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Abstract. In this paper, we study the near-boundary behavior of functions u ∈
F(Ω) in the case where Ω is strictly pseudoconvex. We also introduce a sufficient
condition for belonging to F in the case where Ω is the unit ball.

Introduction

Let Ω be a bounded hyperconvex domain in Cn. By [Ceg04], the class F(Ω) is defined
as the following: u ∈ F(Ω) iff there exists a sequence of functions uj ∈ E0(Ω) such that
uj ↘ u as j →∞ and supj

∫
Ω

(ddcuj)
n <∞. Here

E0(Ω) = {u ∈ PSH(Ω) ∩ L∞(Ω) : lim
z→∂Ω

u(z) = 0,
∫
Ω

(ddcu)n <∞}.

The class F(Ω) has many nice properties. This is a subclass of the domain of def-
inition of Monge-Ampère operator [Ceg04, Blo06]. Moreover, by [Ceg04], for each
sequence of functions uj ∈ E0(Ω) such that uj ↘ u ∈ F(Ω) as j →∞, we have

lim
j→∞

∫
Ω

(ddcuj)
n =

∫
Ω

(ddcu)n.

By [Ceg98, Ceg04], for every pluripolar set E ⊂ Ω, there exists u ∈ F(Ω) such
that E ⊂ {u = −∞}. In [Ceg04], Cegrell also proved some inequalities, a generalized
comparison principle and a decomposition of (ddcu)n, u ∈ F(Ω). In [NP09], Nguyen
and Pham proved a strong version of comparison principle in the class F(Ω).

The class F(Ω) has been used to characterize the boundary behavior in the Dirichlet
problem for Monge-Ampère equation [Ceg04, Aha07]. For every u ∈ F(Ω), for each
z ∈ ∂Ω, we have lim sup

Ω3ξ→z
u(ξ) = 0 (see [Aha07]). Moreover, if we define by N the set

of functions in the domain of definition of Monge-Ampère operator with the smallest
maximal plurisubharmonic majorant identically zero then, by the comparison principles
in F and in N (see [NP09] and [ACCP09]) and by Cegrell’s approximation theorem
[Ceg04], we have

F(Ω) = {u ∈ N(Ω) :
∫
Ω

(ddcu)n <∞}.

In this paper, we study the near-boundary behavior of functions u ∈ F(Ω) in the case
where Ω is a bounded strictly pseudoconvex domain, i.e., there exists ρ ∈ PSH(Ω) ∩
C(Ω) such that ρ|∂Ω = 0, Dρ|∂Ω 6= 0 and ddcρ ≥ cω := cddc|z|2 for some c > 0.

Our first main result is the following:

Theorem 1. Assume that Ω is a strictly pseudoconvex domain in Cn and u ∈ F(Ω).
Then, there exists C > 0 depending only on Ω, n and u such that
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(1) V ol2n({z ∈ Ω|d(z, ∂Ω) < d, u(z) < −ε}) ≤ C.dn+1−na

(1− a)anεn
,

for any 0 < ε, a < 1 and d > 0.

For the convenience, we denote Wd = {z ∈ Ω|d(z, ∂Ω) < d}. By Theorem 1, we have

lim
d→0

V ol2n({z ∈ Wd|u(z) < −ε})
dt

= 0,

for every 0 < t < n+ 1. It helps us to estimate the “density” of the the set {u < −ε}
near the boundary.

Moreover, by using Theorem 1 for ε = dα and 0 < a < 1− α, we have

Corollary 2. Assume that Ω is a strictly pseudoconvex domain in Cn and u ∈ F(Ω).
Then, for every 0 < α < 1,

lim
d→0

V ol2n({z ∈ Wd|u(z) < −dα})
d

= 0.

When Ω is the unit ball, this result can be improved as following:

Theorem 3. If u ∈ F(B2n) then

lim
r→1−

∫
{|z|=r} |u(z)|dσ(z)

1− r
<∞.

In particular, there exists C > 0 such that

lim sup
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

<
C

A
,

for every A > 0.

