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Abstract. We study a class of nonlocal partial differential equations with

nonlinear perturbations, which can be seen as an interpolation between the
Basset equation and nonclassical diffusion one. Our aim is to analyze some

sufficient conditions ensuring the global solvability, regularity and stability of

solutions. Our analysis is based on the theory of completely positive kernel
functions, local estimates and a new Gronwall type inequality.

1. Introduction

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. Consider the
following problem

∂tu+ ∂t(m ∗ (−∆)γu)−∆u = f(u) in Ω, t > 0, (1.1)

u = 0 on ∂Ω, t ≥ 0, (1.2)

u(·, 0) = ξ in Ω, (1.3)

where ∂t = ∂
∂t , m ∈ L

1
loc(R+) is a nonnegative function, γ ∈ [0, 1], and the notation

‘*’ stands for the Laplace convolution with respect to the time t, i.e.,

(m ∗ v)(t) =

∫ t

0

m(t− s)v(s)ds.

In our model, (−∆)γ denotes the fractional power of the Laplacian, f is a nonlinear
function and ξ ∈ L2(Ω) is given.

We first mention some special cases of (1.1). If γ = 1 and m is a nonnegative con-
stant then (1.1) is the classical reaction-diffusion equation with nonlinear sources.

In the case γ = 1 and m(t) = m0g1−α(t) =
m0t

−α

Γ(1− α)
,m0 > 0 and α ∈ (0, 1), our

equation reads
∂tu− (1 +m0∂

α
t )∆u = f(u),

which is the generalized Rayleigh-Stokes equation (see, e.g. [2]), here ∂αt denotes
the fractional derivative of order α in the sense of Riemann-Liouville. This equation
is employed to describe the behavior of non-Newtonian fluids. In the case γ = 0
and m(t) = m0g1−α(t), we get

∂tu+m0∂
α
t u−∆u = f(u),

that is the Basset equation mentioned in [1, 12, 17].

2010 Mathematics Subject Classification. 35B40,35B65,35C15,45K05.
Key words and phrases. nonlocal PDE; regularity; stability.
∗ Corresponding author. Email: ketd@hnue.edu.vn (T.D.Ke).

1



2 T.D. KE, N.N. THANG

In addition, if γ = 1 and m is a regular function, e.g. m ∈ C1(R+), then (1.1) is
a nonclassical diffusion equation, namely

∂tu− (1 +m(0))∆u−
∫ t

0

m′(t− s)∆u(s)ds = f(u),

which has been a topic of an extensive study, see e.g., [3, 4, 6, 7, 9, 14, 15].
In this work, we are interested in the case m is possibly singular (e.g., the case

of Rayleigh-Stokes or Basset equation). Up to our knowledge, the regularity and
stability analysis for (1.1)-(1.3) have not been investigated in literature, and we
aim at filling this gap. Based on the relaxation integral equation with completely
positive kernel, we give an explicit representation of the resolvent operator, which
enjoys some properties such as smoothness, decaying estimate, etc. In addition, a
new Gronwall type inequality related to the relaxation function will be established
and utilized in stability analysis. This inequality is also employed to prove the
convergence of solution to equilibrium point, i.e. the solution of the elliptic problem

−∆v = f(v) in Ω, u = 0 on ∂Ω.

The construction of the resolvent operator and its properties are represented in the
next section. It should be noted that, in our case the regularity of the resolvent
family cannot be obtained by using the resolvent theory given by Prüss [16] as in the
recent work [11]. Fortunately, we get the differentiablity of the resolvent family in
a particular case of kernel function m, namely, m is nonincreasing and m(0+) =∞.
This property is enable us to prove the regularity of solutions. Section 3 is devoted
to the results on global solvability and regularity. More precisely, our problem is
globally solvable if the nonlinearity f gets the behavior like ‖f(v)‖ = `‖v‖+ o(‖v‖)
as ‖v‖ → 0, provided ` ∈ [0, λ1) with λ1 being the first eigenvalue of −∆. In the
case when f is locally Lipschitzian, we show that the mild solution to (1.1)-(1.3) is
classical, provided that m is nonincreasing. In Section 4, we prove some results on
stability of solution to (1.1)-(1.3) such as the dissipativity, the asymptotic stability
and the convergence to equilibrium. It should be mentioned that, the obtained
results can be applied to the problem governed by the semilinear Rayleigh-Stokes
equation or the Basset equation.

2. Preliminaries

Let {ϕn}∞n=1 be an orthonormal basis of L2(Ω) consisting of eigenfunctions of
−∆ subject to the homogeneous boundary condition, i.e.,

−∆ϕn = λnϕn in Ω, ϕn = 0 on ∂Ω,

where one can assume that 0 < λ1 ≤ λ2 ≤ ..., λn →∞ as n→∞. For β ∈ R, the
fractional power operator (−∆)β is defined as follows

(−∆)βv =

∞∑
n=1

λβn(v, en)en,

D((−∆)β) = {v ∈ L2(Ω) :

∞∑
n=1

λ2β
n (v, en)2 <∞},

here the notation (·, ·) denotes the inner product in L2(Ω).
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We find a representation for solution of the linear problem

∂tu+ ∂t(m ∗ (−∆)γu)−∆u = F in Ω, t ∈ (0, T ], (2.1)

u = 0 on ∂Ω, t ∈ [0, T ], (2.2)

u(·, 0) = ξ in Ω, (2.3)

where F ∈ C([0, T ];L2(Ω)).
Assume that

u(·, t) =

∞∑
n=1

un(t)ϕn, F (·, t) =

∞∑
n=1

Fn(t)ϕn.

Substituting into (2.1), we get

u′n(t) + λnun(t) + λγn(m ∗ un)′(t) = Fn(t), (2.4)

un(0) = ξn := (ξ, ϕn). (2.5)

In order to find a representation of un, we consider the relaxation equation

ω′(t) + µω(t) + ν(m ∗ ω)′(t) = 0, for t > 0, ω(0) = 1,

where µ and ν are positive numbers. This equation can be rewritten as

ω(t) + µ(1 + νµ−1m) ∗ ω(t) = 1. (2.6)

We make the following standing assumption:

(M) m ∈ L1
loc(R+) is a nonnegative function such that aη(t) := 1 + ηm(t) is

completely positive for any η > 0.

Recall that, the complete positivity of a function ` ∈ L1
loc(R+) means that the

solutions of the following equations

s(t) + θ(` ∗ s)(t) = 1, (2.7)

r(t) + θ(` ∗ r)(t) = `(t), (2.8)

take nonnegative values for all θ > 0. This is equivalent to that, there exist ε ≥ 0
and a nonnegative and nonincreasing function k ∈ L1

loc(R+) such that ε`+ `∗k = 1
on (0,∞) (see [13]). It is easily seen that, if `(0+) =∞ then ε = 0. In this case, it
holds that (see [5]) ∫ t

0

r(τ)dτ = θ−1(1− s(t)), ∀t ≥ 0. (2.9)

Following [13], if aη is completely monotonic, i.e. (−1)na
(n)
η (t) ≥ 0 for all n ∈ N

and t ∈ (0,∞), then it is completely positive. Noting that, if m is completely
monotonic, so is aη. A weaker condition ensuring the complete positivity of aη is
that, aη ∈ C1(0,∞) is positive and log aη is a convex function (log-convex). It
should be mentioned that, if m ∈ C1(0,∞) is positive and log-convex, so is aη.

