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Abstract. We completely compute the Margolis homology of the Dickson
algebra Dn, i.e. the homology of Dn with the differential to be the Milnor
operation Qj , for every n and j. The motivation for this problem is that,
the Margolis homology of the Dickson algebra plays a key role in study of the
Morava K-theory K(j)∗(BSm) of the symmetric group on m letters Sm.

We show that Pengelley-Sinha’s conjecture on H∗(Dn; Qj) for n ≤ j is true
if and only if n = 1 or 2. For 3 ≤ n ≤ j, our result proves that this conjecture
turns out to be false since the occurrence of some “critical elements” hs1,...,sk ’s
of degree (2j+1 − 2n) +

∑k

i=1(2n − 2si ) in this homology for 0 < s1 < · · · <

sk < n and k > 1.

Let A be the mod 2 Steenrod algebra, genenated by the cohomology operations
Sqj with j ≥ 0 and subject to the Adem relation with Sq0 = 1. Further A is a Hopf
algebra, whose coproduct is given by the formula ∆(Sqj) =

∑n
i=0 Sq

i ⊗ Sqj−i.

Let A∗ be the Hopf algebra, which is dual to A. Let ξj = (Sq2j · · ·Sq2Sq1)∗ be
the Milnor element of degree 2j+1 − 1 in A∗, for j ≥ 0, where the duality is taken
with respect to the admissible basis of A. According to Milnor [4], as an algebra,
A∗ ∼= F2[ξ0, ξ1, . . . , ξj , . . . ], the polynomial algebra in infinitely many generators
ξ0, ξ1, . . . , ξj , . . . .

Let Qj , for j ≥ 0, be the Milnor operation (see [4]) of degree (2j+1 − 1) in A,
which is dual to ξj with respect to the basis of A∗ consisting of all monomials in
the generators ξ0, ξ1, . . . , ξj , . . . . Remarkably, Qj is a differential, that is Q2

j = 0
for every j. In fact, Q0 = Sq1, Qj = [Qj−1, Sq

2j ], the commutator of Qj−1 and
Sq2j in the Steenrod algebra A, for j > 0.

In the article, we compute the Margolis homology of the Dickson algebra Dn,
i.e. the homology of Dn with the differential to be the Milnor operation Qj .

The real goal that we persue is to compute the Morava K-theory K(j)∗(BSm) of
the symmetric group onm letters Sm. It was well known that, the Milnor operation
is the first non-zero differential, Qj = d2j+1−1, in the Atiyah-Hirzebruch spectral
sequence for computing K(j)∗(X), the Morava K-theory of a space X. So, the Qj-
homology of H∗(X) is the E2j+1-page in the Atiyah-Hirzebruch spectral sequence
for K(j)∗(X). (See e.g. Yagita [10, §2], although the fact was well known before
this article.)
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A key step in the determination of the symmetric group’s cohomology is to
apply the Quillen restiction from this cohomology to the cohomologies of all ele-
mentary abelian subgroups of the symmetric group. For m = 2n and the “generic”
elementary abelian 2-subgroup (Z/2)n of the symmetric group S2n , the image of
the restriction H∗(BS2n) → H∗(B(Z/2)n) is exactly the Dickson algebra Dn (see
Mùi [5, Thm II.6.2]). So, the E2j+1-page in the Atiyah-Hirzebruch spectral se-
quence for K(j)∗(BS2n) maps to the Margolis homology H∗(Dn;Qj). This is why
the Margolis homology of the Dickson algebra is taken into account.

Let us study the range n Dickson algebra of invariants

Dn = F2[x1, . . . , xn]GL(n,F2),

where each generator xi is of degree 1, and the general linear group GL(n,F2) acts
canonically on F2[x1, . . . , xn]. Following Dickson [1], let us consider the determinant

[e1, . . . , en] = det

x
2e1
1 . . . x2e1

n

·
. . . ·

x2en

1 . . . x2en

n


for non-negative integers e1, . . . , en. Then ω[e1, . . . , en] = det(ω)[e1, . . . , en], for
ω ∈ GL(n,F2) (see [1]). Set

Ln,s = [0, 1, . . . , ŝ, . . . , n], (0 ≤ s ≤ n),

where ŝ means s being omitted. The Dickson invariant cn,s of degree 2n − 2s is
originally defined as follows:

cn,s = Ln,s/Ln,n, (0 ≤ s < n).

Dickson proved in [1] that Dn is a polynomial algebra

Dn = F2[cn,0, . . . , cn,n−1].

