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Abstract. We consider a functional semilinear Rayleigh-Stokes equation in-
volving fractional derivative. Our aim is to analyze some circumstances, in

those the global solvability and some results on asymptotic behavior of solu-

tions take place. By establishing a new Halanay type inequality, we show the
dissipativity and asymptotic stability of solutions to our problem. In addi-

tion, we prove the existence of a compact set of decay solutions by using local

estimates and fixed point arguments.

1. Introduction

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. Consider the
following problem

∂tu− (1 + γ∂αt )∆u = f(t, uρ) in Ω, t > 0, (1.1)

u = 0 on ∂Ω, t ≥ 0, (1.2)

u(x, s) = ξ(x, s), x ∈ Ω, s ∈ [−τ, 0], (1.3)

where γ > 0, α ∈ (0, 1), ∂t = ∂
∂t , ∂

α
t stands for the Riemann-Liouville derivative of

order α defined by

∂αt v(t) =
d

dt

∫ t

0

g1−α(t− s)v(s)ds,

where gβ(t) =
tβ−1

Γ(β)
for β > 0, t > 0. In this model, uρ is defined by uρ(x, t) =

u(x, t−ρ(t)) with ρ being a continuous function on R+ such that −τ ≤ t−ρ(t) ≤ t
and lim

t→∞
(t − ρ(t)) = ∞, f : R+ × L2(Ω) → L2(Ω) is a nonlinear map and ξ ∈

C([−τ, 0];L2(Ω)) is given.
In the study of fluid dynamics, the behavior of non-Newtonian fluids possess-

ing both elasticity and viscosity has received much attention due to its practi-
cal applications in industry and engineering (rheology, geophysics, chemical and
petroleum industries, etc). In this direction, models of generalized second grade
fluids have been investigated by many researchers. Equation (1.1) arose in a gener-
alized Rayleigh-Stokes problem, where its constitutive relation was given in [9, 16],
in order to describe the flow of generalized second grade fluids occupied in cylin-
ders. This is also regarded as a special case of modeling equation for the generalized
Oldroyd-B fluid [9]. It should be noted that, the term of fractional derivative gives
a significant description for the viscoelasticity of fluids under examination.
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As a matter of fact, there have been lots of works devoted to finding numerical
methods for solving Rayleigh-Stokes problem, see e.g. [3, 4, 5, 6, 15, 20]. Regarding
analytic representation for solution of this problem in linear form, we refer to [9, 12,
16, 19, 21]. Recently, the final value problem involving (1.1) has been addressed in
[13, 17], as an interesting supplement to qualitative investigation for this equation.

In the present work, we concern with the nonlinear model, where the nonlinearity
f contains a delay term and it stands for an external force that depends on history
state of the system. A typical example for the delay term is that, ρ(t) = (1−q)t+τ ,
uρ(x, t) = u(x, qt − τ), for some q ∈ (0, 1], which is a proportional delay. For this
model, the long-time behavior of solutions is an issue that has not been addressed
in literature, and we aim at closing this gap. We first prove that, the problem is
globally solvable in both cases when f has a linear or superlinear growth. Then
we analyze some sufficient conditions ensuring the dissipativity and asymptotic
stability for our system. Finally, we show a result on existence of decay solutions
in the case f is of superlinear.

Our work is as follows. In the next section, we show typical properties of re-
laxation function and prove a Halanay type equality for using in stability analysis.
We also prove the compactness of the Cauchy operator, which plays an important
role in fixed point arguments. Section 3 is devoted to proving the solvability and
stability results. In the last section, we present the existence of a compact set of
decay solutions to our problem.

2. Preliminaries

We first consider the relaxation problem

ω′(t) + µ(1 + γ∂αt )ω(t) = 0, t > 0, (2.1)

ω(0) = 1, (2.2)

where the unknown ω is a scalar function, µ and γ are positive parameters. We
collect some properties of ω in the following proposition.

Proposition 2.1. Let ω be the solution of (2.1)-(2.2). Then

(1) 0 < ω(t) ≤ 1 for all t ≥ 0.
(2) The function ω is completely monotone for t ≥ 0, i.e. (−1)nω(n)(t) ≥ 0 for

t ≥ 0 and n ∈ N. Consequently, ω is a nonincreasing function.
(3) µω(t) ≤ (t+ g2−α(t))−1 ≤ min{t−1, tα−1}, for all t > 0.

(4)

∫ t

0

ω(s)ds ≤ µ−1(1− ω(t)), for any t > 0.

Proof. The proof for (1)-(2) can be found in [3, Theorem 2.2]. For the last state-
ment, taking integration of (2.1) yields

ω(t) + µ

∫ t

0

ω(s)ds+ µ

∫ t

0

g1−α(t− s)ω(s)ds = 1.

Then

µω(t)

(
1

µ
+ t+

∫ t

0

g1−α(t− s)ds
)
≤ 1, (2.3)

ω(t) + µ

∫ t

0

ω(s)ds ≤ 1, (2.4)
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thanks to the monotonicity and positivity of ω(·). So (3) follows from (2.3) and (4)
is deduced from (2.4). The proof is complete. �

Denote by ω(·, µ) the solution of (2.1)-(2.2), respecting to parameter µ. In what
follows, we use the notation u∗v to express the Laplace convolution of u and v, i.e.

(u ∗ v)(t) =

∫ t

0

u(t− s)v(s)ds, u, v ∈ L1
loc(R+).

We have the following result on the function ω.

Proposition 2.2. For fixed t ≥ 0 and γ > 0, the function µ 7→ ω(t, µ) is nonin-
creasing on [0,∞).

Proof. Note that, the Laplace transform of ω is determined by

ω̂(λ, µ) := L[ω](λ) =
1

λ+ γµλα + µ
.

It follows that

∂ω̂

∂µ
= − 1 + γλα

(λ+ γµλα + µ)2
= −[(1 + γλα)ω̂]ω̂.

Taking into account the fact that

(1 + γλα)ω̂ = L[(1 + γ∂αt )ω],

we see that
∂ω̂

∂µ
= −L[(1 + γ∂αt )ω]L[ω].