Indeed, if m is log-convex then it is convex. That means
m′

m
and m′ are increasing

simultaneously, which implies that
d

dt
log aη =

ηm′

1 + ηm
is increasing as well. That

is, aη is log-convex for any η > 0.
Under the assumption (M), the solution of (2.6) is positive on R+, since ω is

the solution of (2.7) with θ = µ and ` = 1 + µγ−1m. It should be noted that,
the positivity of ω plays an important role in our analysis. We have the following
additional properties of ω.
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Proposition 2.1. Let ω(·, µ, ν) be the solution of (2.6). Then

(a) The function t 7→ ω(t, µ, ν) is nonincreasing on R+ and obeys the inequality

0 < ω(t, µ, ν) ≤ 1

1 + µ
∫ t

0
(1 + νµ−1m(τ))dτ

, ∀t ≥ 0.

Consequently, lim
t→∞

ω(t, µ, ν) = 0.

(b) We have ∫ t

0

ω(τ, µ, ν)dτ ≤ µ−1(1− ω(t, µ, ν)), ∀t ≥ 0.

(c) The function µ 7→ ω(t, µ, µγ) is nonincreasing on (0,∞) for each t ≥ 0.

Proof. (a) As pointed out in [5], the solution of (2.7) is nonincreasing, so is ω(·, µ).
Then it follows that

1 = ω(t, µ, ν) + µ

∫ t

0

(1 + νµ−1m(t− τ))ω(τ, µ)dτ

≥ ω(t, µ, ν) + µω(t, µ, ν)

∫ t

0

(1 + νµ−1m(t− τ))dτ,

which implies

ω(t, µ, ν) ≤ 1

1 + µ
∫ t

0
(1 + νµ−1m(τ))dτ

, ∀t ≥ 0.

(b) Thanks to the fact that m is nonnegative, we have

1 = ω(t, µ, ν) + µ

∫ t

0

(1 + νµ−1m(t− τ))ω(τ, µ, ν)dτ

≥ ω(t, µ, ν) + µ

∫ t

0

ω(τ, µ, ν)dτ,

which ensures that ∫ t

0

ω(τ, µ, ν)dτ ≤ µ−1(1− ω(t, µ, ν)).

(c) Let ν = µγ . Taking differentiation of (2.6) in µ, one gets

∂µω + µ(1 + µγ−1m) ∗ ∂µω = −(1 + γµγ−1m) ∗ ω. (2.10)

Let ˜̀ = 1 + µγ−1m, then by (M), ˜̀ is completely positive and there exist ε ≥ 0

and a function k̃ ∈ L1
loc(R+) which is nonnegative and nonincreasing such that

ε˜̀+ ˜̀∗ k̃ = 1. Noting that

1 + γµγ−1m = γ(1 + µγ−1m) + 1− γ

= γ ˜̀+ (1− γ)(ε˜̀+ ˜̀∗ k̃)

=
(
γ + (1− γ)ε

)
˜̀+ (1− γ)˜̀∗ k̃,

we can rewrite (2.10) as

∂µω + µ˜̀∗ ∂µω = −[
(
γ + (1− γ)ε

)
ω + ω ∗ k̃] ∗ ˜̀. (2.11)
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Let r̃ be the solution of r̃ + µ˜̀∗ r̃ = ˜̀. Then we see that, the solution of (2.11) is
given by

∂µω = −[
(
γ + (1− γ)ε

)
ω + ω ∗ k̃] ∗ r̃.

The last relation guarantees that ∂µω(t, µ, µγ) ≤ 0 for each t ≥ 0 and µ > 0. The
proof is complete. �

We are now in a position to consider the inhomogeneous equation

v′(t) + µv(t) + ν(m ∗ v)′(t) = g(t), for t > 0, v(0) = v0, (2.12)

where g ∈ C(R+) is a given function, µ and ν are positive numbers.

Proposition 2.2. The solution of (2.12) is unique and given by

v(t) = ω(t, µ, ν)v0 +

∫ t

0

ω(t− τ, µ, ν)g(τ)dτ, t ≥ 0. (2.13)

Proof. Put L[y] = y′ + µy + ν(m ∗ y)′, y ∈ C1(R+). Then we have L[ω] = 0. In
addition, we see that

L[v] = L[ω]v0 + L[ω ∗ g] = L[ω ∗ g].

We will prove that L[ω ∗ g] = g. Indeed, one gets

(ω ∗ g)′ + µω ∗ g + ν(m ∗ ω ∗ g)′ = g + ω′ ∗ g + µω ∗ g + ν(m ∗ ω)′ ∗ g
= g + [ω′ + µω + ν(m ∗ ω)′] ∗ g
= g + L[ω] ∗ g = g.

Conversely, if v is a solution of (2.12), we have

zv̂(z) + µv̂(z) + νzm̂(z)v̂(z) = v0 + ĝ(z),

where v̂ is the Laplace transform of v. Then

v̂(z) = (z + µ+ νzm̂(z))−1v0 + (z + µ+ νzm̂(z))−1ĝ(z)

= ω̂(z)v0 + ω̂(z)ĝ(z),

where ω̂ is the Laplace transform of ω with respect to t. Taking the inverse Laplace
transform yields v = ωv0 + ω ∗ g, which is (2.13). The proof is complete. �

In what follows, in the case ν = µγ , we write ω(t, µ) instead of ω(t, µ, µγ). Using
the last proposition, we have the following formula for the solution of (2.4)-(2.5):

un(t) = ω(t, λn)ξn +

∫ t

0

ω(t− τ, λn)Fn(τ)dτ.

Thus one has the following representation for the solution of (2.1)-(2.3):

u(·, t) =

∞∑
n=1

ω(t, λn)ξnϕn +

∞∑
n=1

∫ t

0

ω(t− τ, λn)Fn(τ)dτϕn

= S(t)ξ +

∫ t

0

S(t− τ)F (·, τ)dτ, (2.14)

where S(t) is defined by

S(t)ξ =

∞∑
n=1

ω(t, λn)ξnϕn, ξ ∈ L2(Ω). (2.15)
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In the sequel, the notation ‖ · ‖ stands for the standard norm in L2(Ω) and ‖ · ‖L
represents the operator norm of bounded linear operator acting on L2(Ω).

Lemma 2.3. Let {S(t)}t≥0 be the resolvent operators defined by (2.15), ξ ∈ L2(Ω)
and T > 0. Then

(a) S(·)v ∈ C([0, T ];L2(Ω)) and ‖S(t)‖L ≤ ω(t, λ1) for all t ≥ 0.