To be explicit, the Dickson invariant can be expressed as in Hưng-Peterson [3, §2]:

cn,s =
∑

i1+···in=2n−2s

xi1
1 · · ·xin

n ,

where 0 ≤ s < n and the sum is over all sequences i1, . . . , in with ij either 0 or a
power of 2.

For j ≥ n, we are interested in the following elements of the Dickson algebra Dn:

Aj,n,s =
{

[0, . . . , ŝ− 1. . . . , n− 1, j]/Ln,n, for 0 < s ≤ n,
0, for s = 0.

In particular, Aj,n,n = [0, . . . , . . . , n− 2, j]/Ln,n.
In this article, when j and n are fixed, the elements cn,s and Aj,n,s will respec-

tively be denoted by cs and As for abbreviation.

Lemma 1. For 0 ≤ j, 0 ≤ s < n,

Qj(cs) =


c0, 0 ≤ j < n− 1, j = s− 1,
0, 0 ≤ j < n− 1, j 6= s− 1,
c0cs, j = n− 1, 0 ≤ s < n,

c0
(
csA

2
n +A2

s

)
, 0 ≤ s < n ≤ j.
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The action of the Steenrod algebra on the Dickson one is basically computed
in [2]. Related and partial results concerning the lemma can be seen in [7], [9], [8].

The next two theorems are stated in Sinha [6]. Their proofs are straightforward
from Lemma 1.

Theorem 2. For 0 ≤ j < n− 1,
H∗(Dn, Qj) ∼= F2[c2

j+1]⊗ F2[c1, . . . , ĉj+1, . . . , cn−1],
where ĉj+1 means cj+1 being omitted.

Let F2[c1, . . . , cn−1]ev be the F2-submodule of F2[c1, . . . , cn−1] generated by all
the monomials ci1

1 · · · c
in−1
n−1 with i1 + · · ·+ in−1 even.

Theorem 3.
H∗(Dn;Qn−1) ∼= F2[c1, . . . , cn−1]ev.

Proposition 4. For 0 ≤ s1, . . . , sk < n ≤ j,

Qj(cs1 · · · csk
) =

{
c0
(∑k

i=1(cs1 . . . ĉsi
. . . csk

)A2
si

)
, k even,

c0
(
cs1 · · · csk

A2
n +

∑k
i=1(cs1 . . . ĉsi . . . csk

)A2
si

)
, k odd.

Here, ĉsi
means csi

being omitted.

Conjecture 5. (D. Pengelley - D. Sinha, see [6]) For n ≤ j,
H∗(Dn;Qj) ∼= D2

n/
(
Qj(c0), Qj(c0c1) . . . , Qj(c0cn−1)

)
.

Let Dodd
n be the F2-submodule of Dn spanned by all monomials ci0

0 · · · c
in−1
n−1

with at least one of the powers i0, . . . , in−1 odd. Note clearly that Dodd
n is not a

Qj-submodule of Dn, but ImQj ∩Dodd
n is, since Qj vanishes on this module.

Pengelley-Sinha’s conjecture is equivalent to the equality:
KerQj =

(
ImQj ∩Dodd

n

)
⊕D2

n.

In other words, there is no class in H∗(Dn;Qj) represented by an element in Dodd
n .

The following two theorems show that Pengelley-Sinha’s conjecture is true for
n = 1 or 2 and every j.

Theorem 6. For n = 1, 0 ≤ j,

H∗(D1;Qj) ∼= F2[c2
0]/(c2j+1

0 ).

In particular, H∗(D1;Q0) = F2 (this is also a special case of Theorem 3),
H∗(D1;Q1) = Λ(c2

0), where Λ(c2
0) denotes the F2-exterior algebra on c2

0.
Set Λ(c2

0) = Λ(c2
0)/(F2 · 1).

Theorem 7. For n = 2,

H∗(D2;Qj) ∼=


F2[c2

1], for j = 0, 1,
Λ(c2

0)⊕ F2[c2
1], for j = 2,

F2[c2
0, c

2
1]/(c2

0A
2
1, c

2
0A

2
2), for j > 2,

where A1 = (x2
1x

2j

2 + x2j

1 x
2
2)/(x1x

2
2 + x2

1x2), A2 = (x1x
2j

2 + x2j

1 x2)/(x1x
2
2 + x2

1x2).

The cases j = 0, 1 in the previous theorem are special cases of Theorems 2 and 3.

