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Abstract. Let M be a finitely generated module of dimension d and depth
t over a Noetherian local ring (A,m) and I an m-primary ideal. In the main
result it is showed that the last t Hilbert coefficients ed−t+1(I,M), ..., ed(I,M)
are bounded below and above in terms of the first d − t + 1 Hilbert coefficients
e0(I,M), ..., ed−t(I,M) and d.

Introduction

Let M be a finitely generated module of dimension d over a Noetherian local
ring (A,m) and I an m-primary ideal. The Hilbert-Samuel function HI,M(n) =
`(M/In+1M) agrees with the Hilbert-Samuel polynomial PI,M(n) for n� 0 and we
may write

PI,M(n) = e0(I,M)

(
n+ d

d

)
− e1(I,M)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I,M).

The numbers e0(I,M), e1(I,M), ..., ed(I,M) are called Hilbert coefficients of M with
respect to I.

The Hilbert-Samuel function and the Hilbert-Samuel polynomial give a lot of
information on M . Therefore it is of interest to study properties of Hilbert coef-
ficients. Assume that A is a Cohen-Macaulay ring and M is a Cohen-Macaulay
A-module. Then Northcott [11] and Narita [10] showed that e1(I, A) ≥ 0 and
e2(I, A) ≥ 0, respectively. Note that already e3(I, A) maybe negative. Later, Rhodes
[12] showed that the above results also hold for good I-filtrations of submodules of

M . Moreover, Kirby and Mehran [7] were able to show that e1(I,M) ≤
(
e0(I,M)

2

)
and

e2(I,M) ≤
(
e1(I,M)

2

)
. Subsequently these results were improved by several authors.
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How about other coefficients? In 1997, Srinivas and Trivedi [16] and Trivedi [17]
obtained a surprising result by showing that all |ei(I, A)|, i ≥ 1, are bounded by a
function depending only on e0(I, A) and d.

What happens for non-Cohen-Macaulay modules? Inspired by the above men-
tioned result of Srinivas and Trivedi and of Trivedi [18], Rossi-Trung-Valla [14]
showed that all |ei(I, A)|, are bounded by functions depending on the so-called ex-
tended degree Deg(I, A) and d. These results were extended to modules in [9] and
[6]. However from these results one can not deduce further relations between Hilbert
coefficients.

Using a bound on the Castelnuovo-Mumford regularity in terms of Hilbert co-
efficients given in [17, Theorem 2] one can immediately see that (−1)i−1ei(I, A)
is bounded above by a (complicated and not explicit) function depending only on
e0(I, A), ..., ei−1(I, A) and i for all i. An explicit bound will be given in Theorem 3.1.
However, even in the case d = 2 and t = 1 it was shown in [15] that |e1(I, A)| is in
general not bounded in terms of e0(I, A). So it is natural to ask how many Hilbert
coefficients are enough to take such that they completely bound the absolute values
of all other? The main result of this paper is to show that the first d− t+ 1 Hilbert-
coefficients have this property, where t = depthM (see Theorem 3.8 and Corollary
3.9). From that we can show that there is only a finite number of Hilbert-Samuel
functions such that e0(I,M), e1(I,M), ..., ed−t(I,M) and d are fixed, see Theorem
3.10.

In fact, we will do with a more general situation, namely with good I-filtrations
M. In this case our bounds also involve the so-called reduction number r(M). Our
approach is somewhat similar to that of [16, 17] and [14] in the sense that we use
the Castelnuovo-Mumford regularity reg(G(M)) of the associated module G(M) of
M to bound the Hilbert coefficients, see Proposition 2.7. Then one has to bound
reg(G(M)) in terms of the first d− t+ 1 Hilbert coefficients. In order to do that, in
Section 1 we first give a bound on reg(G(M)) which depends on the length of certain
cohomology modules, see Theorem 1.2. Then in Section 2, using [17, Theorem 2] we
will give a bound for reg(G(M)) in terms of all Hilbert coefficients, see Theorem 2.6.
Combining the two bounds in Section 1 and Section 2, we will show in the last section
that already the first d− t+ 1 Hilbert coefficients are enough to bound reg(G(M)),
see Theorem 3.7. Then one can quickly deduce the main results (Theorem 3.8 and
Corollary 3.9). Finally, we would like to remark that bounds established in this
paper are huge functions. Therefore instead of seeking better bounds we are looking
for more compact formulas. In any case the main meaning of the bounds is not
their values, but the fact that the last t Hilbert coefficients are bounded by the first
d− t+ 1 ones.

