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Abstract. In this article, we study the modified defect relations of the Gauss map of

complete minimal surfaces in Rm(m ≥ 3) on annular ends.

1. Introduction

Let M be a non-flat minimal surface in R3, or more precisely, a non-flat connected

oriented minimal surface in R3. By definition, the Gauss map G of M is a map which

maps each point p ∈ M to the unit normal vector G(p) ∈ S2 of M at p. Instead of

G, we study the map g := π ◦ G : M → P1(C), where π : S2 → P1(C) is the stereo-

graphic projection. By associating a holomorphic local coordinate z = u +
√
−1v with

each positive isothermal coordinate system (u, v), M is considered as an open Riemann

surface with a conformal metric ds2 and by the assumption of minimality of M, g is a

meromorphic function on M.

In 1988, H. Fujimoto [4] proved that if M is a complete non-flat minimal surface in

R3, then its Gauss map can omit at most 4 points, and the bound is sharp. After that,

M. Ru [12] and H. Fujimoto [5], [6] also that result by studying the ramifications and the

modified defect relations of the Gauss map of a complete minimal surface in Rm(m ≥ 3).

H. Fujimoto proved the following.

Theorem A. Let M be a complete minimal surface in Rm. If the Gauss map G of M

is nondegenerate then
q∑
j=1

δHG,M(Hj) ≤
m(m+ 1)

2
.

for arbitrary q hyperplanes H1, ..., Hq in Pm−1(C) located in general position.

On the other hand, in 1991, S. J. Kao [11] used the ideas of Fujimoto [4] to show that the

Gauss map of an end of a non-flat complete minimal surface in R3 that is conformally an

annulus {z : 0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions.

In 2007, L. Jin and M. Ru [10] extended Kao’s result to minimal surfaces in Rm. Recently,

Dethloff-Ha [2], Dethloff et al. [3] gave some improvements for the results of Kao and

Jin-Ru by studying the Gauss maps with ramification properties. They proved:
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Theorem B. Let M be a non-flat complete minimal surface in Rm and let A be an

annular end of M which is conformal to {z : 0 < 1/r < |z| < r}, where z is a conformal

coordinate. Assume that the generalized Gauss map g of M is k−non-degenerate on A

(that is g(A) is contained in a k−dimensional linear subspace in Pm−1(C), but none of

lower dimension), 1 ≤ k ≤ m − 1. If there are q hyperplanes {Hj}qj=1 in N-subgeneral

position in Pm−1(C) (N ≥ m−1) such that g is ramified over Hj with multiplicity at least

mj on A for each j, then
q∑
j=1

(1− k

mj

) ≤ (k + 1)(N − k

2
) + (N + 1).

Moreover, the above inequality still holds if we replace, for all j = 1, ..., q, mj by the limit

inferior of the orders of the zeros of the function (g,Hj) := cj0g1 + · · · + cjm−1gm−1 on

A (where g = (g0 : · · · : gm−1) is a reduced representation and, for all 1 ≤ j ≤ q, the

hyperplane Hj in Pm−1(C) is given by Hj : cj0ω0 + · · ·+ cjm−1ωm−1 = 0, where we assume

that
∑m−1

i=0 |cji|2 = 1) or by ∞ if g intersects Hj only a finite number of times on A.

A natural question is whether a result for the modified defect relations of the Gauss

map still holds on an annular end of a non-flat complete minimal surface in Rm(m ≥ 3).

In this paper we give the affirmative answers for this question. In particular, we give some

results on the modified defect relations of the Gauss map of complete minimal surfaces in

Rm on annular ends which are similar to Theorem A. We thus give some improvements

of the previous results on annular ends of complete minimal surfaces of Kao [11], Jin-Ru

[10], Dethloff-Ha [2] and Dethloff et al. [3].

2. Statements of the main results

Let M be an open Riemann surface and f a nonconstant holomorphic map of M

into Pk(C). Assume that f has reduced representation f = (f0 : · · · : fk). Set ||f || =

(|f0|2 + · · ·+ |fk|2)1/2 and, for each a hyperplane H : a0w0 + · · ·+ akwk = 0 in Pk(C) with

|a0|2 + · · ·+ |ak|2 = 1, we define f(H) := a0f0 + · · ·+ akfk.

Definition 2.1. We define the S−defect of H for f by

δSf,M(H) := 1− inf{η ≥ 0; η satisfies condition (∗)S}.

Here, condition (∗)S means that there exists a [−∞,∞)−valued continuous subharmonic

function u (6≡ −∞) on M satisfying the following conditions:

(C1) eu ≤ ||f ||η,
(C2) for each ξ ∈ f−1(H), there exists the limit

lim
z→ξ

(u(z)−min(νf(H)(ξ), k) log |z − ξ|) ∈ [−∞,∞),

where z is a holomorphic local coordinate around ξ and νf(H) is the divisor of f(H).
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Remark 2.2. We always have that η = 1 satisfies condition (∗)S with u = log |f(H)|.

Definition 2.3. We define the H−defect of H for f by

δHf,M(H) := 1− inf{η ≥ 0; η satisfies condition (∗)H}.

Here, condition (∗)H means that there exists a [−∞,∞)−valued continuous subharmonic

function u on M which is harmonic on M − f−1(H) and satisfies the conditions (C1) and

(C2).

Definition 2.4. We define the O−defect of H for f by

δOf,M(H) := 1− inf{ 1

n
; f(H) has no zero of order less than n}.

Remark 2.5. We always have 0 ≤ δOf,M(H) ≤ δHf,M(H) ≤ δSf,M(H) ≤ 1.

Definition 2.6. One says that f is ramified over a hyperplane H in Pk(C) with mul-

tiplicity at least e if all the zeros of the function f(H) have orders at least e. If the image

of f omits H, one will say that f is ramified over H with multiplicity ∞.

Remark 2.7. If f is ramified over a hyperplane H in Pk(C) with multiplicity at least

n, then δSf,M(H) ≥ δHf,M(H) ≥ δOf,M(H) ≥ 1 − 1

n
. In particular, if f−1(H) = ∅, then

δOf,M(H) = 1.

Let x = (x0, · · · , xm−1) : M → Rm(m ≥ 3) be a (smooth, oriented) minimal surface

immersed in Rm. Then M has the structure of a Riemann surface and any local isother-

mal coordinate (ξ1, ξ2) of M gives a local holomorphic coordinate z = ξ1 +
√
−1ξ2. The

(generalized) Gauss map of x is defined to be

g : M → Qm−2(C) ⊂ Pm−1(C), g(z) = (
∂x0

∂z
: · · · : ∂xm−1

∂z
),

where

Qm−2(C) = {(w0 : · · · : wm−1)|w2
0 + · · ·+ w2

m−1 = 0} ⊂ Pm−1(C).