Applying the inverse transform to the last equation, we obtain

∂ω

∂µ
= −(ω + γ∂αt ω) ∗ ω,

thanks to the convolution rule of Laplace transform. Now using (2.1), one gets

∂ω

∂µ
=

1

µ
(ω′ ∗ ω) ≤ 0,

according to the complete monotonicity of ω. The proof is complete. �

We now concern with the inhomogeneous problem

v′(t) + µ(1 + γ∂αt )v(t) = g(t), t > 0, (2.5)

v(0) = v0, (2.6)

where µ > 0, γ > 0 and g is a continuous function.

Proposition 2.3. The solution of (2.5)-(2.6) is given by

v(t) = ω(t, µ)v0 + ω(·, µ) ∗ g(t), t ≥ 0,

where ω is defined by (2.1)-(2.2).

Proof. Taking the Laplace transform of (2.5), we have

λv̂ − v0 + µ(1 + γλα)v̂ = ĝ.

Then

v̂ =
v0

λ+ γµλα + µ
+

ĝ

λ+ γµλα + µ
= ω̂v0 + ω̂ĝ.
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Applying the inverse transform yields

v(t) = ω(t)v0 +

∫ t

0

ω(t− s)g(s)ds. (2.7)

Conversely, one can show that the function v given by (2.7) is the solution of (2.5)-
(2.6). Indeed, let L[v] = v′ + µ(1 + γ∂αt )v, then

L[v] = L[ω]v0 + L[ω ∗ g] = L[ω ∗ g].

It suffices to prove that L[ω ∗ g] = g. By computation, we see that

(ω ∗ g)′ + µ(ω ∗ g) = g + ω′ ∗ g + µ(ω ∗ g)

= g + (ω′ + µω) ∗ g,

∂αt (ω ∗ g) =
d

dt
[h1−α ∗ (ω ∗ g)]

=
d

dt
(h1−α ∗ ω) ∗ g

= (∂αt ω) ∗ g.

Hence

L[ω ∗ g] = (ω ∗ g)′ + µ(ω ∗ g) + µγ∂αt (ω ∗ g)

= g + (ω′ + µω + µγ∂αt ω) ∗ g
= g + L[ω] ∗ g = g.

The proof is complete. �

Let {ϕn}∞n=1 be the orthonormal basis of L2(Ω) consisting of the eigenfunctions
of the Laplacian −∆ subject to homogeneous Dirichlet boundary condition, that is

−∆ϕn = λnϕn in Ω, ϕn = 0 on ∂Ω,

where we can assume that {λn}∞n=1 is an increasing sequence, λn > 0 and λn → +∞
as n→∞. Then one can give a representation of solution to the linear problem

∂tu− (1 + γ∂αt )∆u = F in Ω, t > 0, (2.8)

u = 0 on ∂Ω, t ≥ 0, (2.9)

u(·, 0) = ξ in Ω, (2.10)

where F ∈ L1
loc(R+;L2(Ω)) and ξ ∈ L2(Ω). Indeed, let

u(x, t) =

∞∑
n=1

un(t)ϕn(x),

F (x, t) =

∞∑
n=1

Fn(t)ϕn(x), ξ(x) =

∞∑
n=1

ξnϕn(x).

Then

u′n(t) + λn(1 + γ∂αt )un(t) = Fn(t), un(0) = ξn.

Employing Proposition 2.3, we get

un(t) = ω(t, λn)ξn +

∫ t

0

ω(t− s, λn)Fn(s)ds.
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This implies

u(·, t) = S(t)ξ +

∫ t

0

S(t− s)F (·, s)ds, (2.11)

where S(t) : L2(Ω)→ L2(Ω) is the resolvent operator defined by

S(t)ξ =

∞∑
n=1

ω(t, λn)ξn. (2.12)

In the sequel, the notation ‖ · ‖ is understood as the standard norm in L2(Ω), and
‖ · ‖L stands for the operator norm of bounded linear operators on L2(Ω). We
collect some properties of the resolvent operator in the following lemma.

Lemma 2.4. For any v ∈ L2(Ω), T > 0, we have:

(1) S(·)v ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

(2) ‖S(t)v‖ ≤ ω(t, λ1)‖v‖, for all t ≥ 0. In particular, ‖S(t)‖ ≤ 1 for all t ≥ 0.
(3) S(·)v ∈ C(m)((0, T ];L2(Ω)) for all m ∈ N, and ‖S(m)(t)v‖ ≤ Ct−m‖v‖,

where C is a positive constant.
(4) ‖∆S(m)(t)v‖ ≤ Ct−m−1+α‖v‖ for all t > 0 and m ∈ N.

Proof. The statements (1), (3) and (4) were stated in [3, Theorem 2.1]. We prove
(2) as follows.

‖S(t)ξ‖2 =

∞∑
n=1

ω(t, λn)2ξ2
n

≤ ω(t, λ1)2
∞∑
n=1

ξ2
n = ω(t, λ1)2‖ξ‖2,

thanks to Proposition 2.2. Since ω(t, λ1) ≤ 1, one gets ‖S(t)‖L ≤ 1 for all t ≥ 0.
The proof is complete. �

Remark 2.1. a) It should be mentioned that, the resolvent S(t) can be defined as
the solution operator of the following integral equation (see [3])

u(x, t) = ξ(x) +

∫ t

0

k(t− s)∆u(x, s)ds, (2.13)

k(t) = 1 + γg1−α(t). (2.14)

More precisely, let

Γδ,θ = {re−iθ : r ≥ δ} ∪ {δeiψ : |ψ| < θ} ∪ {reiθ : r ≥ δ},

H(z) =
g(z)

z
(g(z)I −∆)−1, g(z) =

1

k̂(z)
=

z

1 + γzα
. (2.15)

Then

S(t) =
1

2πi

∫
Γδ,π−θ

eztH(z)dz, δ > 0, θ ∈ (0,
π

2
).

b) The first statement of Lemma 2.4 ensures that S(t) : L2(Ω)→ L2(Ω) is a compact
operator for any t > 0, due to the compactness of the embedding H2(Ω)∩H1

0 (Ω) ↪→
L2(Ω).
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Consider the Cauchy operator Q : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω)) given by

Q(g)(t) =

∫ t

0

S(t− s)g(s)ds. (2.16)

Denote by ‖ · ‖∞ the sup norm in C([0, T ];L2(Ω)), i.e. ‖g‖∞ = sup
t∈[0,T ]

‖g(t)‖. The

following lemma shows the compactness of Q.

