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Abstract. In this paper, we study rings with the property that every cyclic
module is almost-injective (CAI). It is shown that R is an Artinian serial
ring with J(R)2 = 0 if and only if R is a right CAI-ring with the finitely
generated right socle (or I-finite) if and only if every semisimple right R-module
is almost injective, RR is almost injective and has finitely generated right socle.
Especially, R is a two-sisded CAI-ring if and only if every (right and left) R-
module is almost injective. From this, we have the decomposition of a CAI-
ring via an SV-ring for which Loewy (R) ≤ 2 and an Artinian serial ring
whose squared Jacobson radical vanishes. We also characterize a Noetherian
right almost V-ring via the ring for which every semisimple right R-module is
almost injective.

1. Introduction

Throughout this paper, all rings R are associative with unit and all modules
are right unital. Let M and N be right R-modules. The module M is said to be
almost N-injective (or almost injective respect to N) if, for every submodule N1

of N and for every homomorphism f : N1 →M, either there is a homomorphism
g : N → M such that f = g ◦ ι, i.e., the diagram (1) commutes, or there is a
nonzero idempotent π ∈ End(N) and a homomorphism h : M → π(N) such that
h ◦ f = π ◦ ι, i.e., the diagram (2) commutes, where ι : N1 → N is the embedding
of N1 into N . The module M is said to be almost injective if it is almost injective
with respect to every right R-module.
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(2)

This concept was defined by Baba in many years ago, however, many related
results were obtainned in recent years, for examples, see [1], [2], [4], [5], [6], [11],
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[12], [21], ... Of course, injective ⇒ almost injective, but the converse isn’t true,
in general. It is proved that a ring R is semisimple if and only if every right
(left) R-module is injective and then a well-known result of Osofsky said that it
is equivalent to every cyclic right (left) R-module is injective. In [5], the authors
consider the structure of a ring R over which every module is almost injective. It
is natural to ask how is the structure of a ring R for which every cyclic module is
almost injective. We continue prove that the class of rings whose all cyclic right
R-modules are almost injective contains the class of Artinian serian rings with
squared Jacobson radical vanishes. So Theorem 1 and it’s Corollaries from [5] are
followed from our result, i.e., in cases of if Soc(RR) is finitely generated (or R is
semiperfect, or RR is extending, or R is of finite reduced rank), then two above
classes and the class of the rings whose all right R-modules are almost injective
coincide. Especially, a ring R is two-sided CAI if and only if every (right and
left) R-module is almost injective. From this result, we have the decomposition
of a CAI-ring via an SV-ring for which Loewy (R) ≤ 2 and an Artinian serial
ring whose squared Jacobson radical vanishes.

Recall that R is a right V-ring if every simple right R-module is injective.
In [4], the authors consider a generalization of a V-ring, that is almost V-ring,
i.e., if every simple right R-module is almost injective. A module M is called
simple-extending (semisimple-extending, resp.) if the complement of any simple
(semisimple, resp.) submodule of M is a direct summand of M . Now we write the
class 1 stands for all rings R for which every simple module is almost injective,
i.e., R is an almost V-ring, the class 2 stands for all rings R for which every
semisimple module is almost injective, the class 3 stands for all rings R for which
every module is simple-extending. In [4], the authors proved that the class 1 and
class 3 coincides (see [4], Theorem 2.9). It is also proved that the intersection of
the class 1 and the class of all right Noetherian rings is equal to the class 2 (see [6],
Theorem 2.4). Our aim is to consider the weaker conditions of Noetherian, that
are having finite Goldie dimesion or finitely generated right socle together the
class 1 will be replaced by class 2 and we also obtain a characterization of a right
Noetherian right almost V-ring. From this, we give back some characterizations
of an Artinian serial ring with squared Jacobson radical vanishes via class 2.

