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Abstract

We investigate approximations of functions from the Hölder-Zygmund space of mixed smooth-
ness Hα

∞(Id) defined on the d-dimensional unit cube Id := [0, 1]d, by linear algorithms of sparse-grid
sampling recovery and by deep ReLU (Rectified Linear Unit) neural networks when the dimension d
may be very large. The approximation error is measured in the norm of the isotropic Sobolev space
W 1,p

0 (Id). The optimality of this sampling recovery is studied in terms of sampling n-widths. Opti-
mal linear sampling algorithms are constructed on sparse grids using the piece-wise linear B-spline
interpolation representation. We prove some tight dimension-dependent bounds of the sampling
n-widths explicit in d and n. Based on the results on sampling recovery, we investigate the ex-
pressive power of deep ReLU neural networks to approximate functions in Hölder-Zygmund space.
Namely, for any function f ∈ Hα

∞(Id), we explicitly construct a deep ReLU neural network having
an output that approximates f in the W 1,p

0 (Id)-norm with a prescribed accuracy ε, and prove tight
dimension-dependent bounds of the computation complexity of this approximation, characterized
as the number of weights and the depth of this deep ReLU neural network, explicitly in d and ε.
Moreover, we show that under a certain restriction the curse of dimensionality can be avoided in
the approximations by sparse-grid sampling recovery and deep ReLU neural networks.

Keywords and Phrases: High-dimensional approximation; Hölder-Zygmund spaces of mixed
smoothness; Sampling recovery; Sparse grids; Deep ReLU neural networks.

Mathematics Subject Classifications (2000): 41A25; 41A30; 68T99; 82C32; 92B20.

1 Introduction

The purpose of the present paper is to investigate sampling recovery of functions on the d-dimensional
unit cube Id := [0, 1]d with Hölder-Zygmund mixed smoothness by truncated on sparse grids tensor
product Faber series when the dimension d may be very large, and then apply this sparse-grid sampling
recovery to the high-dimensional approximation by deep ReLU (Rectified Linear Unit) neural networks.
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The approximation error is measured in the norm of the isotropic Sobolev space W 1,p
0 . We also study

the optimality for these approximations.

In recent decades, the high-dimensional approximation by sparse-grid sampling recovery of func-
tions or signals has been of great interest since they can be applied in a striking number of fields such as
Information Technology, Mathematical Finance, Chemistry, Quantum Mechanics, Meteorology, and,
in particular, in Uncertainty Quantification and Deep Machine Learning. A numerical method for such
problems may require a computational cost increasing exponentially in dimension when the accuracy
increases. This phenomenon is called the curse of dimensionality, coined by Bellman [3]. Hence for an
efficient computation in high dimensional approximation, one of the key prerequisites is that the curse
of dimension can be avoided at least to some extent. In some cases this can be obtained, particularly
when the functions to be approximated have appropriate mixed smoothness. With this restriction
one can apply approximation methods and sampling algorithms constructed on hyperbolic crosses and
sparse grids which give a surprising effect since hyperbolic crosses and sparse grids have the number of
elements much less than those of standard domains and grids but give the same approximation error.
This essentially reduces the computational cost, and therefore makes the problem tractable.

Sparse grids for approximate sampling recovery and integration were first considered by Smolyak
[35]. In computational mathematics, the sparse grid approach was initiated by Zenger [45]. There is a
large number of papers on sparse-grid sampling recovery and numerical applications. The reader can
consult [4, 10] for surveys about results and bibliography. We also refer to the monographs [27, 28]
for concepts and results on high dimensional problems and computation complexity.

Let us mention that high-dimensional functions having mixed smoothness play a fundamental
role not only in approximation theory but also in mathematical physics and finance and other fields.
For instance, in a recent work on regularity properties of solutions of the electronic Schrödinger
equation, Yserentant [44] has shown that the eigenfunctions of the electronic Schrödinger operator
have a certain mixed smoothness. Triebel [40, Chapter 6] has indicated a relation between Faber bases
and sampling recovery in the context of spaces with mixed smoothness and solutions of Navier-Stokes
equations. In particular, when initial data belonging to spaces with mixed smoothness, Navier-Stokes
equations admit a unique solution. In mathematical finance, many problems are expressed as the
expectation of some payoff function depending on quantities, such as stock prices, which are solutions
of stochastic equations governed by Brownian motions. The payoff function normally has kinks and
jumps and belongs to a very high dimensional space. To approximate the expected value one can apply
preliminary integration method with respect to a single well chosen variable to obtain a function of
d−1 variables which belongs to appropriate mixed Sobolev spaces in which Quasi-Monte Carlo can be
applied efficiently, see [16] and references therein. For a survey on various aspects of high-dimensional
approximation of functions having a mixed smoothness we refer the reader to the book [10].