By the assumption of minimality of M, g is a holomorphic map of M into Qm−2(C).

In this article, we would like to study the relations between H− defect relations for the

Gauss maps of minimal surfaces in Rm on annular ends. In particular, we firstly prove

the following theorem.

Theorem 2.8. Let M be a non-flat complete minimal surface in Rm with the Gauss map

G and let A ⊂M be an annular end of M which is conformal to {z : 0 < 1/r < |z| < r},
where z is a conformal coordinate. For arbitrary q hyperplanes H1, ..., Hq in Pm−1(C)

in N−subgeneral position. Assume that G is k−non-degenerate on A (that is G(A) is
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contained in a k−dimensional linear subspace in Pm−1(C), but none of lower dimension),

1 ≤ k ≤ m− 1, then

q∑
j=1

δHG,A(Hj) ≤ (k + 1)(N − k

2
) + (N + 1).

It is easy to see that Theorem 2.8 is an improvement of Theorem B.

When m = 3, we can identify Q1(C) with P1(C). So we can get a better result as the

following.

Theorem 2.9. Let M be a non-flat complete minimal surface in R3 and let A ⊂ M

be an annular end of M which is conformal to {z : 0 < 1/r < |z| < r}, where z is a

conformal coordinate. For arbitrary q distinct points a1, ..., aq in P1(C), then

q∑
j=1

δHg,A(aj) ≤ 4.

Moreover, we also would like to consider the Gauss map of complete minimal surfaces

M immersed in R4, this case has been investigated by various authors (see, for examples

Osserman [13], Chen [1], Fujimoto [5], Dethloff-Ha [2] and Ha-Trao [9]. In this case, the

Gauss map of M may be identified with a pair of meromorphic functions g = (g1, g2). We

prove the following result of modified defect relations of the Gauss map restricted on an

annular end.

Theorem 2.10. Suppose that M is a complete non-flat minimal surface in R4 and

g = (g1, g2) is the Gauss map of M. Let A be an annular end of M which is conformal to

{z : 0 < 1/r < |z| < r}, where z is a conformal coordinate. Let a11, ..., a1q1 , a21, ..., a2q2 be

q1 + q2 (q1, q2 > 2) distinct points in P1(C).

(i) In the case gl 6≡ constant (l = 1, 2), then γ1 =
∑q1

j=1 δ
H
g1,A(a1j) ≤ 2, or

γ2 =
∑q2

j=1 δ
H
g2,A(a2j) ≤ 2, or

1

γ1 − 2
+

1

γ2 − 2
≥ 1.

(ii) In the case where one of g1 and g2 is constant, say g2 ≡ constant, we have the

following

γ1 ≤ 3.

The main idea to prove the main theorems is to construct and to compare explicit

singular flat and negatively curved complete metrics on annular ends. This generalizes

previous work of Dethloff-Ha [2] and Dethloff et al. [3] (which itself was a refinement of

ideas of Fujimoto [5], [6]. After that we use arguments similar to those used by Fujimoto

[5], [6] , Kao [11] , Jin-Ru [10], Dethloff-Ha [2] and Dethloff et al. [3] and Ha [8] to finish

the proofs.
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3. Auxiliary lemmas

Let f be a linearly non-degenerate holomorphic map of ∆R := {z ∈ C : |z| < R} into

Pk(C), where 0 < R ≤ +∞. Take a reduced representation f = (f0 : · · · : fk). Then

F := (f0, · · · , fk) : ∆R → Ck+1 \ {0} is a holomorphic map with P(F ) = f. Consider the

holomorphic map

Fp = (Fp)z := F (0) ∧ F (1) ∧ · · · ∧ F (p) : ∆R −→ ∧p+1Ck+1

for 0 ≤ p ≤ k, where F (0) := F = (f0, · · · , fk) and F (l) = (F (l))z := (f
(l)
0 , · · · , f (l)

k )

for each l = 0, 1, · · · , k, and where the l-th derivatives f
(l)
i = (f

(l)
i )z, i = 0, ..., k, are

taken with respect to z. (Here and for the rest of this paper the index |z means that the

corresponding term is defined by using differentiation with respect to the variable z, and

in order to keep notations simple, we usually drop this index if no confusion is possible.)

The norm of Fp is given by

|Fp| :=
( ∑

0≤i0<···<ip≤k

∣∣W (fi0 , · · · , fip)
∣∣2) 1

2

,

where W (fi0 , · · · , fip) = Wz(fi0 , · · · , fip) denotes the Wronskian of fi0 , · · · , fip with re-

spect to z.

Proposition 3.1. ([7, Proposition 2.1.6]).

For two holomorphic local coordinates z and ξ and a holomorphic function h : ∆R → C,

the following holds :

(a) Wξ(f0, · · · , fp) = Wz(f0, · · · , fp) · (dzdξ )
p(p+1)/2.

(b) Wz(hf0, · · · , hfp) = Wz(f0, · · · , fp) · (h)p+1.

Proposition 3.2. ([7, Proposition 2.1.7]).

For holomorphic functions f0, · · · , fp : ∆R → C the following conditions are equivalent:

(i) f0, · · · , fp are linearly dependent over C.
(ii) Wz(f0, · · · , fp) ≡ 0 for some (or all) holomorphic local coordinate z.

We now take a hyperplane H in Pk(C) given by

H : c0ω0 + · · ·+ ckωk = 0 ,

with
∑k

i=0 |ci|2 = 1. We set

F0(H) := F (H) := c0f0 + · · ·+ ckfk

and

|Fp(H)| = |(Fp)z(H)| :=
( ∑

0≤i1<···<ip≤k

∣∣∣∣∣∣
∑

l 6=i1,...,ip

clW (fl, fi1 , · · · , fip)

∣∣∣∣∣∣
2) 1

2

,

for 1 ≤ p ≤ k. We note that by using Proposition 3.1, |(Fp)z(H)| is multiplied by a factor

|dz
dξ
|p(p+1)/2 if we choose another holomorphic local coordinate ξ, and it is multiplied by
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|h|p+1 if we choose another reduced representation f = (hf0 : · · · : hfk) with a nowhere

zero holomorphic function h. Finally, for 0 ≤ p ≤ k, set the p-th contact function of f for

H to be φp(H) :=
|Fp(H)|2

|Fp|2
=
|(Fp)z(H)|2

|(Fp)z|2
.