For a submodule N of M , we use N ≤ M (N < M) to mean that N is a
submodule of M (respectively, proper submodule), and we write N ≤e M to
indicate that N is an essential submodule of M . A module is called a CS-module,
or extending, provided every complement submodule is a direct summand. A
module is called uniform if the intersection of any two nonzero submodules is
nonzero. A ring R is called I-finite if it contains no infinite orthogonal family
of idempotents. Let M be an arbitrary module. Recall that Z(M) = {m ∈
M | ann(m) ≤e RR} is called the singular submodule of M , and if Z(M) =
M (Z(M) = 0, resp.), then M is called singular (nonsingular. resp.). The
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Goldie torsion (or second singular) submodule of M denoted by Z2(M) satisfies
Z(M/Z(M)) = Z2(M)/Z(M). The (Goldie) reduced rank of M is the uniform
dimension of M/Z2(M). Every module of finite uniform dimension is of finite
reduced rank. Let M,N be arbitrary modules. M is called essentially N-injective
if for every embedding ι : A→ N and every homomorphism f : A→M such that
Kerf ≤e A, there exists a homomorphism g : N → M such that ι ◦ g = f. The
module M is said to be essentially injective if it is essentially N -injective with
each N ∈ Mod − R. Moreover, R is a right SC-ring if every singular R-module
is continuous. M is called an uniserial module, if the set of submodules of M
is linear ordered. A ring R is called semiperfect in case R/J(R) is semisimple
and idempotents lift modulo J(R). It is equivalent to every its finitely generated
right (left) R-module has a projective cover. A ring R is called a right perfect
ring in case R/J(R) is semisimple and J(R) is right T-nilpotent. It is equivalent
to every its right R-module has a projective cover.

By the Loewy series of a module MR we mean the ascending chain

0 ≤ Soc1(M) = Soc(M) ≤ ... ≤ Socα(M) ≤ Socα+1(M) ≤ ...,

where

Socα(M)/Socα−1(M) = Soc(M/Socα−1(M))

for every nonlimit ordinal α and

Socα(M) =
⋃
β<α

Socβ(M)

for every limit ordinal α. Denote by L(M) the submodule of the form Socξ(M),
where ξ stands for the least ordinal for which Socξ(M) = Socξ+1(M). A module
M is semiartinian if and only if M = L(M). In this case, ξ is called the Loewy
length of the module M and is denoted by Loewy (M). A ring R is said to be
right semiartinian if the module RR is semiartinian. In this case, every nonzero
(principal) right R-module has a nonzero socle and a ring R is right perfect if
and only if it is left semiartinian and I-finite. The class of right semiartinian
right V-rings, which we call right SV-rings. A ring R is called right nonsingular if
Z(RR) = 0, right serial if RR is a direct sum of uniserial modules. In this paper,
we denote by Rad(M), Soc(M), E(M), and length(M) the Jacobson radical, the
socle, the injective hull and the composition length of M , respectively. The full
subcategory of Mod-R whose objects are all R-modules subgenerated by M is
denoted by σ[M ].

Left-sided for these above notations are defined similarly. All terms such as
”artinian”, ”serial”, ... when applied to a ring will apply all both sided. For any
terms not defined here the reader is referred to [3], [10] and [23].
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2. On rings with cyclic almost-injective modules

Firstly, we include the following known result related to finite decomposition
of almost-injective modules for the sake of completeness.

Lemma 2.1 ([21, Lemma 1.14]). Let N, V1, V2, . . . , Vn be a family of modules over

a ring R. Then M =
n⊕
i=1

Vi is almost N-injective if and only if every Vi is almost

N-injective.

The third author gave the following problem in [1]: Describe the rings over
which every cyclic right R-module is almost-injective. In this section, we will
study on this problem and give some characterizations of rings for which every
cyclic right R-module is almost-injective.

Definition 2.2. A ring R is called right CAI, if every cyclic right R-module is
almost-injective. If R is a right and left CAI-ring, then R is called a CAI-ring.

Example 2.3. (1) Every semisimple ring is CAI.

(2) Let F be a field. Then, the ring R =

(
F F
0 F

)
is a right CAI-ring.

Firstly, we give the following key lemma:

Lemma 2.4. Let R be a right CAI-ring. If M is a right R-module, then M/A is
a semisimple module for every essential submodule A of M .

