Spanning trees with few peripheral branch vertices

Pham Hoang Ha*
Department of Mathematics
Hanoi National University of Education
136 XuanThuy Street, Hanoi, Vietnam
Dang Dinh Hanh ${ }^{\dagger}$
Department of Mathematics
Hanoi Architectural University
Km10 NguyenTrai Street, Hanoi, Vietnam
Nguyen Thanh Loan ${ }^{\ddagger}$
Department of Mathematics
Hanoi National University of Education
136 XuanThuy Street, Hanoi, Vietnam

Abstract

Let T be a tree, a vertex of degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. The set of leaves of T is denoted by $L(T)$ and the set of branch vertices of T is denoted by $B(T)$. Let T be a tree with $B(T) \neq \emptyset$, for each a vertex $x \in L(T)$, set $y_{x} \in B(T)$ such that $\left(V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}\right) \cap B(T)=\emptyset$, where $P_{T}[u, v]$ is the unique path in T connecting u and v. We delete $V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}$ from T for all $x \in \operatorname{Leaf}(T)$. The resulting graph is a subtree of T and denoted by $R(\operatorname{Stem}(T))$. It is called the reducible stem of T. A leaf of $R(\operatorname{Stem}(T))$ is called a peripheral branch vertex of T. In this paper, we give some sharp sufficient conditions on the independence number and the degree sum to show that a graph G to have a few peripheral branch vertices.

Keywords: spanning tree; leaf; peripheral branch vertex; independence number; degree sum AMS Subject Classification: 05C05, 05C07, 05C69

[^0]
1 Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, we use $N_{G}(v)$ and $\operatorname{deg}_{G}(v)$ (or $N(v)$ and $\operatorname{deg}(v)$ if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by $|X|$ the cardinality of X. Sometime, we denote by $|G|$ instead of $|V(G)|$. We define $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$ and $\operatorname{deg}_{G}(X)=\sum_{x \in X} \operatorname{deg}_{G}(x)$. For $k \geq 1$, we let $N_{k}(X)=\{x \in V(G)| | N(x) \cap X \mid=k\}$. We use $G-X$ to denote the graph obtained from G by deleting the vertices in X together with their incident edges. We define $G-u v$ to be the graph obtained from G by deleting the edge $u v \in E(G)$, and $G+u v$ to be the graph obtained from G by adding an edge $u v$ between two non-adjacent vertices u and v of G. For two vertices u and v of G, the distance between u and v in G is denoted by $d_{G}(u, v)$. We use K_{n} to denote the complete graph on n vertices. We write $A:=B$ to rename B as A.

For an integer $m \geqslant 2$, let $\alpha^{m}(G)$ denote the number defined by

$$
\alpha^{m}(G)=\max \left\{|S|: S \subseteq V(G), d_{G}(x, y) \geqslant m \text { for all distinct vertices } x, y \in S\right\}
$$

For an integer $p \geqslant 2$, we define
$\sigma_{p}^{m}(G)=\min \left\{\sum_{a \in S} \operatorname{deg}_{G}(a): S \subseteq V(G),|S|=p, d_{G}(x, y) \geqslant m\right.$ for all distinct vertices $\left.x, y \in S\right\}$.
For convenience, we define $\sigma_{p}^{m}(G)=+\infty$ if $\alpha^{m}(G)<p$. We note that, $\alpha^{2}(G)$ is often written $\alpha(G)$, which is the independence number of G, and $\sigma_{p}^{2}(G)$ is often written $\sigma_{p}(G)$, which is the minimum degree sum of p independent vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. The set of leaves of T is denoted by $L(T)$ and the set of branch vertices of T is denoted by $B(T)$. There are several well-known conditions (such as the independence number conditions and the degree sum conditions) ensuring that a graph G contains a spanning tree with a bounded number of leaves (see the survey paper [14] and the references cited therein for details). Win [16] obtained a sufficient condition related to the independence number for l-connected graphs, which confirms a conjecture of Las Vergnas [11]. Broersma and Tuinstra [1] gave a degree sum condition for a connected graph to contain a spanning tree with at most k leaves.