1. Castelnuovo-Mumford regularity and local cohomology
modules

First let us recall some notations and definitions. Let (A,m) be a Noetherian local
ring with an infinite residue field K := A/m and M a finitely generated A-module.
(Although the assumption K being infinite is not essential, because we can tensor
A with K(t).) Given a proper ideal I. A chain of submodules

M : M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn ⊇ · · ·
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is called an I-filtration of M if IMi ⊆ Mi+1 for all i, and a good I-filtration if
IMi = Mi+1 for all sufficiently large i. A module M with a filtration is called a
filtered module ( see [2, III 2.1]). If N is a submodule of M , then by the Artin-Rees
Lemma, the sequence {N ∩Mn} is a good I-filtration of N and we will denote it
by M ∩ N . The sequence {Mn + N/N} is a good I-filtration of M/N and will be
denoted by M/N .

In this paper we always assume that I is an m-primary ideal and M is a good
I-filtration. The associated graded module to the filtration M is defined by

G(M) =
⊕
n≥0

Mn/Mn+1.

We also say that G(M) is the associated ring of the filtered module M . This is
a finitely generated graded module over the standard graded ring G := GI(A) :=
⊕n≥0I

n/In+1 (see [2, Proposition III 3.3]). In the particular case, when M is the
I-adic filtration {InM}, G(M) is just the usual associated graded module GI(M).

Let R = ⊕n≥0Rn be a Noetherian standard graded ring over a local Artinian
ring (R0,m0). Let E be a finitely generated graded R-module of dimension d. For
0 ≤ i ≤ d, put

ai(E) = sup{n| H i
R+

(E)n 6= 0},
where R+ = ⊕n>0Rn. The Castelnuovo-Mumford regularity of E is defined by

reg(E) = max{ai(E) + i | 0 ≤ i ≤ d},
and the Castelnuovo-Mumford regularity of E at and above level l, 0 ≤ l ≤ d, is
defined by

regl(E) = max{ai(E) + i | l ≤ i ≤ d}.
We call

r(M) = min{r ≥ 0 |Mn+1 = IMn for all n ≥ r}
the reduction number of M (w.r.t. I). In the sequel we denote M/H0

m(M) by M
and the filtration M/H0

m(M) of M by M. Then we have

Lemma 1.1. ([6, Lemma 1.9]) reg(G(M)) ≤ max{reg(G(M)); rI(M)}+`(H0
m(M)).

An element x ∈ I is called M-superficial element for I if there exists a non-
negative integer c such that (Mn+1 :M a) ∩ Mc = Mn for every n ≥ c and we
say that a sequence of elements x1, ..., xr is an M-superficial sequence for I if, for
i = 1, 2, ..., r, xi is an M/(x1, ..., xi−1)M -superficial sequence for I (see [13, Section
1.2]).

For a finitely generated module M , let

h0(M) = `(H0
m(M)).

The following theorem is similar to [6, Theorem 1.5]. The new point here is that
we use the length of local homology modules instead of the so-called ”extended
degree”. Its proof is similar to that of [6, Theorem 1.5] and [8, Theorem 4.4]. Hence
we will omit some details.

Theorem 1.2. Let M be a finitely generated A-module with dimM = d ≥ 1,
M = {Mn}n≥0 a good I-filtration of M and x1, ..., xd an M-superficial sequence for
I. Set B(I,M) = `(M/(x1, ..., xd)M) and

κ(I,M) = max{h0(M/(x1, ..., xi)M)|0 ≤ i ≤ d− 1}.
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Then

(i) reg(G(M)) ≤ B(I,M) + κ(I,M) + r(M)− 1 if d = 1,

(ii) reg(G(M)) ≤ [B(I,M) + κ(I,M) + r(M) + 1]3(d−1)!−1 − d if d ≥ 2.

Proof. Let B := B(I,M), κ := κ(I,M) and r := r(M).