Proof. Let A be an essential submodule of M . We show that M/A is a semisimple
module. By [10, Corollary 7.14], it is necessary to prove that every cyclic right
R-module in the category σ[M/A] is M/A-injective. In fact, let N be a cyclic
right R-module (in the category σ[M/A]) and f : A′/A→ N be a homomorphism
from an arbitrary submodule A′/A of M/A to N . We show that f is extended
to M/A. Call π1 : A′ → A′/A, π2 : M → M/A the natural projections and
ι1 : A′ → M , ι2 : A′/A → M/A the inclusions. We consider the homomorphism
f ◦ π1 : A′ → N . We show that f ◦ π1 is extended to M . Otherwise, since N is
almost-injective, there exist an idempotent π of End(M) and a homomorphism
h : N → π(M) such that π ◦ ι1 = h ◦ (f ◦ π1).

A′ M

N π(M)

-ι1

?

f◦π1

?

π

-h

Then, we have

π(A) = (π ◦ ι1)(A) = (h ◦ f)(π1(A)) = 0.
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It means that A ≤ Ker(π) = (1 − π)(M), and so (1 − π)(M) is essential in M .
This gives a contradiction. Thus, there is a homomorphism g : M → N such that
g ◦ ι1 = f ◦ π1.

0 A′ M

N

- -ι1

?

f◦π1

pppppppp	
g

We have
g(A) = (g ◦ ι1)(A) = (f ◦ π1)(A) = 0

It shows that there is a homomorphism g′ : M/A → N such that g = g′ ◦ π2.
From this gives

f ◦ π1 = g ◦ ι1 = (g′ ◦ π2) ◦ ι1 = g′ ◦ (π2 ◦ ι1) = g′ ◦ (ι2 ◦ π1)

It follows that f = g′ ◦ ι2. Thus, N is M/A-injective. �

Corollary 2.5. Every right CAI-ring is a right SC-ring.

From Lemma 2.4 and [20], we have the following fact:

Fact 2.6. If R is a right CAI-ring, then

(1) J(R) ≤ Soc(RR).
(2) J(R)2 = 0.
(3) R/Soc(RR) is a right Noetherian ring.

Theorem 2.7. The following statements are equivalent for a ring R:

(1) R is an Artinian serial ring with J(R)2 = 0.
(2) R is a right CAI-ring and R/J(R) is I-finite.
(3) R is a I-finite right CAI-ring.
(4) R is a right CAI-ring with the finitely generated right socle.

Proof. (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (4) Suppose that R is a I-finite right CAI-ring. Then there exist primitive

idempotents e1, e2 . . . , en such that 1 = e1 + e2 + · · · + en. Note that all eiR
are indecomposable modules. Since R is a right CAI-ring, by [12, Lemma 3.1,
Theorem 3.5], then eiR is uniform and End(eiR) is local for all i ∈ {1, 2, . . . , n}.
It follows that R is a semiperfect ring. We deduce, from Fact 2.6, that R is a
semiprimary ring with J(R)2 = 0. Moreover, inasmuch as eiR is uniform which
implies that Soc(eiR) is simple for all i ∈ {1, 2, . . . , n}. Thus, Soc(RR) is finitely
generated.

(4)⇒ (1) Assume that R is a right CAI-ring with the finitely generated right
socle. Then, R is a right Noetherian by Fact 2.6. We can write R = e1R ⊕
e2R ⊕ · · · ⊕ enR, where e1, e2 . . . , en are primitive idempotents such that 1 =
e1 + e2 + · · ·+ en and all right ideals eiR are uniform. By the proof of (3)⇒ (4),
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R is a semiprimary ring with J(R)2 = 0. We deduce that R is a right Artinian
ring. Note that (R⊕R)R is an extending right R-module by [12, Remark 3.2]. It
follows that E(RR) is a projective right R-module by [22, Theorem 3.3].

