\|B_{2}\right\|_{L^{\infty}(Q)}+\frac{1}{2}+\frac{\left\|A_{2}\right\|_{L^{\infty}(Q)}^{2}}{2}\right\}
$$

then it follows from 2.28 that

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}\left(|\widehat{\varrho}(0)|^{2}+|\widehat{\psi}(0)|^{2}\right) d x & +\iint_{Q} a|\nabla \widehat{\varrho}|^{2} d x d t+\iint_{Q} b|\nabla \widehat{\psi}|^{2} d x d t \\
& \leq C \int_{T / 4}^{3 T / 4} \int_{\Omega}\left(|\varrho|^{2}+|\psi|^{2}\right) e^{-2 \delta t} d x d t
\end{aligned}
$$

Taking 2.25 into account, we infer from the last inequality that

$$
\int_{\Omega}\left(|\widehat{\varrho}(0)|^{2}+|\widehat{\psi}(0)|^{2}\right) d x \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t
$$

Thus, using 2.27) we get that

$$
\begin{equation*}
\int_{\Omega}\left(|\varrho(0)|^{2}+|\psi(0)|^{2}\right) d x \leq C \iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t \tag{2.29}
\end{equation*}
$$

Combining 2.15 and 2.29 we complete the proof of Lemma 2.6

Thanks to Lemma 2.6, we can construct the following norm on a Hilbert space V which is the completion of $\mathcal{V}=\left\{(\varrho, \psi) \in\left(C^{\infty}(\bar{Q})\right)^{2}\right.$ such that $L_{a}^{*}(\varrho, \psi)=$ $L_{b}^{*}(\varrho, \psi)=0$ and $\varrho=\psi=0$ on $\left.\Sigma\right\}$ with respect to the norm

$$
\|(\varrho, \psi)\|_{V}^{2}:=\iint_{Q} \gamma^{2}\left|\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right|^{2} d x d t
$$

Obviously, this norm is generated from the following scalar product in V which is also a symmetric bilinear form

$$
\mathcal{A}\left((\widehat{\varrho}, \widehat{\psi}) ;\left(\varrho_{2}, \psi_{2}\right)\right):=\iint_{Q} \gamma^{2}\left(\varrho_{\omega}-P\left(\varrho_{\omega}\right)\right)\left(\varrho_{2} 1_{\omega}-P\left(\varrho_{2} 1_{\omega}\right)\right) d x d t
$$

According to the Cauchy-Schwarz inequality, the bilinear form $\mathcal{A}(.$, . $)$ is continuous on $V \times V$ and coercive on V. Let v_{0} be determined by Lemma 2.3. Let us consider the linear operator \mathcal{L} on V defined by

$$
\mathcal{L}(\varrho, \psi):=\iint_{\omega \times(0, T)} v_{0} \varrho d x d t+\int_{\Omega} y_{0} \varrho(0) d x+\int_{\Omega} z_{0} \psi(0) d x .
$$

Using the Hölder inequality, we have the following estimate

$$
\begin{aligned}
|\mathcal{L}(\varrho, \psi)| & \leq\left\|\theta v_{0} 1_{\omega}\right\|_{L^{2}(Q)}\left\|\theta^{-1} \varrho\right\|_{L^{2}(Q)}+\left\|y_{0}\right\|_{L^{2}(\Omega)}\|\varrho(0)\|_{L^{2}(\Omega)} \\
& +\left\|z_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Thanks to Lemma 2.3 and Lemma 2.6 and the Cauchy-Schwarz inequality, we infer that

$$
|\mathcal{L}(\varrho, \psi)| \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}^{2}+\left\|z_{0}\right\|_{L^{2}(\Omega)}^{2}\right)\|(\varrho, \psi)\|_{V}
$$

We deduce that the linear operator \mathcal{L} is continuous on V. In view of the LaxMilgram theorem, there exists a unique $\left(\varrho_{\theta}, \psi_{\theta}\right)$ of the following equation.

$$
\begin{align*}
& \iint_{Q} \gamma^{2}\left(\varrho_{\theta} 1_{\omega}-P\left(\varrho_{\theta} 1_{\omega}\right)\right)\left(\varrho 1_{\omega}-P\left(\varrho 1_{\omega}\right)\right) d x d t \\
& =\iint_{\omega \times(0, T)} v_{0} \varrho d x d t+\int_{\Omega} y_{0} \varrho(0) d x+\int_{\Omega} z_{0} \psi(0) d x, \text { for every }(\varrho, \psi) \in V \tag{2.30}
\end{align*}
$$

Proposition 2.2. Let $y_{0}, z_{0} \in L^{2}(\Omega),\left(\varrho_{\theta}, \psi_{\theta}\right)$ is the unique solution of 2.30 and

$$
\begin{equation*}
v_{\theta}=-\gamma^{2}\left(\varrho_{\theta} 1_{\omega}-P\left(\varrho_{\theta} 1_{\omega}\right)\right) \tag{2.31}
\end{equation*}
$$

