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Abstract

Let T be a tree, a vertex of degree one is a leaf of T and a vertex of degree at least
three is a branch vertex of T . The set of leaves of T is denoted by L(T ) and the set of
branch vertices of T is denoted by B(T ). Let T be a tree with B(T ) 6= ∅, for each a vertex
x ∈ L(T ), set yx ∈ B(T ) such that (V (PT [x, yx]) \ {yx}) ∩ B(T ) = ∅, where PT [u, v] is
the unique path in T connecting u and v. We delete V (PT [x, yx]) \ {yx} from T for all
x ∈ Leaf(T ). The resulting graph is a subtree of T and denoted by R(Stem(T )). It is
called the reducible stem of T. A leaf of R(Stem(T )) is called a peripheral branch vertex
of T. In this paper, we give some sharp sufficient conditions on the independence number
and the degree sum to show that a graph G to have a few peripheral branch vertices.
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1 Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set
V (G) and edge set E(G). For any vertex v ∈ V (G), we use NG(v) and degG(v) (or N(v) and
deg(v) if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G,
respectively. For any X ⊆ V (G), we denote by |X| the cardinality of X. Sometime, we denote
by |G| instead of |V (G)|. We define NG(X) =

⋃
x∈X

NG(x) and degG(X) =
∑
x∈X

degG(x). For

k ≥ 1, we let Nk(X) = {x ∈ V (G) | |N(x) ∩ X| = k}. We use G − X to denote the graph
obtained from G by deleting the vertices in X together with their incident edges. We define
G − uv to be the graph obtained from G by deleting the edge uv ∈ E(G), and G + uv to be
the graph obtained from G by adding an edge uv between two non-adjacent vertices u and v
of G. For two vertices u and v of G, the distance between u and v in G is denoted by dG(u, v).
We use Kn to denote the complete graph on n vertices. We write A := B to rename B as A.

For an integer m > 2, let αm(G) denote the number defined by

αm(G) = max{|S| : S ⊆ V (G), dG(x, y) > m for all distinct vertices x, y ∈ S}.

For an integer p > 2, we define

σmp (G) = min

{∑
a∈S

degG(a) : S ⊆ V (G), |S| = p, dG(x, y) > m for all distinct vertices x, y ∈ S

}
.

For convenience, we define σmp (G) = +∞ if αm(G) < p. We note that, α2(G) is often written
α(G), which is the independence number of G, and σ2p(G) is often written σp(G), which is the
minimum degree sum of p independent vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at least
three is a branch vertex of T . The set of leaves of T is denoted by L(T ) and the set of
branch vertices of T is denoted by B(T ). There are several well-known conditions (such as
the independence number conditions and the degree sum conditions) ensuring that a graph
G contains a spanning tree with a bounded number of leaves (see the survey paper [14] and
the references cited therein for details). Win [16] obtained a sufficient condition related to the
independence number for l-connected graphs, which confirms a conjecture of Las Vergnas [11].
Broersma and Tuinstra [1] gave a degree sum condition for a connected graph to contain a
spanning tree with at most k leaves.

Theorem 1.1 (Win [16]) Let l ≥ 1 and k ≥ 2 be integers and let G be a l-connected graph.
If α(G) ≤ k + l − 1, then G has a spanning tree with at most k leaves.

Theorem 1.2 (Broerma and Tuinstra [1]) Let G be a connected graph and let k ≥ 2 be an
integer. If σ2(G) ≥ |G| − k + 1, then G has a spanning tree with at most k leaves.

The subtree T − L(T ) of a tree T is called the stem of T and is denoted by Stem(T ).
Recently, many researches are studied on spanning trees in connected graphs whose stems
have a bounded number of leaves (see [7], [8] and [15] for more details). We introduce here
some results on spanning trees whose stems have a few leaves.

Theorem 1.3 (Tsugaki and Zhang [15]) Let G be a connected graph and let k > 2 be an
integer. If σ3(G) > |G|−2k+1, then G have a spanning tree whose stem has at most k leaves.
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Theorem 1.4 (Kano and Yan [7]) Let G be a connected graph and let k > 2 be an integer.
If either α4(G) ≤ k or σk+1(G) > |G| − k − 1, then G has a spanning tree whose stem has at
most k leaves.

Furthermore, by considering the graph G to be restricted in some special graph classes,
many analogue researches have been introduced (see [2], [3], [5], [6], [9], [10] and [12] for
examples).