(b) For g ∈ C([0, T ];L2(Ω)), (−∆)
1
2S ∗ g ∈ C([0, T ];L2(Ω)) and it holds that

‖(−∆)
1
2S ∗ g(t)‖ ≤

(∫ t

0

ω(t− τ, λ1)‖g(τ)‖2dτ
) 1

2

, ∀t ≥ 0. (2.16)

(c) If m is nonincreasing and m(0+) =∞, then S(·)v ∈ C1((0, T ];L2(Ω)) and
it holds that

‖S′(t)‖L ≤ t−1 for all t > 0.

(d) ∆S(·)ξ ∈ C((0, T ];L2(Ω)) ∩ L1(0, T ;L2(Ω)) and we have the estimates

‖∆S(t)ξ‖ ≤ t−1‖ξ‖, for all t > 0,

‖
∫ t

0

∆S(τ)ξdτ‖ ≤ ‖ξ‖, for all t ≥ 0.

Proof. (a) It follows from (2.15) that

‖S(t)v‖2 =

∞∑
n=1

ω(t, λn)2ξ2
n

≤ ω(t, λ1)2
∞∑
n=1

ξ2
n = ω(t, λ1)2‖ξ‖2, ξn = (ξ, ϕn),

thanks to Proposition 2.1(c), which implies the uniform convergence of series (2.15)
on [0, T ] and the estimate ‖S(t)‖L ≤ ω(t, λ1) for all t ≥ 0.
(b) We observe that

(−∆)
1
2S ∗ g(t) =

∞∑
n=1

λ
1
2
n

∫ t

0

ω(t− τ, λn)gn(τ)dτϕn, (2.17)

where gn(t) = (g(t), ϕn). Using the Hölder inequality, we get

λn

(∫ t

0

ω(t− τ, λn)gn(τ)dτ

)2

≤ λn
∫ t

0

ω(t− τ, λn)dτ

∫ t

0

ω(t− τ, λn)|gn(τ)|2dτ

≤ (1− ω(t, λn))

∫ t

0

ω(t− τ, λn)|gn(τ)|2dτ

≤
∫ t

0

ω(t− τ, λ1)|gn(τ)|2dτ,
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thanks to Proposition 2.1(b). So

‖(−∆)
1
2S ∗ g(t)‖2 =

∞∑
n=1

λn

(∫ t

0

ω(t− τ, λn)gn(τ)dτ

)2

≤
∞∑
n=1

∫ t

0

ω(t− τ, λ1)|gn(τ)|2dτ

=

∫ t

0

ω(t− τ, λ1)‖g(τ)‖2dτ,

which implies (2.16). In order to show (−∆)
1
2S ∗ g ∈ C([0, T ];L2(Ω)), it suffices

to check that series (2.17) is uniformly convergent on [0, T ]. Since g is continuous,
the series

∑∞
n=1 |gn(τ)|2 is uniformly convergent on [0, T ]. That means, for any

ε > 0, there exists Nε ∈ N such that
∑N+p
n=N |gn(τ)|2 < ε for all N ≥ Nε, p ∈ N and

τ ∈ [0, T ]. It follows that

N+p∑
n=N

λn

(∫ t

0

ω(t− τ, λn)gn(τ)dτ

)2

≤
N+p∑
n=N

∫ t

0

ω(t− τ, λ1)|gn(τ)|2dτ

=

∫ t

0

ω(t− τ, λ1)

N+p∑
n=N

|gn(τ)|2dτ ≤ λ−1
1 ε,

for all t ∈ [0, T ], which guarantees the uniform convergence of (2.17) on [0, T ].
(c) Let r(·, λ) be the solution of (2.8) with θ = λ and `(t) = 1+λγ−1m(t). Then,

due to the assumption that m is nonincreasing, we have

r(t, λ) + λ(1 + λγ−1m(t))

∫ t

0

r(τ, λ)dτ ≤ 1 + λγ−1m(t).

In addition, it follows from (2.9) that∫ t

0

r(τ, λ)dτ = λ−1(1− ω(t, λ)) ≥ t+ λγ−1(1 ∗m)(t)

1 + λt+ λγ(1 ∗m)(t)
,

in accordance with Proposition 2.1(a). Hence

r(t, λ) ≤ [1 + λγ−1m(t)]

[
1− λt+ λγ(1 ∗m)(t)

1 + λt+ λγ(1 ∗m)(t)

]
=

1 + λγ−1m(t)

1 + λt+ λγ(1 ∗m)(t)
.

(2.18)

Considering the series

∞∑
n=1

ω′(t, λn)ξnϕn, t > 0, ξn = (ξ, ϕn), ξ ∈ L2(Ω), (2.19)

we see that

|ω′(t, λn)| = λnr(t, λn)

≤ λn + λγnm(t)

1 + λnt+ λγn(1 ∗m)(t)
≤ λn + λγnm(t)

λnt+ λγntm(t)
= t−1, ∀t > 0.
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thanks to (2.18) and the fact that 1 ∗ m(t) ≥ tm(t) for t > 0. This ensures the
uniform convergence of series (2.19) on [ε, T ] and it holds that

S′(t)ξ =

∞∑
n=1

ω′(t, λn)ξnϕn, ‖S′(t)ξ‖ ≤ t−1‖ξ‖, ∀t > 0.

(d) It follows from Proposition 2.1 that λnω(t, λn) ≤ t−1 for all t > 0. Then

‖∆S(t)ξ‖2 =

∞∑
n=1

[λnω(t, λn)]2ξ2
n ≤ t−2‖ξ‖2,

which infers that the series

∆S(t)ξ =

∞∑
n=1

λnω(t, λn)ξnϕn

is uniformly convergent on [ε, T ] for any ε ∈ (0, T ). Thus ∆S(·)ξ ∈ C((0, T ];L2(Ω)).
On the other hand, we see that∫ t

0

∆S(τ)ξdτ = −
∞∑
n=1

∫ t

0

λnω(τ, λn)ξndτϕn. (2.20)

Then

‖
∫ t

0

∆S(τ)ξdτ‖2 =

∞∑
n=1

(∫ t

0

λnω(τ, λn)dτ

)2

ξ2
n

≤
∞∑
n=1

(1− ω(t, λn))2ξ2
n ≤ ‖ξ‖2,

due to Proposition 2.1(b), which implies that ∆S(·)ξ ∈ L1(0, T ;L2(Ω)). The proof
is complete. �

Based on the properties of S(t) stated in Lemma 2.3, we will show that the
Cauchy operator

Q : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω)),

Q(g)(t) =

∫ t

0

S(t− τ)g(τ)dτ, (2.21)

is compact in the next lemma.

Lemma 2.4. Let (M) hold. If the function m is nonincreasing and m(0+) = ∞,
then the operator Q defined by (2.21) is compact.