Lemma 2.5. The Cauchy operator defined by (2.16) is compact.

Proof. Let D ⊂ C([0, T ];L2(Ω)) be a bounded set. We first testify that ∆Q(D)(t)
is bounded in L2(Ω) for each t > 0. Indeed, for any g ∈ D, we have

∆Q(g)(t) =

∫ t

0

∆S(t− s)g(s)ds, t > 0.

By using Lemma 2.4(4) with m = 0, we get

‖∆Q(g)(t)‖ ≤
∫ t

0

‖∆S(t− s)g(s)‖ds

≤ C
∫ t

0

(t− s)−1+α‖g(s)‖ds ≤ CTα

α
‖g‖∞,

which ensures the boundedness of ∆Q(D)(t) in L2(Ω). Since the embeddingD(∆) ↪→
L2(Ω) is compact, we obtain the relative compactness of Q(D)(t) for each t > 0.
Obviously, Q(D)(0) = {0} is a singleton, so Q(D)(t) is relatively compact for each
t ≥ 0.

Now we show that Q(D) is equicontinuous. Let g ∈ D, t ∈ (0, T ), ε ∈ (0, t) and
h ∈ (0, T − t], then one sees that

‖Q(g)(t+ h)−Q(g)(t)‖ ≤
∫ t

0

‖[S(t+ h− s)− S(t− s)]g(s)‖ds

+

∫ t+h

t

‖S(t+ h− s)g(s)‖ds

= I1(t) + I2(t).

It is easily seen that I2(t) → 0 as h → 0 uniformly in g ∈ D. Regarding I1(t), we
observe that

‖[S(t+ h− s)− S(t− s)]g(s)‖ = ‖
∫ 1

0

hS′(t− s+ θh)g(s)dθ‖

≤ h
∫ 1

0

‖S′(t− s+ θh)‖L‖g(s)‖dθ

≤ Ch
∫ 1

0

‖g(s)‖dθ
t− s+ θh

,

thanks to the mean value formula and Lemma 2.4(3). So

‖[S(t+ h− s)− S(t− s)]g(s)‖ ≤ C‖g‖∞ ln

(
1 +

h

t− s

)
≤ C‖g‖∞

hβ

β(t− s)β
, β ∈ (0, 1), (2.17)
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here we used the inequality ln(1 + r) ≤ rβ

β
for any r > 0, β ∈ (0, 1). Employing

(2.17), we have

I1(t) ≤ C‖g‖∞hβ

β

∫ t

0

ds

(t− s)β

≤ C‖g‖∞hβ

β(1− β)
T 1−β → 0 as h→ 0 uniformly in g ∈ D.

Finally, for h ∈ (0, T ), we have

‖Q(g)(h)−Q(g)(0)‖ ≤
∫ h

0

‖S(h− s)g(s)‖ds ≤ h‖g‖∞ → 0 as h→ 0,

uniformly in g ∈ D. Therefore, Q(D) is equicontinuous. The conclusion follows
from the Arzelà-Ascoli theorem. �

We are in a position to prove a Halanay type inequality for our analysis in the
next section.

Lemma 2.6. Let v be a continuous and nonnegative function satisfying

v(t) ≤ ω(t, µ)v0 +

∫ t

0

ω(t− s, µ)[a sup
ζ∈[s−ρ(s),s]

v(ζ) + b(s)]ds, t > 0, (2.18)

v(s) = ψ(s), s ∈ [−τ, 0], (2.19)

where 0 < a < µ, ψ ∈ C([−τ, 0];R+) and b ∈ L1
loc(R+) which is nondecreasing.

Then

v(t) ≤ µ

µ− a

[
v0 +

∫ t

0

ω(t− s, µ)b(s)ds
]

+ sup
s∈[−τ,0]

ψ(s), ∀t > 0. (2.20)

In addition, if ω(·, µ) ∗ b is bounded on R+ then

lim sup
t→∞

v(t) ≤ sup
t∈R+

∫ t

0

ω(t− s, µ)b(s)ds. (2.21)

In particular, if b = 0 then v(t)→ 0 as t→∞.

Proof. We make use of the following result [18]: if v ∈ C([−τ,∞);R+) is a nonneg-
ative function satisfying

v(t) ≤ d(t) + c sup
ζ∈[−τ,t]

v(ζ), t > 0,

v(s) = ψ(s), s ∈ [−τ, 0],

where d(·) is a nondecreasing function and c ∈ (0, 1), then

v(t) ≤ (1− c)−1d(t) + sup
s∈[−τ,0]

ψ(s), ∀t > 0. (2.22)
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It follows from (2.18) that

v(t) ≤ v0 + ω(·, µ) ∗ b(t) + a sup
ζ∈[−h,t]

v(ζ)

∫ t

0

ω(t− s, µ)ds

≤ v0 + ω(·, µ) ∗ b(t) +
a

µ
sup

ζ∈[−h,t]
v(ζ)(1− ω(t, µ))

≤ v0 + ω(·, µ) ∗ b(t) +
a

µ
sup

ζ∈[−h,t]
v(ζ),

here we utilized Proposition 2.1(4). Since b(·) is nondecreasing, it is easily seen
that the function ω(·, µ) ∗ b is nondecreasing as well. Applying inequality (2.22) for
d(·) = ω(·, µ) ∗ b and c = a/µ, we get (2.20) as desired.