The object of our interest in high-dimensional sampling recovery are functions on Id having Hölder-
Zygmund mixed smoothness α > 0 when the dimension d may be very large. Let us first introduce
the space Hα

∞(Id) of all such functions. For a univariate function f on I, the rth difference operator
∆r
h is defined by

∆r
h(f, x) :=

r∑
j=0

(−1)r−j
(
r

j

)
f(x+ jh),

for all x and h ≥ 0 such that x, x + rh ∈ I. If u is any subset of [d] := {1, . . . , d}, for a multivariate
function f on Id the mixed (r, u)th difference operator ∆r,u

h is defined by

∆r,u
h :=

∏
i∈u

∆r
hi
, ∆r,∅

h = Id,
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where the univariate operator ∆r
hi

is applied to the univariate function f by considering f as a function
of variable xi with the other variables held fixed, and Id is the identity operator. If 0 < α ≤ r, the
Hölder-Zygmund space Hα

∞(Id) of mixed smoothness α is defined as the set of functions f ∈ C(Id) for
which the norm

‖f‖Hα
∞(Id) := max

u⊂[d]

{
sup
h

∏
i∈u

h−αi ‖∆
r,u
h (f)‖C(Id(rh,u))

}
(1.1)

is finite, where Id(rh, u) := {x ∈ Id : xi+ rhi ∈ I, i ∈ u}. Note, that when u = ∅ the term in brackets
of (1.1) is ‖f‖C(Id). By the definition we have the inclusions Hα

∞(Id) ⊂ C(Id) ⊂ Lp(Id) for 0 < p ≤ ∞.
Moreover, it is well-known that for α = r, the space Hr

∞(I) coincides with the Sobolev space W r
∞(I).

Hence, by a tensor product argument one can deduce the equality Hα
∞(Id) = W r

∞(Id) where W r
∞(Id)

is the Sobolev space of functions having bounded mixed derivatives of order r.

Denote by Ůα∞ the set of all functions f in the unit ball of Hα
∞(Id) such that ‖f‖Hα

∞(Id) ≤ 1 and

f vanishes on the boundary ∂Id of Id, i.e., f(x) = 0 if xj = 0 or xj = 1 for some index j ∈ [d]. Let
Xn = {xj}nj=1 be a set of n sample points in Id and Φn = {φj}nj=1 a family of functions on Id. We

define the linear sampling algorithm L(Φn, Xn, ·) for an approximate recovery of functions f ∈ Ůα∞
from the sampling values f(x1), . . . , f(xn) by

L(Φn, Xn, f) :=

n∑
j=1

f(xj)φj . (1.2)

The error of approximation will be measured in the isotropic Sobolev space W 1,p
0 := W 1,p

0 (Id), 1 ≤
p ≤ ∞, consisting of all functions f ∈ Lp(Id) vanishing on the boundary ∂Id of Id in the sense of trace
such that the “energy” norm

‖f‖
W 1,p

0
:=


(

d∑
i=1

∫
Id

∣∣∣∣ ∂∂xi f(x)

∣∣∣∣pdx
)1/p

, 1 ≤ p <∞,

max
1≤i≤d

ess sup
x∈Id

∣∣∣∣ ∂∂xi f(x)

∣∣∣∣, p =∞,

is finite (this is a norm due to Poincaré inequality). It is known that the norm of spacesW 1,p
0 , especially,

the energy norm of the space H1
0 := W 1,2

0 is of great interest in approximation and numerical methods
of PDEs. To characterizes the error of best recovery algorithm from n sampling values of f ∈ Ůα∞, we
consider the quantity

rn := rn(Ůα∞,W
1,p
0 ) := inf

Xn,Φn
sup
f∈Ůα∞

‖f − L(Φn, Xn, f)‖
W 1,p

0
,

where the infimum is taken over all sets of n sample points Xn = {xj}nj=1 and all the family Φn =

{φj}nj=1 ⊂ W 1,p
0 . This quantity is called sampling n-width. For its properties and relations to other

approximation quantities we refer the reader to [27, 10].