Then v_{θ} satisfies (2.10) and the associated solution of (2.11) satisfies 1.6). Moreover, there exists a positive constant $C(\Omega, \omega, T, L, E)$ such that

$$
\begin{gather*}
\left\|v_{\theta}\right\|_{L^{2}(\omega \times(0, T))} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \tag{2.32}\\
\left\|\left(\varrho_{\theta}, \psi_{\theta}\right)\right\|_{V} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \tag{2.33}
\end{gather*}
$$

Proof. According to the construction of v_{θ}. We easily infer that $v_{\theta} \in \mathcal{U}^{\perp}$. We now prove that the solution $\left(y_{\theta}, z_{\theta}\right)$ of (2.11) satisfies (1.6). Indeed, multiplying both sides of the first equation in 2.11 by ϱ and the second one by ψ, and then integrating in time and spaces. It follows from adding the resulting identities that

$$
\int_{\Omega}(y(T) \varrho(T)+z(T) \psi(T)) d x=\iint_{Q}\left(v_{\theta}+v_{0}\right) 1_{\omega} \varrho d x d t+\int_{\Omega}\left(y_{0} \varrho(0)+z_{0} \psi(0)\right) d x
$$

for every $(\varrho, \psi) \in V$. Putting this together with 2.30 , we deduce that

$$
\int_{\Omega}\left(y(T) \varrho_{T}+z(T) \psi_{T}\right) d x=0
$$

for every $(\varrho, \psi) \in V$. Therefore, $y(T)=z(T)=0$ in Ω.
The estimation 2.32 and 2.33 are implied directly from 2.30 by replacing ϱ by ϱ_{θ}, using the Cauchy - Schwarz inequality, Lemma 2.3 and Lemma 2.6.

Proof of Theorem 2.1. We have just proved the null controllability of linearized system with constraint on the control (2.10), 2.11) and (1.6). Therefore, Theorem 2.1 is the result directly deduced from Propositions 2.1 2.2 .

3. NULL CONTROLLABILITY OF NONLINEAR SYSTEM

We have just proved that, for any $(\widehat{y}, \widehat{z}) \in\left(L^{2}(\Omega)\right)^{2}$, there exists a control $v \in$ $L^{2}(Q)$ such that $v=v_{\theta}+v_{0}$ and the triple (v, y, z) satisfies the null controllability problem with constraints on the sate associated to the linearized system (2.1), 1.6) and 1.7). Thus we can construct a nonlinear map

$$
\begin{aligned}
S:\left(L^{2}(Q)\right)^{2} & \longrightarrow\left(L^{2}(Q)\right)^{2} \\
(\widehat{y}, \widehat{z}) & \longmapsto S(\widehat{y}, \widehat{z})=(y, z),
\end{aligned}
$$

where (y, z) is the solution of 2.1 with $v(\widehat{y}, \widehat{z})=v_{\theta}+v_{0}, v_{0}(\widehat{y}, \widehat{z}) \in \mathcal{U}_{\theta}$, and $v_{\theta}(\widehat{y}, \widehat{z}) \in \mathcal{U}^{\perp}$ are determined by Lemma 2.3 and Proposition 2.2 . We now prove that S has a fixed point $(y, z) \in\left(L^{2}(Q)\right)^{2}$, such that $S(y, z)=(y, z)$, since $f(y, z)=$ $A_{1}(y, z) y+B_{1}(y, z) z$, and $g(y, z)=A_{2}(y, z) y+B_{2}(y, z) z$, will be sufficient to finish the proof of Theorem 1.1.

Proposition 3.1. Assume that a, b, f and g be functions of class C^{1} with bounded derivatives, satisfying (1.2)-(1.4). Then
(i) S is continuous;
(ii) S is compact;
(iii) S has a bounded range, i.e., there exists a positive constant \mathcal{C} such that

$$
\|S(y, z)\|_{\left(L^{2}(Q)\right)^{2}} \leq \mathcal{C}, \forall(y, z) \in\left(L^{2}(Q)\right)^{2}
$$

Proof. The proof is the same idea as in [13, Proposition 3.1]. However, it must be adapted to our situation. Thus, we outline it for reader's convenience.
i) Proof of the continuity of S. We proceed in five steps as follows:

Step 1. Let $\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \in\left(L^{2}(Q)\right)^{2}$ be such that

$$
\begin{aligned}
& \widehat{y}_{n} \rightarrow \widehat{y} \text { in } L^{2}(Q), \\
& \widehat{z}_{n} \rightarrow \widehat{z} \text { in } L^{2}(Q) .
\end{aligned}
$$

