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Abstract. In this paper, we give a proof for Mostowski’s regular projection theorem
for definable sets in o-minimal structures, which is a positive answer to the question of
Parusiński about a definable version of the regular projection theorem. A consequence of
this result is the existence of definable regular covers for definable sets. Our result holds
for arbitrary o-minimal structures over real closed fields.

1. Introduction

The regular projection theorem was introduced by Mostowski in his famous paper [5] on
Lipschitz stratification for complex analytic sets. It was extended to subanalytic sets by
Parusiński [6] (see also [8]). The theorem has many applications, in particular in proving
the existence of Lipschitz stratifications (see [5], [7], [8]). Recently, Parusiński [9] used it as
the key to the proof of the regular cover theorem for subanalytic sets. In the same paper,
he asked whether the regular projection theorem is still valid in the o-minimal setting ([9],
Question 2.1). He also mentioned that his arguments cannot apply to o-minimal structures
because they so much rely on Paw lucki’s Puiseux Theorem [10]. In fact, a positive answer
to Parusiński’s question would provide a definable version of the regular cover theorem (see
Section 4). We would like to remark further that the regular cover theorem was used as a
principal tool in constructing sheaves on subanalytic site by Guillermou–Schapira [2] and
in constructing what is called Sobolev sheaves by Lebeau [3].

In this paper we prove that the regular projection theorem holds for definable sets in
o-minimal structures. The arguments used in our proof are elementary, they work for any
o-minimal structure over real closed fields.

Let us recall the definition of regular projections and state the main result.

Let λ ∈ Rn−1. We denote by πλ : Rn → Rn−1 the projection parallel to the vector
(λ, 1) ∈ Rn. Let X ⊂ Rn and let ε, C be positive constant and p ∈ N ∪ {∞, ω}. The
projection πλ is said to be (ε, C, p)-regular at a point x ∈ Rn (with respect to X) if

(1) πλ|X is finite, i.e., {π−1
λ (x′) ∩X} is a finite set for every x′ ∈ Rn−1,

(2) the intersection of X with the open cone

Cε(x, λ) = {x+ t(λ′, 1), t ∈ R∗, |λ′ − λ| < ε}
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is either empty or a disjoint union of sets of the form

Γ = {x+ αi(λ
′)(λ′, 1), |λ′ − λ| < ε}

where αi is a Cp nowhere vanishing function defined on |λ′ − λ| < ε,

(3) the functions αi in (2) satisfy for all |λ′ − λ| < ε

|gradαi(λ
′)| ≤ C|αi(λ′)|.

Theorem 1.1 (Main Theorem). Let p ∈ N. Let X ⊂ Rn be a definable set of dimension
< n. Then there exist ε, C > 0 and Λ = {λ1, . . . , λk} ⊂ Rn−1 such that for every x ∈ Rn

there is λi ∈ Λ such that πλi is (ε, C, p)-regular at x.

Throughout the paper, we denote by N the set the natural numbers and by R∗ the set
of nonzero real numbers. We denote by Bε(x) the open ball of radius ε centered at x. For
a set A ⊂ Rn, A denotes the closure of A in Rn. By “definable” we mean definable in
o-minimal structures on the field of the real numbers (R,+, .).
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2. Preliminaries

In this section we will recall the definition of o-minimal structures and known properties
of definable sets that will be used in the next section. We first fix some notations.

Given A ⊂ Rn+m and a map f : A→ Rk. For x ∈ Rn we define

Ax = {y ∈ Rm : (x, y) ∈ A}, fx : Ax → Rk, fx(y) = f(x, y).

Suppose A = {Ai}i=1,...,k is a collection of subsets of Rn+m. By f(A) we mean the collection
{f(Ai)}i=1,...,k and by Ax we mean the collection {(Ai)x}i=1,...,k.

For m,n ∈ N, m > n, we denote by πmn : Rm → Rn the projection on the first n
coordinates.

2.1. O-minimal structures. An o-minimal structure over the real field (R,+, .) is a
family {Dn}n∈N such that

(1) each Dn is an Boolean algebra of subsets of Rn,

(2) if A ∈ Dn then R× A and A× R belong to Dn+1,

(3) Dn contains all the zero sets of polynomials of n variables,

(4) if A ∈ Dn then πnn−1(A) ∈ Dn−1,
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(5) every element of D1 is a finite union of open intervals and points.