We next consider q hyperplanes H1, · · · , Hq in Pk(C) given by

Hj : 〈ω,Aj〉 ≡ cj0ω0 + · · ·+ cjkωk (1 ≤ j ≤ q)

where Aj := (cj0, · · · , cjk) with
∑k

i=0 |cji|2 = 1.

Assume now N ≥ k and q ≥ N + 1. For R ⊆ Q := {1, 2, · · · , q} , denote by d(R) the

dimension of the vector subspace of Ck+1 generated by {Aj; j ∈ R}.
The hyperplanes H1, · · · , Hq are said to be in N -subgeneral position if d(R) = k + 1

for all R ⊆ Q with ](R) ≥ N + 1, where ](A) means the number of elements of a set A.

In the particular case N = k, these are said to be in general position.

Theorem 3.3. ([7, Theorem 2.4.11]) For given hyperplanes H1, · · · , Hq (q > 2N−k+1)

in Pk(C) located in N-subgeneral position, there are some rational numbers ω(1), · · · , ω(q)

and θ satisfying the following conditions:

(i) 0 < ω(j) ≤ θ ≤ 1 (1 ≤ j ≤ q),

(ii)
∑q

j=1 ω(j) = k + 1 + θ(q − 2N + k − 1),

(iii) k+1
2N−k+1

≤ θ ≤ k+1
N+1

,

(iv) If R ⊂ Q and 0 < ](R) ≤ n+ 1, then
∑

j∈R ω(j) ≤ d(R).

Constants ω(j) (1 ≤ j ≤ q) and θ with the properties of Theorem 2.8 are called Nochka

weights and a Nochka constant for H1, · · · , Hq respectively.

Proposition 3.4. ([7, Lemma 3.2.13]) Let f be a non-degenerate holomorphic map of a

domain in C into Pk(C) with reduced representation f = (f0 : · · · : fk) and let H1, · · · , Hq

be hyperplanes located in N-subgeneral position (q > 2N − k + 1) with Nochka weights

ω(1), · · · , ω(q) respectively. Then,

νφ +

q∑
j=1

ω(j) ·min(ν(f,Hj), k) ≥ 0,

where φ =
|Fk|

Πq
j=1 | F (Hj) |ω(j)

.

Lemma 3.5. [8, Lemma 3.10] Let f = (f0 : · · · : fk) : ∆R → Pk(C) be a non-degenerate

holomorphic map, H1, ..., Hq be hyperplanes in Pk(C) in N−subgeneral position (N ≥ k

and q > 2N − k + 1), and ω(j)(1 ≤ j ≤ q) be their Nochka weights. Assume that there

are positive real numbers ηj(1 ≤ j ≤ q) and [−∞,∞)−valued continuous subharmonic

functions uj sastifying conditions (C1), (C2). Then for an arbitrarily given ε satisfying
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γ =
∑q

j=1 ω(j)(1−ηj)− (k+1) > εσk+1 > 0, there exists a positive constant C, depending

only on ε,Hj, ηj, ω(j)(1 ≤ j ≤ q), such that

|F |γ−εσk+1e
∑q
j=1 ω(j)uj .|Fk|1+ε.Πq

j=1Πk−1
p=0|Fp(Hj)|ε/q

Πq
j=1|F (Hj)|ω(j)

6 C

(
2R

R2 − |z|2

)σk+ετk

,

where σp = p(p+ 1)/2 for 0 ≤ p ≤ k and τk =
∑k

p=0 σp.

For the case k = 1, we have the following lemma of Fujimoto as a corollary of Lemma

3.5.

Lemma 3.6. ([5, Main lemma]) Let f = (f0 : · · · : fk) : ∆R → P1(C) be a non-

degenerate holomorphic map, a1, ..., aq be distinct points in P1(C). Assume that there

are positive real number ηj(1 ≤ j ≤ q) and [−∞,∞)−valued continuous subharmonic

functions uj sastifying conditions (C1), (C2) and
∑q

j=1(1 − ηj) − 2 > 0. There exists a

positive constant C such that

||f ||q−2−
∑q
j=1 ηj−qδe

∑q
j=1 uj |W (f0, f1)|

Πq
j=1|F (aj)|1−δ

≤ C
2R

R2 − |z|2
.

Lemma 3.7. ([7, Lemma 1.6.7]). Let dσ2 be a conformal flat metric on an open Riemann

surface M . Then for every point p ∈M , there is a holomorphic and locally biholomorphic

map Φ of a disk (possibly with radius ∞) ∆R0 := {w : |w| < R0} (0 < R0 ≤ ∞) onto an

open neighborhood of p with Φ(0) = p such that Φ is a local isometry, namely the pull-back

Φ∗(dσ2) is equal to the standard (flat) metric on ∆R0, and for some point a0 with |a0| = 1,

the Φ-image of the curve

La0 : w := a0 · s (0 ≤ s < R0)

is divergent in M (i.e. for any compact set K ⊂M , there exists an s0 < R0 such that the

Φ-image of the curve La0 : w := a0 · s (s0 ≤ s < R0) does not intersect K).

4. The proof of Theorem 2.8

Proof. For the convenience of the reader, we first recall some notations on the Gauss

map of minimal surfaces in Rm. Let M be a complete immersed minimal surface in

Rm. Take an immersion x = (x0, ..., xm−1) : M → Rm. Then M has the structure of a

Riemann surface and any local isothermal coordinate (x, y) of M gives a local holomorphic

coordinate z = x+
√
−1y. The generalized Gauss map of x is defined to be

g : M → Pm−1(C), g = P(
∂x

∂z
) = (

∂x0

∂z
: · · · : ∂xm−1

∂z
).

Since x : M → Rm is immersed,

G = Gz := (g0, ..., gm−1) = ((g0)z, ..., (gm−1)z) = (
∂x0

∂z
, · · · , ∂xm−1

∂z
)
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is a (local) reduced representation of g, and since for another local holomorphic coordinate

ξ on M we have Gξ = Gz ·(
dz

dξ
), g is well defined (independently of the (local) holomorphic

coordinate). Moreover, if ds2 is the metric on M induced by the standard metric on Rm,

we have

(1) ds2 = 2|Gz|2|dz|2.

Finally since M is minimal, g is a holomorphic map.