Since a and b are C^{1}-functions with bounded derivatives satisfying 1.2 , we have

$$
\begin{align*}
& a\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \rightarrow a\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \text { in } L^{2}(0, T), \tag{3.1}\\
& b\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \rightarrow b\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \text { in } L^{2}(0, T) . \tag{3.2}
\end{align*}
$$

Moreover, we can extract subsequences of $\left\{\widehat{y}_{n}\right\}$ and $\left\{\widehat{z}_{n}\right\}$ (still denoted the same) such that
$\widehat{y}_{n} \rightarrow \widehat{y}$ almost everywhere in Q
$\widehat{z}_{n} \rightarrow \widehat{z}$ almost everywhere in Q

Since f and g are functions of C^{1} class with bounded derivatives, then functions A_{1}, A_{2}, B_{1} and B_{2} determined by 2.2 and 2.3 are continuous. Thus

$$
\begin{aligned}
& A_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow A_{i}(\widehat{y}, \widehat{z}) \text { almost everywhere in } Q \\
& B_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow B_{i}(\widehat{y}, \widehat{z}) \text { almost everywhere in } Q
\end{aligned}
$$

for $i=1,2$. We deduce from (2.4) that $\left|A_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right| \leq K$, and $\left|B_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right| \leq K$ almost everywhere in Q. It follows from the relation of modes of convergence that (see [2, Chapter 7, Theorem 7.2])

$$
\begin{align*}
& A_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow A_{i}(\widehat{y}, \widehat{z}) \text { in } L^{2}(Q), \tag{3.3}\\
& B_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow B_{i}(\widehat{y}, \widehat{z}) \text { in } L^{2}(Q) . \tag{3.4}
\end{align*}
$$

Step 2. Since Theorem 2.1 holds for every $(\widehat{y}, \widehat{z}) \in\left(L^{2}(Q)\right)^{2}$, it is also true for $\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \in\left(L^{2}(Q)\right)^{2}$. Therefore, there exists the control $v\left(\widehat{y}_{n}, \widehat{z}_{n}\right)$ such that the solution $\left(y_{n}, z_{n}\right)$ of

$$
\begin{cases}\frac{\partial y_{n}}{\partial t}-a\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta y_{n} & \tag{3.5}\\ \quad+A_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) y_{n}+B_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) z_{n}=v\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega} & \text { in } Q \\ \frac{\partial z_{n}}{\partial t}-b\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta z_{n}+A_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) y_{n}+B_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) z_{n}=0 & \text { in } Q \\ y_{n}(x, t)=z_{n}(x, t)=0 & \text { on } \Sigma, \\ y_{n}(x, 0)=y_{0}(x) ; \quad z_{n}(x, 0)=z_{0}(x) & \text { in } \Omega\end{cases}
$$

satisfies

$$
\begin{gathered}
y_{n}(T)=z_{n}(T)=0 \text { in } \Omega, \\
\int_{0}^{T} \int_{\Omega} z_{n} e_{i} d x d t=0, i=1, \ldots, M
\end{gathered}
$$

and

$$
v\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right),
$$

where, in view of 2.8,

$$
v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \in \theta^{-1} \operatorname{span}\left\{p_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, p_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, \ldots, p_{M}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right\}
$$

satisfies

$$
\begin{equation*}
-\int_{\Omega} y_{0} p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0) d x-\int_{\Omega} z_{0} q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0) d x=\iint_{\omega \times(0, T)} v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) d x d t \tag{3.6}
\end{equation*}
$$

for $i=1, \ldots, M$, and $\left(p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ is the solution of

$$
\left\{\begin{array}{rll}
-\frac{\partial p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-a\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & & \tag{3.7}\\
+A_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+A_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & =0 & \text { in } Q, \\
-\frac{\partial q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-b\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & & \\
+B_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+B_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) q_{i}\left(\widehat{y y}_{n}, \widehat{z}_{n}\right) & =e_{i} & \text { in } Q, \\
p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t)=q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t) & =0 & \text { on } \Sigma, \\
p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T)=q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T) & \text { in } \Omega .
\end{array}\right.
$$

Let $P_{n}=P\left(\widehat{y}_{n}, \widehat{z}_{n}\right)$ be the orthogonal projection operator from $L^{2}(\omega \times(0, T))$ into

$$
\mathcal{U}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=\operatorname{span}\left\{p_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, p_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, \ldots, p_{M}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right\}
$$

In view of 2.31,

$$
\begin{equation*}
v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=-\gamma^{2}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}-P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right)\right), \tag{3.8}
\end{equation*}
$$

where $\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \in V$ satisfies

$$
\begin{cases}L_{a}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)=0 & \text { in } Q \tag{3.9}\\ L_{b}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)=0 & \text { in } Q \\ \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t)=\psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t)=0 & \text { on } \Sigma, \\ \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T)=\varrho_{T}(x), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T)=\psi_{T}(x) & \text { in } \Omega\end{cases}
$$