Elements of Dn f are called definable sets. A map is called definable if its graph is a
definable set.

The class of semi-algebraic sets and the class of global subanalytic sets are typical ex-
amples of o-minimal structures. We refer the reader to Coste [1] and van den Dries [11]
for more details about o-minimal structures.

2.2. Cell decompositions. Let p ∈ N. A Cp definable cell in R is either a point or an
open interval. A Cp definable cell in Rn is a set of the following forms Γξ = {(x, y) ∈
C × R, y = ξ(x)} (graph); (ξ1, ξ2) = {(x, y) ∈ C × R, ξ1(x) < y < ξ2(x)} (band) where
ξ, ξ1, ξ2 : C → R are Cp definable functions. It allows ξ1 = −∞ and ξ2 = +∞.

A Cp definable cell decomposition of Rn is defined by induction as follows: a cell decom-
position of R is finite collection of intervals and points

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}}.

A Cp definable cell decomposition of Rn is a partition of Rn into Cp definable cells such that
the collection of all images of these cells under the projection πnn−1 forms a Cp definable
cell decomposition of Rn−1.

Let D be a cell decomposition of Rn. Suppose that C is a cell of πnn−1(D). Then
(πnn−1)−1(C) is a union of cells in D formed by functions −∞ = ξ0 < ξ1 < . . . < ξσ = ∞
defined on C. We call such ξi functions associated to C.

The cell decomposition D is called compatible with A = {Ai}i=1,....,k, a collection of
subsets of Rn, if each Ai is a union of some cells in D.

Theorem 2.1 ([1], [11], Cell Decomposition). Let A = {Ai}i=1,...,k be a collection of
definable subsets of Rn. For any p ∈ N, there exists a Cp definable cell decomposition
compatible with A.

2.3. Transversality. A C1 map f : M → N between two C1 manifolds is said to be
transverse to a C1 submanifold S ⊂ N at p ∈ M if either f(p) /∈ S or Dpf(TpM) +
Tf(p)S = TpN , then we write f tp S. If f is transverse at all points in M we say f is
transverse to M and write f t S. Suppose S be a finite collection of C1 submanifolds of N .
Then f is said to be transverse to S, denoted by f t S, if f is transverse to each element
of S. In the sequel by a Cp definable manifold we mean a definable subset which is also
a Cp submanifold of Rn for some n.

One of the most basic properties of Transversality Theory is that if V is a C1 submanifold
of N then f−1(V ) is a C1 submanifold of M and dimM − dim(f−1(V )) = dimN − dimV .
Suppose that M,N are C1 definable manifolds and f is a C1 definable map. It follows from
the above fact and Cell Decomposition that for any definable subset A of N , f−1(A) is a
definable subset of M of the same codimension as that of A, i.e., dimM − dim f−1(A) =
dimN − dimA. Another property is that
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Proposition 2.2 ([4], Lemma 3). Let M,J and N be C1 definable manifolds, and f :
M × J → N be a C1 definable submersion. Let S be a finite collection of C1 definable
submanifolds of N . Then

τ(f,S) = {s ∈ J : fs = f(., s) t S}
is a definable set and dim(J \ τ(f,S)) < dim J .

3. Proof of Theorem 1.1

We need the following lemmas to prove Theorem 1.1.

Lemma 3.1. Let −∞ = ξ0 < ξ1 < . . . < ξσ = +∞ be continuous definable functions
defined on a definable set C ⊂ Rn. Then there is a finite definable partition C of C such
that for each element E of C there is an interval (a, b) ⊂ R such that E× (a, b) ⊂ (ξi−1, ξi)
for some 1 ≤ i ≤ σ.