Proof. LetD ⊂ C([0, T ];L2(Ω)) be a bounded set. We first testify that (−∆)
1
2Q(D)(t)

is bounded in L2(Ω) for each t ≥ 0. Indeed, by using Lemma 2.3(b), we get

‖(−∆)
1
2Q(g)(t)‖ ≤

∫ t

0

ω(t− τ, λ1)‖g(τ)‖2dτ, ∀t ≥ 0,

which ensures the boundedness of (−∆)
1
2Q(D)(t) in L2(Ω) for all t ≥ 0. Since the

embedding D((−∆)
1
2 ) ↪→ L2(Ω) is compact, we obtain the relative compactness of

Q(D)(t) for each t ≥ 0.
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Now we show that Q(D) is equicontinuous. Let g ∈ D, t ∈ (0, T ), and h ∈
(0, T − t], then one sees that

‖Q(g)(t+ h)−Q(g)(t)‖ ≤
∫ t

0

‖[S(t+ h− τ)− S(t− τ)]g(τ)‖dτ

+

∫ t+h

t

‖S(t+ h− τ)g(τ)‖dτ

= I1(t) + I2(t).

It is easily seen that I2(t) → 0 as h → 0 uniformly in g ∈ D. Regarding I1(t), we
observe that

‖[S(t+ h− τ)− S(t− τ)]g(τ)‖ = ‖
∫ 1

0

hS′(t− τ + θh)g(τ)dθ‖

≤ h
∫ 1

0

‖S′(t− τ + θh)‖L‖g(τ)‖dθ

≤ h
∫ 1

0

‖g(τ)‖dθ
t− τ + θh

,

thanks to the mean value formula and Lemma 2.3(c). So

‖[S(t+ h− τ)− S(t− τ)]g(τ)‖ ≤ C‖g‖∞ ln

(
1 +

h

t− τ

)
≤ C‖g‖∞

hβ

β(t− τ)β
, β ∈ (0, 1), (2.22)

here ‖g‖∞ = sup
t∈[0,T ]

‖g(t)‖, and we used the inequality ln(1 + r) ≤ rβ

β
for any

r > 0, β ∈ (0, 1). Employing (2.22), we have

I1(t) ≤ ‖g‖∞h
β

β

∫ t

0

ds

(t− τ)β

≤ ‖g‖∞h
β

β(1− β)
T 1−β → 0 as h→ 0 uniformly in g ∈ D.

Finally, for h ∈ (0, T ), we have

‖Q(g)(h)−Q(g)(0)‖ ≤
∫ h

0

‖S(h− τ)g(τ)‖dτ ≤ h‖g‖∞ → 0 as h→ 0,

uniformly in g ∈ D. Therefore, Q(D) is equicontinuous. We have the conclusion
due to the Arzelà-Ascoli theorem. �

We end this section by proving a Gronwall type inequality, which will be used
in our stability analysis.

Proposition 2.5. Let z be a nonnegative function obeying the inequality

z(t) ≤ ω(t, µ, ν)z0 +

∫ t

0

ω(t− τ, µ, ν)[az(τ) + b(τ)]dτ, t ≥ 0, (2.23)

where a ∈ [0, µ), ν > 0, b ∈ L1
loc(R+). Then

z(t) ≤ ω(t, µ− a, ν)z0 +

∫ t

0

ω(t− τ, µ− a, ν)b(τ)dτ.
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Proof. Let y(t) be the right hand side of (2.23). Then z(t) ≤ y(t) and y solves the
equation

y′(t) + µy(t) + ν(m ∗ y)′(t) = az(t) + b(t), t > 0, y(0) = z0,

as stated by Proposition 2.2. It follows that

y′(t) + (µ− a)y(t) + ν(m ∗ y)′(t) = a[z(t)− y(t)] + b(t), t > 0, y(0) = z0,

and then y admits the representation

y(t) = ω
(
t, µ− a, ν

)
z0

+

∫ t

0

ω(t− τ, µ− a, ν)(a[z(τ)− y(τ)] + b(τ))dτ

≤ ω(t, µ− a, ν)z0 +

∫ t

0

ω(t− τ, µ− a, ν)b(τ)dτ,

thanks to the positivity of ω and the fact that z(τ)− y(τ) ≤ 0 for τ ≥ 0. So we get
the conclusion as desired. �

3. Solvability and regularity

Based on representation (2.14), we give the following definition of mild solution
for (1.1)-(1.3).

Definition 3.1. A function u ∈ C([0, T ];L2(Ω)) is said to be a mild solution to
the problem (1.1)-(1.3) on [0, T ] iff

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ for any t ∈ [0, T ].

We first prove a global solvability result for (1.1)-(1.3).

Theorem 3.1. Let (M) hold. Assume that

(F1) The function f : L2(Ω) → L2(Ω) satisfies f(0) = 0 and is locally Lips-
chitzian, i.e.

‖f(v1)− f(v2)‖ ≤ κ(r)‖v1 − v2‖, ∀v1, v2 ∈ Br,

where Br is the closed ball in L2(Ω) with radius r and center at origin, κ(·)
is a nonnegative function such that lim sup

r→0
κ(r) = ` ∈ [0, λ1).

Then there exists δ > 0 such that the problem (1.1)-(1.3) has a unique mild solution
on [0, T ], provided ‖ξ‖ ≤ δ.

Proof. Let Φ : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω)) be the mapping defined by

Φ(u)(t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ for t ∈ [0, T ].

We first look for ρ > 0 such that Φ(Bρ) ⊂ Bρ, where Bρ is the closed ball in
C([0, T ];L2(Ω)) centered at origin with radius ρ. Taking ε ∈ (0, λ1−`), we can find
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ρ > 0 such that κ(r) ≤ `+ ε for any r ≤ ρ. Considering Φ : Bρ → C([0, T ];L2(Ω)),
we have

‖Φ(u)(·, t)‖ ≤ ‖S(t)ξ‖+

∫ t

0

‖S(t− τ)‖L‖f(u(·, τ))‖dτ

≤ ω(t, λ1)‖ξ‖+

∫ t

0

ω(t− τ, λ1)κ(ρ)‖u(·, τ)‖dτ

≤ ω(t, λ1)‖ξ‖+ (`+ ε)ρ

∫ t

0

ω(t− τ, λ1)dτ

≤ ω(t, λ1)‖ξ‖+ (`+ ε)ρλ−1
1 (1− ω(t, λ1))

= ω(t, λ1)[‖ξ‖ − (`+ ε)ρλ−1
1 ] + (`+ ε)ρλ−1

1 , ∀u ∈ Bρ, t ∈ [0, T ],

here we used Lemma 2.3(1) and Proposition 2.1(2). Choosing ‖ξ‖ ≤ δ := `ρλ−1
1 ,

we see that

‖Φ(u)(·, t)‖ ≤ (`+ ε)ρλ−1
1 ≤ ρ, ∀u ∈ Bρ, t ∈ [0, T ],

which implies Φ(Bρ) ⊂ Bρ. We now prove that Φ is a contraction mapping on Bρ.
For u1, u2 ∈ Bρ, one gets

‖Φ(u1)(·, t)− Φ(u2)(·, t)‖ ≤
∫ t

0

ω(t− τ, λ1)‖f(u1(·, τ))− f(u2(·, τ))‖dτ

≤ κ(ρ)

∫ t

0

ω(t− τ, λ1)‖u1(·, τ)− u2(·, τ)‖dτ

≤ (`+ ε)‖u1 − u2‖∞
∫ t

0

ω(t− τ, λ1)dτ

≤ (`+ ε)λ−1
1 (1− ω(t, λ1))‖u1 − u2‖∞, ∀t ∈ [0, T ],

which ensures that

‖Φ(u1)− Φ(u2)‖∞ ≤ (`+ ε)λ−1
1 ‖u1 − u2‖∞.