Since by hypothesis of Theorem 2.8, g is k-non-degenerate (1 ≤ k ≤ m − 1) without

loss of generality, we may assume that g(M) ⊂ Pk(C); then

g : M → Pk(C), g = P(
∂x

∂z
) = (

∂x0

∂z
: · · · : ∂xk

∂z
).

is linearly non-degenerate in Pk(C) (so in particular g is not constant) and the other facts

mentioned above still hold.

Let Hj(j = 1, ..., q) be q(≥ N + 1) hyperplanes in Pm−1(C) in N -subgeneral position

(N ≥ m − 1 ≥ k). Then Hj ∩ Pk(C)(j = 1, ..., q) are q hyperplanes in Pk(C) in N -

subgeneral position. Let each Hj ∩ Pk(C) be represented as

Hj ∩ Pk(C) : cj0ω0 + · · ·+ cjkωk = 0

with
∑k

i=0 |cji|2 = 1.

Set

G(Hj) = Gz(Hj) := cj0g0 + · · ·+ cjkgk.

We will now, for each contact function φp(Hj) for each of our hyperplanes Hj, choose

one of the components of the numerator |((Gz)p)z(Hj)| which is not identically zero:

More precisely, for each j, p (1 ≤ j ≤ q, 1 ≤ p ≤ k), we can choose i1, · · · , ip with

0 ≤ i1 < · · · < ip ≤ k such that

ψ(G)jp = (ψ(Gz)jp)z :=
∑

l 6=i1,..,ip

cjlWz(gl, gi1 , · · · , gip) 6≡ 0,

(indeed, otherwise, we have
∑

l 6=i1,..,ip cjlW (gl, gi1 , · · · , gip) ≡ 0 for all i1, ..., ip, so

W (
∑

l 6=i1,..,ip cjlgl, gi1 , · · · , gip) ≡ 0 for all i1, ..., ip, which contradicts the non-degeneracy of

g in Pk(C). Alternatively we simply can observe that in our situation none of the contact

functions vanishes identically.) We still set ψ(G)j0 = ψ(Gz)j0 := G(Hj)(6≡ 0), and we

also note that ψ(G)jk = ((Gz)k)z. Since the ψ(G)jp are holomorphic, so they have only

isolated zeros.

Finally we put for later use the transformation formulas for all the terms defined above,

which are obtained by using Proposition 3.1 : For holomorphic coordinates z and ξ on A

we have :

(2) ((Gξ)k)ξ = ((Gξ)k)z · (
dz

dξ
)
k(k+1)

2 = ((Gξ)k)z(
dz

dξ
)σk ,



GAUSS MAP OF COMPLETE MINIMAL SURFACES ON ANNULAR ENDS 9

(3) (ψ(Gξ)jp)ξ = (ψ(Gξ)jp)z · (
dz

dξ
)
p(p+1)

2 = (ψ(Gξ)jp)z · (
dz

dξ
)σp , (0 ≤ p ≤ k) .

Now we prove Theorem 2.8 in four steps:

Step 1: We fix notations on the annular end A ⊂ M . Moreover, by passing to a

sub-annular end of A ⊂M we simplify the geometry of Theorem 2.8 .

Let A ⊂ M be an annular end of M, that is, A = {z : 0 < 1/r < |z| < r <∞}, where

z is a (global) conformal coordinate of A. Since M is complete with respect to ds2, we

may assume that the restriction of ds2 to A is complete on the set {z : |z| = r}, i.e., the

set {z : |z| = r} is at infinite distance from any point of A.

It is easy to see δHG,B(Hj) ≥ δHG,A(Hj) for all subsets B ⊂ A. So without loss of generality

we may prove our theorem only on a sub-annular end, i.e., a subset At := {z : 0 < t ≤
|z| < r < ∞} ⊂ A with some t such that 1/r < t < r. (We trivially observe that for

c := tr > 1, s := r/
√
c, ξ := z/

√
c, we have At = {ξ : 0 < 1/s ≤ |ξ| < s <∞}.)

By passing to such a sub-annular end will be able to extend the construction of a metric

in step 2 below to the set {z : |z| = 1/r}, and, moreover, we may assume that for all

j = 1, ..., q :

Step 2: On the annular end A = {z : 0 < 1/r ≤ |z| < r <∞} minus a discrete subset

S ⊂ A we construct a flat metric dτ 2 on A\S which is complete on the set {z : |z| = r}∪S,

i.e., the set {z : |z| = r} ∪ S is at infinite distance from any point of A \ S. We may

assume that

(4)

q∑
j=1

δHG,A(Hj) > (k + 1)(N − k

2
) + (N + 1) ,

otherwise our Theorem 2.8 is already proved. By definition, there exist constants ηj ≥

0(1 ≤ j ≤ q) such that γ := q−
∑q

j=1 ηj > (k+1)(N− k
2

)+(N+1) and [−∞,∞)−valued

continuous subharmonic functions uj (6≡ −∞), 1 ≤ j ≤ q, on M such that each uj is

harmonic on M \ g−1(Hj) and satisfies conditions (C1) and (C2).

Then,

(5)

q∑
j=1

(1− ηj)− 2N + k − 1 >
(2N − k + 1)k

2
> 0 ,

and this implies in particular

(6) q > 2N − k + 1 ≥ N + 1 ≥ k + 1.

By Theorem 3.3, we have

(q − 2N + k − 1)θ =

q∑
j=1

ω(j)− k − 1, θ ≥ ω(j) > 0 and θ ≥ k + 1

2N − k + 1
,
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so

2

( q∑
j=1

ω(j)(1− ηj)− k − 1

)
= 2(

q∑
j=1

ω(j)− k − 1)− 2

q∑
j=1

ω(j)ηj

= 2(q − 2N + k − 1)θ − 2

q∑
j=1

ω(j)ηj

≥ 2(q − 2N + k − 1)θ − 2

q∑
j=1

θηj

= 2θ

( q∑
j=1

(1− ηj)− 2N + k − 1

)

≥ 2

(k + 1)

(∑q
j=1(1− ηj)− 2N + k − 1

)
2N − k + 1

.

Thus, we now can conclude with (5) that

2

( q∑
j=1

ω(j)(1− ηj)− k − 1

)
> k(k + 1)

⇒
q∑
j=1

ω(j)(1− ηj)− k − 1− k(k + 1)

2
> 0.(7)

By (7), we can choose a number ε(> 0) ∈ Q such that

∑q
j=1 ω(j)(1− ηj)− (k + 1)− k(k+1)

2

τk+1

> ε >

∑q
j=1 ω(j)(1− ηj)− (k + 1)− k(k+1)

2
1
q

+ τk+1

.