Next, we show that eiR is either simple or injective with the length of two. In
fact, for any nonzero submodule U of eiR, then eiR/U is a semisimple module
by Lemma 2.4. Moreover, eiR/U is an indecomposable module. We deduce
that eiR is either simple or length of two. On the other hand, we have that
E(eiR) is a uniform projective module and obtain that E(eiR) ∼= ejR for some
j ∈ {1, 2, . . . , n}. Now, we assume that eiR is the module with length of two.
Then E(eR) is indecomposable and projective. Therefore length (E(eR)) ≤ 2,
and so E(eR) = eR, i.e., eR is injective. Thus, R is an Artinian serial ring with
J(R)2 = 0 by [10, 13.5]. �

Corollary 2.8. The following statements are equivalent for a ring R.

(1) R is an Artinian serial ring with J(R)2 = 0.
(2) R is a right CAI-ring with Soc(RR)/J(R) is finitely generated.

Example 2.9. Consider the ring R consisting of all eventually constant sequences
of elements from F2. Clearly, R is a CAI-ring and Soc(R) is not finitely generated.

Lemma 2.10. If R is a right CAI-ring, then

(1) R/Soc(RR) is semisimple.
(2) R is a right semi-Artinian ring.

Proof. (1) Assume that R is a right CAI-ring. One can check that R/Soc(RR) is
also a right CAI-ring. From Fact 2.6 and Theorem 2.7 gives that R/Soc(RR) is
a right Artinian ring. Note that R/Soc(RR) is a right V-ring by [4, Proposition
2.3]. We deduce that R/Soc(RR) is semisimple.

(2) is followed from (1). �

Proposition 2.11. Let R be a right CAI-ring. Then the followings hold:

(1) Every direct sum of uniform right R-modules is extending.
(2) Every uniform right R-module has length at most 2.
(3) RR = (⊕i∈ILi)⊕N , where Li is a local injective module of length two for

every i ∈ I, J(N) = 0 and End(N) is a right SV -ring.

Proof. (1) From Lemma 2.10, R is a right semiartinian ring. By [10, 13.1], we
need to prove that H1 ⊕H2 is an extending module for any uniform modules H1

and H2. In fact, let H1 and H2 are uniform right R-module. Since H1 and H2 are
uniform with essential socles, Soc(H1 ⊕H2) is finitely generated and essential in
H1⊕H2. Inasmuch as R is a right CAI-ring, we have every simple right R-module
is almost-injective, and so H1 ⊕ H2 is extending by [4, Theorem 2.9, Corollary
2.13.].
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(2) is followed by (1) and [10, 13.1].
(3) By Zorn’s Lemma, there is a maximal independent set of submodules
{Li}i∈I of RR such that Li is a local injective module of length two for every
i ∈ I. Since by Fact 2.6(3), R/Soc(RR) is a right Noetherian ring, then I is a
finite set. Then, we have a decomposition RR = (⊕i∈ILi)⊕N for some right ideal
N of R. Suppose that J(N) 6= 0. From Lemma 2.10(2) gives J(N) containing a
simple submodule S. Let N0 be a complement of the submodule S in the module
N . It follows that N/N0 is a uniform nonsimple module whose socle is isomorphic
to the module S. Thus, it follows from (1) and [4, Theorem 3.1] that N/N0 is a
projective module and length of N/N0 is equal to two. Hence N = N0⊕L, where
L is a local injective module of length two, which contradicts the choice of the
set {Li}i∈I . We deduce that J(N) = 0. One can check that the module N can be
considered as a projective R/J(R)-module. By [4, Proposition 2.3] and Lemma
2.10, we have R/J(R) is a right SV -ring. It follows from [8, Theorem 2.9] that
End(N) is a right SV -ring.

�

For two-sided CAI-rings, we have:

Theorem 2.12. The following statements are equivalent for a ring R:

(1) Every R-module is almost injective.
(2) Every finitely generated R-module is almost injective.
(3) R is a CAI-ring.
(4) R is a direct product of an SV -ring for which Loewy (R) ≤ 2 and an

Artinian serial ring whose squared Jacobson radical vanishes.