Furthermore, according to Proposition 2.2, Lemmas 2.3 and 2.6 there exists a positive constant $C(\Omega, \omega, T, L, E, K)$ such that

$$
\begin{align*}
\left\|\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)\right\|_{V} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \tag{3.10}\\
\left\|\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)\right\|_{\left(L^{2}(\omega \times(0, T))\right)^{2}} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \tag{3.11}\\
\left\|v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(\omega \times(0, T))} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \\
\left\|\theta v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(\omega \times(0, T))} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \tag{3.12}\\
\left\|v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(\omega \times(0, T))} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \\
\left\|v\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(\omega \times(0, T))} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) . \tag{3.13}
\end{align*}
$$

Therefore, we can extract subsequences (see [15, Theorem 4.18, Corollary 4.19]) (still denoted the same) such that

$$
\begin{align*}
\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) & \rightharpoonup\left(\widetilde{\varrho}_{\theta}, \widetilde{\psi}_{\theta}\right) \text { in } V, \\
\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) & \rightharpoonup\left(\widetilde{\varrho}_{\theta}, \widetilde{\psi}_{\theta}\right) \text { in }\left(L^{2}(\omega \times(0, T))\right)^{2}, \tag{3.14}\\
v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & \rightharpoonup \widetilde{v}_{0} \text { in } L^{2}(\omega \times(0, T)), \tag{3.15}\\
\theta v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & \rightharpoonup \widetilde{v}_{1} \text { in } L^{2}(\omega \times(0, T)), \tag{3.16}\\
v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & \rightharpoonup \widetilde{v}_{\theta} \text { in } L^{2}(\omega \times(0, T)), \tag{3.17}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
v\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightharpoonup \widetilde{v}=\widetilde{v}_{0}+\widetilde{v}_{\theta} \text { in } L^{2}(\omega \times(0, T)) . \tag{3.18}
\end{equation*}
$$

Step 3. Since $\left(y_{n}, z_{n}\right)$ is the solution of (3.5), by using 3.13), we have

$$
\begin{aligned}
& \left\|y_{n}\right\|_{W(0, T)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right), \\
& \left\|z_{n}\right\|_{W(0, T)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right)
\end{aligned}
$$

where

$$
W(0, T)=L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; H^{-1}(\Omega)\right)
$$

Consequently, there exists $(\widetilde{y}, \widetilde{z}) \in(W(0, T))^{2}$ such that

$$
\begin{align*}
& y_{n} \rightharpoonup \widetilde{y} \text { in } W(0, T), \tag{3.19}\\
& z_{n} \rightharpoonup \widetilde{z} \text { in } W(0, T) . \tag{3.20}
\end{align*}
$$

In addition, the embedding of $W(0, T)$ into $L^{2}(Q)$ is compact, we deduce that

$$
\begin{align*}
& y_{n} \rightarrow \widetilde{y} \text { in } L^{2}(Q) \tag{3.21}\\
& z_{n} \rightarrow \widetilde{z} \text { in } L^{2}(Q) \tag{3.22}
\end{align*}
$$

Now, passing to the limits in (3.5), while using (3.1), 3.2, (3.3), (3.4, (3.18), (3.19), (3.20, (3.21) and (3.22), we deduce that the triple $(\widetilde{v}, \widetilde{y}(\widetilde{v}), \widetilde{z}(\widetilde{v}))$ verifies

$$
\begin{cases}\frac{\partial \widetilde{y}}{\partial t}-a\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \Delta \widetilde{y}+A_{1}(\widehat{y}, \widehat{z}) \widetilde{y}+B_{1}(\widehat{y}, \widehat{z}) \widetilde{z}=\widetilde{v} 1_{\omega} & \text { in } Q \\ \frac{\partial \widetilde{z}}{\partial t}-b\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \Delta \widetilde{z}+A_{2}(\widehat{y}, \widehat{z}) \widetilde{y}+B_{2}(\widehat{y}, \widehat{z}) \widetilde{z}=0 & \text { in } Q \\ \widetilde{y}(x, t)=\widetilde{z}(x, t)=0 & \text { on } \Sigma, \\ \widetilde{y}(x, 0)=y_{0}(x) ; \quad \widetilde{z}(x, 0)=z_{0}(x) & \text { in } \Omega\end{cases}
$$

satisfies

$$
\widetilde{y}(T)=\widetilde{z}(T)=0 \text { in } \Omega
$$

and

$$
\int_{0}^{T} \int_{\Omega} \widetilde{z} e_{i} d x d t=0,1 \leq i \leq M
$$

Step 4. Since $\left(p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ is the solution of 3.7), we deduce that

$$
\begin{align*}
& \left\|p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C\left\|e_{i}\right\|_{L^{2}(Q)} \tag{3.23}\\
& \left\|q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C\left\|e_{i}\right\|_{L^{2}(Q)} \tag{3.24}
\end{align*}
$$