Our second purpose is to find a sharp sufficient condition for u to belong to F(Ω)
based on the near-boundary behavior of u. We are interested in the following question:

Question 4. Let Ω be a bounded strictly pseudoconvex domain. Assume that u is a
negative plurisubharmonic function in Ω satisfying

lim
d→0+

V ol2n({z ∈ Wd : u(z) < −Ad})
d

= 0,

for some A > 0. Then, do we have u ∈ F(Ω)?

In this paper, we answer this question for the case where Ω is the unit ball.

Theorem 5. Let u ∈ PSH−(B2n). Assume that there exists A > 0 such that

(2) lim
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

= 0.

Then u ∈ F(B2n).

Corollary 6. Let u ∈ N(B2n) such that
∫

B2n

(ddcu)n =∞. Then, for every A > 0,

lim sup
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

> 0.
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1. Proof of Theorem 1

Since Ω is bounded strictly pseudoconvex, there exists ρ ∈ C2(Ω̄, [−1, 0]) such that
Ω = {z : ρ(z) < 0} and

(3) |Dρ| > C1 in Ω̄,

and

(4) ddcρ ≥ C2dd
c|z|2 = C2ω,

where C1, C2 > 0 are constants.
By (3), there exist C3, C4 > 0 depending only on Ω and ρ such that

(5) C3d(z, ∂Ω) ≤ −ρ(z) ≤ C4d(z, ∂Ω),

for every z ∈ Ω.
For every a ∈ (0, 1) and z ∈ Ω, we have

ddcρa(z) := ddc(−(−ρ(z))a) = a(1− a)(−ρ)a−2dρ ∧ dcρ+ a(−ρ)a−1ddcρ.

Then

(6) (ddcρa)
n ≥ an(1− a)(−ρ)na−n−1dρ ∧ dcρ ∧ (ddcρ)n−1.

Hence, by (3), (4) and (5), there exists 1 � d0 > 0 depending only on Ω and ρ such
that, for every 0 < d < d0 and z ∈ Wd := {ξ ∈ Ω : d(ξ, ∂Ω) < d},
(7) (ddcρa)

n ≥ C5(1− a)andna−n−1ωn,

where C5 > 0 depends only on n and ρ.
Since u ∈ F(Ω), there exists {uj}∞j=1 ⊂ E0(Ω) such that uj ↘ u and

(8)

∫
Ω

(ddcuj)
n < C6,

for every j ∈ Z+, where C6 > 0 depends only on u. By using (7), (8) and the Bedford-
Taylor comparison principle [BT76, BT82] (see also [Kli91]), we have, for every j ∈ Z+,
ε, d > 0 and a ∈ (0, 1),

C6 >
∫

{uj<ερa}
(ddcuj)

n ≥
∫

{uj<ερa}
(ddcερa)

n

≥ C5(1− a)anεn

dn+1−na

∫
{uj<ερa}∩Wd

ωn.

Hence, for every 0 < d < d0,

V ol2n({z ∈ Wd|uj(z) < −ε}) ≤ C7.d
n+1−na

(1− a)anεn
,
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where C7 > 0 depends only on Ω, ρ, n and u. Letting j →∞, we get

V ol2n({z ∈ Wd|u(z) < −ε}) ≤ C7.d
n+1−na

(1− a)anεn
,

for every 0 < d < d0. By setting

C = max{C7,
V ol2n(Ω)

dn+1
0

},

we have

V ol2n({z ∈ Wd|u(z) < −ε}) ≤ C.dn+1−na

(1− a)anεn
,

for every d > 0. This completes the proof of Theorem 1.

2. Proof of Theorem 3

In order to prove Theorem 3, we need the following lemma:

Lemma 7. Let Ω ⊂ Cn be a bounded hyperconvex domain and (X, d, µ) be a totally
bounded metric probability space. Let u : Ω×X → [−∞, 0) such that

(i) For every a ∈ X, u(·, a) ∈ F(Ω) and∫
Ω

(ddcu(z, a))n < M ,

where M > 0 is a constant.
(ii) For every z ∈ Ω, the function u(z, ·) is upper semicontinuous in X.