Now assume that ω(·, µ) ∗ b is bounded on R+. Then by (2.20), v(·) is bounded
by

M :=
µ

µ− a

[
v0 + sup

t∈R+

∫ t

0

ω(t− s, µ)b(s)ds
]

+ sup
s∈[−τ,0]

ψ(s),

and therefore the limit L = lim
t→∞

supζ∈[t,∞) v(ζ) exists. Since t − ρ(t) → ∞ as

t→∞, for any ε > 0, one can find T1 > 0 such that

sup
ζ∈[t−ρ(t),t]

v(ζ) ≤ sup
ζ∈[t−ρ(t),∞]

v(ζ) ≤ L+ ε, ∀t ≥ T1.

Owing to the last estimate, we see that

v(t) ≤ ω(t, µ)v0 + ω(·, µ) ∗ b(t)

+

(∫ T1

0

+

∫ t

T1

)
ω(t− s, µ)a sup

ζ∈[s−ρ(s),s]
v(ζ)ds

≤ ω(t, µ)v0 + ω(·, µ) ∗ b(t)

+ aM

∫ T1

0

ω(t− s, µ)ds+ a(L+ ε)

∫ t

T1

ω(t− s, µ)ds

≤ εv0 + ω(·, µ) ∗ b(t)

+ aM

∫ t

t−T1

ω(t− s, µ)ds+ a(L+ ε)

∫ t

0

ω(t− s, µ)ds

≤ εv0 + ω(·, µ) ∗ b(t) + aMε+ a(L+ ε)µ−1, (2.23)

provided t chosen such that

ω(t, µ) ≤ ε,
∫ t

t−T1

ω(t− s, µ)ds ≤ ε,

which is possible since ω(t, µ)→ 0 as t→∞ and ω(·, µ) ∈ L1(R+).
It follows from (2.23) that

L = lim
t→∞

sup
ζ∈[t,∞]

v(ζ) ≤ aLµ−1 + sup
t∈R+

ω(·, µ) ∗ b(t) + (v0 + aM + aµ−1)ε,

which implies that

L ≤ µ

µ− a
sup
t∈R+

ω(·, µ) ∗ b(t) +
µ

µ− a
(v0 + aM + aµ−1)ε.
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Hence

lim sup
t→∞

v(t) ≤ L ≤ µ

µ− a
sup
t∈R+

ω(·, µ) ∗ b(t),

thanks to the fact that ε is an arbitrarily positive number. �

3. Solvability and stability

Based on representation (2.11), we give the following definition.

Definition 3.1. Let ξ ∈ C([−τ, 0];L2(Ω)) be given. A function u ∈ C([−τ, T ];L2(Ω))
is said to be a mild solution to (1.1)-(1.3) on the interval [−τ, T ] iff u(·, s) = ξ(·, s)
for s ∈ [−τ, 0] and

u(·, t) = S(t)ξ(·, 0) +

∫ t

0

S(t− s)f(s, uρ(·, s))ds, t ∈ [0, T ].

For given ξ ∈ C([−τ, 0];L2(Ω)), denote Cξ([0, T ];L2(Ω)) := {u ∈ C([0, T ];L2(Ω)) :
u(·, 0) = ξ(·, 0)}. For u ∈ Cξ([0, T ];L2(Ω)), we define u[ξ] ∈ C([−τ, T ];L2(Ω)) as
follows

u[ξ](·, t) =

{
u(·, t) if t ∈ [0, T ],

ξ(·, t) if t ∈ [−τ, 0].

Hence, we have

u[ξ]ρ(·, t) =

{
u(·, t− ρ(t)) if t− ρ(t) ∈ [0, T ],

ξ(·, t− ρ(t)) if t− ρ(t) ∈ [−τ, 0].

In what follows, we use the notation ‖·‖∞ for the sup norm in the spaces C([−τ, 0];L2(Ω)),
C([−τ, T ];L2(Ω)) and C([0, T ];L2(Ω)).

Let Φ : Cξ([0, T ];L2(Ω))→ Cξ([0, T ];L2(Ω)) be the operator defined by

Φ(u)(·, t) = S(t)ξ(·, 0) +

∫ t

0

S(t− s)f(s, u[ξ]ρ(·, s))ds,

which will be referred to as the solution operator. This operator is continuous if f
is a continuous map. Obviously, u is a fixed point of Φ iff u[ξ] is a mild solution of
(1.1)-(1.3).

In the next theorems, we show some global existence results for (1.1)-(1.3).

Theorem 3.1. Let f : [0, T ]× L2(Ω)→ L2(Ω) be a continuous mapping such that

(F1) ‖f(t, v)‖ ≤ p(t)G(‖v‖) for all t ∈ [0, T ] and v ∈ L2(Ω), where p ∈ L1(0, T )
is a nonnegative function and G is a continuous and nonnegative function
obeying that

lim sup
r→0

G(r)

r
· sup
t∈[0,T ]

∫ t

0

ω(t− s, λ1)p(s)ds < 1.

Then there exists δ > 0 such that the problem (1.1)-(1.3) has at least one mild
solution on [−τ, T ], provided ‖ξ‖∞ ≤ δ.

Proof. Let

` = lim sup
r→0

G(r)

r
, M = sup

t∈[0,T ]

ω(·, λ1) ∗ p(t).



10 T.D. KE, D.LAN, P.T. TUAN

Then by assumption, one can take ε > 0 such that (`+ ε)M < 1. In addition, there
is η > 0 such that

G(r)

r
≤ `+ ε, ∀r ∈ [0, 2η].

Let

δ0 = η inf
t∈[0,T ]

{[
ω(t, λ1) + (`+ ε)ω(·, λ1) ∗ p(t)

]−1[
1− (`+ ε)ω(·, λ1) ∗ p(t)

]}
,

then δ0 > 0. Indeed, observing that[
ω(t, λ1) + (`+ ε)ω(·, λ1) ∗ p(t)

]−1 ≥ ω(t, λ1)−1 ≥ 1,

we get

δ0 ≥ η inf
t∈[0,T ]

[
1− (`+ ε)ω(·, λ1) ∗ p(t)

]
≥ η

[
1− (`+ ε) sup

t∈[0,T ]

ω(·, λ1) ∗ p(t)
]

= η
[
1− (`+ ε)M

]
> 0.