If d = 1, then M is a Cohen-Macaulay module. By [8, Lemma 2.2]

reg(G(M)) ≤ e0(G(M)) + r(M)− 1
≤ e0(I,M) + r − 1 ≤ B + r − 1.

Hence, by Lemma 1.1,

reg(G(M)) ≤ max{reg(G(M)); r}+ h0(M) ≤ B + κ+ r − 1.

Assume that d ≥ 2. SetN = M/x1M and N = M/x1M . Letm ≥ max{reg(G(N)), r}.
Then

reg1(G(M)/x∗1G(M)) = reg1(G(N)),

and by [8, Theorem 2.7]

reg1(G(M)) ≤ m+ PG(M)(m).

By [6, Lemma 1.6] and [6, Lemma 1.7(i)]

PG(M)(m) ≤ HI,N(m) ≤
(
m+d−1
d−1

)
`(N/(x2, ..., xd)N)

≤ B
(
m+d−1
d−1

)
.

Hence, by Lemma 1.1

reg(G(M)) ≤ m+ h0(M) +B

(
m+ d− 1

d− 1

)

≤ m+ κ+B

(
m+ d− 1

d− 1

)
. (1)

If d = 2, by the induction hypothesis one can take m = B + κ+ r − 1 and get

reg(G(M)) ≤ m+ κ+B(m+ 1)

= B(m+ 1) +B + 2κ+ r − 1

≤ B(B + κ+ r) +B + 2κ+ r − 1

< (B + κ+ r + 1)2 − 1.

Assume d ≥ 3. Then for all m > 1

m+B

(
m+ d− 2

d− 1

)
< B(m+ 1)d−1. (2)

By the induction hypothesis one can take

m = (B + κ+ r + 1)3(d−2)!−1 − d+ 1 > 1.

From (1) and (2) we get

reg(G(M)) ≤ κ+B(m+ 1)d−1 − 1

≤ κ+B[(B + κ+ r + 1)3(d−2)!−1 − d+ 2]d−1 − 1

≤ (B + κ)(B + κ+ r + 1)3(d−1)!−(d−1) − d
≤ (B + κ+ r + 1)3(d−1)!−1 − d.

4



�

2. Castelnuovo-Mumford regularity and Hilbert coefficients

In this section we provide a bound for reg(G(M)) in terms of the Hilbert coeffi-
cients ei(M).

Let R = ⊕n≥0Rn be a Noetherian standard graded ring over a local Artinian ring
(R0,m0) such that R0/m0 is an infinite field. Let E be a finitely generated graded
R-module of dimension d. We denote the Hilbert function `R0(Et) and the Hilbert
polynomial of E by hE(t) and pE(t), respectively. Writing pE(t) in the form:

pE(t) =
d−1∑
i=0

(−1)iei(E)

(
t+ d− 1− i
d− 1− i

)
,

we call the numbers ei(M) Hilbert coefficients of E. Let ∆(E) denote the maximal
generating degree of E. Easy examples show that one cannot bound reg(E) in terms
of ∆(E), e0(E), ..., ed−1(E). However these invariants bound reg1(E), as shown in [3,
Theorem 17.2.7] and [17, Theorem 2]. Below we recall the bound by Trivedi which
does not depend on the number of generators of E as the one in [3]. Let

∆′(E) = max{∆(E), 0}.
We inductively define a sequence of integers as follows: m1 = e0(E) + ∆′(E), and
for all i ≥ 2,

mi = mi−1 + e0

(
mi−1 + i− 2

i− 1

)
− e1

(
mi−1 + i− 3

i− 2

)
+ · · ·+ (−1)i−1ei−1.

Then

Lemma 2.1. ([17, Theorem 2]) Assume that d ≥ 1. Then reg1(E) ≤ md − 1.

In fact the above result was formulated in [17] for GI(M), which corresponds to
the case E being generated by elements of degree zero. But this assumption is not
essential. The proof was eventually given in [16, Lemma 4]. For a more algebraic
proof one can use [8, Theorem 1.7].

From the above bound we can derive an explicit bound for reg1(E) in terms of
ei(E) and ∆(E). However this bound is weaker.