Theorem 1.1 (Win [16]) Let $l \geq 1$ and $k \geq 2$ be integers and let G be a l-connected graph. If $\alpha(G) \leq k+l-1$, then G has a spanning tree with at most k leaves.

Theorem 1.2 (Broerma and Tuinstra [1]) Let G be a connected graph and let $k \geq 2$ be an integer. If $\sigma_{2}(G) \geq|G|-k+1$, then G has a spanning tree with at most k leaves.

The subtree $T-L(T)$ of a tree T is called the stem of T and is denoted by $\operatorname{Stem}(T)$. Recently, many researches are studied on spanning trees in connected graphs whose stems have a bounded number of leaves (see [7], [8] and [15] for more details). We introduce here some results on spanning trees whose stems have a few leaves.
Theorem 1.3 (Tsugaki and Zhang [15]) Let G be a connected graph and let $k \geqslant 2$ be an integer. If $\sigma_{3}(G) \geqslant|G|-2 k+1$, then G have a spanning tree whose stem has at most k leaves.

Theorem 1.4 (Kano and Yan [7]) Let G be a connected graph and let $k \geqslant 2$ be an integer. If either $\alpha^{4}(G) \leq k$ or $\sigma_{k+1}(G) \geqslant|G|-k-1$, then G has a spanning tree whose stem has at most k leaves.

Furthermore, by considering the graph G to be restricted in some special graph classes, many analogue researches have been introduced (see [2], [3], [5], [6], [9], [10] and [12] for examples).

In this paper, we would like to introduce a new situation on spanning tree. For two distinct vertices u, v of T, we denote by $P_{T}[u, v]$ the unique path in T connecting u and v. We define the orientation of $P_{T}[u, v]$ is from u to v. We refer to [4] for terminology and notation not defined here. Let T be a tree with $B(T) \neq \emptyset$. For every $x \in L(T)$, set $y_{x} \in B(T)$ such that $\left(V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}\right) \cap B(T)=\emptyset$. We delete $V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}$ from T for all $x \in L(T)$. The resulting graph is denoted by $R(\operatorname{Stem}(T))$. It is called the reducible stem of T. The path with vertex set $V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}$ is called a branch of T, usually denoted by $B_{x} . B_{x}$ is called to be incident to x. Then $R(\operatorname{Stem}(T))=T-B$ with $B=\bigcup_{x \in L(T)} V\left(B_{x}\right)$ (see Figure 1 for a picture of T and $R(\operatorname{Stem}(T)))$. A leaf of $R(\operatorname{Stem}(T))$ is also called a peripheral branch vertex of T (also see [13, page 234]). We denote by $P(B(T))$ the peripheral branch vertex set of T. We study

Figure 1: Tree T and $\mathrm{R}(\operatorname{Stem}(\mathrm{T}))$
sufficient conditions to show that a graph to have a spanning tree T with few peripheral branch vertices, i.e., $R(\operatorname{Stem}(T))$ has a few leaves. In particular, we state the following theorem.

Theorem 1.5 Let G be a connected graph and let $k \geq 2$ be an integer. If one of the following conditions holds, then G has a spanning tree with at most k peripheral branch vertices.
(i) $\alpha(G) \leq 2 k+2$,
(ii) $\sigma_{k+1}^{4}(G) \geq\left\lfloor\frac{|G|-k}{2}\right\rfloor$.

Here, the notation $\lfloor r\rfloor$ stands for the biggest integer not exceed the real number r.
To end this section, we give an example to see that our main results are sharp. Let $k \geq 2$ and $m \geq 1$ be integers, and let $D_{1}, D_{2}, \ldots, D_{k+1}$ and $H_{1}, H_{2}, \ldots, H_{k+1}$ be $2 k+2$ disjoint copies of the complete graph K_{m} of order m. Let $w, x_{1}, x_{2}, \ldots, x_{k+1}$ be $k+2$ vertices not contained in $D_{1} \cup D_{2} \cup \ldots \cup D_{k+1} \cup H_{1} \cup H_{2} \cup \ldots \cup H_{k+1}$. Join w to all vertices of $\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}$ and join x_{i} to all the vertices of $D_{i} \cup H_{i}$ for every $1 \leq i \leq k+1$. Let G denote the resulting graph (see Figure 2). Then $\alpha(G)=2 k+3$. Moreover, we also obtain

$$
\sigma_{k+1}^{4}(G)=\sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(y_{i}\right)=(k+1) m=\left\lfloor\frac{|G|-k}{2}\right\rfloor-1,
$$

with y_{i} is any vertex of D_{i} for every $1 \leq i \leq k+1$.