So

(8) h :=

q∑
j=1

ω(j)(1− ηj)− (k + 1)− εσk+1 >
k(k + 1)

2
+ ετk

and

(9)
ε

q
>

q∑
j=1

ω(j)(1− ηj)− (k + 1)− k(k + 1)

2
− ετk+1.

We now consider the number

ρ :=
1

h

(
k(k + 1)

2
+ ετk

)
=

1

h

(
σk + ετk

)
.

Then, by (8), we have

(10) 0 < ρ < 1.
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Set

(11) ρ∗ :=
1

(1− ρ)h
=

1

(
∑q

j=1 ω(j)(1− ηj))− (k + 1)− k(k+1)
2
− ετk+1

.

Using (9) we get

(12)
ερ∗

q
> 1.

Fix a coordinate on A. Consider the open subset

A1 = Int(A)− ∪j=1,q,p=0,k{z|ψ(G)jp(z) = 0}

of A. We define a new pseudo metric

(13) dτ 2 =

(
Πq
j=1|Gz(Hj)|ω(j)

|((Gz)k)z|1+εe
∑q
j=1 ω(j)ujΠq

j=1Πk−1
p=0|(ψ(Gz)jp)z|ε/q

)2ρ∗

|dz|2

on A1.

Claim 4.1. dτ is continuous and nowhere vanishing on A1.

Indeed, for z0 ∈ A1 with Πq
j=1G(Hj)(z0) 6= 0, dτ is continuous and not vanishing at z0.

Now assume that there exists z0 ∈ A1 such that G(Hi)(z0) = 0 for some i. Consider the

function

Γ(z) =
|((Gz)k)z|1+εe

∑q
j=1 ω(j)ujΠq

j=1Πk−1
p=0|(ψ(Gz)jp)z|ε/q

Πq
j=1|Gz(Hj)|ω(j)

.

Combining this with Proposition 3.4, we obtain

νΓ(z0) ≥ νGk(z0)−
q∑
j=1

ω(j)νG(Hj)(z0) +

q∑
j=1

ω(j) min{νG(Hj)(z0), k}

+

q∑
j=1

ω(j)ν
euj(z)|z−z0|

−min(νG(Hj)
(z0),k)(z0)

≥ 0.

This contradicts to z0 ∈ A1. Claim 4.1 is proved.

The key point is now to prove following claim.

Claim 4.2. dτ is complete on the set {z : |z| = r} ∪j=1,q,p=0,k {z : ψ(G)jp(z) = 0}, i.e.,

set {z : |z| = r} ∪j=1,q,p=0,k {z : ψ(G)jp(z) = 0} is at infinite distance from any interior

point in A1.
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First, assume that Πk
p=0Πq

j=1|ψ(G)jp|(z0) = 0. Let γ be a path joining z0 with an interior

point in A1. By (13) and Proposition 3.4 we have

νdτ (z0) = −
(
νGk(z0)−

q∑
j=1

ω(j)νG(Hj)(z0) +

q∑
j=1

ω(j) min{νG(Hj)(z0), k}

+

q∑
j=1

ω(j)ν
euj(z)|z−z0|

−min(νG(Hj)
(z0),k)(z0) + (ενGk(z0) +

ε

q

q∑
j=1

k−1∑
p=0

νψ(G)jp(z0))

)
ρ∗

≤ −ερ∗νGk(z0)− ερ∗

q

q∑
j=1

k−1∑
p=0

νψ(G)jp(z0) ≤ −ερ
∗

q
.

Thus we can find a positive constant C such that

|dτ | ≥ C

|z − z0|
ερ∗
q

|dz|

in a neighborhood of z0 and then, combining with (12), we thus have∫
γ

dτ =∞.

Therefore, dτ is complete on {z : Πk
p=0Πq

j=1ψ(G)jp(z) = 0}.
Now assume that dτ is not complete on {z : |z| = r}. Then there exists γ : [0, 1)→ A1,

where γ(1) ∈ {z : |z| = r}, so that |γ| < ∞. Furthermore, we may also assume that

dist(γ(0); {z : |z| = 1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since

dτ is flat, ∆ is isometric to an ordinary disk in the plane (cf. e.g. Lemma 3.7). Let

Φ : {w : |w| < η} → ∆ be this isometry. Extend Φ, as a local isometry into A1, to the

largest disk {w : |w| < R} = ∆R possible. Then R ≤ |γ|. The reason that Φ cannot be

extended to a larger disk is that the image goes to the outside boundary {z : |z| = r}
of A1 (it cannot go to points z of A with Πj=1,q,p=0,kψ(G)jp(z) = 0 since we have shown

already the completeness of A1 with respect to these points). More precisely, there exists

a point w0 with |w0| = R so that Φ(0, w0) = Γ0 is a divergent curve on A.

We now want to use Lemma 3.5 to finish up Claim 4.2 by showing that Γ0 has finite

length in the original ds2 on M , contradicting the completeness of the M . For the rest

of the proof of Claim 4.2 we consider Gz = ((g0)z, ..., (gk)z) as a fixed globally defined

reduced representation of g by means of the global coordinate z of A ⊃ A1. If again

Φ : {w : |w| < R} → A1 is our maximal local isometry, it is in particular holomorphic and

locally biholomorphic. So f := g◦Φ : {w : |w| < R} → Pk(C) is a linearly non-degenerate

holomorphic map with fixed global reduced representation

F := Gz ◦ Φ = ((g0)z ◦ Φ, · · · , (gk)z ◦ Φ) = (f0, · · · , fk) .



GAUSS MAP OF COMPLETE MINIMAL SURFACES ON ANNULAR ENDS 13

Since Φ is locally biholomorphic, the metric on ∆R induced from ds2 (cf. (1)) through Φ

is given by

(14) Φ∗ds2 = 2|Gz ◦ Φ|2|Φ∗dz|2 = 2|F |2| dz
dw
|2|dw|2 .

On the other hand, Φ is locally isometric, so we have

|dw| = |Φ∗dτ | =
(

Πq
j=1|Gz(Hj) ◦ Φ|ω(j)

|((Gz)k)z ◦ Φ|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(ψ(Gz)jp)z ◦ Φ|ε/q

)ρ∗
| dz
dw
||dw| .

By (2) and (3) we have

((Gz)k)z ◦ Φ = ((Gz ◦ Φ)k)w(
dw

dz
)σk = (Fk)w(

dw

dz
)σk ,

(ψ(Gz)jp)z ◦ Φ = (ψ(Gz ◦ Φ)jp)w · (
dw

dz
)σp = (ψ(F )jp)w · (

dw

dz
)σp , (0 ≤ p ≤ k) .