Hence Φ is a contraction mapping and it admits a fixed point in Bρ, which is a
mild solution to (1.1)-(1.3). In order to testify the uniqueness, we observe that,
if u, v ∈ C([0, T ];L2(Ω)) are solutions of (1.1)-(1.3), then one can assume that
u, v ∈ BR for some R > 0. So

‖u(·, t)− v(·, t)‖ ≤
∫ t

0

ω(t− τ, λ1)κ(R)‖u(·, τ)− v(·, τ)‖dτ

≤ κ(R)

∫ t

0

‖u(·, τ)− v(·, τ)‖dτ, ∀t ∈ [0, T ],

according to the fact that ω(t, λ1) ≤ 1 for all t ≥ 0. By using the Gronwall
inequality, we get ‖u(·, t)− v(·, t)‖ = 0 for all t ∈ [0, T ], which implies u = v. The
proof is complete. �

In the next theorem, we show an existence result without Lipschitz condition.

Theorem 3.2. Let (M) hold. Assume that

(F2) The function f : L2(Ω)→ L2(Ω) is a continuous such that

lim sup
‖v‖→0

‖f(v)‖
‖v‖

= ` ∈ [0, λ1).
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Then there exists δ > 0 such that the problem (1.1)-(1.3) has a unique mild solution
on [0, T ], provided ‖ξ‖ ≤ δ.

Proof. Choosing ε ∈ (0, λ1 − `), we can find ρ > 0 such that ‖f(v)‖ ≤ (` + ε)‖v‖
for any v ∈ Bρ. Arguing as in the proof of Theorem 3.1, we have Φ(Bρ) ⊂ Bρ,
provided ‖ξ‖ ≤ δ = `ρλ−1. Considering Φ : Bρ → Bρ, we see that Φ is a continuous
mapping, thanks to the continuity of f . In addition, one can represent Φ as

Φ(u) = S(·)ξ +Q ◦Nf (u), (3.1)

where Nf is defined by Nf (u)(·, t) = f(u(·, t)), which is continuous as mapping
from C([0, T ];L2(Ω)) into itself. Due to the compactness of the operator Q stated
in Lemma 2.4, we get that Φ is compact. Therefore, Φ admits a fixed point in Bρ,
according to the Schauder fixed point theorem. The proof is complete. �

Remark 3.1. In the case f is globally Lipschitzian, i.e.

‖f(v1)− f(v2)‖ ≤ κ0‖v1 − v2‖, ∀v1, v2 ∈ L2(Ω),

for some κ0 > 0, one can prove the existence and uniqueness of mild solution to
(1.1)-(1.3) by using the contraction mapping principle, regardless the assumption
f(0) = 0 and the smallness of initial data (see, e.g. [11, Theorem 4.2]).

We are in a position to show the first result on regularity of mild solution to
(1.1)-(1.3).

Theorem 3.3. Assume that m satisfies (M) with additional conditions that, m is
nonincreasing and m(0+) =∞. If f : L2(Ω)→ L2(Ω) is locally Lipschitzian, i.e.

‖f(v1)− f(v2)‖ ≤ κ(r)‖v1 − v2‖, ∀v1, v2 ∈ Br,

where κ(·) is a nonnegative function, and u is a mild solution to (1.1)-(1.3) on
[0, T ], then u ∈ C1((0, T ];L2(Ω)).

Proof. The proof consists of two steps.
Step 1. We show that u is Hölder continuous on (0, T ]. By assumption, the resolvent
family S(·) is continuously differentiable on (0,∞) and

‖S′(t)‖L ≤ t−1, for all t > 0,

thanks to Lemma 2.3.
For t ∈ (0, T ] and h ∈ (0, T − t), we have

‖u(·, t+ h)− u(·, t)‖ ≤ ‖[S(t+ h)− S(t)]ξ‖

+

∫ t+h

t

‖S(t+ h− τ)f(u(·, τ))‖dτ

+

∫ t

0

‖[S(t+ h− τ)− S(t− τ)]f(u(·, τ))‖dτ

= E1(t) + E2(t) + E3(t).

Using the mean value formula, we have

[S(t+ h)− S(t)]ξ = h

∫ 1

0

S′(t+ ζh)ξdζ.
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Then

E1(t) = ‖[S(t+ h)− S(t)]ξ‖ ≤ h‖ξ‖
∫ 1

0

dζ

t+ ζh

= M‖ξ‖ ln

(
1 +

h

t

)
≤ ‖ξ‖β−1

(
h

t

)β
, for any β ∈ (0, 1),

where we used the inequality ln(1 + r) ≤ rβ

β
for all r > 0, β ∈ (0, 1).

Dealing with E2(t), we put R = ‖u‖∞ and make use of the inequality

‖f(u(·, t))‖ ≤ κ(R)‖u(·, t)‖+ ‖f(0)‖ ≤ κ(R)R+ ‖f(0)‖.

So

E2(t) ≤
∫ t+h

t

‖f(u(·, τ))‖dτ ≤ [κ(R)R+ ‖f(0)‖]h

≤ [κ(R)R+ ‖f(0)‖]T 1−βhβ .

Regarding E3(t), we note that

[S(t+ h− τ)− S(t− τ)]f(u(·, τ)) = h

∫ 1

0

S′(t− τ + ζh)f(u(·, τ))dζ.

Then by the same argument used to estimate E1(t), we obtain

‖[S(t+ h− τ)− S(t− τ)]f(u(·, τ))‖ ≤ [κ(R)R+ ‖f(0)‖]β−1

(
h

t− τ

)β
.

Therefore,

E3(t) ≤ [κ(R)R+ ‖f(0)‖]β−1hβ
∫ t

0

dτ

(t− τ)β

= [κ(R)R+ ‖f(0)‖]β−1(1− β)−1T 1−βhβ .

Summing up, we get

E1(t) + E2(t) + E3(t) ≤ (C1t
−β + C2)hβ ,

where

C1 = ‖ξ‖β−1,

C2 = [κ(R)R+ ‖f(0)‖]T 1−β(1 + β−1(1− β)−1).