Then ũ(z) =
∫
X

u(z, a)dµ(a) ∈ F(Ω). Moreover∫
Ω

(ddcũ)n ≤M .

Proof. It is well known that either ũ ∈ PSH−(Ω) or ũ ≡ −∞ (see, for example, [Kli91,
Theorem 2.6.5]). We need to find a sequence of functions ũj ∈ F(Ω) such that ũj is
decreasing to ũ as j →∞ and supj

∫
Ω

(ddcũj)
n ≤M .

Since X is totally bounded, there exists a finite cover {Xk}m1
k=1 of X such that the

diameter of each Xk is at most 1/2. Denote

U1,1 = X1, U1,2 = X2 \X1, ..., U1,m1 = Xm1 \ (∪m1−1
l=1 Xl).

Then {U1,k}m1
k=1 is a finite cover of X such that its elements are pairwise disjoint and

of diameter at most 1/2. Moreover, U1,k is totally bounded for every k. By using
induction, for every j ∈ Z+, we can divide X into a finite pairwise disjoint collection
{Uj,k}

mj

k=1 of sets of diameter at most 2−j satisfying: for every 1 ≤ k ≤ mj+1, there
exists 1 ≤ l ≤ mj such that Uj+1,k ⊂ Uj,l.

For every j ∈ Z+, we define

uj(z) =
mj∑
k=1

µ(Uj,k) sup
a∈Uj,k

u(z, a) and ũj = (uj)
∗.

Then ũj ∈ F(Ω). Moreover, by using the comparison principle [NP09, Proposition 3.1]

for ũj and
mj∑
k=1

µ(Uj,k)u(z, ak) (with ak ∈ Uj,k) and by applying [Ceg04, Corollary 5.6],

we have
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Ω

(ddcũj)
n ≤

∫
Ω

(ddc(
mj∑
k=1

µ(Uj,k)u(z, ak)))
n

=
∑

k1+...+kmj =n

n!

k1!...kmj
!

mj∏
l=1

µ(Uj,l)
kl
∫
Ω

(ddcu(z, a1))k1 ∧ ... ∧ (ddcu(z, amj
))kmj

≤
∑

k1+...+kmj =n

n!

k1!...kmj
!

∏mj

l=1 µ(Uj,l)
kl
∏mj

l=1(
∫
Ω

(ddcu(z, al))
n)kl/n

≤M
∑

k1+...+kmj =n

n!

k1!...kmj
!

∏mj

l=1 µ(Uj,l)
kl

= M(µ(Uj,1) + ...+ µ(Uj,kmj
))n

= M,

for all j ∈ Z+.
We will show that ũj is decreasing to ũ and use Lemma 8 to prove that ũ ∈ F(Ω).
For every z ∈ Ω, a ∈ X and j ∈ Z+, we define

φj(z, a) =
mj∑
k=1

χUj,k
(a) sup

a∈Uj,k

u(z, a) = sup
ξ∈Uj,k(j,a)

u(z, ξ),

where χUj,k
is the characteristic function of Uj,k and k(j, a) is given by a ∈ Uj,k(j,a).

Then, we have

(9) uj(z) =

∫
X

φj(z, a)dµ(a) ≥
∫
X

u(z, a)dµ(a) = ũ(z),

for every z ∈ Ω and j ∈ Z+.
Note that Uj+1,k(j+1,a) ∩ Uj,k(j,a) 6= ∅. Then, it follows from the construction of the

sets Uj,k that Uj+1,k(j+1,a) ⊂ Uj,k(j,a). Hence

(10) uj(z) =

∫
X

φj(z, a)dµ(a) ≥
∫
X

φj+1(z, a)dµ(a) = uj+1(z),

for every z ∈ and j ∈ Z+.
By the semicontinuity of u(z, ·), we have,

(11) u(z, a) ≥ lim
j→∞

(sup{u(z, ξ) : |ξ − a| ≤ 2−j}) ≥ lim
j→∞

φj(z, a),

for every z ∈ Ω and a ∈ X. By integrating the sides of (11) with respect to a and
using Fatou’s lemma, we get