Our present investigation on sampling recovery can be considered as a continuation of the recent
study in [11] where the explicit dimension-dependent estimates of the approximation error for linear
algorithms of sampling recovery from sampling values on Smolyak sparse grids by using piecewise linear
B-splines are obtained. In this paper, however, the optimal linear sampling algorithms is constructed
on energy-based sparse grids which leads to the tight dimension-dependent approximation rate of
optimal recovery for the class Ůα∞ with 1 < α ≤ 2

C1(p)B−d∗ n−(α−1) ≤ rn ≤ C2(α, p)B∗−dn−(α−1),
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where B∗ = B∗(p) > 1 and B∗ = B∗(d, α) > 0. Moreover, we show that under a very light additional
restriction the constant B∗ > 1 whenever d > d0(α, p). We can also explicitly construct an optimal
linear sampling operator on a sparse grid of the form (1.2) by using truncated tensor product Faber
series. This is one of the main result of our paper.

It has been shown that there is a close relation between the approximation by sampling recovery
based on B-spline interpolation and quasi-interpolation representation, and the approximation by deep
ReLU neural networks and[42, 43], [25], [12], [36], [34]. Neural networks have been studied and used
for almost 70 years, dating back to the foundational work of Hebb [19] and of Rosenblatt [33]. They
are composed of layers of computational nodes interconnected by activation functions. The theory of
approximating functions using shallow networks goes back to [6, 20] where they showed that that any
continuous functions can be approximated by shallow networks which have one hidden layer. These
approximation results, however, do not provide any information on the required neurons of a network
to achieve a given accuracy. In [24, 32] it has shown that a shallow network with O(ε−d/s) neurons can
approximate functions of d-variables in differential space Cs with prescribed error ε. Hence, standard
convergence results for shallow networks suffer from the curse of dimensionality when the dimension
d may be very large.

Neural networks used recently in machine learning are distinguished from those popular in the
1980’s and 1990’s by emphasis on the depth of networks. In applications, it is observed that deep
networks with many hidden layers appear to perform better than shallow ones of comparable size.
In recent years, deep neural networks have been successfully applied to a striking variety of Machine
Learning problems, including computer vision [21], natural language processing [41], speech recognition
and image classification [22]. The main advantage of deep neural networks is that they can output
compositions of functions cheaply. Since their application range is getting wider, theoretical analysis
to reveal the reason why deep neural networks could lead to significant practical improvements attracts
substantial attention [2, 23, 26, 37, 38]. In the last several years, there has been a number of interesting
papers that address the role of depth and architecture of deep neural networks in approximating
sets of functions which have a very special regularity properties such as analytic functions [14, 24],
differentiable functions [31, 42], oscillatory functions [17], and functions in isotropic Sobolev spaces
[18]. Most of them use deep ReLU neural networks for approximation since the rectified linear unit is
a simple and preferable activation function in many applications. The output of such a network is a
continuous piece-wise linear function which is easily and cheaply computed. In the context of function
spaces with mixed smoothness, using decomposition by Faber series, it has been proven in [25] that
for functions in Koborov space the number of parameters in a deep ReLU neural network needed to
achieve an error tolerance of ε is O(ε−1/2 log(ε−1)d). In another study [36], the author has employed
results in [7, 8] of the first author of the present paper on B-spline interpolation or quasi-interpolation
representation to approximate functions in Besov spaces with mixed smoothness by deep ReLU neural
networks. However, these results did not give explicit dimension-dependent estimates for number of
weights of the neural network needed.

From our results on sparse-grid sampling recovery we deduce approximation by deep ReLU neural
networks for d-variate functions in Hölder-Zygmund classes of mixed smoothness. Namely, we investi-
gate the high-dimensional approximation by deep ReLU neural networks of functions from the classes
Ůα∞. We focus our attention on estimation of the computation complexity of a deep ReLU neural
network characterized by the number of its weights and its depth required to achieve a given accuracy
for the approximation (cf. [1, 12, 42]), emphasizing the dimension dependence of the computation
complexity of the network.

Let us briefly describe our main results on the approximation by deep ReLU neural networks. For
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any f ∈ Ůα∞ we explicitly construct a deep ReLU neural networks Φf having the output N (Φf , ·) that

approximates f in the W 1,p
0 -norm with a prescribed accuracy ε and having computation complexity

expressing the dimension-dependent number of weights

W (Φf ) ≤ C3(α, p)B−d(ε−1)
1

α−1 log(ε−1),

and the dimension-dependent depth

L(Φf ) ≤ C4(α, p) log d log(ε−1),

where B > 0. If a further restriction is given, in particular when 1 ≤ p ≤ 2, we show that B > 1
when d > d0(α, p) and therefore overcoming the curse of dimensionality. We also prove that these
bounds cannot improved up to logarithm terms. Moreover, the continuous piece-wise linear function
N (Φf , ·) can be designed also as an output N (Φ∗f , ·) of another “very” deep ReLU neural network Φ∗f
having computation complexity expressing the ε-independent width Nw(Φ∗f ) ≤ C5d and the dimension-
dependent depth

L(Φ∗f ) ≤ C6(α, p)B−d(ε−1)
1

α−1 log(ε−1).