Step 2. We now prove that u is continuously differentiable on (0, T ]. Writing

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ = u1(t) + u2(t),

we see that u1 = S(·)ξ ∈ C1((0, T ];L2(Ω)) as stated in Lemma 2.3(c). In addition,
we have

∂tu2(t) = f(u(·, t)) +

∫ t

0

S′(t− τ)f(u(·, τ))dτ,
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where the second term makes sense by the following reasoning

‖
∫ t

0

S′(t− τ)f(u(·, τ))dτ‖ ≤ ‖
∫ t

0

S′(t− τ)[f(u(·, τ))− f(u(·, t))]dτ‖

+ ‖
∫ t

0

S′(t− τ)f(u(·, t))dτ‖

≤
∫ t

0

‖S′(t− τ)‖L‖f(u(·, τ))− f(u(·, t))‖dτ

+ ‖(S(t)− I)f(u(·, t))‖

≤
∫ t

0

(t− τ)−1(C1τ
−β + C2)(t− τ)βdτ

+ ‖(S(t)− I)f(u(·, t))‖

≤
∫ t

0

(t− τ)β−1(C1τ
−β + C2)dτ + ‖(S(t)− I)f(u(·, t))‖

<∞, for all t ≥ 0,

thanks to the result of Step 1. It remains to show that the mapping

F (t) =

∫ t

0

S′(t− τ)f(u(·, τ))dτ

is continuous on (0, T ]. Let t > 0 and h ∈ (0, T − t), then

‖F (t+ h)− F (t)‖ ≤ ‖
∫ t+h

t

S′(t+ h− τ)f(u(·, τ))dτ‖

+ ‖
∫ t

0

[S′(t+ h− τ)− S′(t− τ)]f(u(·, t))dτ‖

+ ‖
∫ t

0

[S′(t+ h− τ)− S′(t− τ)][f(u(·, τ))− f(u(·, t))]dτ‖

= F1(t) + F2(t) + F3(t).

Obviously, F1(t) → 0 as h → 0 due to the fact that τ 7→ S′(t − τ)f(u(·, τ)) is
integrable on (0, t) for any t ∈ (0, T ). Regarding F2(t), we see that

F2(t) = ‖[S(t+ h)− S(t) + I − S(h)]f(u(·, t))‖ → 0 as h→ 0.

Dealing with F3(t), we get

F3(t) ≤ κ(R)

∫ t

0

‖S′(t+ h− τ)− S′(t− τ)‖L‖u(·, t)− u(·, τ)‖dτ

≤ κ(R)

∫ t

0

‖S′(t+ h− τ)− S′(t− τ)‖L(C1τ
−β + C2)(t− τ)βdτ.
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Let us denote Qh(τ) = ‖S′(t + h − τ) − S′(t − τ)‖L(C1τ
−β + C2)(t − τ)β , then

lim
h→0

Qh(τ) = 0 for any τ ∈ (0, t). Moreover, we observe that

Qh(τ) ≤ [‖S′(t+ h− τ)‖L + ‖S′(t− τ)‖L](C1τ
−β + C2)(t− τ)β

≤ [(t+ h− τ)−1 + (t− τ)−1](C1τ
−β + C2)(t− τ)β

≤ 2(t− τ)−1(C1τ
−β + C2)(t− τ)β

= 2(t− τ)β−1(C1τ
−β + C2) = Q∗(τ).

Since Q∗ ∈ L1(0, t), one can utilize the Lebesgue dominated convergence theorem
to claim that

F3(t) ≤ κ(R)

∫ t

0

Qh(τ)dτ → 0 as h→ 0.

Thus F is continuous on (0, T ] and the theorem is proved. �

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Then the mild solution
of (1.1)-(1.3) on [0, T ] satisfies ∆u ∈ C((0, T ];L2(Ω)).

Proof. Let u be a mild solution (1.1)-(1.3), then

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ = u1(t) + u2(t), ∀t ∈ [0, T ].

By Lemma 2.3(d), we get ∆u1 ∈ C((0, T ];L2(Ω)). In addition, let R = ‖u‖∞ then

‖∆u2(t)‖ = ‖
∫ t

0

∆S(t− τ)f(u(·, τ))dτ‖

≤ ‖
∫ t

0

∆S(t− τ)[f(u(·, τ))− f(u(·, t))]dτ‖+ ‖
∫ t

0

∆S(t− τ)f(u(·, t))dτ‖

≤ κ(R)

∫ t

0

(t− τ)−1‖u(·, τ)− u(·, t)‖+ ‖
∫ t

0

∆S(τ)f(u(·, t))dτ‖

≤ κ(R)

∫ t

0

(t− τ)β−1(C1τ
−β + C2)dτ + ‖f(u(·, t))‖,

here we employed the Lipschitz condition on f , the Hölder continuity shown in the
proof of Theorem 3.3, and the estimates stated in Lemma 2.3(d). This means, ∆u2

makes sense. It remains to check that the mapping t 7→ ∆u2(t) is continuous on
(0, T ]. Let t > 0 and h ∈ (0, T − t], then

‖∆u2(t+ h)−∆u2(t)‖ ≤ ‖
∫ t+h

t

∆S(t+ h− τ)f(u(·, τ))dτ‖

+ ‖
∫ t

0

[∆S(t+ h− τ)−∆S(t− τ)]f(u(·, t))dτ‖

+ ‖
∫ t

0

[∆S(t+ h− τ)−∆S(t− τ)][f(u(·, τ)− f(u(·, t))]dτ‖

= G1(t) +G2(t) +G3(t).

Since the function τ 7→ ∆S(t+h− τ)f(u(·, τ)) is integrable, we see that G1(t)→ 0
as h→ 0.
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For G2(t), we have

G2(t) = ‖
∫ t+h

h

∆S(τ)f(u(·, t))dτ −
∫ t

0

∆S(τ)f(u(·, t))dτ‖

≤ ‖
∫ t+h

t

∆S(τ)f(u(·, t))dτ‖+ ‖
∫ h

0

∆S(τ)f(u(·, t))dτ‖

→ 0 as h→ 0,

according to the fact that τ 7→ ∆S(τ)ξ is integrable for any ξ ∈ L2(Ω), as stated
in Lemma 2.3(d).

Concerning G3(t), we observe that

Gh(τ) := ‖[∆S(t+ h− τ)−∆S(t− τ)][f(u(·, τ)− f(u(·, t))]‖ → 0 as h→ 0,

for all τ ∈ (0, t), thanks to the fact that ∆S(·)ξ ∈ C((0, T ];L2(Ω)) for any ξ ∈
L2(Ω). Moreover, we get

Gh(τ) ≤ [(t+ h− τ)−1 + (t− τ)−1]κ(R)‖u(·, t)− u(·, τ)‖

≤ 2κ(R)(t− τ)β−1(C1τ
−β + C2),

according to the Hölder continuity of u and the estimate of ∆S(t) given by Lemma
2.3(d). Thus

G3(t) ≤
∫ t

0

Gh(τ)dτ → 0 as h→ 0,

due to the Lebesgue dominated convergence theorem. This completes the proof. �

Theorem 3.5. Assume that the assumptions of Theorem 3.3 are satisfied. Then
the mild solution of (1.1)-(1.3) on [0, T ] obeys m ∗ (−∆)γu ∈ C1((0, T ];L2(Ω)).
Consequently, this solution is classical.