Denote by Bη the closed ball in Cξ([0, T ];L2(Ω)) centered at origin with radius η.
Considering Φ : Bη → Cξ([0, T ];L2(Ω)), we have

‖Φ(u)(·, t)‖ ≤ ω(t, λ1)‖ξ(·, 0)‖+

∫ t

0

ω(t− s, λ1)p(s)G(‖u[ξ]ρ(·, s)‖)ds,

thanks to Lemma 2.4(2). Put δ = min{δ0, η}. If ξ ∈ C([−τ, 0];L2(Ω)) such that
‖ξ‖∞ ≤ δ, then

‖u[ξ]ρ(·, s)‖ ≤ ‖u‖∞ + ‖ξ‖∞ ≤ η + δ ≤ 2η for all s ∈ [0, T ].

So

‖Φ(u)(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ + (`+ ε)

∫ t

0

ω(t− s, λ1)p(s)‖u[ξ]ρ(·, s)‖ds

≤ ω(t, λ1)δ + (η + δ)(`+ ε)

∫ t

0

ω(t− s, λ1)p(s)ds

≤
[
ω(t, λ1) + (`+ ε)ω(·, λ1) ∗ p(t)

]
δ0 + η(`+ ε)ω(·, λ1) ∗ p(t)

≤ η, ∀t ∈ [0, T ].

We have shown that Φ(Bη) ⊂ Bη, provided ‖ξ‖∞ ≤ δ. Consider Φ : Bη → Bη. In
order to apply the Schauder fixed point theorem, it remains to check that Φ is a
compact operator. It should be noted that, Φ admits the representation

Φ(u) = S(·)ξ +Q ◦Nf (u),

where Nf (u)(·, t) = f(t, u[ξ]ρ(·, t)). According to the compactness of Q stated in
Lemma 2.5, we conclude that Φ is compact. The proof is complete. �

Theorem 3.1 deals with the case that f is possibly superlinear. In the next
theorem, we can relax the smallness condition on initial data, provided that f has
a sublinear growth.

Theorem 3.2. Let f : [0, T ]× L2(Ω)→ L2(Ω) be a continuous mapping such that

(F2) ‖f(t, v)‖ ≤ p(t)(1+‖v‖) for all t ∈ [0, T ] and v ∈ L2(Ω), where p ∈ L1(0, T )
is a nonnegative function.
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Then the problem (1.1)-(1.3) has at least one mild solution on [−τ, T ].

Proof. Let ψ ∈ C([0, T ];R) be the unique solution of the integral equation

ψ(t) = ‖ξ‖∞ + (1 + ‖ξ‖∞)

∫ t

0

p(s)ds+

∫ t

0

p(s)ψ(s)ds,

and D = {u ∈ Cξ([0, T ];L2(Ω)) : supζ∈[0,t] ‖u(ζ)‖ ≤ ψ(t), ∀t ∈ [0, T ]}. Then D is a

closed and convex subset of Cξ([0, T ];L2(Ω)). Since Φ is continuous and compact,
it suffices to show that Φ(D) ⊂ D. Let u ∈ D, then

‖Φ(u)(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)(1 + ‖u[ξ]ρ(·, s)‖)ds

≤ ‖ξ‖∞ +

∫ t

0

p(s)(1 + ‖ξ‖∞ + sup
ζ∈[0,s]

‖u(ζ)‖)ds.

Since the last integral is nondecreasing in t, we get

sup
ζ∈[0,t]

‖Φ(u)(·, ζ)‖ ≤ ‖ξ‖∞ +

∫ t

0

p(s)(1 + ‖ξ‖∞ + sup
ζ∈[0,s]

‖u(ζ)‖)ds

≤ ‖ξ‖∞ +

∫ t

0

p(s)(1 + ‖ξ‖∞ + ψ(s))ds = ψ(t),

which ensures that Φ(u) ∈ D. The proof is complete. �

In the next theorem, we state an existence and uniqueness result.

Theorem 3.3. Let f : [0, T ]× L2(Ω)→ L2(Ω) be a continuous mapping such that

(F3) f(·, 0) = 0 and ‖f(t, v1)−f(t, v2)‖ ≤ p(t)κ(r)‖v1−v2‖ for all t ∈ [0, T ] and
v1, v2 ∈ L2(Ω) such that ‖v1‖, ‖v2‖ ≤ r, where p ∈ L1(0, T ) is a nonnegative
function and κ is a function obeying that

lim sup
r→0

κ(r) · sup
t∈[0,T ]

∫ t

0

ω(t− s, λ1)p(s)ds < 1.

Then there exists δ > 0 such that the problem (1.1)-(1.3) has a unique mild solution
on [−τ, T ], provided ‖ξ‖∞ ≤ δ.

Proof. The existence result can be obtained by applying Theorem 3.1 with G(r) =
κ(r)r. It remains to prove the uniqueness. Assume that u1[ξ], u2[ξ] are solutions of
(1.1)-(1.3). Let R = max{‖u1[ξ]‖∞, ‖u2[ξ]‖∞}, then

‖u1(·, t)− u2(·, t)‖ ≤
∫ t

0

p(s)κ(R)‖u1[ξ]ρ(·, s)− u2[ξ]ρ(·, s)‖ds

≤
∫ t

0

p(s)κ(R) sup
ζ∈[0,s]

‖u1(·, ζ)− u2(·, ζ)‖ds,

due to the fact that u1(·, s) = u2(·, s) for s ∈ [−τ, 0]. Observing that, the last
integral is nondecreasing in t, we have

sup
ζ∈[0,t]

‖u1(·, t)− u2(·, t)‖ ≤
∫ t

0

p(s)κ(R) sup
ζ∈[0,s]

‖u1(·, ζ)− u2(·, ζ)‖ds, t ∈ [0, T ],

which implies that u1 = u2, by means of the Gronwall inequality. The proof is
complete. �
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We are now in a position to show the dissipativity of our system.

Theorem 3.4. Let the hypotheses of Theorem 3.2 hold for all T > 0 and ‖p‖∞ =
esssupt≥0p(t) < λ1. Then there exists a bounded absorbing set for solution of (1.1)-
(1.3) with arbitrary initial data.