On the other hand, we can rewrite (3.7) as follows

$$
\left\{\begin{aligned}
-\frac{\partial p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-a\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=c_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & \text { in } Q, \\
-\frac{\partial q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-b\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=d_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & \text { in } Q, \\
p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t)=q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, t)=0 & \text { on } \Sigma, \\
p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T)=q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(x, T)=0 & \text { in } \Omega,
\end{aligned}\right.
$$

where

$$
\begin{aligned}
c_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & =-A_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)-A_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \\
d_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & =e_{i}-B_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)-B_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)
\end{aligned}
$$

are uniformly bounded in $L^{2}(Q)$ according to (3.23), (3.24), and (2.4). Then we get that $\left(p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ is bounded uniformly in n in $\left(L^{2}\left(0, T ; H^{2}(\Omega) \cap\right.\right.$ $\left.\left.H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)\right)^{2}=: X(Q)^{2}$. Therefore, we can extract a subsequences of $\left(p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ (still denoted the same) such that

$$
\begin{align*}
& p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightharpoonup \widetilde{p}_{i} \text { in } X(Q), \tag{3.25}\\
& q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightharpoonup \widetilde{q}_{i} \text { in } X(Q) . \tag{3.26}
\end{align*}
$$

Thanks to the compactness of the embedding $X(Q)$ into $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, we have

$$
\begin{align*}
& p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow \widetilde{p}_{i} \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{3.27}\\
& q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow \widetilde{q}_{i} \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) . \tag{3.28}
\end{align*}
$$

From the energy inequality for $p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)$, 3.23) and 3.24, it follows that

$$
\begin{align*}
&\left\|p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0)\right\|_{L^{2}(\Omega)} \leq C\left\|e_{i}\right\|_{L^{2}(Q)} \tag{3.29}\\
&\left\|q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0)\right\|_{L^{2}(\Omega)} \leq C\left\|e_{i}\right\|_{L^{2}(Q)} \tag{3.30}
\end{align*}
$$

Therefore, passing to the limits in (3.7), while using (3.1), (3.2), (3.3), (3.4), (3.25), (3.26), 3.27) and (3.28), we get

$$
\begin{cases}-\frac{\partial \widetilde{p}_{i}}{\partial t}-a\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \Delta \widetilde{p}_{i}+A_{1}(\widehat{y}, \widehat{z}) \widetilde{p}_{i}+A_{2}(\widehat{y}, \widehat{z}) \widetilde{q}_{i}=0 & \text { in } Q \\ -\frac{\partial \widetilde{q}_{i}}{\partial t}-b\left(\int_{\Omega} \widehat{y} d x, \int_{\Omega} \widehat{z} d x\right) \Delta \widetilde{q}_{i}+B_{1}(\widehat{y}, \widehat{z}) \widetilde{p}_{i}(\widehat{y}, \widehat{z})+B_{2}(\widehat{y}, \widehat{z}) \widetilde{q}_{i}=e_{i} & \text { in } Q \\ \widetilde{p}_{i}(x, t)=\widetilde{q}_{i}(x, t)=0 & \text { on } \Sigma \\ \widetilde{p}_{i}(x, T)=\widetilde{q}_{i}(x, T)=0 & \text { in } \Omega\end{cases}
$$

It follows from (3.29) and 3.30 that

$$
\begin{align*}
& p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0) \rightharpoonup \widetilde{p}_{i}(0) \text { in } L^{2}(\Omega) \tag{3.31}\\
& q_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)(0) \rightharpoonup \widetilde{q}_{i}(0) \text { in } L^{2}(\Omega) \tag{3.32}
\end{align*}
$$

Therefore, for each $e_{i}, i=1, \ldots, M,\left(\widetilde{p}_{i}, \widetilde{q}_{i}\right)$ is the solution of 2.7). Hence, thanks to the uniqueness of the solution of 2.7 , one gets

$$
\begin{align*}
p_{i}(\widehat{y}, \widehat{z}) & =\widetilde{p}_{i}(\widehat{y}, \widehat{z}), i=1, \ldots, M \tag{3.33}\\
q_{i}(\widehat{y}, \widehat{z}) & =\widetilde{q}_{i}(\widehat{y}, \widehat{z}), i=1, \ldots, M \tag{3.34}
\end{align*}
$$