Proof. (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) By Proposition 2.11, there exists an idempotent e ∈ R such that

RR = eR⊕ (1− e)R, where eR = ⊕i∈ILi, Li is a local injective module of length
two for every i ∈ I, J((1− e)R) = 0 and (1− e)R(1− e) is a right SV -ring. One
can check that Hom(eR, (1−e)R) = 0 and J(R) = J(⊕i∈ILi). Then eR(1−e) is a
submodule of RR and eR(1−e) ≤ J(R). It follows, from the left-sided analogue of
Proposition 2.11(3), that there exists a set of orthogonal idempotents {f1, . . . , fn}
such that eR(1− e) = J(Rf1 ⊕ . . .⊕Rfn) and Rfi is a local injective module of
length two for every 1 ≤ i ≤ n. Consider the two-sided Peirce decomposition of
the ring R corresponding to the decomposition 1 = e+ (1− e)

R =

(
eRe eR(1− e)

0 (1− e)R(1− e)

)
.

Then for every 1 ≤ i ≤ n the following equalities hold

fi =

(
erie emi(1− e)

0 (1− e)si(1− e)

)
,

(erie)
2 = erie, ((1− e)si(1− e))2 = (1− e)si(1− e)
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and
emi(1− e) = eriemi(1− e) + emi(1− e)si(1− e).

Let S := (1 − e)R(1 − e) and gi := (1 − e)si(1 − e) for every 1 ≤ i ≤ n. Fix an
arbitrary index 1 ≤ i ≤ n. We have that

J(R)fi =

(
eJ(R)e eR(1− e)

0 0

)(
erie emi(1− e)

0 gi

)
≤
(

0 eR(1− e)
0 0

)
and obtain eJ(R)erie = 0. On the other hand, for every j ∈ J(R) and m ∈
eR(1− e) we have (

eje em(1− e)
0 0

)(
erie emi(1− e)

0 gi

)
=(

0 ejemi(1− e) + emgi
0 0

)
=(

0 eje(eriemi(1− e) + emigi) + emgi
0 0

)
=(

0 e(jemi +m)gi
0 0

)
We deduce that J(R)fi ≤

(
0 eRgi
0 0

)
. Since J(R)fi 6= 0, then gi 6= 0. Inasmuch

as the idempotent fi + J(R) ∈ R/J(R) is primitive and J(R)2 = 0 we have
erie = 0 and eJ(R)eR(1− e) = 0. Consequently,(

0 eR(1− e)
0 0

)
=

n⊕
i=1

J(R)fi =
n⊕
i=1

(
0 eR(1− e)gi
0 0

)
.

It means that eR(1 − e) = ⊕ni=1eR(1 − e)gi and eR(1 − e)(1 −
∑n

i=1 gi) = 0. If,
for some primitive idempotent g0 of the ring S, the condition g0S ∼= giS holds,
where 1 ≤ i ≤ n, then it can readily be seen that Mg0 6= 0. Thus the right ideals

n
⊕
i=1
giS and ((1− e)−

n∑
i=1

gi)S

of S do not contain isomorphic to simple right S-submodules. Since S is a
semiartinian regular ring, then g =

∑n
i=1 gi is a central idempotent of S and

the ring R is isomorphic to the direct product of the regular ring (1 − e − g)S
and the ring

R′ =

(
eRe eR(1− e)

0 gR

)
.

Inasmuch as eR = eRe + eR(1 − e) is a module of finite length and for every
1 ≤ i ≤ n, the idempotent gi ∈ (1 − e)R(1 − e) is primitive, we obtain that
the ring R′ is Artinian. Thus the ring R′ is Artinian serial and J(R′)2 = 0 by
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Theorem 2.7. From Proposition 2.11, we have (1− e− g)S is an SV -ring. Thus,
the ring R is a direct product of an SV -ring for which Loewy (R) ≤ 2 and an
Artinian serial ring whose squared Jacobson radical vanishes.