Proof. Noting that

u(·, t) =

∞∑
n=1

[ω(t, λn)ξn + ω(·, λn) ∗ Fn(t)]ϕn,

=

∞∑
n=1

un(t)ϕn,

where Fn(t) = (f(u(·, t)), ϕn), we have

m ∗ (−∆)γu(·, t) =

∞∑
n=1

λγn(m ∗ un)(t)ϕn.

So it suffices to show that, the series
∞∑
n=1

λγn(m ∗ un)′(t)ϕn is uniformly convergent

on [ε, T ] for any ε ∈ (0, T ). We first see that λγn[m ∗ ω(·, λn)]′(t) = −(ω′(t, λn) +
λnω(t, λn)) thanks to the relaxation equation, then

λγn(m ∗ un)′(t) = λγn[m ∗ ω(·, λn)ξn +m ∗ ω(·, λn) ∗ Fn]′(t)

= −[ω′(t, λn)ξn + λnω(t, λn)ξn]

− [ω′(·, λn) ∗ Fn + λnωn(·, λn) ∗ Fn](t).
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One can write
∞∑
n=1

λγn(m ∗ un)′(t)ϕn = −(σ1 + σ2 + σ3 + σ4),

where

• σ1 =
∞∑
n=1

ω′(t, λn)ξnϕn is uniformly convergent on [ε, T ] since σ1 = S′(t)ξ

and S(·)ξ ∈ C1((0, T ];L2(Ω)).

• σ2 =
∞∑
n=1

λnω(t, λn)ξnϕn is uniformly convergent on [ε, T ] to −∆S(t)ξ due

to that ∆S(·)ξ ∈ C((0, T ];L2(Ω)).

• σ3 =
∞∑
n=1

ω′(·, λn) ∗ Fn(t)ϕn =
∫ t

0
S′(t− τ)f(u(·, τ))dτ which is continuous

in t ∈ (0, T ] as proved in Theorem 3.3. So σ3 is uniformly convergent on
[ε, T ].

• σ4 =
∞∑
n=1

λnωn(·, λn)∗Fn(t) is uniformly convergent on [ε, T ] to −
∫ t

0
∆S(t−

τ)f(u(·, τ))dτ , which is continuous in t ∈ (0, T ] as testified in the proof of
Theorem 3.4.

In summary, we get

∂t(m ∗ (−∆)γu)(t) = −(σ1 + σ2 + σ3 + σ4)

= −S′(t)ξ + ∆S(t)ξ −
∫ t

0

S′(t− τ)f(u(·, τ))dτ

+

∫ t

0

∆S(t− τ)f(u(·, τ))dτ

= ∆u(·, t)− ∂tu(·, t) + f(u(·, t)), ∀t ∈ (0, T ],

which ensures that u satisfies (1.1). The theorem is proved. �

4. Stability results

In this section, we show some results on the asymptotic stability, dissipativity
and the convergence to the solution of the elliptic equation −∆v = f(v).

Theorem 4.1. Let the hypotheses of Theorem 3.1 hold. Then the zero solution to
(1.1) is asymptotically stable.

Proof. Taking ρ, δ and ε ∈ (0, λ1 − `) from the proof of Theorem 3.1, we see that
for any initial data ‖ξ‖ ≤ δ, there exists a unique solution u of (1.1)-(1.3) such that
‖u(·, t)‖ ≤ ρ and ‖f(u(·, t))‖ ≤ (`+ ε)‖u(·, t)‖ for any t ≥ 0. Then

‖u(·, t)‖ ≤ ‖S(t)ξ‖+

∫ t

0

‖S(t− τ)‖‖f(u(·, τ))‖dτ

≤ ω(t, λ1, λ
γ
1)‖ξ‖+

∫ t

0

ω(t− τ, λ1, λ
γ
1)(`+ ε)‖u(·, τ)‖dτ,

thanks to Proposition 2.1. Applying the Gronwall type inequality given by Propo-
sition 2.5, we get

‖u(·, t)‖ ≤ ω(t, λ1 − `− ε, λγ1)‖ξ‖, ∀t ≥ 0,
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which implies that the zero solution of (1.1) is asymptotically stable, according to
the fact that λ1 − `− ε > 0 and ω(t, µ)→ 0 as t→∞ for any µ > 0. �

If the nonlinearity function f is globally Lipschitzian, we have a stronger result,
whose proof is simply utilizing Proposition 2.5.

Theorem 4.2. Let (M) hold. If f satisfies the Lipschitz condition

‖f(v1)− f(v2)‖ ≤ κ0‖v1 − v2‖, ∀v1, v2 ∈ L2(Ω),

where κ0 ∈ [0, λ1), then every solution of (1.1)-(1.2) is asymptotically stable.

In the next theorem, we show a result on dissipativity of (1.1)-(1.3).

Theorem 4.3. Let (M) hold. If f satisfies the condition

‖f(v)‖ ≤ a‖v‖+ b, ∀v ∈ L2(Ω),

where a ∈ [0, λ1), and b is a nonnegative constant. Then there exists an absorbing
set of mild solutions to (1.1)-(1.3) for any initial data.

Proof. Let u be a mild solution of (1.1)-(1.3). Then

‖u(·, t)‖ ≤ ω(t, λ1)‖ξ‖+

∫ t

0

ω(t− τ, λ1)(a‖u(·, τ)‖+ b)dτ.

By using Proposition 2.5 again, we obtain

‖u(·, t)‖ ≤ ω(t, λ1 − a, λγ1)‖ξ‖+ b

∫ t

0

ω(t− τ, λ1 − a, λγ1)dτ

≤ ω(t, λ1 − a, λγ1)‖ξ‖+
b

λ1 − a
(1− ω(t, λ1 − a, λγ1))

≤ ω(t, λ1 − a, λγ1)‖ξ‖+
b

λ1 − a
,

thanks to Proposition 2.1(b). It follows that the closed ball BR ⊂ L2(Ω) with

R =
b

λ1 − a
+ 1 is an absorbing set of solutions to (1.1)-(1.3) for any initial data.

The proof is complete. �

We are in a position to show a result on the convergence of solution of (1.1)-(1.3)
to equilibrium point.

Theorem 4.4. Let (M) hold. Assume that ∂Ω ∈ C2 and f : L2(Ω) → L2(Ω) is
continuous and locally bounded. If a mild solution of (1.1)-(1.3) obeys lim

t→∞
u(·, t) =

u∗ in L2(Ω), then u∗ is a strong solution of the elliptic problem

−∆v = f(v) in Ω, (4.1)

v = 0 on ∂Ω, (4.2)

provided that zm̂(z) → 0 as z → 0 in C, where m̂ is the Laplace transform of m.
Conversely, if f satisfies the Lipschitz condition

‖f(v1)− f(v2)‖ ≤ κ0‖v1 − v2‖, ∀v1, v2 ∈ L2(Ω), (4.3)

where κ0 ∈ [0, λ1), then the solution of (1.1)-(1.3) converges to the unique strong so-
lution of (4.1)-(4.2), provided that m is nonincreasing, m(0+) =∞ and lim

t→∞
m(t) =

0.
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Proof. Let u be a mild solution to (1.1)-(1.3) such that lim
t→∞

u(·, t) = u∗ in L2(Ω).