In this paper, we would like to introduce a new situation on spanning tree. For two distinct
vertices u, v of T , we denote by PT [u, v] the unique path in T connecting u and v. We define
the orientation of PT [u, v] is from u to v. We refer to [4] for terminology and notation not
defined here. Let T be a tree with B(T ) 6= ∅. For every x ∈ L(T ), set yx ∈ B(T ) such that
(V (PT [x, yx]) \ {yx})∩B(T ) = ∅. We delete V (PT [x, yx]) \ {yx} from T for all x ∈ L(T ). The
resulting graph is denoted by R(Stem(T )). It is called the reducible stem of T. The path with
vertex set V (PT [x, yx])\{yx} is called a branch of T , usually denoted by Bx. Bx is called to be

incident to x. Then R(Stem(T )) = T −B with B =
⋃

x∈L(T )

V (Bx) (see Figure 1 for a picture of

T and R(Stem(T ))). A leaf of R(Stem(T )) is also called a peripheral branch vertex of T (also
see [13, page 234]). We denote by P (B(T )) the peripheral branch vertex set of T. We study

Figure 1: Tree T and R(Stem(T))

sufficient conditions to show that a graph to have a spanning tree T with few peripheral branch
vertices, i.e., R(Stem(T )) has a few leaves. In particular, we state the following theorem.

Theorem 1.5 Let G be a connected graph and let k ≥ 2 be an integer. If one of the following
conditions holds, then G has a spanning tree with at most k peripheral branch vertices.

(i) α(G) ≤ 2k + 2,

(ii) σ4k+1(G) ≥ b |G|−k2 c.
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Here, the notation brc stands for the biggest integer not exceed the real number r.

To end this section, we give an example to see that our main results are sharp. Let k ≥ 2 and
m ≥ 1 be integers, and let D1, D2, ..., Dk+1 and H1, H2, ...,Hk+1 be 2k + 2 disjoint copies of
the complete graph Km of order m. Let w, x1, x2, ..., xk+1 be k + 2 vertices not contained in
D1 ∪D2 ∪ ...∪Dk+1 ∪H1 ∪H2 ∪ ...∪Hk+1. Join w to all vertices of {x1, x2, ..., xk+1} and join
xi to all the vertices of Di ∪Hi for every 1 ≤ i ≤ k+ 1. Let G denote the resulting graph (see
Figure 2). Then α(G) = 2k + 3. Moreover, we also obtain

σ4k+1(G) =
k+1∑
i=1

degG(yi) = (k + 1)m = b |G| − k
2
c − 1,

with yi is any vertex of Di for every 1 ≤ i ≤ k + 1.

Figure 2: Graph G

But G has no a spanning tree with at most k peripheral branch vertices. Then, the
conditions of Theorem 1.5 are sharp.

2 Proof of the main results

Proof. Suppose for a contradiction that there does not exist a spanning tree T of G such that
|P (B(T ))| ≤ k. Then every spanning tree T of G satisfies |P (B(T ))| ≥ k + 1.

Choose T to be a maximal tree of G such that |P (B(T ))| = k + 1 and

(C1) |R(Stem(T ))| is as small as possible,

(C2) The number of branches of T is as small as possible subject to (C1) .
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Claim 2.1 There does not exist a tree S in G such that V (S) = V (T ) and |P (B(S))| ≤ k.

Proof. Indeed, assume that there exists a tree S in G such that V (S) = V (T ) and |P (B(S))| ≤
k. Since |P (B(S))| ≤ k, S is not a spanning tree of G. Then there exists u ∈ V (G) − V (S)
such that u is adjacent to a vertex v ∈ S. Let S1 be a tree obtained from S by adding the
edge uv. Then S1 is a tree in G such that |V (S1)| = |V (T )|+ 1 and |P (B(S1))| ≤ k + 1.

If |P (B(S1))| = k+1, then S1 contradicts the maximality of T (since |V (S1)| = |V (S)|+1 =
|V (T )| + 1 > |V (T )|). So we may assume that |P (B(S1))| ≤ k. By repeating this process,
we can recursively construct a set of trees {Si | i ≥ 1} in G such that Si satisfies that
|P (B(Si))| ≤ k and |V (Si+1)| = |V (Si)| + 1 for each i ≥ 1. Since G has no spanning tree
with at most k peripheral branch vertices and |V (G)| is finite, the process must terminate
after a finite number of steps, i.e., there exists some h ≥ 1 such that Sh+1 is a tree in G with
|P (B(Sh+1))| = k + 1. But this contradicts the maximality of T . So the claim holds.