(12) ũ(z) ≥ lim
j→∞

uj(z),

for every z ∈ Ω.
Combining (9), (10) and (12), we get that uj is decreasing to ũ as j → ∞. Note

that uj = ũj almost everywhere [Kli91, Proposition 2.6.2], and then lim
j→∞

ũj = ũ al-

most everywhere. Since lim
j→∞

ũj is either plurisubharmonic or identically −∞, we have

lim
j→∞

ũj = ũ everywhere. Therefore, ũj is decreasing to ũ as j →∞.
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By Lemma 8, max{ũ,−k} ∈ F(Ω) for k > 0 and it implies that ũ is not identically
−∞. Then, by using Lemma 8 for ũ, we get that ũ ∈ F(Ω). Moreover, since the
sequence ũj is decreasing, we have∫

Ω

(ddcũ)n ≤ lim inf
j→∞

∫
Ω

(ddcũj)
n ≤M .

�

Lemma 8. Let Ω be a hyperconvex domain in Cn and u ∈ PSH−(Ω). Assume that
there are uj ∈ F(Ω), j ∈ N, such that uj converges almost everywhere to u as j →∞.
If supj>0

∫
Ω

(ddcuj)
n <∞ then u ∈ F(Ω).

Lemma 8 is an immediate corollary of [NP09, Theorem 3.7]. It also can be proved
by using [Ceg04, Proposition 5.1].

Recall that if u is a radial plurisubharmonic function then u(z) = χ(log |z|) for some
convex, increasing function χ. We have the following lemma:

Lemma 9. Let u = χ(log |z|) be a radial plurisubharmonic function in B2n. Then,
u ∈ F(B2n) iff the following conditions hold

(i) lim
t→0−

χ(t) = 0;

(ii) lim
t→0−

χ(t)

t
<∞.

Proof. By Theorem 1, the condition (i) is a necessary condition for u ∈ F(B2n). We
need to show that, when (i) is satisfied, the condition u ∈ F(B2n) is equivalent to (ii).

If (ii) is satisfied then there exists k0 � 1 such that k0t < χ(t). Hence u(z) >
k0 log |z| ∈ F(B2n). Thus, u ∈ F(B2n).

Conversely, if (ii) is not satisfied, we consider the functions uk = max{u, k log |z|}.
Then, for every k, uk > u near ∂B2n. Hence∫

Ω

(ddcu)n ≥
∫
Ω

(ddcuk)
n = kn

∫
Ω

(ddc log |z|)n k→∞−→ ∞.

Thus u /∈ F(B2n).
The proof is completed. �

Proof of Theorem 3. Denote by µ the unique invariant probability measure on the uni-
tary group U(n). For every z ∈ B2n, we define

ũ(z) =
∫

U(n)

u(φ(z))dµ(φ) =
1

c2n−1|z|2n−1

∫
{|w|=|z|}

u(w)dσ(w),

where c2n−1 is the (2n − 1)-dimensional volume of ∂B2n. By Lemma 7, we have ũ ∈
F(B2n). Since ũ is radial, we have, by Lemma 9,

lim
|z|→1−

ũ(z)

|z| − 1
= lim
|z|→1−

ũ(z)

log |z|
<∞.

Hence

lim
r→1−

∫
{|z|=r} |u(z)|dσ(z)

1− r
= M <∞.
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Consequently, we have, for 0 < d� 1,

(13) V ol2n−1({z ∈ B2n : ‖z‖ = 1− d, u(z) < −Ad}) ≤ M + 1

A
,

for all A > 0. Note that

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad}) =
d∫
0

V ol2n−1({z ∈ B2n : ‖z‖ =

1− t, u(z) < −Ad})dt.