Proof. Let u be a solution of (1.1)-(1.3). Then

‖u(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)(1 + ‖uρ(·, s)‖)ds

≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)‖p‖∞(1 + sup
ζ∈[s−ρ(s),s]

‖u(·, ζ)‖)ds.

Applying the Halanay type inequality formulated in Lemma 2.6, we get

lim sup
t→∞

‖u(·, t)‖ ≤ sup
t∈R+

∫ t

0

ω(t− s, λ1)‖p‖∞ds

= ‖p‖∞λ−1
1 sup

t∈R+

(1− ω(t, λ1)) = ‖p‖∞λ−1
1 .

This implies that the ball B(0, R) ⊂ L2(Ω) with R = ‖p‖∞λ−1
1 + 1 turns out to be

an absorbing set for solution of (1.1)-(1.3) with arbitrary initial data. �

The next theorem shows the asymptotic stability of zero solution to (1.1).

Theorem 3.5. Let f : R+ × L2(Ω)→ L2(Ω) be a continuous mapping such that

(F4) f(·, 0) = 0 and ‖f(t, v1)− f(t, v2)‖ ≤ p(t)κ(r)‖v1 − v2‖ for all t ∈ R+ and
v1, v2 ∈ L2(Ω) such that ‖v1‖, ‖v2‖ ≤ r, where p ∈ L∞(R+) is a nonnegative
function and κ is a continuous function satisfying that

‖p‖∞ · lim sup
r→0

κ(r) < λ1.

Then the zero solution of (1.1) is asymptotically stable.

Proof. Let ` = lim sup
r→0

κ(r). Choosing θ > 0 such that ‖p‖∞(` + θ) < λ1, we can

find η > 0 such that κ(r) ≤ ` + θ for all r ∈ [0, 2η]. Reasoning as in the proof of
Theorem 3.1 and 3.3, there exists δ > 0 such that the problem (1.1)-(1.3) has a
unique mild solution u ∈ Bη as long as ‖ξ‖∞ ≤ δ, which is defined on [−τ, T ] for
all T > 0. Moreover, one has the following estimate

‖u(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)(`+ θ)‖u[ξ]ρ(·, s)‖ds

≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)‖p‖∞(`+ θ) sup
ζ∈[s−ρ(s),s]

‖u(·, ζ)‖ds.

Employing Lemma 2.6 with b(·) = 0, a = ‖p‖∞(`+ θ), we obtain

‖u(·, t)‖ ≤
(

λ1

λ1 − ‖p‖∞(`+ θ)
+ 1

)
‖ξ‖∞, ∀t ≥ 0,

lim
t→∞

‖u(·, t)‖ = 0,

which imply the asymptotic stability of the zero solution of (1.1). The proof is
complete. �
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4. Existence of decay solutions

Our goal of this section is to prove the existence of decay solutions to the problem
(1.1)-(1.3) under the assumption that, the nonlinearity is non-Lipschitzian and
possibly superlinear. Specifically, assume that

(F5) f : R+ × L2(Ω))→ L2(Ω) is a continuous mapping such that

‖f(t, v)‖ ≤ p(t)G(‖v‖), ∀t ∈ R+, v ∈ L2(Ω),

where p ∈ L1
loc(R+) is a nonnegative function and G ∈ C(R+) is a nonneg-

ative and nondecreasing function such that

lim sup
r→0

G(r)

r
· sup
t≥0

∫ t

0

ω(t− τ, λ1)p(τ)dτ < 1, (4.1)

and

lim
T→∞

sup
t≥T

∫ t
2

0

ω(t− τ, λ1)p(τ)dτ = 0. (4.2)

In order to study the existence of decay solutions to (1.1)-(1.3), we make use of the
fixed point theory for condensing maps.

Definition 4.1. [10] Let E be a Banach space and Pb(E) the collection of all
nonempty and bounded subsets of E. A function µ : Pb(E) → R+ is said to be a
measure of noncompactness (MNC) if µ(coD) = µ(D) for all D ∈ Pb(E), here the
notation co denote the closure of convex hull of subsets in E. An MNC is called

• nonsingular if µ(D ∪ {x}) = µ(D) for all D ∈ Pb(E), x ∈ E.
• monotone if µ(D1) ≤ µ(D2) provided that D1 ⊂ D2.

The MNC defined by

χ(D) = inf{ε > 0 : D admits a finite ε− net}
is called the Hausdorff measure of noncompactness.

Definition 4.2. [10] Let E be a Banach space and D ∈ Pb(E). A continuous map
F : D → E is said to be condensing with respect to MNC µ (µ-condensing) iff the
relation µ(B) ≤ µ(F(B)), B ⊂ D, implies that B is relatively compact.

The following theorem states a fixed point principle for condensing maps.

Theorem 4.1. [10] Let µ be a monotone and nonsingular MNC on E. Assume
that D ⊂ E is a closed convex set and F : D → D is µ-condensing. Then F admits
a fixed point.

Let BC0(R+;L2(Ω)) be the space of continuous functions on R+, taking values

in L2(Ω) and decaying as t → ∞. Given ξ ∈ C([−τ, 0];L2(Ω)), put BCξ0 = {u ∈
BC0(R+;L2(Ω)) : u(·, 0) = ξ(·, 0)}. Then BCξ0 with the supremum norm ‖ · ‖∞ is a
closed subspace of BC0(R+;L2(Ω)).

Let D be a bounded set in BCξ0 and πT : BCξ0 → C([0, T ];L2(Ω)) the restriction

operator on BCξ0, i.e. πT (u) is the restriction of u ∈ BCξ0 to the interval [0, T ].
Define

d∞(D) = lim
T→∞

sup
u∈D

sup
t≥T
‖u(·, t)‖,

χ∞(D) = sup
T>0

χT (πT (D)),
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where χT (·) is the Hausdorff MNC in C([0, T ];L2(Ω)). Then the following MNC
defined in [1],

χ∗(D) = d∞(D) + χ∞(D), (4.3)

possesses all properties stated in Definition 4.1. In addition, if χ∗(D) = 0 then D
is relatively compact in BC0(R+;L2(Ω)).