Figure 2: Graph G
But G has no a spanning tree with at most k peripheral branch vertices. Then, the conditions of Theorem 1.5 are sharp.

2 Proof of the main results

Proof. Suppose for a contradiction that there does not exist a spanning tree T of G such that $|P(B(T))| \leq k$. Then every spanning tree T of G satisfies $|P(B(T))| \geq k+1$.

Choose T to be a maximal tree of G such that $|P(B(T))|=k+1$ and
$(\mathrm{C} 1)|R(\operatorname{Stem}(T))|$ is as small as possible,
(C2) The number of branches of T is as small as possible subject to ($C 1$).

Claim 2.1 There does not exist a tree S in G such that $V(S)=V(T)$ and $|P(B(S))| \leq k$.
Proof. Indeed, assume that there exists a tree S in G such that $V(S)=V(T)$ and $|P(B(S))| \leq$ k. Since $|P(B(S))| \leq k, S$ is not a spanning tree of G. Then there exists $u \in V(G)-V(S)$ such that u is adjacent to a vertex $v \in S$. Let S_{1} be a tree obtained from S by adding the edge $u v$. Then S_{1} is a tree in G such that $\left|V\left(S_{1}\right)\right|=|V(T)|+1$ and $\left|P\left(B\left(S_{1}\right)\right)\right| \leq k+1$.

If $\left|P\left(B\left(S_{1}\right)\right)\right|=k+1$, then S_{1} contradicts the maximality of T (since $\left|V\left(S_{1}\right)\right|=|V(S)|+1=$ $|V(T)|+1>|V(T)|)$. So we may assume that $\left|P\left(B\left(S_{1}\right)\right)\right| \leq k$. By repeating this process, we can recursively construct a set of trees $\left\{S_{i} \mid i \geq 1\right\}$ in G such that S_{i} satisfies that $\left|P\left(B\left(S_{i}\right)\right)\right| \leq k$ and $\left|V\left(S_{i+1}\right)\right|=\left|V\left(S_{i}\right)\right|+1$ for each $i \geq 1$. Since G has no spanning tree with at most k peripheral branch vertices and $|V(G)|$ is finite, the process must terminate after a finite number of steps, i.e., there exists some $h \geq 1$ such that S_{h+1} is a tree in G with $\left|P\left(B\left(S_{h+1}\right)\right)\right|=k+1$. But this contradicts the maximality of T. So the claim holds.

Set $P(B(T))=\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}$. By the definition of peripheral branch vertex, we have the following claim.

Claim 2.2 For every $i \in\{1,2, \ldots, k+1\}$, there exist at least two branchs of T which are incident to x_{i}.

Claim 2.3 For each $i \in\{1,2, \ldots, k+1\}$, there exist $y_{i}, z_{i} \in L(T)$ such that $B_{y_{i}}, B_{z_{i}}$ are incident to x_{i} and $N_{G}\left(y_{i}\right) \cap\left(V(R(S t e m(T)))-\left\{x_{i}\right\}\right)=\emptyset, N_{G}\left(z_{i}\right) \cap\left(V(R(\operatorname{Stem}(T)))-\left\{x_{i}\right\}\right)=\emptyset$.