Proof. Let a1 < . . . < aσ be real numbers. Set

ξ+
1 = {(x, y) ∈ Γξ1 , y ≥ a1}, ξ−1 = {(x, y) ∈ Γξ1 , y < a1},

H+
1 = {(x, y), x ∈ πn+1

n (ξ+
1 ), y < a1}, H−1 = {(x, y), x ∈ πn+1

n (ξ−1 ), y > a1},
C+

1 = πn+1
n (ξ+

1 ), C−1 = πn+1
n (ξ−1 ).

and for 1 < i ≤ σ,

ξ+
i = {(x, y) ∈ Γξi , y ≥ ai} ∩H−i−1, ξ−i = {(x, y) ∈ Γξi , y < ai} ∩H−i−1,

H+
i = {(x, y), x ∈ πn+1

n (ξ+
i ), ai−1 < y < ai}, H−i = {(x, y), x ∈ πn+1

n (ξ−i ), y > ai},
C+
i = πn+1

n (ξ+
i ), C−i = πn+1

n (ξ−i ),

where Γξi is the graph of ξi.

It is easy to see from the construction that C = C+
1 ∪ C−1 and C−i = C+

i+1 ∪ C−i+1. This
implies that C =

⋃
iC

+
i . Moreover, H+

i = C+
i × (ai−1, ai) which is contained in the band

(ξi−1, ξi). This shows that {C+
i }σi=1 is the desired partition. �

Lemma 3.2. (Pm,n) - Let m > n be positive integers. Let S be a definable cell decomposi-
tion of Rm and A be a finite collection of definable subsets of Rn. Then there is a definable
cell decomposition S∗ of Rn compatible with A and for each cell C of S∗, there is a box B
in Rm−n such that C ×B is contained in a band of S.

Proof. Proof of (Pn+1,n). Let S ′ = πn+1
n (S) and let S ′′ be a definable cell decomposition

of Rn compatible with {S ′,A}. For each C ∈ S ′′, there is E ∈ S ′ such that C ⊂ E.
By applying Lemma 3.1 to C and the restriction of FE to C where FE is the set of the
functions associated to E (with respect to S), we obtain a partition P of Rn.

Take S∗ to be a definable cell decomposition of Rn compatible with P . We claim that
S∗ is the desired cell decomposition. Suppose that V is a cell of S∗. Then V ⊂ V ′ for
some element V ′ ∈ P . Note that there is an open interval (a, b) in R such that V ′ × (a, b)
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is contained in some band in S. Hence V × (a, b) is also contained in the same band.
Therefore, (Pn+1,n) is proved.

Assume that (Pm,n) holds true for any m > n. We now give a proof for (Pm+1,n). Suppose
that C is a cell decomposition of Rm obtained by applying (Pm+1,m) to (S,Rm). Put C ′ to
be a definable cell decomposition of Rn by applying (Pm,n) to (C,A). We will prove that
C ′ is the desired decomposition. Assume that U ∈ C ′. Then there is a box B in Rm−n such
that U ×B is contained in a band M of C. Since M is a cell of C, there is an interval (a, b)
in R such that M × (a, b) contained in a band of S. Therefore, U ×B × (a, b) is contained
in the same band. The proof completes. �

Now we consider a set X ⊂ Rn as given in Theorem 1.1. Denote by Xp,reg the set of
p-regular points of X i.e., the set of points in X at which X is a (n − 1)-dimensional Cp

submanifold of Rn. Set Σ(X) = X \Xp,reg. For x ∈ Rn, we define

V (X, x) = {y ∈ Xp,reg : y − x ∈ TyXp,reg},
S(X, x) = V (X, x) ∪ Σ(X),

R(X, x) = X \ S(X, x) = Xp,reg \ V (X, x).

Set
∆ = {(x, λ, t) ∈ Rn × Rn−1 × R∗ : x+ t(λ, 1) ∈ S(X, x)}.

Consider the following mappings

η : Rn × Rn−1 × R∗ → Rn, (x, λ, t) 7→ x+ t(λ, 1)

π′ : Rn × Rn−1 × R→ Rn × Rn−1, (x, λ, t) 7→ (x, λ),

Set Y = η−1(X), Y ′ = π′(Y ) and ∆′ = π′(∆).

Lemma 3.3. dim ∆′x < n− 1.

Proof. We have ∆′x = π′x(∆x) = π′x(η
−1
x (S(X, x))) = π′x(η

−1
x (V (X, x))) ∪ π′x(η−1

x (Σ(X))).
Set A = π′x(η

−1
x (V (X, x))) and B = π′x(η

−1
x (Σ(X))). It suffices to show that dimA and

dimB both are less than < n− 1.