(4)⇒ (1) is followed by Theorem 2.7 and [5, Proposition 2.6].
�

Theorem 2.13. The following statements are equivalent for a ring R:

(1) R is a right hereditary CAI-ring.
(2) R is a right nonsingular CAI-ring.
(3) R is a direct product of an SV -ring for which Loewy (R) ≤ 2 and a finite

direct product of rings of the following form:[
Mn1(T ) Mn1×n2(T )

0 Mn2(T )

]
,

where T is a skew-field.

Proof. (1)⇒ (2) is obvious.
(2)⇒ (3) is followed by Theorem 2.12 and [14, Theorem 8.11].
(3)⇒ (1) is followed by [9, Proposition 9.6].

�

Corollary 2.14. Any I-finite right nonsingular right CAI-ring R is isomorphic
to a finite direct product of rings of the following form:[

Mn1(T ) Mn1×n2(T )
0 Mn2(T )

]
,

where T is a skew-field.

For two-sided CAI-rings, we obtain the important result, that is, they are also
the rings for which every (right and left) R-module is almost injective. So, it is
natural to ask the following question:

Question. Does the class of rings whose all right R-module are almost-injective
and class of all right CAI-rings coincide?

It is well-known that if M a non-singular indecomposable almost-injective right
R-module, then End(M) is an integral domain and every nonzero endomorphism
of M is a monomorphism. Moreover, if M is a cyclic module over a right Artinian
ring, then End(M) is a skew-field. The following result is obvious.

Lemma 2.15. Let R be a right Artinian ring and e be a primitive idempotent
of R. If eR is a non-singular almost-injective right R-module, then eRe is a
skew-field.

Lemma 2.16. Let R be a I-finite right nonsingular right CAI-ring and e, e′ be
any two primitive idempotents in R with D = eRe and D′ = e′Re′.
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(1) Then eRe′ is a left vector space over D with the dimension less than or
equal to 1.

(2) If z is a non-zero element of eRe′, there exists embedding σ : D′ → D
satisfying the property ze′be′ = σ(e′be′)z for all e′be′ ∈ D′.

(3) If dimD(eRe′) = 1, then σ is an isomorphism.

Proof. (1) First we assume that eRe′ is non-zero with D = eRe and D′ = e′Re′.
Take any non-zero element ere′ in eRe′. We show that D(ere′) = D(eRe′). In
fact, let ese′ be an arbitrary nonzero element of eRe′. Consider the mapping
φ : e′R→ ere′R defined by φ(x) = erx for all x ∈ e′R. One can check that φ is a
well-defined epimorphism. Since e′R is an indecomposable almost-injective right
R-module, e′R is uniform. Assume that Ker(φ) is nonzero. Then e′R/Ker(φ)
is a singular module. But, Im(φ) is nonsingular by the nonsingularity of R,
which gives a contradiction. It implies Ker(φ) = 0. It means that ere′R ∼= e′R.
Similarly, ese′R ∼= e′R. We deduce that there exists an R-isomorphism σ :
ere′R→ ese′R satisfying σ(ere′) = ese′. Call the homomorphism γ : ere′R→ eR
such that γ(x) = σ(x) for all x ∈ ere′R.

Since R is a right CAI-ring, eR is almost eR-injective. Then, we have the
following two cases for the homomorphism γ.

Case 1. σ is extended to an endmorphism of eR:
Take α : eR → eR an endomorphism of eR which is an extension of σ. Then

ese′ = σ(ere′) = α(ere′) = eα(e)e(ere′) ∈ D(ere′)
Case 2. σ is not extended to an endmorphism of eR:
There is a homomorphism β : eR→ eR such that β◦γ = ι with ι : ere′R→ eR

the inclusion. Then, we have ere′ = (β ◦ γ)(ere′) = β(ese′) = eβ(e)e(ese′). Since
D is a skew-field, ese′ = [eβ(e)e]−1ere′ ∈ D(ere′).

We deduce that D(ere′) = D(eRe′). Thus, eRe′ is a one-dimensional left vector
space over D if eRe′ 6= 0.