Set P (B(T )) = {x1, x2, ..., xk+1}. By the definition of peripheral branch vertex, we have
the following claim.

Claim 2.2 For every i ∈ {1, 2, ..., k + 1}, there exist at least two branchs of T which are
incident to xi.

Claim 2.3 For each i ∈ {1, 2, ..., k+1}, there exist yi, zi ∈ L(T ) such that Byi , Bzi are incident
to xi and NG(yi) ∩ (V (R(Stem(T )))− {xi}) = ∅, NG(zi) ∩ (V (R(Stem(T )))− {xi}) = ∅.

Proof. Let {aij}mj=1 be the subset of L(T ) such that Baij is adjacent to xi. By Claim 2.2, we
obtain m ≥ 2.
Suppose that there are more than m− 1 vertices {aij}mj=1 satisfying

NG(aij) ∩ (V (R(Stem(T )))− {xi}) 6= ∅.

Without lost of generality, we may assume that NG(aij)∩ (V (R(Stem(T )))− {xi}) 6= ∅ for all
j = 2, ...,m. Set bij ∈ NG(aij) ∩ (V (R(Stem(T )))− {xi}) , for all j ∈ {2, ...,m}. Consider the
tree

T ′ := T + {aijbij}mj=2 − {xivij}mj=2,

where vij ∈ NT (xi)∩ V (PT [aij ;xi]). Hence T ′ satisfies |V (T ′)| = |V (T )| and |R(Stem(T ′))| <
|R(Stem(T ))|, which contradicts the condition (C1). Therefore, Claim 2.3 holds.

Set U = {yi, zi}k+1
i=1 . By the maximality of T we have NG(U) ⊆ V (T ).

Claim 2.4 U is an independent set in G.

Proof. Suppose that there exist two vertices u, v ∈ U such that uv ∈ E(G). Without lost
of generality, we assume that v = yi for some i ∈ {1, 2, ..., k + 1}. Set vi = NT (xi) ∩ Byi .
Consider the tree T ′ := T + uyi − vixi. If degT (xi) = 3 then xi is not a branch vertex of
T ′. Hence |R(Stem(T ′))| < |R(Stem(T ))|, this contradicts the condition (C1). Otherwise,
|R(Stem(T ′))| = |R(Stem(T ))| but the number of branchs of T ′ is smaller then ones of T.
This contradicts the condition (C2). The proof of Claim 2.4 is completed.

Since k ≥ 2, then |L(R(Stem(T )))| ≥ 3. Hence, we have |B(R(Stem(T )))| ≥ 1. Let u
be a vertex in B(R(Stem(T ))). By Claim 2.3 and Claim 2.4 we conclude that U ∪ {u} is
an independent set in G. This implies that α(G) ≥ 2k + 3. This is a contradiction with the
assumption (i) of Theorem 1.5.
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Claim 2.5 For every 1 ≤ i 6= j ≤ k + 1, then NG(yi) ∩Byj = ∅ and NG(yi) ∩Bzj = ∅.

Proof. By the same role of yi and zi, we only need to prove for the case NG(yi) ∩ Byj = ∅.
Suppose the assertion of the claim is false. Then there exists a vertex x ∈ NG(yi) ∩ Byj . Set
T ′ := T + xyi. Then T ′ is a subgraph of G including a unique cycle C, which contains both xi
and xj .

Since k ≥ 2, then |L(R(Stem(T )))| ≥ 3. Hence, we have |B(R(Stem(T )))| ≥ 1. Then
there exists a branch vertex of R(Stem(T )) contained in C. Let e be an edge incident to such
a vertex in C and R(Stem(T )). By removing the edge e from T ′ we obtain a tree T ′′ of G
satisfying V (T ′′) = V (T ) and |P (B(T ′′))| ≤ k. This is a contradiction with Claim 2.1. Claim
2.5 is proved.

Claim 2.6 For every 1 ≤ i < j ≤ k + 1, dG(yi, yj) ≥ 4 and dG(zi, zj) ≥ 4.