Note that the Jacobian matrix of the map ηx : Rn−1 × R∗ → Rn, (λ, t) → x + t(λ, 1)
has rank n at every point in the domain. So it is a submersion. Since Σ(X) is a definable
set of codimension > 1, η−1

x (Σ(X)) is a definable set of the same codimension. Thus
dim η−1

x (Σ(X)) < n− 1. In other words, dimB < n− 1.

We show now that dimA < n − 1. Since the map ηx is a submersion, by Proposition
2.2, the set

Ω := {λ ∈ Rn−1 : ηx,λ t X
p,reg}

is a definable dense set in Rn.

Note that

A = {λ ∈ Rn−1, ∃t ∈ R∗ : x+ t(λ, 1) ∈ V (X, x)}
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= {λ ∈ Rn−1, ∃t ∈ R∗ : y = x+ t(λ, 1) ∈ Xp,reg, x− y = t(λ, 1) ∈ TyXp,reg}
= {λ ∈ Rn−1, ηx,λ 6t Xp,reg}.

It follows that A = Rn−1 \ Ω. Then dimA < n− 1. �

Lemma 3.4. The map ηx|(Y \∆)x : (Y \∆)x → R(X, x) is a Cp-diffeomorphism.

Proof. First we prove that R(X, x) is a Cp submanifold of Xp,reg. Note that R(X, x) =

Xp,reg \ V (X, x). It suffices to show that V (X, x) is closed in Xp,reg. Let y∗ ∈ V (X, x) ∩
Xp,reg. Then there is a sequence of points {yk} in V (X, x) tending to y∗. Since (yk − x) ∈
TykX

p,reg and limk→∞ TykX
p,reg = Ty∗X

p,reg, (yk − x)→ (y∗ − x) ∈ Ty∗Xp,reg. This implies
that y∗ ∈ V (X, x), and hence V (X, x) is closed in Xp,reg.

Since R(X, x) is a Cp submanifold of Rn and ηx is a submersion, η−1
x (R(X, x)) is a Cp

submanifold of Rn−1 × R∗. It is clear from the definitions that η−1
x (R(X, x)) = (Y \∆)x.

To prove the lemma it is enough to show that ηx|(Y \∆)x : (Y \∆)x → R(X, x) is injective.
Suppose (λ1, t1) and (λ2, t2) are points in (Y \ ∆)x such that ηx(λ1, t1) = ηx(λ2, t2), i.e.,
x+t1(λ1, 1) = x+t2(λ2, 1). It is clear that (λ1, t1) = (λ2, t2). Thus, the map is injective. �

Let D be a Cp definable cell decomposition of R2n compatible with {Y,∆}. It follows
that D′ = π′(D) is a Cp definable cell decomposition of R2n−1 compatible with {Y ′,∆′}.
Set A = {C ∈ D′ : dimCx < n − 1,∀x ∈ Rn} and put ∆̃ =

⋃
Ci∈ACi. It is obvious that

dim ∆̃x < n− 1. By Lemma 3.3, we have ∆′ ⊂ ∆̃.

Lemma 3.5. Let x ∈ Rn be fixed. Suppose that Bε(λ
∗) ⊂ Rn−1\∆̃x. Then the intersection

X ∩ Cε(x, λ∗) satisfies the properties (2) and (3) in Theorem 1.1.

Proof. By the definition, ∆̃x contains all cells of dimension < n − 1 of the decomposition
D′x. Because the ball Bε(λ

∗) ∩ ∆̃x = ∅, it must be contained in a cell C in D′x which
has dimension n − 1. Let D be the cell in D′ such that C = Dx. Notice that D is a
cell not contained in ∆̃ and ∆′ ⊂ ∆̃, hence D is outside ∆′. Since the restriction of π′

to Y \ ∆ is finite, the intersection π′−1(D) ∩ Y is either empty or a disjoint union of the
graphs of Cp definable functions defined on D. These functions are nowhere vanishing
since {Yx,λ ⊂ R∗}. It induces that π′−1

x (Bε(λ
∗)) ∩ Yx is either empty or a disjoint union

of finitely many graphs of nowhere vanishing Cp functions ξi : Bε(λ
∗) → R. Note that

Cε(x, λ
∗) ∩ X = ηx(π

′−1(Bε(λ
∗)) ∩ Yx). It is nothing to do with the empty case because

Cε(x, λ
∗) ∩X = ∅.