Step 5. Since $\theta v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \in \operatorname{span}\left\{p_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, p_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, \ldots, p_{M}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right\}$ and satisfies (3.12), by using [13, Lemma 2.3] with $H=L^{2}(\omega \times(0, T)), h^{n}=$ $\theta v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), p_{i}^{n}=p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}$ while taking into account 3.16, (3.27), 3.28, 3.33) and (3.34), we deduce that there exists $\widetilde{\alpha}_{j} \in \mathbb{R}, i=1, \ldots, M$, such that

$$
\theta v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow \sum_{j=1}^{M} \widetilde{\alpha}_{j} p_{j}(\widehat{y}, \widehat{z}) 1_{\omega} \text { in } L^{2}(\omega \times(0, T))
$$

Since θ^{-1} is bounded in $L^{\infty}(Q)$ and $v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)$ satisfying 3.15, we infer that

$$
v_{0}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \rightarrow \widetilde{v}_{0}=\sum_{j=1}^{M} \widetilde{\alpha}_{j} \frac{1}{\theta} p_{j}(\widehat{y}, \widehat{z}) 1_{\omega} \text { in } L^{2}(\omega \times(0, T))
$$

Passing to the limits in (3.6), while using (3.15), (3.27), (3.28), 3.31, , 3.32), (3.33) and (3.34) we get

$$
-\int_{\Omega} y_{0} p_{i}(\widehat{y}, \widehat{z})(0) d x-\int_{\Omega} z_{0} q_{i}(\widehat{y}, \widehat{z})(0) d x=\iint_{\omega \times(0, T)} \widetilde{v}_{0} p_{i}(\widehat{y}, \widehat{z}) d x d t
$$

for $i=1, \ldots, M$. Thanks to the uniqueness of $v_{0} \in \mathcal{U}_{\theta}$ which verifies 2.9), we conclude that $v_{0}(\widehat{y}, \widehat{z})=\widetilde{v}_{0}$.

On the other hand, since

$$
v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \in \mathcal{U}^{\perp}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)=\operatorname{span}\left\{p_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, p_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}, \ldots, p_{M}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right\}^{\perp}
$$

then we have

$$
\iint_{\omega \times(0, T)} v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) d x d t=0, i=1, \ldots, M
$$

Taking the limits in this identity while using (3.17), (3.27), (3.28), (3.33) and (3.34), we obtain

$$
\iint_{\omega \times(0, T)} \widetilde{v}_{\theta} p_{i}(\widehat{y}, \widehat{z}) d x d t=0, i=1, \ldots, M
$$

This means that $\widetilde{v}_{\theta} \in \mathcal{U}^{\perp}=\operatorname{span}\left\{p_{1}(\widehat{y}, \widehat{z}) 1_{\omega}, p_{2}(\widehat{y}, \widehat{z}) 1_{\omega}, \ldots, p_{M}(\widehat{y}, \widehat{z}) 1_{\omega}\right\}^{\perp}$.

Now, it follows from Lemma 2.4 that

$$
\begin{align*}
& I\left(\lambda, s, \tau, \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)+I\left(\lambda, s, \tau, \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \\
& \leq C\left[\tau \int \int _ { Q } \varphi ^ { 2 s } e ^ { - 2 \alpha } \left(\left|A_{1} \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+A_{2} \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}\right.\right. \\
& \left.\quad+\left|B_{1} \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+B_{2} \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}\right) d x d t \tag{3.35}\\
& \left.\quad+\lambda^{4} \tau^{4} \iint_{\omega^{\prime} \times(0, T)} \varphi^{2 s+3} e^{-2 \alpha}\left(\left|\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}+\left|\psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}\right) d x d t\right] .
\end{align*}
$$

Using the Cauchy-Schwarz inequality in the right hand side of (3.35), one gets

$$
\begin{align*}
& I\left(\lambda, s, \tau, \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)+I\left(\lambda, s, \tau, \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \\
& \leq C\left[L^{2} \tau \iint_{Q} \varphi^{2 s} e^{-2 \alpha}\left(\left|\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}+\left|\psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}\right) d x d t\right. \tag{3.36}\\
& \left.\quad+\lambda^{4} \tau^{4} \iint_{\omega \times(0, T)} \varphi^{2 s+3} e^{-2 \alpha}\left(\left|\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}+\left|\psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right|^{2}\right) d x d t\right]
\end{align*}
$$

On the other hand, since $\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ verifies (3.9) and (3.11), then it follows from 3.36 that $\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ is bounded uniformly in n in $\left(L^{2}\left(\varepsilon, T-\varepsilon ; H^{2}(\overline{\Omega)})\right)^{2}\right.$, for all $T>\varepsilon>0$. This implies that

$$
\begin{gathered}
\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in }\left(L^{2}(\Omega \times(\varepsilon, T-\varepsilon))\right)^{2} \\
\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in }\left(L^{2}(\partial \Omega \times(\varepsilon, T-\varepsilon))\right)^{2} .
\end{gathered}
$$