Hence, by (13), we have, for 0 < d� 1,

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad}) ≤
d∫
0

(M + 1)

Ad/t
dt =

(M + 1)d

2A
.

Thus we get the last assertion of Theorem 3.
The proof is completed. �

3. Proof of Theorem 5

We will find a sequence of functions uj ∈ F(B2n) such that supj≥0

∫
Ω

(ddcuj)
n < ∞

and uj converges almost everywhere to u as j →∞. Then, by using Lemma 8, we will
obtain u ∈ F(B2n).

For every 0 < a < 1, we denote Sa = {φ ∈ U(n) : ‖φ− Id‖ < a} .
For every 0 < ε, a < 1 and z ∈ B2n

1−ε := {w ∈ Cn : ‖w‖ < 1− ε}, we define

ua,ε(z) = (sup{u((1 + r)φ(z)) : φ ∈ Sa, 0 ≤ r ≤ ε})∗.
Then ua,ε is plurisubharmonic in B2n

1−ε (see [Kli91, Corollary 2.9.5] and [Kli91, Theorem
2.9.14]) and, by the semicontinuity of u, we have

(14) lim
max a,ε→0+

ua,ε(z) = u(z),

for every z ∈ B2n. Moreover, for z 6= 0,

(15) ua,ε(z) = (sup{u(ξ) : ξ ∈ Ba,ε,z})∗,

where

Ba,ε,z = {ξ ∈ Cn : ‖ z

‖z‖
− ξ

‖ξ‖
‖ < a, ‖z‖ ≤ ‖ξ‖ ≤ (1 + ε)‖z‖}

= {tξ : t ∈ [‖z‖, (1 + ε)‖z‖], ξ ∈ ∂B2n, ‖ξ − z

‖z‖
‖ < a}.

Denote

Sz/‖z‖,a = {ξ ∈ Cn : ‖ξ‖ = 1, ‖ξ − z

‖z‖
‖ < a}.

We have

V ol2n(Ba,ε,z) =
∫

Sz/‖z‖,a

(1+ε)‖z‖∫
‖z‖

tdtdS(ξ) =
(2ε+ ε2)‖z‖2

2

∫
Sz/‖z‖,a

dS(ξ)

=
(2ε+ ε2)‖z‖2

2

∫
S(0,...,0,1),a

dS(ξ),
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the last equality holds since the volume of hypersurfaces are preserved under rotations.
We will show that, for every εa ≥ 3ε ≥ 1− ‖z‖ ≥ ε > 0,

(16) ua,ε(z) ≥ −3Aε.

Consider the parameterization

p : B2n−1 → ∂B2n ∩ {z ∈ Cn = R2n : yn > 0}
s = (s1, ..., s2n−1) 7−→ p(s) = (s,

√
1− s2).

For each s ∈ B2n−1, we consider the angle α between the vectors e2n = (0, ..., 0, 1) and
p(s). We have

sin(
α

2
) =
‖e2n − p(s)‖

2
and sin(α) = ‖s‖.

Hence,

‖s‖ = ‖e2n − p(s)‖
√

1− ‖e2n − p(s)‖2

4
.

Then p(B2n−1

a
√

1−a2/4
) = Se2n,a and we have

V ol2n(Ba,ε,z) =
(2ε+ ε2)‖z‖2

2

∫
Se2n,a

dS(ξ)

=
(2ε+ ε2)‖z‖2

2

∫
B2n−1

a
√

1−a2/4

√
1 + ‖∇

√
1− ‖ξ‖2‖2dξ

=
(2ε+ ε2)‖z‖2

2

∫
B2n−1

a
√

1−a2/4

dξ√
1− ‖ξ‖2

.