For the non-empty case, consider the restriction of ξi to Bε(λ
∗). It follows from Lemma

3.4 that ηx(Γξi) are disjoint Cp submanifolds of Rn of the form {y = ξi(λ)(λ, 1), λ ∈ Bε(λ
∗)}.

The property (2) in Theorem 1.1 is then satisfied.

Set ci(λ) = |gradξi(λ)|
|ξi(λ)| . The functions ci are continuous on Bε(λ

∗) since ξ(λ) 6= 0,∀λ ∈
Bε(λ

∗). Put C = maxi{max ci(λ), λ ∈ Bε(λ
∗)}. Then the constant C satisfies the property

(3) in Theorem 1.1. �
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Proof of Theorem 1.1. It is known that the set {λ ∈ Rn−1 : πλ|X is finite} is definable
and dense in Rn−1 (see, [8], Lemma 5.6). Therefore, it contains a definable set, denoted
Q, which is open and dense in Rn−1. By Lemma 3.5, to prove the theorem it suffices to
prove that there is a finite definable partition of Rn such that for each element C of the
partition there is a closed ball B in Q such that (C ×B) ∩ ∆̃ = ∅.

Note that D′ is a cell decomposition of R2n−1 compatible with ∆̃. Set ∆̃′ = π2n−1
n (∆̃).

Applying (P2n−1,n) to (D′, ∆̃′) we get a cell decomposition B of Rn compatible with ∆̃′.
Let C ∈ B. There is a box I ⊂ Rn−1 such that C × I is contained in a band H of D′.
There are two cases: (i) H ⊂ ∆̃ and (ii) H ∩ ∆̃ = ∅. We claim that first case cannot
happen. Indeed, if (i) happens, (C × I)x ⊂ ∆̃x,∀x ∈ C. This is impossible because
dim(C × I)x = dim I = n− 1 while dim ∆̃x < n− 1 (see the definition of ∆̃). Since Q is a
definable, open and dense set in Rn−1, I ∩Q is a definable set of dimension n− 1. Choose
B to be a closed ball contained in I ∩Q. It is obvious that (C ×B)∩ ∆̃ = ∅. The theorem
is proved.

Remark 3.6. Suppose that the o-minimal structure that we are considering allows C∞

(resp. Cω) cell decompositions. Then by the same arguments as above, the main theorem
still holds if we replace p ∈ N with p =∞ (resp. p = ω).

4. Regular covers for definable sets

Let U ⊂ Rn be an open definable set. A definable regular cover for U is a finite
family of open definable sets {Ui} such that

(i) U =
⋃
i Ui,

(ii) each Ui is definably homeomorphic to an open n-dimensional ball,

(iii) there is C > 0 such that for any x ∈ U ,

dist(x,Rn \ U) ≤ C max
i
{dist(x,Rn \ Ui)}.

Parusiński [9] proved that every open bounded subanalytic subset of Rn has a subanalytic
regular cover. By Theorem 1.1 and arguments as in the proof of Theorem 0.2, [9] we have

Theorem 4.1. There always exists a definable regular cover for a given open bounded
definable set.

Remark 4.2. The boundedness in Theorem 4.1 is necessary. For example, consider U =
Rn \ {0}. We will show that there is no definable cover for U . Indeed, assume on the
contrary that there is a definable regular cover U = {Ui} for U . Since U is unbounded,
there are Ui ∈ U unbounded and a sequence {xk} in U \ ∪j 6=iUj such that {uk} → ∞ and
dist(uk,Rn \ Ui) ≤ 1. Then,

dist(xk,Rn \ U) = ‖xk‖ → ∞ and max
m
{dist(xk,Rn \ Um)} = dist(xk,Rn \ Ui) ≤ 1

Therefore, there is no C > 0 such that the condition (iii) satisfies. This gives a contradic-
tion.
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[8] A. Parusiński. Lipschitz stratification of subanalytic sets. Ann. Sci. Ecole Norm. Sup., 27, 661–696,

1994.
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