So

$$
\begin{aligned}
& \left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in }\left(\mathcal{D}^{\prime}(Q)\right)^{2}, \\
& \left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in }\left(\mathcal{D}^{\prime}(\Sigma)\right)^{2} .
\end{aligned}
$$

Setting

$$
\begin{aligned}
L_{a}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)= & -\frac{\partial \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-a\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \\
& +A_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+A_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \\
L_{b}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)= & -\frac{\partial \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)}{\partial t}-b\left(\int_{\Omega} \widehat{y}_{n} d x, \int_{\Omega} \widehat{z}_{n} d x\right) \Delta \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \\
& +B_{1}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)+B_{2}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)
\end{aligned}
$$

It follows from (3.1), (3.2), (3.3), and (3.4) that

$$
\begin{aligned}
& L_{a}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup L_{a}^{*}\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in } \mathcal{D}^{\prime}(Q), \\
& L_{b}^{*}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right) \rightharpoonup L_{b}^{*}\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right) \text { in } \mathcal{D}^{\prime}(Q) .
\end{aligned}
$$

Combining with (3.9), we deduce that

$$
\begin{cases}L_{a}^{*}\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right)=0 & \text { in } Q \\ L_{b}^{*}\left(\widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z}), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})\right)=0 & \text { in } Q \\ \widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z})=\widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})=0 & \text { on } \Sigma, \\ \widetilde{\varrho}_{\theta}(\widehat{y}, \widehat{z})(x, T)=\varrho_{T}(x), \widetilde{\psi}_{\theta}(\widehat{y}, \widehat{z})(x, T)=\psi_{T}(x) & \text { in } \Omega\end{cases}
$$

Thanks to uniqueness of the solution of 2.30 and $v_{0}=\widetilde{v}_{0}$, we have $\varrho_{\theta}=\widetilde{\varrho}_{\theta}, \psi_{\theta}=$ $\widetilde{\psi}_{\theta}$. According to 3.10 and the definition of the norm on V, we have

$$
\begin{equation*}
\left\|P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right)-\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right\|_{L^{2}(Q)} \leq C(\Omega, \omega, T, L, E, K)\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) . \tag{3.37}
\end{equation*}
$$

Applying inequality 2.13 to $\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right), \psi_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right)$ and taking into account 3.9) and 3.11, we obtain

$$
\begin{align*}
& \left\|\theta^{-1} \varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(Q)} \leq C(\Omega, \omega, T, L, E, K)\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \tag{3.38}\\
& \left\|\theta^{-1} \psi_{\theta}\left(\hat{y}_{n}, \widehat{z}_{n}\right)\right\|_{L^{2}(Q)} \leq C(\Omega, \omega, T, L, E, K)\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \tag{3.39}
\end{align*}
$$

Then, proceeding as in the proof of Lemma 2.6 while using (3.37), (3.38) and (3.39), we get

$$
\left\|P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right)\right\|_{L^{2}(Q)} \leq C(\Omega, \omega, T, L, E, K)\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right)
$$

Therefore, $P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right)$ being in $\mathcal{U}\left(\widehat{y}_{n}, \widehat{z}_{n}\right)$, using [13, Lemma 2.3] with $H=$ $L^{2}(\omega \times(0, T)), h^{n}=P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right), p_{i}^{n}=p_{i}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}$ while putting together with 3.27, 3.28, (3.33), and 3.34, one gets

$$
P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right) \rightharpoonup \chi \in \operatorname{span}\left\{p_{1}(\widehat{y}, \widehat{z}) 1_{\omega}, p_{2}(\widehat{y}, \widehat{z}) 1_{\omega}, \ldots, p_{M}(\widehat{y}, \widehat{z}) 1_{\omega}\right\}
$$

This means that $\chi \in \mathcal{U}$.
By using (3.8), (3.14) and (3.17), we deduce that

$$
\begin{aligned}
v_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) & =-\gamma^{2}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}-P_{n}\left(\varrho_{\theta}\left(\widehat{y}_{n}, \widehat{z}_{n}\right) 1_{\omega}\right)\right) \\
& \rightharpoonup-\gamma^{2}\left(\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}-\chi\right)=\widetilde{v}_{\theta} \text { in } L^{2}(\omega \times(0, T))
\end{aligned}
$$

Observing that $P\left(\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}-\chi\right)=0$ and $P(\chi)=\chi$ because $\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}-\chi \in \mathcal{U}^{\perp}$ and $\chi \in \mathcal{U}$. We derive $P\left(\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}\right)=\chi$. This leads to

$$
\widetilde{v}_{\theta}=v_{\theta}=-\gamma^{2}\left(\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}-P\left(\varrho_{\theta}(\widehat{y}, \widehat{z}) 1_{\omega}\right)\right) .
$$