Proof. We first prove that dG(yi, yj) ≥ 4. Let P [yi, yj ] be a shortest path connecting yi and yj
in G. Assume that all vertices of P [yi, yj ] are contained in (V (G)−R(Stem(T ))) ∪ {xi, xj}.

Let ti ∈ Byi ∪ {xi}, tj ∈ Byj ∪ {xj} such that ti, tj ∈ P [yi, yj ] and

PP [yi,yj ][ti, tj ] ∩Byi = {ti}, PP [yi,yj ][ti, tj ] ∩Byj = {tj}.

Figure 3: Tree T ′′

Set P [ti, tj ] := PP [yi,yj ][ti, tj ]. For every branch Bp of T such that Bp∩P [ti, tj ] 6= ∅, remove
all the edges of Bp in T which are incident to R(Stem(T )) and add P [ti, tj ]. Then the resulting
subgraph T ′ of G includes a unique cycle C, which contains two vertices xi and xj . Because
|B(R(Stem(T ))| ≥ 1, there exists a branch vertex u of R(Stem(T )) to be contained in C.
Let e be an edge in C which is incident to u. Denote by T ′′ to be a tree obtained from
T ′ by removing the edge e (see Figure 3 for an example). Then V (T ) ⊆ V (T ′) = V (T ′′)
and |P (B(T ′′))| ≤ k. This contradicts either the maximality of T or Claim 2.1. Therefore,
P [yi, yj ]∩ (R(Stem(T ))−{xi, xj}) 6= ∅. Set v ∈ P [yi, yj ]∩ (R(Stem(T ))−{xi, xj}). Hence, by
combining with Claim 2.3, we obtain

dG(yi, yj) = dP [yi,yj ](yi, yj) ≥ dP [yi,yj ](yi, v) + dP [yi,yj ](v, yj) ≥ 2 + 2 = 4.

Now, by using the same arguments, we also obtain that dG(zi, zj) ≥ 4. These complete the
proof of Claim 2.6.

By Claim 2.6 we obtain that α4(G) ≥ k + 1.
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Claim 2.7
∑

y∈U |NG(y) ∩Bp| ≤ |Bp| for every p ∈ L(T )− U .

Proof. Set vp ∈ B(T ) such that (V (PT [p, vp]) \ {vp}) ∩ B(T ) = ∅. Then we consider Bp =
PT [p, vp]− {vp}.
Subclaim 2.7.1. For every i ∈ {1, 2, ..., k+1}, if x ∈ NG(yi)∩Bp then x+ /∈ NG(U −{yi})∩Bp.

Suppose that there exists x+ ∈ NG(z) ∩Bp with z ∈ U − {yi}. Let T ′ := T + xyi + x+z −
xx+ − vpv−p . Then T ′ is a tree in G satisfying V (T ′) = V (T ) and the number of branches of
T ′ is smaller than number of branches of T . Hence this contradicts the condition (C2).
Subclaim 2.7.2. For every x ∈ Bp then x is adjacent to at most 2 vertices in U .

Figure 4: Tree T ′′

Indeed, we first prove that if x ∈ NG(yi) ∩Bp then x /∈ NG(yj) ∩Bp and x /∈ NG(zj) ∩Bp

for all 1 ≤ i 6= j ≤ k + 1. To the contrary, without loss of generality, assume that there exist
1 ≤ i 6= j ≤ k+ 1 such that x ∈ NG(yi)∩Bp and x ∈ NG(yj). Set T ′ := T + xyi + xyj − vpv−p .
Then T ′ is subgraph of G including a unique cycle C, which contains two vertices xi and xj .
Since |B(R(Stem(T )))| ≥ 1, there exists a branch vertex in the R(Stem(T )) contained in C.
Let e be an edge which is incident to such vertex in C. By removing the edge e we obtain a
tree T ′′ of G (see Figure 4 for an example). Then |V (T ′′)| ≥ |V (T )| and |P (B(T )| ≤ k. This
contradicts either the maximality of T or Claim 2.1. Therefore, we have |U ∩NG(x)| ≤ 2.
Subclaim 2.7.3. p /∈ NG(U).

Indeed, to the contrary, without loss of generality, assume that p ∈ NG(yi) for some
yi ∈ U. We consider the tree T ′ := T + yip− vpv−p . Hence, T ′ is a tree with |V (T ′)| = |V (T )|,
|R(Stem(T ′))| ≤ |R(Stem(T ))| and the number of branchs of T ′ is smaller then the ones of T.
This contradicts either the condition (C1) or (C2). Therefore p /∈ NG(U).