Hence, by definition of ρ∗ in (11), we have

|dw
dz
| =

(
Πq
j=1|Gz(Hj) ◦ Φ|ω(j)

|((Gz)k)z ◦ Φ|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(ψ(Gz)jp)z ◦ Φ|ε/q

)ρ∗

=

(
Πq
j=1|F (Hj)|ω(j)

|(Fk)w|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(ψ(F )jp)w|ε/q

)ρ∗
1

|dw
dz
|hρρ∗

.

So we get

| dz
dw
| =

( |(Fk)w|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(ψ(F )jp)w|ε/q

Πq
j=1|F (Hj)|ω(j)

) ρ∗
1+hρρ∗

=

( |(Fk)w|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(ψ(F )jp)w|ε/q

Πq
j=1|F (Hj)|ω(j)

) 1
h

.

Moreover, |(ψ(F )jp)w| ≤ |(Fp)w(Hj)| by the definitions, so we obtain

(15) | dz
dw
| ≤

( |(Fk)w|1+εe
∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(Fp)w(Hj)|ε/q

Πq
j=1|F (Hj)|ω(j)

) 1
h

.

By (14) and (15), we have

Φ∗ds 6
√

2|F |
( |(Fk)w|1+εe

∑q
j=1 ω(j)uj◦ΦΠk−1

p=0Πq
j=1|(Fp)w(Hj)|ε/q

Πq
j=1|F (Hj)|ω(j)

) 1
h

|dw|.

By (8), all the conditions of Lemma 3.5 are satisfied. So we obtain the following from

Lemma 3.5 :

Φ∗ds 6 C(
2R

R2 − |w|2
)ρ|dw|

for some constant C. It follows from (10) that 0 < ρ < 1. Then

dΓ0 6
∫

Γ0

ds =

∫
0,w0

Φ∗ds 6 C ·
∫ R

0

(
2R

R2 − |w|2
)ρ|dw| < +∞,
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where dΓ0 denotes the length of the divergent curve Γ0 in M, contradicting the assumption

of completeness of M. Thus, we complete Claim 4.2.

To summarize, in step 2 we have constructed, for A = {z : 0 < 1/r ≤ |z| < r < ∞},
a continuous and nowhere vanishing metric dτ 2 on A1 which is flat and complete with

respect to the points of S = ∪j=1,q,p=0,k{z|ψ(G)jp(z) = 0} and with respect to the (outside)

boundary {z : |z| = r}.
Step 3: We now define

dτ̃ 2 =

(
Πq
j=1|Gz(Hj)(z)Gz(Hj)(1/z)|ω(j)(1−ηj)

|((Gz)k)z(z)((Gz)k)z(1/z)|1+εΠk−1
p=0Πq

j=1|(ψ(Gz)jp)z(z)(ψ(Gz)jp)z(1/z)|ε/q

)2ρ∗

|dz|2

= λ2(z)|dz|2,

on Ã1 := {z : 1/r < |z| < r} \ {z : Πk
p=0Πq

j=1(ψ(Gz)jp)z(z)(ψ(Gz)jp)z(1/z) = 0}. Then

dτ̃ 2 is complete on Ã1 : In fact by what we showed above we have: Towards any point of the

boundary ∂Ã1 := {z : 1/r = |z|}∪{z : |z| = r}∪{z : Πk
p=0Πq

j=1(ψ(Gz)jp)z(z)(ψ(Gz)jp)z(1/z) =

0} of Ã1, one of the factors of λ2(z) is bounded from below away from zero, and the other

factor is the one of a complete metric with respect of this part of the boundary. More-

over by the corresponding properties of the two factors of λ2(z) it is trivial that dτ̃ 2 is a

continuous nowhere vanishing and flat metric on Ã1.

Step 4 : We produce a contradiction by using Lemma 3.7 to the open Riemann surface

(Ã1, dτ̃
2) :

In fact, we apply Lemma 3.7 to any point p ∈ Ã1. Since dτ̃ 2 is complete, there cannot

exist a divergent curve from p to the boundary ∂Ã1 with finite length with respect to

dτ̃ 2. Since Φ : ∆R0 → Ã1 is a local isometry, we necessarily have R0 = ∞. So Φ : C →
Ã1 ⊂ {z : |z| < r} is a non-constant holomorphic map, which contradicts to Liouville’s

theorem. So our assumption (4) was wrong. This proves Theorem 2.8. �

5. The proof of Theorem 2.9

Proof. For convenience of the reader, we first recall some notations on the Gauss

map of minimal surfaces in R3. Let x = (x1, x2, x3) : M → R3 be a non-flat complete

minimal surface and g : M → P1(C) its Gauss map. Let z be a local holomorphic

coordinate. Set φi := ∂xi/∂z (i = 1, 2, 3) and φ := φ1 −
√
−1φ2. Then, the (classical)

Gauss map g : M → P1(C) is given by

g =
φ3

φ1 −
√
−1φ2

,

and the metric on M induced from R3 is given by

ds2 = |φ|2(1 + |g|2)2|dz|2 (see Fujimoto ([7])).

We remark that although the φi, (i = 1, 2, 3) and φ depend on z, g and ds2 do not. Next

we take a reduced representation g = (g0 : g1) on M and set ||g|| = (|g0|2 + |g1|2)1/2. Then
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we can rewrite

ds2 = |h|2||g||4|dz|2 ,

where h := φ/g2
0. In particular, h is a holomorphic map without zeros. We remark that h

depends on z, however, the reduced representation g = (g0 : g1) is globally defined on M

and independent of z. Finally we observe that by the assumption that M is not flat, g is

not constant.

Now the proof of Theorem 2.9 also will be given in four steps :

Step 1: We may fix notations on the annular end A ⊂ M ,that is, A = {z : 0 < 1/r <

|z| < r <∞}, where z is a (global) conformal coordinate of A. By the same arguments as

in Step 1 of the proof of Theorem 2.8, we may prove our theorem only on a sub-annular

end, i.e., a subset At := {z : 0 < t ≤ |z| < r <∞} ⊂ A with some t such that 1/r < t < r.

Step 2: Let aj (1 ≤ j ≤ q) be q > 4 distinct points in P1(C). We may assume

aj = (aj0 : aj1) with |aj0|2 + |aj1|2 = 1 (1 ≤ j ≤ q), and we set Gj := aj0g1− aj1g0 (1 ≤ j ≤ q)

for the reduced representation g = (g0 : g1) of the Gauss map. By the identity theorem,

the Gj have at most countable many zeros.