Lemma 4.2. Let (F5) hold. Then there exist positive numbers δ and η such that
for ‖ξ‖∞ ≤ δ, the solution operator Φ obeys Φ(Bη) ⊂ Bη, where Bη is the closed

ball in BCξ0 centered at origin with radius η.

Proof. Denote

` = lim sup
r→0

G(r)

r
, M = sup

t≥0

∫ t

0

ω(t− τ, λ1)p(τ)dτ.

Then by (4.1), one can take ζ > 0 such that

(`+ ζ)M < 1. (4.4)

Moreover, there exists η > 0 such that G(r)
r ≤ `+ ζ for all r ∈ (0, 2η]. Recall that

the solution operator Φ is defined by

Φ(u)(·, t) = S(t)ξ(·, 0) +

∫ t

0

S(t− s)f(s, u[ξ]ρ(·, s))ds, u ∈ BCξ0.

Considering the operator Φ on Bη with ‖ξ‖∞ ≤ η, we have

‖Φ(u)(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− τ, λ1)p(τ)G(‖u[ξ]ρ(·, s)‖)ds. (4.5)

We first check that Φ(u) ∈ BCξ0, provided u ∈ BCξ0. It suffices to prove that
Φ(u)(·, t)→ 0 as t→∞ in L2(Ω). According to (4.5), one has to testify that

I(t) :=

∫ t

0

ω(t− s, λ1)p(s)G(‖u[ξ]ρ(·, s)‖)ds→ 0 as t→∞.

Since t− ρ(t)→∞ as t→∞, we get ‖u[ξ](·, t− ρ(t))‖ → 0 as t→∞. So for any
ε > 0, there exists T > 0 such that G(‖u[ξ](·, s− ρ(s))‖) ≤ ε for all s ≥ T , thanks
to the fact that G is continuous and G(0) = 0. Hence for t > T , we get

I(t) =

(∫ T

0

+

∫ t

T

)
ω(t− s, λ1)p(s)G(‖u[ξ](·, s− ρ(s))‖)dτ

≤ G(2η)

∫ T

0

ω(t− s, λ1)p(s)ds+ ε

∫ t

T

ω(t− s, λ1)p(s)ds

≤ G(2η)ω(t− T, λ1)

∫ T

0

p(s)ds+ εM

≤ [G(2η) +M ]ε,

for all t chosen so that

ω(t− T, λ1)

∫ T

0

p(s)ds < ε,

which is possible since ω(t, λ1) → 0 as t → ∞. We have proved that Φ(u) ∈ BCξ0.
Let

δ0 = η inf
t≥0

[(
ω(t, λ1) + (`+ ζ)ω(·, λ1) ∗ p(t)

)−1(
1− (`+ ζ)ω(·, λ1) ∗ p(t)

)]
, (4.6)
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then δ0 > 0. Indeed, one has

(
ω(t, λ1) + (`+ ζ)ω(·, λ1) ∗ p(t)

)−1 ≥ ω(t, λ1)−1 ≥ 1, ∀t ≥ 0,

then

δ0 ≥ η inf
t≥0

(
1− (`+ ζ)

∫ t

0

ω(t− τ, λ1)p(τ)dτ

)
≥ η

(
1− (`+ ζ) sup

t≥0

∫ t

0

ω(t− τ, λ1)p(τ)dτ

)
> 0,

thanks to (4.4). Choosing δ = min{η, δ0}, we show that Φ(u) ∈ Bη provided
‖ξ‖∞ ≤ δ. For ‖ξ‖ ≤ δ, u ∈ Bη, we get ‖u[ξ](·, s)‖ ≤ 2η for any s ≥ −τ . In
addition,

‖Φ(u)(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)G(‖u[ξ](·, s− ρ(s))‖)ds

≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)(`+ ζ)‖u[ξ](·, s− ρ(s))‖ds

≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)(`+ ζ)(‖u‖∞ + ‖ξ‖∞)ds

≤ ω(t, λ1)‖ξ‖∞ + (η + ‖ξ‖∞)(`+ ζ)

∫ t

0

ω(t− s, λ1)p(s)ds

≤
[
ω(t, λ1) + (`+ ζ)ω(·, λ1) ∗ p(t)

]
‖ξ‖∞ + η(`+ ζ)ω(·, λ1) ∗ p(t)

≤
[
ω(t, λ1) + (`+ ζ)ω(·, λ1) ∗ p(t)

]
δ0 + η(`+ ζ)ω(·, λ1) ∗ p(t)

≤ η, ∀t ≥ 0,

due to the formulation of δ0 in (4.6). Therefore Φ(Bη) ⊂ Bη. The proof is complete.
�

The following theorem represents the main result of this section.

Theorem 4.3. Let (F5) hold. Then there exists δ > 0 such that, the problem
(1.1)-(1.3) has a compact set of decay solutions, provided ‖ξ‖∞ ≤ δ.

Proof. Taking δ and Bη from Lemma 4.2, we consider the solution map Φ : Bη →
Bη. By standard reasoning, we get that Φ is continuous. We will show that Φ
is χ∗-condensing. Let D ⊂ Bρ. Then arguing as in the proof of Theorem 3.1,
one has πT ◦ Φ is a compact mapping, i.e., πT (Φ(D)) is relatively compact in
C([0, T ];L2(Ω)). This implies χT (πT (Φ(D))) = 0 and then χ∞(Φ(D)) = 0. We are
now in a position to estimate d∞(Φ(D)).
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Let z ∈ Φ(D) and u ∈ D be such that z = Φ(u). Then

‖z(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ +

∫ t

0

ω(t− s, λ1)p(s)G(‖u[ξ](·, s− ρ(s))‖)ds

≤ ω(t, λ1)‖ξ‖∞ + (`+ ζ)

∫ t

0

ω(t− s, λ1)p(s)‖u[ξ](·, s− ρ(s))‖ds

≤ ω(t, λ1)‖ξ‖∞ + (`+ ζ)

(∫ t
2

0

+

∫ t

t
2

)
ω(t− s, λ1)p(s)‖u[ξ](·, s− ρ(s))‖ds

≤ ω(t, λ1)‖ξ‖∞ + 2(`+ ζ)η

∫ t
2

0

ω(t− s, λ1)p(s)ds

+ sup
s≥ t2
‖u[ξ](·, s− ρ(s))‖(`+ ζ)

∫ t

t
2

ω(t− s, λ1)p(s)ds.