Proof. Let $\left\{a_{i j}\right\}_{j=1}^{m}$ be the subset of $L(T)$ such that $B_{a_{i j}}$ is adjacent to x_{i}. By Claim 2.2, we obtain $m \geq 2$.
Suppose that there are more than $m-1$ vertices $\left\{a_{i j}\right\}_{j=1}^{m}$ satisfying

$$
N_{G}\left(a_{i j}\right) \cap\left(V(R(\operatorname{Stem}(T)))-\left\{x_{i}\right\}\right) \neq \emptyset .
$$

Without lost of generality, we may assume that $N_{G}\left(a_{i j}\right) \cap\left(V(R(S t e m(T)))-\left\{x_{i}\right\}\right) \neq \emptyset$ for all $j=2, \ldots, m$. Set $b_{i j} \in N_{G}\left(a_{i j}\right) \cap\left(V(R(\operatorname{Stem}(T)))-\left\{x_{i}\right\}\right)$, for all $j \in\{2, \ldots, m\}$. Consider the tree

$$
T^{\prime}:=T+\left\{a_{i j} b_{i j}\right\}_{j=2}^{m}-\left\{x_{i} v_{i j}\right\}_{j=2}^{m},
$$

where $v_{i j} \in N_{T}\left(x_{i}\right) \cap V\left(P_{T}\left[a_{i j} ; x_{i}\right]\right)$. Hence T^{\prime} satisfies $\left|V\left(T^{\prime}\right)\right|=|V(T)|$ and $\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right|<$ $|R(\operatorname{Stem}(T))|$, which contradicts the condition (C1). Therefore, Claim 2.3 holds.

Set $U=\left\{y_{i}, z_{i}\right\}_{i=1}^{k+1}$. By the maximality of T we have $N_{G}(U) \subseteq V(T)$.
Claim 2.4 U is an independent set in G.
Proof. Suppose that there exist two vertices $u, v \in U$ such that $u v \in E(G)$. Without lost of generality, we assume that $v=y_{i}$ for some $i \in\{1,2, \ldots, k+1\}$. Set $v_{i}=N_{T}\left(x_{i}\right) \cap B_{y_{i}}$. Consider the tree $T^{\prime}:=T+u y_{i}-v_{i} x_{i}$. If $\operatorname{deg}_{T}\left(x_{i}\right)=3$ then x_{i} is not a branch vertex of T^{\prime}. Hence $\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right|<|R(\operatorname{Stem}(T))|$, this contradicts the condition (C1). Otherwise, $\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right|=|R(\operatorname{Stem}(T))|$ but the number of branchs of T^{\prime} is smaller then ones of T. This contradicts the condition (C2). The proof of Claim 2.4 is completed.

Since $k \geq 2$, then $|L(R(\operatorname{Stem}(T)))| \geq 3$. Hence, we have $|B(R(\operatorname{Stem}(T)))| \geq 1$. Let u be a vertex in $B(R(S t e m(T)))$. By Claim 2.3 and Claim 2.4 we conclude that $U \cup\{u\}$ is an independent set in G. This implies that $\alpha(G) \geq 2 k+3$. This is a contradiction with the assumption (i) of Theorem 1.5.

Claim 2.5 For every $1 \leq i \neq j \leq k+1$, then $N_{G}\left(y_{i}\right) \cap B_{y_{j}}=\emptyset$ and $N_{G}\left(y_{i}\right) \cap B_{z_{j}}=\emptyset$.
Proof. By the same role of y_{i} and z_{i}, we only need to prove for the case $N_{G}\left(y_{i}\right) \cap B_{y_{j}}=\emptyset$. Suppose the assertion of the claim is false. Then there exists a vertex $x \in N_{G}\left(y_{i}\right) \cap B_{y_{j}}$. Set $T^{\prime}:=T+x y_{i}$. Then T^{\prime} is a subgraph of G including a unique cycle C, which contains both x_{i} and x_{j}.

Since $k \geq 2$, then $|L(R(\operatorname{Stem}(T)))| \geq 3$. Hence, we have $|B(R(\operatorname{Stem}(T)))| \geq 1$. Then there exists a branch vertex of $R(\operatorname{Stem}(T))$ contained in C. Let e be an edge incident to such a vertex in C and $R(\operatorname{Stem}(T))$. By removing the edge e from T^{\prime} we obtain a tree $T^{\prime \prime}$ of G satisfying $V\left(T^{\prime \prime}\right)=V(T)$ and $\left|P\left(B\left(T^{\prime \prime}\right)\right)\right| \leq k$. This is a contradiction with Claim 2.1. Claim 2.5 is proved.