Lemma 2.2. Let E be a finitely generated graded R-module of dimension d ≥ 1.
Put

ξ(M) = max{e0(M), |e1(M)|, ..., |ed−1(M)|}.
and

∆∗(E) = max{∆(E), 1}.
Then we have

reg1(E) ≤ (ξ(E) + ∆∗(E))d! − 1.

Proof. For short, we put ei := ei(E), ξ := ξ(E) and ∆∗ := ∆∗(E). By Lemma 2.1
it suffices to show that md ≤ (ξ + ∆∗)d!. This is trivial for d = 1. By the induction
hypothesis we may assume

md−1 ≤ (ξ + ∆∗)(d−1)! − 1 =: α.
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Note that
d−1∑
i=0

(−1)iei

(
α + d− 2− i
d− 1− i

)
≤ ξ

d−1∑
i=0

(
α + d− 2− i
d− 1− i

)
= ξ

(
α + d− 1

d− 1

)
.

Hence

md ≤ α + ξ

(
α + d− 1

d− 1

)
.

If d = 2, then α = ξ + ∆∗ − 1, and

md ≤ ξ + ∆∗ − 1 + ξ(ξ + ∆∗) = (ξ + ∆∗)(ξ + 1)− 1 ≤ (ξ + ∆∗)2 − 1.

Assume d ≥ 3. Observing that
(
α+d−1
d−1

)
≤ (α + 1)d−1 for all α ≥ 1, we get

md ≤ α + ξ(α + 1)d−1

= (ξ + ∆∗)(d−1)! − 1 + ξ[(ξ + ∆∗)(d−1)!]d−1

< (ξ + ∆∗)(d−1)! + (ξ + ∆∗)d!−1 − 1
< (ξ + ∆∗)d!( 1

ξ+∆∗
+ 1

ξ+∆∗
)− 1

< (ξ + ∆∗)d! − 1.

�

Now we apply the above result to derive a bound for reg(G(M)) in terms of Hilbert
coefficients. We call

HM(n) = `(M/Mn+1)

the Hilbert-Samuel function of M w.r.t M. This function agrees with a polynomial
- called the Hilbert-Samuel polynomial and denoted by PM(n) - for n � 0. If we
write

PM(t) =
d∑
i=0

(−1)iei(M)

(
t+ d− i
d− i

)
,

then the integers ei(M) are called Hilbert coefficients of M (see [13, Section 1]). When
M = {InM}, HM(n), PM(n) are usually denoted by HI,M(n) and PI,M(n), respec-
tively, and ei(M) = ei(I,M). Note that ei(M) = ei(G(M)) for 0 ≤ i ≤ d− 1. Using
the above results we can already bound reg1(G(M)) in terms of e0(M), ..., ed−1(M).
If depth(M) > 0, by [6, Lemma 1.8], reg(G(M)) = reg1(G(M)), and so it is bounded
in terms of ei(M), i < d. The following example shows that this is not the case if
depth(M) = 0.

Example. Let A = k[[x, y]]/(x2, xys), s ≥ 1. Then Gm(A) ∼= k[x, y]/(x2, xys).
Since (x2, xys) is a so-called stable ideal, reg(Gm(A)) = s can be arbitrarily large,
while e0(A) = 1.

The main aim of this section is to show that also using ed(M) we can bound
reg(G(M)). For that we need

Lemma 2.3. ([13, Proposition 2.3]) For all n we have

`(H0
m(M)) = PM(n)− PM(n) = (−1)d[ed(M)− ed(M)].

Using the Grothendieck-Serre formula to G(M) and the arguments in the proof
of [8, Lemma 3.4], we get

Lemma 2.4. PM(n) = HM(n) for all n ≥ reg(G(M)).

6



Lemma 2.5. `(H0
m(M)) ≤ PM(n) for all n ≥ reg(G(M)).

Proof. By Lemma 2.4, PM(n) = HM(n) for all n ≥ reg(G(M)). Hence, by Lemma
2.3, `(H0

m(M)) = PM(n)−PM(n) = PM(n)−HM(n) ≤ PM(n) for all n ≥ reg(G(M)).
�

Now we can state and prove the main theorem of this section.

Theorem 2.6. Let M be a good I-filtration of M of dimension d ≥ 1. Put r′(M) =
max{1, r(M)} and

ξ(M) = max{e0(M), |e1(M)|, ..., |ed(M)|}.
Then

reg(G(M)) ≤ (ξ(M) + r′(M))d! + ξ(M)

(
(ξ(M) + r′(M))d! + d

d

)
− 1.