Therefore, there exist C1, C2 > 0 such that

(17) C1a
2n−1ε < V ol2n(Ba,ε,z) < C2a

2n−1ε,

for every 0 < ε, a < 1/2 and 1/2 < ‖z‖ ≤ 1− ε.
By (2), for every 1/2 > a > 0, there exists a > εa > 0 such that, for every εa ≥ 3ε > 0,

V ol{ξ ∈ B2n : ‖ξ‖ > 1− 3ε, u(ξ) < −3Aε} < C1a
2n−1ε,

and therefore, by (17), for every 3ε ≥ 1− ‖z‖ ≥ ε,

Ba,ε,z * {ξ ∈ B2n : ‖ξ‖ > 1− 3ε, u(ξ) < −3Aε}.
Then, by (15), for every εa ≥ 3ε ≥ 1− ‖z‖ ≥ ε > 0, we have

(18) ua,ε(z) ≥ −3Aε.

For each 1/2 > a > 0 and εa ≥ 3ε > 0, we consider the following function

ũa,ε(z) =


3A(−1 + |z|2) if 1− ε ≤ ‖z‖ ≤ 1,

max{3A(−1 + |z|2), ua,ε(z)− 6Aε} if 1− 3ε ≤ ‖z‖ ≤ 1− ε,
ua,ε(z)− 6Aε if ‖z‖ ≤ 1− 3ε.

By using the gluing theorem (see, for example, [Kli91, Corollary 2.9.15]), we have
ũa,ε ∈ PSH(B2n). For m > 0, we set ũma,ε = max{ũa,ε,−m}. Then, we have ũma,ε ↘ ũa,ε,
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when m→∞. Moreover, since ũma,ε = 3A(−1 + |z|2) near ∂B2n, we have,∫
B2n

(ddcũma,ε)
n =

∫
B2n

(ddc3A(−1 + |z|2))n <∞,

for every m > 0. Then ũma,ε ∈ E0(B2n). Therefore, ũa,ε ∈ F(B2n). Moreover, by [Ceg04,
Proposition 5.1],

(19)

∫
B2n

(ddcũa,ε)
n = lim

m→∞

∫
B2n

(ddcũma,ε)
n <∞,

for every 1/2 > a > 0 and εa ≥ 3ε > 0.
For every j ∈ N, we denote uj = ũ2−j ,3−1ε

2−j
. By (14), we have uj converges pointwise

to u as j tends to∞. By (19), we have supj
∫
B2n(ddcuj)

n <∞. Then, by using Lemma
8, we have u ∈ F(B2n).

The proof is completed.

References

[Aha07] P. AHAG: A Dirichlet problem for the complex Monge-Ampère operator in F(f). Michigan
Math. J. 55 (2007), no. 1, 123–138.

[ACCP09] P. AHAG, U. CEGRELL, R. CZYZ, H.-H. PHAM: Monge-Ampère measures on pluripolar
sets. J. Math. Pures Appl. (9) 92 (2009), no. 6, 613–627.

[Blo06] Z. BLOCKI: The domain of definition of the complex Monge-Ampère operator. Amer. J. Math.
128 (2006), no.2, 519–530.

[BT76] E. BEDFORD, B. A. TAYLOR: The Dirichlet problem for a complex Monge-Ampère equation.
Invent. Math. 37 (1976), no. 1, 1–44 .

[BT82] E. BEDFORD, B. A. TAYLOR: A new capacity for plurisubharmonic functions. Acta Math.
149 (1982), no. 1-2, 1–40.

[Ceg98] U. CEGRELL: Pluricomplex energy. Acta Math. 180 (1998), no. 2, 187–217.
[Ceg04] U. CEGRELL: The general definition of the complex Monge-Ampère operator. (English,

French summary) Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 159–179.
[Kli91] M. KLIMEK: Pluripotential theory, Oxford Univ. Press, Oxford, 1991.
[NP09] V.K. NGUYEN, H.-H. PHAM: A comparison principle for the complex Monge-Ampère opera-

tor in Cegrell’s classes and applications. Trans. Amer. Math. Soc. 361 (2009), no. 10, 5539–5554.

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang
Quoc Viet, Hanoi, Vietnam

Email address: hoangson.do.vn@gmail.com , dhson@math.ac.vn

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang
Quoc Viet, Hanoi, Vietnam

Email address: dtduong@math.ac.vn