Proposition 8. Pengelley-Sinha’s Conjecture for n ≤ j is true if and only if
1 ≤ n ≤ 2.



4 NGUYỄN H. V. HƯNG

How can we adjust Pengelley-Sinha’s conjecture to make a correct one in the
problem for 3 ≤ n ≤ j?

The critical elements hs1,...,sk
’s defined below in the Margolis homology of the

Dickson algebra Dn, for 0 < s1 < · · · < sk < n and 1 < k, are the main ingredient
in our correction of Pengelley-Sinha’s conjecture for 3 ≤ n ≤ j.

Definition 9. The critical element is defined as follows

hs1,...,sk
=
{∑k

i=1(cs1 . . . ĉsi
. . . csk

)A2
si
, k odd,

cs1 · · · csk
A2

n +
∑k

i=1(cs1 . . . ĉsi
. . . csk

)A2
si
, k even,

for s1, . . . , sk pairwise distinct, with 0 ≤ s1, . . . , sk < n, 3 ≤ n ≤ j.

It should be noted that, hs1,...,sk
∈ Dodd

n if k > 1, for s1, . . . , sk pairwise distinct,
with 0 ≤ s1, . . . , sk < n, and that hs1,...,sk

depends also on n and j. Further, if
s1, . . . , sk are non-zero, then c2

0 divides Qj(c0cs1 · · · csk
) in Dn, and

hs1,...,sk
= 1
c2

0
Qj(c0cs1 · · · csk

).

Qj is a (total) derivation, that is Qj(ab) = Qj(a)b + aQj(b). We study the
s-th partial derivation for 0 ≤ s ≤ n, and its “inverse”, the so-called integral on a
direction. These notions will play key roles in the remaining part of the article.

Definition 10. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n, and
R ∈ Dn. The s-th partial derivation is defined for 0 ≤ s ≤ n as follows:

∂s(cs1 · · · csk
R2) =


c0cs1 · · · csk

A2
nR

2, k odd, s = n,

c0cs1 · · · ĉsi · · · csk
A2

si
R2, s = si,

0, otherwise.

From definition, A0 = 0, it implies ∂0 = 0. Note that, if ∂s(cs1 · · · csk
) 6= 0, then

s should be one of the indices s1, . . . , sk or n.
By Proposition 4, the following is true, not depending on whether k odd or even.

Lemma 11. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n, and
R ∈ Dn. Then

Qj(cs1 · · · csk
R2) =

n∑
s=1

∂s(cs1 · · · csk
)R2.

Definition 12. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n. The
integral on the r-th direction is defined for 0 < r ≤ n and R ∈ Dn as follows:

(i) Ir(c0cs1 · · · csk
R2) =


cs1 · · · csk

R2

A2
n
, k odd, r = n, A2

n|R2,

cs1 · · · csk
cr

R2

A2
r
, r 6= s1, . . . , sk, n, A2

r|R2,

0, otherwise.
(ii) For min{s1, . . . , sk} > 0,

Ir(cs1 · · · csk
R2) = 0.

Lemma 13. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n, 0 < s ≤ n,
and R ∈ Dn. Then

(i) Is∂s(cs1 · · · csk
R2) =

{
cs1 · · · csk

R2, either k odd, s = n, or s ∈ {s1, . . . , sl},
0, otherwise.
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(ii) ∂sIs(c0cs1 · · · csk
R2) =

{
c0cs1 · · · csk

R2, if Is(c0s1 · · · csk
R2) 6= 0,

0, otherwise.

Theorem 14. For 3 ≤ n ≤ j,

KerQj ∩Dodd
n =

(
ImQj ∩Dodd

n

) ⊕
0<s1<···<sk<n

1<k

hs1,...,sk
F2[c2

1, . . . , c
2
n−1].

Here is an explanation for the occurrence of the critical elements in the homology.
If P ∈ Dodd

n , then P is a sum of some terms of the form ct1 · · · ct`
R2, for ` > 0,

t1, . . . , t` are pairwise distinct, 0 ≤ t1, ..., t` < n, and R is a Dickson monomial.
Suppose further P ∈ Dodd

n and Qj(P ) = 0. Let ct1 · · · ct`
R2 be a Dickson

monomial of P , where t1, . . . , t` are pairwise distinct. In other words,

P = ct1 · · · ct`
R2 + others,

where others mean a sum of some other Dickson monomials. So

Qj(P ) = Qj(ct1 · · · ct`
R2) +Qj(others).