Now, by Subclaims 2.7.1-2.7.2 we conclude that {p}, NG(yi) ∩ Bp, (NG(U − {yi}) ∩Bp)
+

and (N2(U)−N(yi)) ∩ Bp are pairwise disjoint subsets in Bp for every 1 ≤ i ≤ k + 1. Recall
that N3(U) ∩Bp = ∅ by Subclaim 2.7.2. Then by combining with Subclaim 2.7.3 we obtain

|Bp| ≥ |N(yi) ∩Bp|+ |(N(U − {yi}) ∩Bp)
+|+ |(N2(U)−N(yi)) ∩Bp|

= |N(yi) ∩Bp|+ |N(U − {yi}) ∩Bp|+ |(N2(U)−N(yi)) ∩Bp|

=
∑
y∈U
|NG(y) ∩Bp|.
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Claim 2.7 is proved.

Claim 2.8 For every 1 ≤ i ≤ k+ 1, then
∑

y∈U |NG(y)∩Byi | ≤ |Byi | − 1 and
∑

y∈U |NG(y)∩
Bzi | ≤ |Bzi | − 1.

Proof. By the same role of yi and zi, we only need to prove for the case
∑

y∈U |NG(y)∩Byi | ≤
|Byi | − 1. Now we consider Byi = PT [yi, xi]− {xi}.
By Claim 2.5, we conclude that NG(U) ∩Byi = NG({yi, zi}) ∩Byi .
Subclaim 2.8.1. x−i /∈ NG(zi) ∩Byi .

Assume that x−i is adjacent to zi in G. Consider the tree T ′ = T + zixi
− − xi

−xi. If
degT (xi) = 3, then T ′ is a tree of G such that V (T ′) = V (T ), |R(Stem(T ′))| ≤ |R(Stem(T ))|−
1. This contradicts the condition (C1). Otherwise, V (T ′) = V (T ), and |R(Stem(T ′))| ≤
|R(Stem(T ))|, but the number of branches of T ′ is smaller than the one of T . This contradicts
the condition (C2).
Subclaim 2.8.2. If x ∈ NG(yi) ∩Byi then x− /∈ NG(zi) ∩Byi .

Suppose that there exists x ∈ NG(yi) ∩ Byi such that x− ∈ NG(zi) ∩ Byi . Set T ′ := T +
{xyi, zix−} − {xx−, x−i xi}. Hence T ′ is a tree of G such that V (T ′) = V (T ), |R(Stem(T ′))| ≤
|R(Stem(T ))| and the number of branches of T ′ is smaller than the one of T . This contradicts
either the condition (C1) or the condition (C2). Subclaim 2.8.2 holds.

By Subclaims 2.8.1 and 2.8.2 and Claim 2.5 we conclude that {yi}, NG(yi) ∩ Byi and
(NG(zi) ∩Byi)

− are pairwise disjoint subsets in Byi . Then∑
y∈U
|NG(y) ∩Byi | = |NG(yi) ∩Byi |+ |NG(zi) ∩Byi |

= |NG(yi) ∩Byi |+ |(NG(zi) ∩Byi)
−| ≤ |Byi | − 1.

This completes the proof of Claim 2.8.
By Claim 2.7, Claim 2.8 and Claim 2.3 we obtain that

degG(U) =
k+1∑
i=1

(degG(yi) + degG(zi))

≤
k+1∑
i=1

(|Byi | − 1) +
k+1∑
i=1

(|Bzi | − 1) +
∑

p∈L(T )−U

|Bp|+ 2(k + 1)

= |G| − |R(Stem(T ))|.

On the other hand, we note that |R(Stem(T ))| ≥ k + 2. Hence

k+1∑
i=1

degG(yi)+
k+1∑
i=1

degG(zi) ≤ |G|−k−2⇒ min

{
k+1∑
i=1

degG(yi),
k+1∑
i=1

degG(zi)

}
≤ b|G| − k − 2

2
c.

Combining with Claim 2.6, we obtain

σ4k+1(G) ≤ min

{
k+1∑
i=1

degG(yi),
k+1∑
i=1

degG(zi)

}
≤ b|G| − k

2
c − 1.

This contradicts the assumption (ii) of Theorem 1.5.
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Therefore, the proof of Theorem 1.5 is completed.
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