Proof. Let r = r(M), r′ = r′(M) and ei = ei(M). By [6, Lemma 1.8] we have
reg(G(M)) = reg1(G(M)). By Lemma 1.1,

reg(G(M)) ≤ max{reg1(G(M)), r}+ `(H0
m(M)). (3)

Set α := (ξ + r′)d!− 1 ≥ r. By Lemma 2.3, ei(G(M)) = ei(M) = ei for all i ≤ d− 1.
As mentioned above G(M) is generated by elements of degrees at most r(M) ≥ 0.
Therefore, by Lemma 2.2, reg1(G(M)) ≤ α. Using (3) and Lemma 2.5 we then get

reg(G(M)) ≤ α + PM(α) ≤ α + ξ
∑d
i=0

(
α+d−i
d−i

)
= α + ξ

(
α+d+1

d

)
= (ξ + r′)d! − 1 + ξ

(
(ξ+r′)d!+d

d

)
.

�

In the next section we also need a result about bounding Hilbert coefficients in
terms of the Castelnuovo-Mumford regularity.

Proposition 2.7. Let l1, . . . , ld ∈ I such that their initial forms in GI(A) form a
filter regular sequence on G(M) and B = `(M/(l1, ..., ld)M). Then

(a) For all 1 ≤ i ≤ d− 1, |ei(M)| ≤ B(reg1(G(M)) + 1)i;

(b) |ed(M)| ≤ B(d+ 1)(reg(G(M)) + 1)d.

Proof. The inequalities in (a) immediately follow from [4, Theorem 4.6] by noticing
that reg(G(M)) = reg1(G(M)) and that G(M) is generated in non-negative degrees.
In fact, the proof of [4, Theorem 4.6] is based on [4, Theorem 4.2] and the local
duality. [4, Theorem 4.2] is formulated for graded modules over a polynomial ring
over a field. However its proof works for any polynomial ring over an Artinian local
ring. Moreover, by taking completion we may assume that this is a Gorenstein
polynomial ring, and so we can still use the local duality to derive an estimation on
cohomological Hilbert functions from that on Ext modules as done in [4, Theorem
4.5]. One can also rewrite the proof of [4, Theorem 4.2] in terms of local cohomology
modules, and in this case we do not need the local duality.

(b) Let a = reg(G(M)) and ei = ei(M). By Lemma 2.4, HM(a) = PM(a). By [6,
Lemma 1.7],

HM(a) = `(M/Ma+1) ≤ `(M/Ia+1M) ≤ B

(
a+ d

d

)
.
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Since
(
a+j
j

)
≤ (a+ 1)j and

∑d
i=0(−1)iei

(
a+d−i
d−i

)
= HM(a), by (a) we get

|ed| ≤ HM(a) +
∑d−1
i=0 |ei|

(
a+d−i
d−i

)
≤ B

(
a+d
d

)
+B

∑d−1
i=0

(
a+d−i
d−i

)
(a+ 1)i

≤ B(a+ 1)d +B
∑d−1
i=0 (a+ 1)d−i(a+ 1)i

= B(d+ 1)(a+ 1)d.

�

3. Relationship between Hilbert coefficients

In this section we always assume that M is an A-module of positive dimension
d and M is a good I-filtration of M , where I is an m-primary ideal. First we give
an upper bound for (−1)i−1ei(M) in terms of its preceding Hilbert coefficients. The
first statement of the following results is explicitly contained in [13].

Theorem 3.1. (i) e1(M) ≤
(
e0(M)

2

)
.

(ii) Let ςi−1 = max{e0(M), |e1(M)|, ...., |ei−1(M)|} and r′ = max{1, r(M)}. For
i ≥ 2 we have

(−1)i−1ei(M) ≤ ςi−1

(
(ςi−1 + r′)i! + i

i

)
.

Proof. We do induction on d. Let d = 1. Then the inequality e1(M) ≤
(
e0(M)

2

)
follows from [13, Proposition 2.8 and Lemma 2.3].