To kill Qj(ct1 · · · ct`
R2) so that Qj(P ) = 0, the polynomial P should also contain

IrQj(ct1 · · · ct`
)R2 =

∑n
s=1 Ir∂s(ct1 · · · ct`

)R2 for some r, such that

Ir∂s(ct1 · · · ct`
)R2 6= ct1 · · · ct`

R2,

for every s. (See Definitions 10 and 12.) Recall that, if ∂s(ct1 · · · ct`
) 6= 0, then

s should be one of the indices t1, . . . , t` or n (by Definition 10). The inequality
Ir∂s(ct1 · · · ct`

)R2 6= ct1 · · · ct`
R2, for every s, means that r 6= t1, . . . , t` and n (by

Lemma 13).
Let us take an index r 6∈ {t1, . . . , t`, n}. By Proposition 4, we have

IrQj(ct1 · · · ct`
)R2

=
{
Ir

{
c0
(
ct1 · · · ct`

A2
n +

∑`
i=1(ct1 . . . ĉti

. . . ct`
)A2

ti

)}
R2, ` odd,

Ir

{
c0
(∑`

i=1(ct1 . . . ĉti
. . . ct`

)A2
ti

)}
R2, ` even.

Consider the 2 cases of either ` odd or ` even, and we get(
id+ IrQj

)
(ct1 · · · ct`

)R2 = hr,t1,...,t`

R2

A2
r

.

Now the indices r, t1, . . . , t` are re-denoted and ordered by s1, . . . , sk with k =
`+ 1 and 0 ≤ s1 < · · · < sk < n. In the two cases of either ` being odd or even, we
have (

id+ IrQj

)
(ct1 · · · ct`

)R2 = hr,t1,...,t`

R2

A2
r

= hs1,...,sk

R2

A2
r

.

If s1 = 0, then we get(
id+ IrQj

)
(ct1 · · · ct`

)R2 = h0,s2...,sk

R2

A2
r

= Qj(cs2 · · · csk
)R

2

A2
r

∈ ImQj .

So, it suffices to consider the case of 0 < s1 < · · · < sk < n.
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If R is divisible by c0 in Dn, then R2 is divisible by c2
0 in Dn. We have

hs1,...,sk

R2

A2
r

= c2
0hs1,...,sk

R2

c2
0A

2
r

= Qj(c0cs1 · · · csk
) R2

c2
0A

2
r

∈ ImQj .

If R is not divisible by c0 in Dn, then so is hs1,...,sk

R2

A2
r
. By Proposition 4, the

latter element is not in the image of Qj .
The above argument has shown that if P ∈ KerQj ∩ Dodd

n , then either P ∈
ImQj ∩Dodd

n or P is in the space spanned by hs1,...,sk
F2[c2

1, . . . , c
2
n−1], for 0 < s1 <

· · · < sk < n and k = `+ 1 > 1.
The following theorem is a consequence of the preceding one and the equalities:

Qj(c0) = c2
0A

2
n,

Qj(c0cs) = c2
0A

2
s, (0 < s < n).

Theorem 15. For 3 ≤ n ≤ j,

H∗(Dn;Qj) = D2
n

(c2
0A

2
1, . . . , c

2
0A

2
n)

⊕
0<s1<···<sk<n

1<k

hs1,...,sk
F2[c2

1, . . . , c
2
n−1].

Example 16. For j = n ≥ 3, we have As = cs−1 for 0 < s < n, An = cn−1. So
the critical element, which depends also on n and j, is explicitly given by

hs1,...,sk
=
{∑k

i=1(cs1 . . . ĉsi . . . csk
)c2

si−1, k odd,
cs1 · · · csk

c2
n−1 +

∑k
i=1(cs1 . . . ĉsi . . . csk

)c2
si−1, k even,

for 0 ≤ s1 < · · · < sk < n and 1 < k, where c−1 = 0 by convention. Therefore

H∗(Dn;Qj) = D2
n

(c4
0, c

2
0c

2
1, . . . , c

2
0c

2
n−1)

⊕
0<s1<···<sk<n

1<k

hs1,...,sk
F2[c2

1, . . . , c
2
n−1]

= Λ(c2
0)
⊕

F2[c2
1, . . . , c

2
n−1]

⊕
0<s1<···<sk<n

1<k

hs1,...,sk
F2[c2

1, . . . , c
2
n−1].

The contains of this note will be published in detail elsewhere.
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