Noting that, for given T > 0, one can find T1 > T such that t − ρ(t) ≥ T for all
t ≥ T1. So for t ≥ 2T1, we have

‖z(·, t)‖ ≤ ω(t, λ1)‖ξ‖∞ + 2(`+ ζ)η

∫ t
2

0

ω(t− s, λ1)p(s)ds

+ sup
s≥T
‖u(·, s)‖(`+ ζ)

∫ t

0

ω(t− s, λ1)p(s)ds

≤ ω(t, λ1)‖ξ‖∞ + 2(`+ ζ)η

∫ t
2

0

ω(t− s, λ1)p(s)ds

+ sup
u∈D

sup
s≥T
‖u(·, s)‖(`+ ζ)

∫ t

0

ω(t− s, λ1)p(s)ds.

Then it follows that

sup
t≥2T1

‖z(·, t)‖ ≤ ω(2T1, λ1)‖ξ‖∞ + 2(`+ ζ)η sup
t≥2T1

∫ t
2

0

ω(t− s, λ1)p(s)ds

+ sup
u∈D

sup
s≥T
‖u(·, s)‖(`+ ζ)M,

where

M = sup
t≥0

∫ t

0

ω(t− s, λ1)p(s)ds.

Since z ∈ Φ(D) is taken arbitrarily, we get

sup
z∈Φ(D)

sup
t≥2T1

‖z(·, t)‖ ≤ ω(2T1, λ1)‖ξ‖∞ + 2(`+ ζ)η sup
t≥2T1

∫ t
2

0

ω(t− s, λ1)p(s)ds

+ sup
u∈D

sup
s≥T
‖u(·, s)‖(`+ ζ)M,

which ensures that

d∞(Φ(D)) ≤ (`+ ζ)Md∞(D),

thanks to (4.2) and the fact that T1 →∞ as T →∞. Therefore,

χ∗(Φ(D)) = χ∞(Φ(D)) + d∞(Φ(D)) = d∞(Φ(D)) ≤ (`+ ζ)Md∞(D)

≤ (`+ ζ)M [d∞(D) + χ∞(D)] = (`+ ζ)Mχ∗(D).
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Now if χ∗(D) ≤ χ∗(Φ(D)) then χ∗(D) ≤ (`+ ζ)Mχ∗(D) which implies χ∗(D) = 0,
thanks to the fact that (` + ζ)M < 1. Thus Φ is χ∗-condensing and it admits a
fixed point, according to Theorem 4.1. Denote by D the fixed point set of Φ in Bη.
Then D is closed and D ⊂ Φ(D). Hence,

χ∗(D) ≤ χ∗(Φ(D)) ≤ (`+ ζ)Mχ∗(D),

which ensures χ∗(D) = 0 and D is a compact set. The proof is complete. �

Remark 4.1. Let us give a notice on the condition (4.1) and (4.2). Let p ∈
L∞(R+) and ‖p‖∞ = ess supt≥0|p(t)|. Then (4.2) is satisfied. Indeed, we see that

sup
t≥T

∫ t
2

0

ω(t− τ, λ1)p(τ)dτ ≤ ‖p‖∞ sup
t≥T

∫ t
2

0

ω(t− τ, λ1)dτ

≤ ‖p‖∞ sup
t≥T

∫ t

t
2

ω(τ, λ1)dτ

≤ ‖p‖∞
∫ ∞
T
2

ω(τ, λ1)dτ → 0 as T →∞,

thanks to the fact that ω(·, λ1) ∈ L1(R+).
On the other hand, if f is superlinear, e.g. G(r) = rq for some q > 1, then (4.1)

is testified obviously. If f as a sublinear growth, e.g. G(r) = r, then (4.1) becomes

sup
t≥0

∫ t

0

ω(t− τ, λ1)p(τ)dτ < 1. (4.7)

Noting that ∫ t

0

ω(t− τ, λ1)p(τ)dτ ≤ ‖p‖∞
∫ t

0

ω(τ, λ1)dτ ≤ ‖p‖∞λ−1
1 ,

we get that (4.7) is fulfilled provided ‖p‖∞ < λ1.

Acknowledgement. This work was supported by the Vietnam Institute for Ad-
vanced Study in Mathematics-VIASM.

References

[1] N.T. Anh, T.D. Ke, Decay integral solutions for neutral fractional differential equations with

infinite delays, Math. Methods Appl. Sci. 38 (2015), 1601-1622.
[2] N.T. Anh, T.D. Ke, N.N. Quan, Weak stability for integro-differential inclusions of diffusion-

wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 3637-3654.
[3] E. Bazhlekova, B. Jin, R. Lazarov, Z. Zhou, An analysis of the Rayleigh-Stokes problem for

a generalized second-grade fluid, Numer. Math. 131 (2015), no. 1, 1-31.
[4] X. Bi, S. Mu, Q. Liu, Q. Liu, B. Liu, P. Zhuang, J. Gao, H. Jiang, X. Li, B. Li, Advanced

implicit meshless approaches for the Rayleigh-Stokes problem for a heated generalized second
grade fluid with fractional derivative, Int. J. Comput. Methods 15 (2018), no. 5, 1850032, 27

pp.
[5] C.M. Chen, F. Liu, K. Burrage, Y. Chen, Numerical methods of the variable-order Rayleigh-

Stokes problem for a heated generalized second grade fluid with fractional derivative, IMA
J. Appl. Math. 78 (2013), no. 5, 924-944.

[6] C.M. Chen, F. Liu, V. Anh, Numerical analysis of the Rayleigh-Stokes problem for a heated

generalized second grade fluid with fractional derivatives, Appl. Math. Comput. 204 (2008),

no. 1, 340-351.
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