Assume that d ≥ 2. First we prove the statement for i ≤ d − 1. Let M =
M/H0

m(M). Since ej(M) = ej(M) for all j ≤ d−1, we may assume that depthM > 0.
Let x be an M-superficial element for I. Then dim(M/xM) = d − 1 and by [13,
Proposition 1.2], ej(M) = ej(M/xM) for all j ≤ d− 1. Hence the inequalities follow
from the induction hypothesis applied to M/xM .

Finally let i = d. Since G(M) is generated by elements of degrees at most r(M) ≥
0, by [6, Lemma 1.8] and Lemma 2.2 we have

reg(G(M)) = reg1(G(M)) ≤ (ςd−1 + r′)d! − 1 =: α.

By Lemma 1.1 and Lemma 2.5 we then get

reg(G(M)) ≤ max{reg1(G(M)), r}+ `(H0
m(M))

≤ max{reg1(G(M)), r}+ PM(α)

≤ α +
∑d−1
i=0 ei(M)

(
α+d−i
d−i

)
+ (−1)ded(M)

≤ ςd−1

(
α+d+1

d

)
+ (−1)ded(M).

Since reg(G(M)) ≥ 0, we then get

(−1)d−1ed(M) ≤ ςd−1

(
α + d+ 1

d

)
= ςd−1

(
(ςd−1 + r′)d! + d

d

)
,

as required. �

Remark 3.2. Using Lemma 2.1 and induction one can derive a better bound for
(−1)i−1ei(M), i ≤ d− 1. Since this bound is of almost the same complexity as the
one in the above theorem, we do not give it here. The fact that (−1)i−1ei(I, A) is
bounded above by a function depending on e0(I, A), ..., ei−1(I, A) for i ≤ d− 1 was
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mentioned in [1, Remark 3.10], provided that A is an equicharacteristic local ring.
Also no explicit bound was given there.

Next we show that the last t Hilbert coefficients completely depend on the first
d + 1 − t Hilbert coefficients, where t = depthM . For that we need some more
auxiliary results.

Lemma 3.3. Let x be an M-superficial element for I. Then

reg(G(M/xM)) ≤ reg(G(M)).

Proof. We have the following exact sequence

0 −→
⊕ xM ∩Mn

xMn−1 + xM ∩Mn+1

−→ G(M)/x∗G(M) −→ G(M/xM) −→ 0.

By [6, Lemma 1.3(ii)] (see also [19, Lemma 4.4]), xM ∩Mn = xMn−1 for n � 0.
Hence

reg(G(M/xM)) ≤ reg(G(M)/x∗G(M)) ≤ reg(G(M)).

�

Lemma 3.4. Let ξ(M) = max{e0(M), |e1(M)|, ..., |ed(M)|}. Then

reg(G(M)) < [ξ(M) + r(M) + 2](d+1)!.

Proof. For short, let ξ = ξ(M) and r := r(M). By Theorem 2.6,

reg(G(M)) ≤ (ξ + r + 1)d! + ξ

(
(ξ + r + 1)d! + d

d

)
− 1

< (ξ + r + 2)(d+1)!

�

Lemma 3.5. Let x1, x2, ..., xd be an M-superficial sequence for I. Set Mi = M/(x1, ..., xi)M
and Mi = M/(x1, ..., xi)M , where M0 = M and M0 = M . Then for all 0 ≤ i ≤ d−1,
we have

h0(Mi) ≤ (i+ 1)ξ(M)(reg(G(M)) + 2)d.

Proof. Set a := reg(G(M)) and ξ := ξ(M). Induction by i. Note by Lemma 3.3 that
reg(G(Mi)) ≤ reg(G(Mi)) ≤ reg(G(M)) = a.

For i = 0, by Lemma 2.5, we have

h0(M0) = h0(M) ≤ PM(a) ≤ ξ
d∑
j=0

(
d+ a− j
a− j

)
= ξ

(
a+ d+ 1

d

)
≤ ξ(a+ 2)d.