Then

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)[f(u(·, τ))− f(u∗)]dτ +

∫ t

0

S(t− τ)f(u∗)dτ.

Obviously, ‖S(t)ξ‖ ≤ ω(t, λ1)‖ξ‖ → 0 as t → ∞. On the other hand, since
f(u(·, t)) → f(u∗) as t → ∞ in L2(Ω), there exists T > 0 such that ‖f(u(·, t)) −
f(u∗)‖ < ε for all t ≥ T , here ε > 0 is given. So for any t ≥ T , we get

‖
∫ t

0

S(t− τ)[f(u(·, τ))− f(u∗)]dτ‖ ≤
∫ T

0

ω(t− τ, λ1)‖f(u(·, τ))− f(u∗)‖dτ

+

∫ t

T

ω(t− τ, λ1)‖f(u(·, τ))− f(u∗)‖dτ

≤
∫ T

0

ω(t− τ, λ1)‖f(u(·, τ))− f(u∗)‖dτ

+ ε

∫ t

T

ω(t− τ, λ1)dτ

≤ C
∫ T

0

ω(t− τ, λ1)dτ + ε

∫ t

T

ω(t− τ, λ1)dτ,

for some C > 0, thanks to the local boundedness of f . Since ω(·, λ1) ∈ L1(R+), we
have

C

∫ T

0

ω(t− τ, λ1)dτ = C

∫ t

t−T
ω(τ, λ1)dτ < Cε,

for t large enough. In addition, we see that

ε

∫ t

T

ω(t− τ, λ1)dτ = ε

∫ t−T

0

ω(τ, λ1)dτ < ελ−1
1 .

Thus ∫ t

0

S(t− τ)[f(u(·, τ))− f(u∗)]dτ → 0 as t→∞.

It follows that

lim
t→∞

u(·, t) = lim
t→∞

∫ t

0

S(t− τ)f(u∗)dτ =

∫ ∞
0

S(τ)f(u∗)dτ.

Equivalently, one has

u∗ = Ŝ(0)f(u∗), (4.4)

where Ŝ is the Laplace transform of the resolvent family S(·), i.e.

Ŝ(z)ξ =

∫ ∞
0

e−ztS(t)ξdt, ξ ∈ L2(Ω).

Since S(t) is the resolvent operator for the Cauchy problem

∂tu+ ∂t(m ∗ (−∆)γu)−∆u = 0 in Ω, t > 0,

u = 0 on ∂Ω, t ≥ 0,

u(·, 0) = ξ in Ω,
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we get u(·, t) = S(t)ξ and then Ŝ(z)ξ = û(·, z). Taking the Laplace transform of
the last system, we have

zû+ zm̂(z)(−∆)γ û−∆û = ξ.

Thus Ŝ(z) = (zI + zm̂(z)(−∆)γ −∆)
−1

and Ŝ(0) = (−∆)−1. Plugging into (4.4)
yields u∗ = (−∆)−1f(u∗). Employing the regularity result in [10, Sect. 6.3.2] with
the assumption ∂Ω ∈ C2, we get u∗ ∈ H2(Ω). Thus u∗ is a strong solution of
(4.1)-(4.2).

We now prove the converse statement. Assume that (4.3) holds, m is nonincreas-
ing, m(0+) = ∞ and m(t) → 0 as t → ∞. By Remark 3.1 and Theorem 3.5, the
problem (1.1)-(1.3) has a unique classical solution. On the other hand, due to [8,
Theorem 7.4.1], the problem (4.1)-(4.2) has a unique weak solution u∗ ∈ H1

0 (Ω) if
the Lipschitz constant κ0 satisfies κ0 < C−2

e , where Ce is the constant of embedding
H1

0 (Ω) ⊂ L2(Ω). By the smoothness of ∂Ω, we have

C−2
e = inf

u∈H1
0 (Ω)\{0}

‖∇u‖2

‖u‖2
= λ1.

Observe that f(u∗) ∈ L2(Ω). Then using the regularity result in [10, Sect. 6.3.2]
again, we obtain u∗ ∈ H2(Ω) and hence u∗ is a unique strong solution of (4.1)-(4.2).

We now combine (1.1)-(1.3) with (4.1)-(4.2) to obtain

∂t(u− u∗) + ∂t[m ∗ (−∆)γ(u− u∗)]−∆(u− u∗) = f(u)− f(u∗)−m(−∆)γu∗

in Ω, with the boundary condition

u− u∗ = 0 on ∂Ω,

and the initial condition

u(·, 0)− u∗ = ξ − u∗ in Ω.

Then u− u∗ admits the following representation

u(·, t)− u∗ = S(t)(ξ − u∗) +

∫ t

0

S(t− τ)[f(·, τ)− f(u∗)−m(τ)(−∆)γu∗]dτ,

and hence

‖u(·, t)− u∗‖ ≤ ω(t, λ1)‖ξ − u∗‖

+

∫ t

0

ω(t− τ, λ1)[κ0‖u(·, τ)− u∗‖+m(τ)‖(−∆)γu∗‖]dτ.

Utilizing the Gronwall type inequality in Proposition 2.5, we get

‖u(·, t)− u∗‖ ≤ ω(t, λ1 − κ0, λ
γ
1)‖ξ − u∗‖

+ ‖(−∆)γu∗‖
∫ t

0

ω(t− τ, λ1 − κ0, λ
γ
1)m(τ)dτ.

Since ω(t, λ1 − κ0, λ
γ
1)→ 0 as t→∞, it is sufficient to testify that

M(t) =

∫ t

0

ω(t− τ, λ1 − κ0, λ
γ
1)m(τ)dτ → 0 as t→∞.
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By assumption, for given ε > 0, there is T > 0 such that m(t) < ε for all t ≥ T .
Then for any t ≥ T , one gets

M(t) ≤
∫ T

0

ω(t− τ, λ1 − κ0, λ
γ
1)m(τ)dτ + ε

∫ t

T

ω(t− τ, λ1 − κ0, λ
γ
1)dτ

≤ ω(t− T, λ1 − κ0, λ
γ
1)

∫ T

0

m(τ)dτ + ε

∫ t−T

0

ω(τ, λ1 − κ0, λ
γ
1)dτ

≤ ω(t− T, λ1 − κ0, λ
γ
1)

∫ T

0

m(τ)dτ + ε(λ1 − κ0)−1,

thanks to Proposition 2.1(b). This implies

M(t) ≤ [1 + (λ1 − κ0)−1]ε,

provided t chosen such that

ω(t− T, λ1 − κ0, λ
γ
1)

∫ T

0

m(τ)dτ < ε,

which is possible since ω(t−T, λ1−κ0, λ
γ
1)→ 0 as t→∞. The proof is complete. �
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