Claim 2.6 For every $1 \leq i<j \leq k+1, d_{G}\left(y_{i}, y_{j}\right) \geq 4$ and $d_{G}\left(z_{i}, z_{j}\right) \geq 4$.
Proof. We first prove that $d_{G}\left(y_{i}, y_{j}\right) \geq 4$. Let $P\left[y_{i}, y_{j}\right]$ be a shortest path connecting y_{i} and y_{j} in G. Assume that all vertices of $P\left[y_{i}, y_{j}\right]$ are contained in $(V(G)-R(\operatorname{Stem}(T))) \cup\left\{x_{i}, x_{j}\right\}$.

Let $t_{i} \in B_{y_{i}} \cup\left\{x_{i}\right\}, t_{j} \in B_{y_{j}} \cup\left\{x_{j}\right\}$ such that $t_{i}, t_{j} \in P\left[y_{i}, y_{j}\right]$ and

$$
P_{P\left[y_{i}, y_{j}\right]}\left[t_{i}, t_{j}\right] \cap B_{y_{i}}=\left\{t_{i}\right\}, P_{P\left[y_{i}, y_{j}\right]}\left[t_{i}, t_{j}\right] \cap B_{y_{j}}=\left\{t_{j}\right\} .
$$

Figure 3: Tree $T^{\prime \prime}$
Set $P\left[t_{i}, t_{j}\right]:=P_{P\left[y_{i}, y_{j}\right]}\left[t_{i}, t_{j}\right]$. For every branch B_{p} of T such that $B_{p} \cap P\left[t_{i}, t_{j}\right] \neq \emptyset$, remove all the edges of B_{p} in T which are incident to $R(\operatorname{Stem}(T))$ and add $P\left[t_{i}, t_{j}\right]$. Then the resulting subgraph T^{\prime} of G includes a unique cycle C, which contains two vertices x_{i} and x_{j}. Because $\mid B(R(\operatorname{Stem}(T)) \mid \geq 1$, there exists a branch vertex u of $R(\operatorname{Stem}(T))$ to be contained in C. Let e be an edge in C which is incident to u. Denote by $T^{\prime \prime}$ to be a tree obtained from T^{\prime} by removing the edge e (see Figure 3 for an example). Then $V(T) \subseteq V\left(T^{\prime}\right)=V\left(T^{\prime \prime}\right)$ and $\left|P\left(B\left(T^{\prime \prime}\right)\right)\right| \leq k$. This contradicts either the maximality of T or Claim 2.1. Therefore, $P\left[y_{i}, y_{j}\right] \cap\left(R(\operatorname{Stem}(T))-\left\{x_{i}, x_{j}\right\}\right) \neq \emptyset$. Set $v \in P\left[y_{i}, y_{j}\right] \cap\left(R(\operatorname{Stem}(T))-\left\{x_{i}, x_{j}\right\}\right)$. Hence, by combining with Claim 2.3, we obtain

$$
d_{G}\left(y_{i}, y_{j}\right)=d_{P\left[y_{i}, y_{j}\right]}\left(y_{i}, y_{j}\right) \geq d_{P\left[y_{i}, y_{j}\right]}\left(y_{i}, v\right)+d_{P\left[y_{i}, y_{j}\right]}\left(v, y_{j}\right) \geq 2+2=4 .
$$

Now, by using the same arguments, we also obtain that $d_{G}\left(z_{i}, z_{j}\right) \geq 4$. These complete the proof of Claim 2.6.

By Claim 2.6 we obtain that $\alpha^{4}(G) \geq k+1$.