For 0 < i ≤ d − 1, by [13, Proposition 1.2], we have ej(Mi) = ej(Mi−1) for all
0 ≤ j ≤ d− i− 1 and

|ed−i(Mi)| = |ed−i(Mi−1) + (−1)d−i`(0 :Mi−1
xi)|

≤ |ed−i(Mi−1)|+ h0(Mi−1) ≤ ξ + h0(Mi−1).
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Hence, by Lemma 2.5 and the induction hypothesis we get

h0(Mi) ≤ PMi
(a)

≤ ξ
d−i−1∑
j=0

(
d− i+ a− j
d− i− j

)
+ |ed−i(Mi)|

= ξ

(
a+ d− i+ 1

d− i

)
− ξ + |ed−i(Mi)|

≤ ξ(a+ 2)d−i − ξ + ξ + h0(Mi−1)

≤ ξ(a+ 2)d−i + iξ(a+ 2)d ≤ (i+ 1)ξ(a+ 2)d.

�

Lemma 3.6. In the notation of Lemma 3.5, let B = `(M/(x1, x2, ..., xd)M). Then

B ≤ (d+ 1)ξ(M)(reg(G(M)) + 2)d.

Proof. Keep the notation in the proof of the previous lemma. Since dim(Md−1) =
1,Md−1 is a generalized Cohen-Macaulay module. By [5, Lemma 1.5]

B − e0(xd;Md−1) = `(Md−1/xdMd−1)− e0(xd;Md−1) ≤ h0(Md−1).

Since e0(xd;Md−1) = e0(x1, ..., xd;M) = e0(M) = e0, we get

B ≤ e0 + h0(Md−1) ≤ ξ + h0(Md−1).

By Lemma 3.5, h0(Md−1) ≤ dξ(a + 2)d . From this estimation we immediately get
B ≤ (d+ 1)ξ(a+ 2)d. �

In the sequel we use the following notation:

ξt(M) = max{e0(M), |e1(M)|, ..., |ed−t(M)|},
where 0 ≤ t ≤ d. Thus ξ0(M) = ξ(M). In Lemma 3.4, reg(G(M)) is bounded
by d, ξ(M) and r(M). Now we show that instead of ξ(M) one can use ξt(M)
(t = depth(M)).

Theorem 3.7. Let M be a good I-filtration of M with dim(M) = d ≥ 1. Assume
that depth(M) = t. Then

reg(G(M)) < [2(d+ 1)ξt(M)]3(d−1)![ξt(M) + r(M) + 4]3d!(d−t+1)!,

where 0! = 1.

Proof. Let x1, ..., xd be an M-superficial sequence for I. Let Mi = M/(x1, ..., xi)M
and Mi = M/(x1, ..., xi)M . For short we write ξt := ξt(M) and r := r(M).

If depth(M) = d, i.e. if M is a Cohen-Macaulay module, then in the notation of
Theorem 1.2 we have B(I,M) = e0(I,M) = ξd(M) and κ(I,M) = 0, which yield

reg(G(M)) < (ξd + r + 1)3(d−1)!−1.

Assume that depth(M) = t < d. Then B(I,M) = B(I,Mt) and κ(I,M) = κ(I,Mt).
Let at := reg(G(Mt)). Note by [13, Proposition 1.2] that ei(Mt) = ei(M) for all i ≤ t.
Hence, ξ(Mt) = ξt. Applying Lemma 3.5 to Mt we get

κ(I,Mt) ≤ (d− t)ξt(at + 2)d−t.
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By Lemma 3.6

B(I,Mt) ≤ (d− t+ 1)ξt(at + 2)d−t ≤ (d+ 1)ξt(at + 2)d−t. (4)

Hence, by Theorem 1.2

reg(G(M)) < [B(I,M) + κ(I,M) + r(M) + 1]3(d−1)!

= [B(I,Mt) + κ(I,Mt) + r + 1]3(d−1)!

≤ [(2d+ 1)ξt(at + 2)d + r + 1]3(d−1)!.

By Lemma 3.4,

at ≤ [ξt(Mt) + r(Mt) + 2](d−t+1)!. (5)

Therefore

reg(G(M)) ≤ [(2d+ 2)ξt((ξt + r + 2)(d−t+1)! + 2)d]3(d−1)!

≤ [2(d+ 1)ξt((ξt + r + 4)(d−t+1)!)d]3(d−1)!