It follows from the relation (3.18) that $\widetilde{v}=v_{0}(\widehat{y}, \widehat{z})+v_{\theta}(\widehat{y}, \widehat{z})=v$. Therefore, the triple (v, y, z) verifies (2.1), 1.6) and (1.7).
ii) Proof of the compactness of S. We deduce from the argument above that when $(\widehat{y}, \widehat{z})$ lies in bounded subset B of $\left(L^{2}(Q)\right)^{2}, S(\widehat{y}, \widehat{z})=(y, z)$ lies in bounded set of $(W(0, T))^{2}$. Since the compactness of the embedding $(W(0, T))^{2} \hookrightarrow\left(L^{2}(Q)\right)^{2}$, we deduce that $S(B)$ is relatively compact in $\left(L^{2}(Q)\right)^{2}$. Thus, S is a compact operator.
iii) Proof of the boundedness of the range of S. Let $(\widehat{y}, \widehat{z}) \in\left(L^{2}(Q)\right)^{2}$. Since (y, z) is solution of 2.1 with $v(\widehat{y}, \widehat{z})$ satisfying

$$
\|v\|_{L^{2}(Q)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right)
$$

we deduce that

$$
\begin{aligned}
\|y\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \\
\|z\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right)
\end{aligned}
$$

Thanks to the continuous embedding of $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ into $L^{2}(Q)$, it follows that

$$
\begin{aligned}
\|y\|_{L^{2}(Q)} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right) \\
\|z\|_{L^{2}(Q)} & \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|z_{0}\right\|_{L^{2}(\Omega)}\right)
\end{aligned}
$$

Proof of Theorem 1.1. Due to the Proposition 3.1, all hypotheses of the Schauder fixed-point theorem are satisfied. Consequently, the mapping S has a fixed point (y, v), and then we complete the proof of Theorem 1.1.

Acknowledgements. This work was completed while the first and the third authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). They would like to thank the Institute for its hospitality.

References

[1] S. Anita and V. Barbu, Local exact controllability of a reaction-diffusion system, Differential Integral Equations 14 (5) (2001) 577-587.
[2] R.G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley-Interscience, 1995.
[3] N.H. Chang and M. Chipot, On some model diffusion problems with a nonlocal lower order term, Chinese Ann. Math. Ser. B 24 (2003), 147-166.
[4] M. Chipot, V. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, The Mathematical Journal of the University of Padua, Volume 110 (2003), 199-220.
[5] H.R. Clark, E. Fernández-Cara, J.Limaco and L.A.Medeiros, Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities, Applied Mathematics and Computation, 223 (2013), 483-505.
[6] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, (1996).
[7] A.V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications (Translations of Mathematical Monographs), American Mathematical Society, 187 (1999).
[8] P. Gao, Null controllability with constraints on the state for the reaction-diffusion system, Comput. Math. Appl. 70 (2015), 776-788.
[9] F.A. Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some parabolic type by one control force, ESAIM Control Optim. Calc. Var. 11 (2005), 426-448.
[10] F.A. Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl. 320 (2006), 928-943.
[11] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, translations of mathematical monographs, vol. 23, AMS, 1968.
[12] L.A. Medeiros, J. Limaco and S.B. de Menezes, Vibrations of elastic strings: mathematical aspects-part one, J.Comput. Anal. Appl. 4 (2002), 91-127.
[13] G.M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation, J. Optim. Theory Appl. 143 (2009), 539-565.
[14] G.M. Mophou, Null controllability with constraints on the state for nonlinear heat equation, Forum Math. 23 (2011), 285-319.
[15] J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractor, Cambridge texts in applied mathematics, (2001).
[16] C. Louis-Rose, Simultaneous null controllability with constraint on the control, Appl. Math. Comput. 219 (2013), 6372-6392.
[17] G. Wang and L. Zhang, Exact local controllability of a one-control reaction - diffusion system, J. Optim. Theory Appl. 131 (2006), 453-467.
[18] S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal. 45 (2005), 301-312.

Cung The Anh

E-mail address: anhctmath@hnue.edu.vn

Le Tran Tinh
Department of Natural Sciences, Hong Duc University
565 Quang Trung, Dong Ve, Thanh Hoa, Vietnam
E-mail address: letrantinh@hdu.edu.vn, hdutrantinh.vn@gmail.com
Vu Manh Toi
Faculty of Computer Science and Engineering, Thuyloi University
175 Tay Son, Dong Da, Hanoi, Vietnam
E-mail address: toivm@tlu.edu.vn

[^0]: 2010 Mathematics Subject Classification. 35K45, 93C20, 93B05, 93Bxx.
 Key words and phrases. Controllability with constraints on the state; controllability with constraint on the control; semilinear parabolic systems; Carleman inequality.
 ${ }^{\natural}$ Corresponding author: anhctmath@hnue.edu.vn.