Claim $2.7 \sum_{y \in U}\left|N_{G}(y) \cap B_{p}\right| \leq\left|B_{p}\right|$ for every $p \in L(T)-U$.
Proof. Set $v_{p} \in B(T)$ such that $\left(V\left(P_{T}\left[p, v_{p}\right]\right) \backslash\left\{v_{p}\right\}\right) \cap B(T)=\emptyset$. Then we consider $B_{p}=$ $P_{T}\left[p, v_{p}\right]-\left\{v_{p}\right\}$.
Subclaim 2.7.1. For every $i \in\{1,2, \ldots, k+1\}$, if $x \in N_{G}\left(y_{i}\right) \cap B_{p}$ then $x^{+} \notin N_{G}\left(U-\left\{y_{i}\right\}\right) \cap B_{p}$.
Suppose that there exists $x^{+} \in N_{G}(z) \cap B_{p}$ with $z \in U-\left\{y_{i}\right\}$. Let $T^{\prime}:=T+x y_{i}+x^{+} z-$ $x x^{+}-v_{p} v_{p}^{-}$. Then T^{\prime} is a tree in G satisfying $V\left(T^{\prime}\right)=V(T)$ and the number of branches of T^{\prime} is smaller than number of branches of T. Hence this contradicts the condition (C2).
Subclaim 2.7.2. For every $x \in B_{p}$ then x is adjacent to at most 2 vertices in U.

Figure 4: Tree $T^{\prime \prime}$
Indeed, we first prove that if $x \in N_{G}\left(y_{i}\right) \cap B_{p}$ then $x \notin N_{G}\left(y_{j}\right) \cap B_{p}$ and $x \notin N_{G}\left(z_{j}\right) \cap B_{p}$ for all $1 \leq i \neq j \leq k+1$. To the contrary, without loss of generality, assume that there exist $1 \leq i \neq j \leq k+1$ such that $x \in N_{G}\left(y_{i}\right) \cap B_{p}$ and $x \in N_{G}\left(y_{j}\right)$. Set $T^{\prime}:=T+x y_{i}+x y_{j}-v_{p} v_{p}^{-}$. Then T^{\prime} is subgraph of G including a unique cycle C, which contains two vertices x_{i} and x_{j}. Since $|B(R(\operatorname{Stem}(T)))| \geq 1$, there exists a branch vertex in the $R(\operatorname{Stem}(T))$ contained in C. Let e be an edge which is incident to such vertex in C. By removing the edge e we obtain a tree $T^{\prime \prime}$ of G (see Figure 4 for an example). Then $\left|V\left(T^{\prime \prime}\right)\right| \geq|V(T)|$ and $\mid P(B(T) \mid \leq k$. This contradicts either the maximality of T or Claim 2.1. Therefore, we have $\left|U \cap N_{G}(x)\right| \leq 2$.
Subclaim 2.7.3. $p \notin N_{G}(U)$.
Indeed, to the contrary, without loss of generality, assume that $p \in N_{G}\left(y_{i}\right)$ for some $y_{i} \in U$. We consider the tree $T^{\prime}:=T+y_{i} p-v_{p} v_{p}^{-}$. Hence, T^{\prime} is a tree with $\left|V\left(T^{\prime}\right)\right|=|V(T)|$, $\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right| \leq|R(\operatorname{Stem}(T))|$ and the number of branchs of T^{\prime} is smaller then the ones of T. This contradicts either the condition (C1) or (C2). Therefore $p \notin N_{G}(U)$.

Now, by Subclaims 2.7.1-2.7.2 we conclude that $\{p\}, N_{G}\left(y_{i}\right) \cap B_{p},\left(N_{G}\left(U-\left\{y_{i}\right\}\right) \cap B_{p}\right)^{+}$ and $\left(N_{2}(U)-N\left(y_{i}\right)\right) \cap B_{p}$ are pairwise disjoint subsets in B_{p} for every $1 \leq i \leq k+1$. Recall that $N_{3}(U) \cap B_{p}=\emptyset$ by Subclaim 2.7.2. Then by combining with Subclaim 2.7.3 we obtain

$$
\begin{aligned}
\left|B_{p}\right| & \geq\left|N\left(y_{i}\right) \cap B_{p}\right|+\left|\left(N\left(U-\left\{y_{i}\right\}\right) \cap B_{p}\right)^{+}\right|+\left|\left(N_{2}(U)-N\left(y_{i}\right)\right) \cap B_{p}\right| \\
& =\left|N\left(y_{i}\right) \cap B_{p}\right|+\left|N\left(U-\left\{y_{i}\right\}\right) \cap B_{p}\right|+\left|\left(N_{2}(U)-N\left(y_{i}\right)\right) \cap B_{p}\right| \\
& =\sum_{y \in U}\left|N_{G}(y) \cap B_{p}\right| .
\end{aligned}
$$

Claim 2.7 is proved.
Claim 2.8 For every $1 \leq i \leq k+1$, then $\sum_{y \in U}\left|N_{G}(y) \cap B_{y_{i}}\right| \leq\left|B_{y_{i}}\right|-1$ and $\sum_{y \in U} \mid N_{G}(y) \cap$ $B_{z_{i}}\left|\leq\left|B_{z_{i}}\right|-1\right.$.