On the annular end A = {z : 0 < 1/r ≤ |z| < r <∞} minus a discrete subset S ⊂ A we

construct a flat metric dτ 2 on A \ S which is complete on the set {z : |z| = r} ∪ S, i.e.,

the set {z : |z| = r} ∪ S is at infinite distance from any point of A \ S.

We may assume that
q∑
j=1

δHg,A(aj) > 4,

since otherwise Theorem 2.9 is already proved.

By definition, there exist constants ηj ≥ 0(1 ≤ j ≤ q) such that γ := q−2−
∑q

j=1 ηj > 2

and continous functions uj(1 ≤ j ≤ q) on M such that each uj is harmonic on M \f−1(aj)

and satisfies conditions (C1) and (C2). Take δ with

γ − 2

q
> δ >

γ − 2

q + 2
,

and set p = 2/(γ − qδ). Then

0 < p < 1,
p

1− p
>

δp

1− p
> 1 .

Fix a coordinate on A. Consider the subset

A1 = A \ {z : Wz(g0, g1)(z) = 0}

of A. We define a new metric

dτ 2 = |h|
2

1−p

(
Πq
j=1|Gj|1−δ

e
∑q
j=1 uj |W (g0, g1)|

) 2p
1−p

|dz|2

on A1 (where again Gj := aj0g1 − aj1g0 and h is defined with respect to the coordinate z

on A1 ⊂ A and W (g0, g1) = Wz(g0, g1)).
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Repeating the same arguments as Step 2 in the proof of Theorem 2.8, we give that dτ 2

is a continuous and nowhere vanishing metric on A1 , flat and complete with respect to

the points of S = {z : Wz(g0, g1)(z) = 0} and with respect to the (outside) boundary

{z : |z| = r}.
Step 3 and 4: We now use the same arguments as Step 3 and 4 in the proof of

Theorem 2.8 to finish the proof of Theorem 2.9. �

6. The proof of Theorem 2.10

Proof. For convenience of the reader, we first recall some notations on the Gauss

map of minimal surfaces in R4. Let x = (x1, x2, x3, x4) : M → R4 be a non-flat complete

minimal surface in R4. As is well-known, the set of all oriented 2-planes in R4 is canonically

identified with the quadric

Q2(C) := {(w1 : ... : w4)|w2
1 + ...+ w2

4 = 0}

in P3(C). By definition, the Gauss map g : M → Q2(C) is the map which maps each

point p of M to the point of Q2(C) corresponding to the oriented tangent plane of M

at p. The quadric Q2(C) is biholomorphic to P1(C) × P1(C). By suitable identifications

we may regard g as a pair of meromorphic functions g = (g1, g2) on M. Let z be a local

holomorphic coordinate. Set φi := ∂xi/dz for i = 1, ..., 4. Then, g1 and g2 are given by

g1 =
φ3 +

√
−1φ4

φ1 −
√
−1φ2

, g2 =
−φ3 +

√
−1φ4

φ1 −
√
−1φ2

and the metric on M induced from R4 is given by

ds2 = |φ|2(1 + |g1|2)(1 + |g2|2)|dz|2,

where φ := φ1 −
√
−1φ2. We remark that although the φi, (i = 1, 2, 3, 4) and φ depend

on z, g = (g1, g2) and ds2 do not. Next we take reduced representations gl = (gl0 : gl1) on

M and set ||gl|| = (|gl0|2 + |gl1|2)1/2 for l = 1, 2. Then we can rewrite

ds2 = |h|2||g1||2||g2||2|dz|2 ,

where h := φ/(g1
0g

2
0). In particular, h is a holomorphic map without zeros. We remark

that h depends on z, however, the reduced representations gl = (gl0 : gl1) are globally

defined on M and independent of z. Finally we observe that by the assumption that M

is not flat, g is not constant.

Now the proof of Theorem 2.10 will be given in four steps :

Step 1: This step is completely analogue to step 1 in the proof of Theorem 2.8. We get

: By passing to a sub-annular end we may assume that the annular end is A = {z : 0 <

1/r ≤ |z| < r <∞}, where z is a (global) conformal coordinate of A, that the restriction

of ds2 to A is complete on the set {z : |z| = r}, i.e., the set {z : |z| = r} is at infinite
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distance from any point of A, and, moreover, that for all j = 1, ..., ql, l = 1, 2 (case (i))

respectively for all j = 1, ..., q1, l = 1 (case (ii)), we have .

Step 2: Our strategy is the same as for step 2 in the proof of Theorem 2.8. We may

assume that γ1 =
∑q1

j=1 δ
H
g1(a

1j) > 2, γ2 =
∑q2

j=1 δ
H
g2(a

2j) > 2, and

(16)
1

γ1 − 2
+

1

γ2 − 2
< 1 ,

since otherwise case (i) of Theorem 2.10 is already proved.

Choose δ0(> 0) such that γl − 2− qlδ0 > 0 for all l = 1, 2, and

1

γ1 − 2− q1δ0

+
1

γ2 − 2− q2δ0

= 1.

If we choose a positive constant δ(< δ0) sufficiently near to δ0 and set

pl := 1/(γl − 2− qlδ), (l = 1, 2),

we have

(17) 0 < p1 + p2 < 1,
δpl

1− p1 − p2

> 1 (l = 1, 2) .

Fix a coordinate on A. Consider the subset

A2 = A \ {z : Wz(g
1
0, g

1
1)(z) ·Wz(g

2
0, g

2
1)(z) = 0}

of A. We define a new metric

dτ 2 =

(
|h|

Πq1
j=1|G1

j |(1−δ)p1Π
q2
j=1|G2

j |(1−δ)p2

ep1
∑q1
j=1 u

1
j |W (g1

0, g
1
1)|p1ep2

∑q2
j=1 u

2
j |W (g2

0, g
2
1)|p2

) 2
1−p1−p2

|dz|2

on A2 (where again Gl
j := alj0 g

l
1 − alj1 g

l
0 (l = 1, 2) and h is defined with respect to the

coordinate z on A2 ⊂ A and W (gl0, g
l
1) = Wz(g

l
0, g

l
1)).

It is easy to see that by the same arguments as in step 2 of the proof of Theorem 2.9

(applied for each l = 1, 2), we get that dτ is a continuous nowhere vanishing and flat

metric on A2, which is moreover independant of the choice of the coordinate z.