(2) Let z be a non-zero element of eRe′. Then, eRe′ = Dz by (1). It means
that for any e′be′ ∈ e′Re′, we have ze′be′ = uz for some u ∈ D. This defines a ring
monomorphism σ : D′ → D such that σ(e′be′) = u. Thus, σ(e′be′)z = uz = ze′be′

for all e′be′ ∈ D′.
(3) Assume that R is a right serial ring and dimD(eRe′) = 1. Take any two

non-zero elements ere′ and ese′ in eRe′. By assumption, eR is uniserial, we may
suppose ese′R ≤ ere′R. There is e′ue′ in e′Re′ such that ese′ = ere′ue′. We have
that e′Re′ is a skew-field and obtain ese′Re′ = ere′Re′. It means that eRe′ is a
one-dimensional right vector space over D′. Then eRe′ = Dz = zD′, and so σ is
an isomorphism.

�

Corollary 2.17. Any I-finite right nonsingular right CAI-ring R is isomorphic
to
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
Mn1(e1Re1) Mn1×n2(e1Re2) . . . Mn1×nk

(e1Rek)
0 Mn2(e2Re2) . . . Mn2×nk

(e2Rek)
0 0 Mn3(e3Re3) . . Mn3×nk

(e3Rek)
. . . . . .
. . . . . .
0 0 . . . Mnk

(ekRek)

 ,
where eiRei is a division ring, eiRei ∼= ejRej for each 1 ≤ i, j ≤ k and n1, . . . , nk
are any positive integers. Furthermore, if eiRej 6= 0, then

dim(eiRei
(eiRej)) = 1 = dim((eiRej)ejRej

).

3. On right noetherian right almost V -rings

Firstly, we list some known results related to almost V-ring for the sake of
completeness.

Theorem 3.1 ([4, Theorem 3.1]). The following statements are equivalent for a
ring R.

(1) R is a right almost V -ring.
(2) For every simple R-module S, either S is injective or E(S) is projective

of length 2.

Theorem 3.2 ( [4, Theorem 2.9]). A ring R is a right almost V -ring if and only
if every right R-module is simple-extending.

Theorem 3.3 ( [6, Theorem 2.4]). The following statements are equivalent for a
ring R.

(1) R is a right Noetherian right almost V -ring.
(2) Every right R-module is semisimple-extending.
(3) R = ⊕nj=1Ij, where Ij is either a Noetherian V -module with zero socle, or

a simple module, or an injective module of length 2.
(4) R = I⊕J , where I and J are right ideals, I is Noetherian, every semisim-

ple module in σ[I] is I-injective, and every module in σ[J ] is extending.

The following result provides a characterization of right Noetherian right almost
V -rings via almost injective semisimple modules.

Theorem 3.4. The following statements are equivalent for a ring R.

(1) R is a right Noetherian right almost V -ring.
(2) Every semisimple right R-module is almost injective and R has finite right

Goldie dimension.
(3) Every semisimple right R-module is almost injective and Soc(RR) is finitely

generated.
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Proof. (1) ⇒ (2) By hypothesis, R has finite right Goldie dimension. Now we
show that every semisimple right R-module S is almost injective. Let N be any
module N and let 0 → A → N be an any monomorphism for a submodule A of
N and let f : A → S be any non-zero homomorphism. Assume U = E(f(A))
and E(S) = U ⊕ V . Since R is a right Noetherian ring,

U = ⊕
i∈I
E(Si).

By Theorem 3.1, either E(Si) is simple or E(Si) is projective of length 2. Since
U is injective, there exists a homomorphism g1 : N → U such that f = gι.

Case 1: g(N) ≤ ⊕i∈ISi. Let ω : ⊕i∈ISi → S be the natural embedding and
g1 = ωg. In this case the following diagram commutes.

0 // A

f

��

ι // N

g1~~~~
~~

~~
~~

S

Case 2: g(N) * ⊕i∈ISi. Let πi : U → E(Si) be the canonical projection. Then
there exists an index j ∈ I such that πj(g(N)) * Soc(Ej). So that πj(g(N)) =
E(Sj), since length(E(Si) ≤ 2, for any i ∈ I. Hence πj(g(N)) is both injective
and projective. It follows that there exists a decomposition N = N1 ⊕Ker(πjg),
and ϕ = (πjg)|N1 is an isomorphism from N1 to Ej. Set w1 = ϕ−1 and w2 = w1πj,
h1 = w2|S.