Proof. By the same role of y_{i} and z_{i}, we only need to prove for the case $\sum_{y \in U}\left|N_{G}(y) \cap B_{y_{i}}\right| \leq$ $\left|B_{y_{i}}\right|-1$. Now we consider $B_{y_{i}}=P_{T}\left[y_{i}, x_{i}\right]-\left\{x_{i}\right\}$.
By Claim 2.5, we conclude that $N_{G}(U) \cap B_{y_{i}}=N_{G}\left(\left\{y_{i}, z_{i}\right\}\right) \cap B_{y_{i}}$.
Subclaim 2.8.1. $x_{i}^{-} \notin N_{G}\left(z_{i}\right) \cap B_{y_{i}}$.
Assume that x_{i}^{-}is adjacent to z_{i} in G. Consider the tree $T^{\prime}=T+z_{i} x_{i}{ }^{-}-x_{i}{ }^{-} x_{i}$. If $\operatorname{deg}_{T}\left(x_{i}\right)=3$, then T^{\prime} is a tree of G such that $V\left(T^{\prime}\right)=V(T),\left|R\left(S t e m\left(T^{\prime}\right)\right)\right| \leq|R(\operatorname{Stem}(T))|-$ 1. This contradicts the condition (C1). Otherwise, $V\left(T^{\prime}\right)=V(T)$, and $\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right| \leq$ $|R(\operatorname{Stem}(T))|$, but the number of branches of T^{\prime} is smaller than the one of T. This contradicts the condition (C2).
Subclaim 2.8.2. If $x \in N_{G}\left(y_{i}\right) \cap B_{y_{i}}$ then $x^{-} \notin N_{G}\left(z_{i}\right) \cap B_{y_{i}}$.
Suppose that there exists $x \in N_{G}\left(y_{i}\right) \cap B_{y_{i}}$ such that $x^{-} \in N_{G}\left(z_{i}\right) \cap B_{y_{i}}$. Set $T^{\prime}:=T+$ $\left\{x y_{i}, z_{i} x^{-}\right\}-\left\{x x^{-}, x_{i}^{-} x_{i}\right\}$. Hence T^{\prime} is a tree of G such that $V\left(T^{\prime}\right)=V(T),\left|R\left(\operatorname{Stem}\left(T^{\prime}\right)\right)\right| \leq$ $|R(\operatorname{Stem}(T))|$ and the number of branches of T^{\prime} is smaller than the one of T. This contradicts either the condition (C1) or the condition (C2). Subclaim 2.8 .2 holds.

By Subclaims 2.8.1 and 2.8.2 and Claim 2.5 we conclude that $\left\{y_{i}\right\}, N_{G}\left(y_{i}\right) \cap B_{y_{i}}$ and $\left(N_{G}\left(z_{i}\right) \cap B_{y_{i}}\right)^{-}$are pairwise disjoint subsets in $B_{y_{i}}$. Then

$$
\begin{aligned}
\sum_{y \in U}\left|N_{G}(y) \cap B_{y_{i}}\right| & =\left|N_{G}\left(y_{i}\right) \cap B_{y_{i}}\right|+\left|N_{G}\left(z_{i}\right) \cap B_{y_{i}}\right| \\
& =\left|N_{G}\left(y_{i}\right) \cap B_{y_{i}}\right|+\left|\left(N_{G}\left(z_{i}\right) \cap B_{y_{i}}\right)^{-}\right| \leq\left|B_{y_{i}}\right|-1 .
\end{aligned}
$$