The key point in this step is to prove the following claim :

Claim 6.1. dτ 2 is complete on the set {z : |z| = r} ∪ {z : Πl=1,2W (gl0, g
l
1)(z) = 0}, i.e.,

the set {z : |z| = r}∪{z : Πl=1,2W (gl0, g
l
1)(z) = 0} is at infinite distance from any interior

point in A2.

It is easy to see that by the same method as in the proof of Claim 4.2 in the proof of

Theorem 2.8, we may show that dτ is complete on {z : Πl=1,2W (gl0, g
l
1)(z) = 0}.

Now assume dτ is not complete on {z : |z| = r}. Then there exists ρ : [0, 1) → A2,

where ρ(1) ∈ {z : |z| = r}, so that |ρ| < ∞. Furthermore, we may also assume that

dist(ρ(0), {z : |z| = 1/r}) > 2|ρ|. Consider a small disk ∆ with center at ρ(0). Since dτ

is flat, ∆ is isometric to an ordinary disk in the plane. Let Φ : {|w| < η} → ∆ be this

isometry. Extend Φ, as a local isometry into A2, to the largest disk {|w| < R} = ∆R
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possible. Then R ≤ |ρ|. The reason that Φ cannot be extended to a larger disk is that

the image goes to the outside boundary {z : |z| = r} of A2. More precisely, there exists a

point w0 with |w0| = R so that Φ(0, w0) = Γ0 is a divergent curve on A.

The map Φ(w) is locally biholomorphic, and the metric on ∆R induced from ds2 through

Φ is given by

(18) Φ∗ds2 = |h ◦ Φ|2||g1 ◦ Φ||2||g2 ◦ Φ||2| dz
dw
|2|dw|2 .

On the other hand, Φ is isometric, so we have

|dw| = |dτ | =
(
|h|

Πq1
j=1|G1

j |(1−δ)p1Π
q2
j=1|G2

j |(1−δ)p2

ep1
∑q1
j=1 u

1
j |W (g1

0, g
1
1)|p1ep2

∑q2
j=1 u

2
j |W (g2

0, g
2
1)|p2

) 1
1−p1−p2

|dz|

⇒ |dw
dz
|1−p1−p2 = |h|

Πq1
j=1|G1

j |(1−δ)p1Π
q2
j=1|G2

j |(1−δ)p2

ep1
∑q1
j=1 u

1
j |W (g1

0, g
1
1)|p1ep2

∑q2
j=1 u

2
j |W (g2

0, g
2
1)|p2

.

For each l = 1, 2, we set f l := gl(Φ), f l0 := gl0(Φ), f l1 := gl1(Φ), ulj := ulj(Φ) and F l
j :=

Gl
j(Φ). Since

Ww(f l0, f
l
1) = (Wz(g

l
0, g

l
1) ◦ Φ)

dz

dw
, (l = 1, 2),

we obtain

(19) | dz
dw
| = Πl=1,2(epl

∑ql
j=1 u

l
j |W (f l0, f

l
1)|pl)

|h(Φ)|Πl=1,2Πql
j=1|F l

j |(1−δ)pl
.

By (18) and (19), we get

Φ∗ds2 =

(
Πl=1,2

||f l||(epl
∑ql
j=1 u

l
j |W (f l0, f

l
1)|)pl

Πql
j=1|F l

j |(1−δ)pl

)2

|dw|2

= Πl=1,2

(
||f l||γl−qlδ|W (f l0, f

l
1)|

Πq
j=1|F l

j |1−δ

)2pl

|dw|2.

Using the Lemma 3.6, we obtain

Φ∗ds2 6 C
2(p1+p2)
0 .(

2R

R2 − |w|2
)2(p1+p2)|dw|2.

Since 0 < p1 + p2 < 1 by (17), it then follows that

dΓ0 6
∫

Γ0

ds =

∫
0,w0

Φ∗ds 6 Cp1+p2
0 .

∫ R

0

(
2R

R2 − |w|2
)p1+p2|dw| < +∞,

where dΓ0 denotes the length of the divergent curve Γ0 in M, contradicting the assumption

of completeness of M. Claim 6.1 is proved.

Steps 2 and 3 for the case (i): These steps are analogue to the corresponding steps

in the proof of Theorem 2.8. Define dτ̃ 2 = λ2(z)|dz|2 on

Ã2 := {z : 1/r < |z| < r}\

\{z : Wz(g
1
0, g

1
1)(z) ·Wz(g

2
0, g

2
1)(z) ·Wz(g

1
0, g

1
1)(1/z) ·Wz(g

2
0, g

2
1)(1/z) = 0} ,
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where

λ(z) =

(
|h(z)|

Πq1
j=1|G1

j(z)|(1−δ)p1Πq2
j=1|G2

j(z)|(1−δ)p2

ep1
∑q1
j=1 u

1
j (z)|Wz(g1

0, g
1
1)(z)|p1ep2

∑q2
j=1 u

2
j (z)|Wz(g2

0, g
2
1)(z)|p2

) 1
1−p1−p2

×
(
|h(1/z)|

Πq1
j=1|G1

j(1/z)|(1−δ)p1Πq2
j=1|G2

j(1/z)|(1−δ)p2

ep1
∑q1
j=1 u

1
j (1/z)|Wz(g1

0, g
1
1)(1/z)|p1ep2

∑q2
j=1 u

2
j (1/z)|Wz(g2

0, g
2
1)(1/z)|p2

) 1
1−p1−p2

.

By using Claim 6.1, the continuous nowhere vanishing and flat metric dτ on A2 is also

complete. Using the identical argument of step 3 in the proof of Theorem 2.8 to the open

Riemann surface (Ã2, dτ̃) produces a contradiction, so assumption (16) was wrong. This

implies case (i) of the Theorem 2.10.

We finally consider the case (ii) of Theorem 2.10 (where g2 ≡ constant and g1 6≡
constant). Suppose that γ1 > 3. We can choose δ with

γ1 − 3

q1

> δ >
γ1 − 3

q1 + 1
,

and set p = 1/(γ1 − 2− q1δ). Then

0 < p < 1,
p

1− p
>

δp

1− p
> 1.

Set

dτ 2 = |h|
2

1−p

(
Πq1
j=1|G1

j |1−δ

|W (g1
0, g

1
1)|

) 2p
1−p

|dz|2.

Using this metric, by the analogue arguments as in step 1 to step 3 of the proof of Theorem

2.8, we get the case (ii) of Theorem 2.10. �
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