Then h1 is a homomorphism from U ⊕V to N1. Let h = h1|S. Let π : N → N1

be the canonical projection. Let a ∈ A, then a = a1 + a2 with a1 ∈ N1 and
a2 ∈ Ker(πjg).

Therefore πjg(a) = πjg(a1) + πjg(a2) = πjg(a1) = πjf(a1) ∈ Sj. Since ϕ is
isomorphic, it follows that a1 ∈ Soc(N1). Define a homomorphism ϕ : Soc(N1)→
Sj with θ(x) = πjf(x). Last, we put β : πj|S and h = θ−1β. Then h is a
homomorphism from S to N1. Let a ∈ A with a = x+ y where x ∈ Soc(N1) and
y ∈ Ker(πjg). Then π(a) = x. Hence θ(x) = πjf(x), so that

x = θ−1(θ(x)) = θ−1(πjf(x)) = θ−1(β)(f(x)) = (θ−1β)(f(x)) = hf(a).

Therefore πι = fh. In this case the following diagram commutes.

0 // A
i //

f

��

N = N1 ⊕N2

π

��
S

h // N1

Therefore S is an almost injective module.
(2) ⇒ (3) is clear.
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(3)⇒ (1) Assume (3). Then R is an almost right V -ring. Let S be a semisimple
right R-module. By [5, Proposition 2.1], S is essentially injective. Then, every
semisimple right R-module is essentially injective. Therefore R/Soc(RR) is right
Noetherian, by [5, Lemma 2.2]. Hence R is a right Noetherian since Soc(RR) is
finitely generated. �

Theorem 3.5. The following statements are equivalent for a ring R.

(1) R is an Artinian serial ring with Rad(R)2 = 0.
(2) Every semisimple right R-module is almost injective, RR is almost injec-

tive and R is a direct sum of indecomposable right ideals.
(3) Every semisimple right R-module is almost injective, RR is almost injec-

tive and Soc(RR) is finitely generated.

Proof. First we note that if RR is an almost injective module with finite Goldie
dimension then R is a direct sum of uniform right ideals. Hence, it suffices to show
that (3)⇒ (1). Assume (3). By Theorem 3.4, R is right Noetherian right almost
V -rings, and RR has a decomposition RR = e1R⊕e2R⊕ ...⊕enR, where each eiR
is uniform, since RR is almost injective. Let e = ei, for 1 ≤ i ≤ n. We shall prove
that eR is an uniserial module. Let U, V be submodules of eR. Then U and V
contain maximal submodules U1 and V1, respectively, since R is right Noetherian.
Then eR/(U1 ⊕ V1) has two distinct minimal submodules (U + V )/(U1 + V ) and
(U + V )/(U + V1). This is impossible, since eR/(U1 ⊕ V1) is an indecomposable
module over a right almost V -ring. Therefore eR is uniserial. Assume that eR is
not simple, and U is a non-zero proper summodule of eR. Then there exitsts a
maximal submodule U1 of U . Since eR/U1 is an uniform with the socle is U/U1.
So length(eR/U1) = 2, since R is a right almost V -ring. Hence U is simple and
length(eR) = 2, and eR is injective. Last, we get RR = e1R ⊕ e2R ⊕ ... ⊕ enR,
where each eiR is either a simple module or an injective module of length 2. By
[10, 13.5, (e)⇒ (g)], R is an Artinian serial rings with Rad(R)2 = 0.

�

We obtain the following results in [5, Theorem 3.1]

Corollary 3.6. The following statements are equivalent for a ring R.

(1) R is an Artinian serial ring with Rad(R)2 = 0.
(2) Every right R-module is almost injective and R is a direct sum of inde-

composable right ideals.
(3) Every right R-module is almost injective and Soc(RR) is finitely generated.
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