This completes the proof of Claim 2.8.
By Claim 2.7, Claim 2.8 and Claim 2.3 we obtain that

$$
\begin{aligned}
\operatorname{deg}_{G}(U) & =\sum_{i=1}^{k+1}\left(\operatorname{deg}_{G}\left(y_{i}\right)+\operatorname{deg}_{G}\left(z_{i}\right)\right) \\
& \leq \sum_{i=1}^{k+1}\left(\left|B_{y_{i}}\right|-1\right)+\sum_{i=1}^{k+1}\left(\left|B_{z_{i}}\right|-1\right)+\sum_{p \in L(T)-U}\left|B_{p}\right|+2(k+1) \\
& =|G|-|R(\operatorname{Stem}(T))| .
\end{aligned}
$$

On the other hand, we note that $|R(\operatorname{Stem}(T))| \geq k+2$. Hence
$\sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(y_{i}\right)+\sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(z_{i}\right) \leq|G|-k-2 \Rightarrow \min \left\{\sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(y_{i}\right), \sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(z_{i}\right)\right\} \leq\left\lfloor\frac{|G|-k-2}{2}\right\rfloor$.
Combining with Claim 2.6, we obtain

$$
\sigma_{k+1}^{4}(G) \leq \min \left\{\sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(y_{i}\right), \sum_{i=1}^{k+1} \operatorname{deg}_{G}\left(z_{i}\right)\right\} \leq\left\lfloor\frac{|G|-k}{2}\right\rfloor-1 .
$$

This contradicts the assumption (ii) of Theorem 1.5.

Therefore, the proof of Theorem 1.5 is completed.
Acknowledgements. A part of work was completed during a stay of the first named author at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank this institution for financial support and hospitality.

References

[1] Broersma, H., Tuinstra, H.: Independence trees and Hamilton cycles, J. Graph Theory 29, 227-237 (1998)
[2] Chen, Y., Chen, G., Hu, Z.: Spanning 3-ended trees in k-connected $K_{1,4}$-free graphs, Sci. China Math. 57, 1579-1586 (2014)
[3] Chen, Y., Ha, P. H., Hanh, D. D.: Spanning trees with at most 4 leaves in $K_{1,5}$-free graphs, Discrete Math. 342, 2342-2349 (2019)
[4] Diestel, R.: Graph Theory, 3rd Edition, Springer, Berlin, 2005
[5] Ha, P. H., Hanh, D. D.: Spanning trees of connected $K_{1, t}$-free graphs whose stems have a few leaves, Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00812-x.
[6] Kano M., Kyaw, A., Matsuda, H., Ozeki, K., Saito, A., Yamashita, T.: Spanning trees with a bounded number of leaves in a claw-free graph, Ars Combin. 103, 137-154 (2012)
[7] Kano, M., Yan, Z.: Spanning trees whose stems have at most k leaves, Ars Combin. CXIVII, 417-424 (2014)
[8] Kano, M., Yan, Z.: Spanning trees whose stems are spiders, Graphs Combin. 31, 18831887 (2015)
[9] Kyaw, A.: Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs, Discrete Math. 309, 6146-6148 (2009)
[10] Kyaw, A.: Spanning trees with at most k leaves in $K_{1,4}$-free graphs, Discrete Math. 311, 2135-2142 (2011)
[11] Las Vergnas, M.: Sur une proprieté des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris Ser. A 272, 1297-1300 (1971)
[12] Matthews, M. M., Sumner, D. P.: Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8, 139-146 (1984)
[13] Meazawa, S. , Matsubara, R., Matsuda, H.: Degree conditions for graphs to have spanning trees with few branch vertices and leaves, Graphs Combin. 35, 231-238 (2019)
[14] Ozeki, K., Yamashita, T.: Spanning trees: A survey, Graphs Combin. 22, 1-26 (2011)
[15] Tsugaki, M., Zhang, Y: Spanning trees whose stems have a few leaves, Ars Combin. CXIV, 245-256 (2014)
[16] Win, S.: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Resultate Math. 2, 215-224 (1979)

[^0]: *E-mail address: ha.ph@hnue.edu.vn (Corresponding author).
 ${ }^{\dagger}$ E-mail address: ddhanhdhsphn@gmail.com.
 ${ }^{\ddagger}$ E-mail address: thanhloannguyen.elizabeth@gmail.com.