≤ [2(d+ 1)ξt]
3(d−1)!(ξt + r + 4)3d!(d−t+1)!. (6)

�

The following theorem is the main result of this paper:

Theorem 3.8. Let M be a good I-filtration of M . Assume that dim(M) ≥ 1 and
depth(M) = t ≥ 1. Then |ed(M)|, |ed−1(M)|, ..., |ed−t+1(M)| are bounded by functions
depending only on d, e0(M), e1(M), ..., ed−t(M) and r(M). Namely, for all j ≥ d−t+1
we have

|ej(M)| < [2(j + 1)ξt(M)]3j!+2[ξt(M) + r(M) + 4)]3(j+1)!(j+1−t)!.

Proof. First we prove for i = d. Let x1, ..., xd be an M-superficial sequence for I.
Keep the notation in the proof of Theorem 3.7. Then by (4) and (5) we get

B = B(I,Mt) ≤ (d+ 1)ξt[(ξt + r + 2)(d−t+1)! + 2]d

≤ (d+ 1)ξt(ξt + r + 4)d(d−t+1)!.

Hence, by Proposition 2.7 and Theorem 3.7 we have

|ed(M)| ≤ B(d+ 1)(reg(G(M)) + 1)d

≤ (d+ 1)2ξt(ξt + r + 4)d(d−t+1)![2(d+ 1)ξ]3d!(ξt + r + 4)3d·d!(d−t+1)!

< [2(d+ 1)ξt]
3d!+2(ξt + r + 4)3(d+1)!(d−t+1)!. (7)

Now let d − t + 1 ≤ j ≤ d − 1. Since depth(M) = t, by [13, Proposition 1.2],
ej(M) = ej(Md−j). Note that dim(Md−j) = j, depth(Md−j) = t + j − d ≥ 1 and
r(Md−j) ≤ r(M). Therefore

ξt+j−d(Md−j) = ξt(M) = ξt.

Applying (7) to Md−j, we then get

|ej(M)| = |ej(Md−j)| ≤ [2(j + 1)ξt]
3j!+2(ξt + r + 4)3(j+1)!(j+1−t)!.

�
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For the I-adic filtration M = {InM}n≥0, r(M) = 0. Hence as an immediate of
consequence of Theorem 3.8 we get the following extension of [16, Theorem 1] to the
non-Cohen-Macaulay case. In the Cohen-Macaulay case our bound is much bigger
than that of [16, Theorem 1] (see also [14, Theorem 4.1] and [6, Theorem 1.10]).

Corollary 3.9. Assume that dim(M) = d ≥ 1 and depth(M) = t ≥ 1. Then for all
d− t+ 1 ≤ j ≤ d we have

|ej(I,M)| ≤ [2(j + 1)ξt]
3j!+2(ξt + 4)3(j+1)!(j+1−t)!,

where
ξt = max{e0(I,M), |e1(I,M)|, ..., |ed−t(I,M)|}.

In other words, |ej(I,M)| are bounded in terms of d, e0(I,M), e1(I,M), ..., ed−t(I,M).

Finally we can state and prove a result about the finiteness of Hilbert-Samuel
functions.

Theorem 3.10. Let d ≥ t ≥ 0, e0, ..., ed−t be integers. Then there exists only a finite
number of Hilbert-Samuel functions associated to d-dimensional modules M and m-
primary ideals I such that depth(M) = t and ej(I,M) = ej for all 0 ≤ j ≤ d− t.

Proof. By Corollary 3.9 there exists only a finite number of Hilbert-Samuel poly-
nomial PI,M(n) such that ej(I,M) = ej for all 0 ≤ j ≤ d − t. By [8, Lemma 3.4]
HI,M(n) = PI,M(n) for n ≥ reg(GI(M)) =: a. By Theorem 3.7, a is bounded in
terms of e0, e1, ..., ed−t and d. Since HI,M(n) = 0 for n < 0 and HI,M(n) is an in-
creasing function for n ≥ 0, HI,M(n) ≤ PI,M(a) for all n ≤ a. This implies that the
number of such functions are bounded in terms of e0, e1, ..., ed−t and d. �

Remark 3.11. In [15] there were constructed a complete regular local ring R and an
infinite sequence pn of prime ideals of R such that dim(R/pn) = 2, e0(R/pn) = 4, but
e1(R/pn) = 8−n. This shows that one cannot reduce the number of “independent”
coefficients in Theorem 3.8 and Theorem 3.10.
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