The outline of this paper is as follows. Section 2 is devoted to recalling decomposition of con-
tinuous functions on the unit cube Id by Faber system. There an estimate for its coefficients in the
Sobolev spaces is given. Our results on sampling recovery for functions in Hölder-Zygmund classes are
formulated in Section 3. In Section 4 we construct a deep ReLU neural network that approximates
functions in Ůα∞ and prove upper and lower estimates for number of weights and the depth required.
We conclude our main results in Section 5.

Notation. As usual, N denotes the natural numbers, Z denotes the integers, R the real numbers and
N0 := {s ∈ Z : s ≥ 0}; N−1 = N0 ∪{−1}. The letter d is always reserved for the underlying dimension
of Rd, Nd, etc., and [d] denotes the set of all natural numbers from 1 to d. Vectorial quantities are
denoted by boldface letters and xi denotes the ith coordinate of x ∈ Rd, i.e., x := (x1, . . . , xd). We use
the notation xy for the usual Euclidean inner product in Rd and 2x := (2x1 , . . . , 2xd). For k, s ∈ Nd0,
we denote 2−ks := (2−k1s1, . . . , 2

−kdsd). For x ∈ Rd we write |x|0 = |{xj 6= 0, j = 1, . . . , d}| and if

0 < p ≤ ∞ we denote |x|p :=
(∑d

i=1 |xi|p
)1/p

with the usual modification when p =∞. The notations
| · |0 and | · |p are extended to matrices W ∈ Rm×n. For the function f(p) of variable p, f(∞) is
understood as f(∞) = limp→∞ f(p) when the limit exists.

2 Faber series

In this section we recall a decomposition of continuous functions on the unit cube Id into tensor
product Faber series and give an estimate in the W 1,p

0 -norm of the components of functions from the
Hölder-Zygmund space of mixed smoothness Hα

∞(Id). This decomposition plays a fundamental role
in construction of linear algorithms of sparse-grid sampling recovery and of deep neural networks for
approximation in the W 1,p

0 -norm of functions from the Hölder-Zygmund space of mixed smoothness
Hα
∞(Id).

We start by introducing the tensorized Faber basis. Let ϕ(x) = (1− |x− 1|)+, x ∈ R, be the hat
function (the piece-wise linear B-spline with knots at 0, 1, 2), where x+ := max(x, 0) for x ∈ R. For
k ∈ N−1 we define the functions ϕk,s on I by

ϕk,s(x) := ϕ(2k+1x− 2s), x ∈ I, k ≥ 0, s ∈ Z(k) := {0, 1, . . . , 2k − 1}, (2.1)
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and
ϕ−1,s(x) := ϕ(x− s+ 1), x ∈ I, s ∈ Z(−1) := {0, 1}. (2.2)

Put Zd(k) :=×d
i=1Z(ki). For k ∈ Nd−1, s ∈ Zd(k), define the d-variate tensor product hat functions

ϕk,s(x) :=
d∏
i=1

ϕki,si(xi), x ∈ Id. (2.3)

For a univariate function f on I, k ∈ N−1, and s ∈ Z(k) we define

λk,s(f) := −1

2
∆2

2−k−1f
(
2−ks

)
, k ≥ 0, λ−1,s(f) := f(s).

We also define the linear functionals λk,s for multivariate function f on Id, k ∈ Nd−1, and s ∈ Zd(k)
by

λk,s(f) :=

d∏
i=1

λki,si(f),

where the univariate functional λki,si is applied to the univariate function f by considering f as a
function of variable xi with the other variables held fixed.

We have the following decomposition.

Lemma 2.1 The Faber system
{
ϕk,s : k ∈ Nd−1, s ∈ Zd(k)

}
is a basis in C(Id). Moreover, any

function f ∈ C(Id) can be represented by the Faber series

f =
∑

k∈Nd−1

qk(f) :=
∑

k∈Nd−1

∑
s∈Zd(k)

λk,s(f)ϕk,s, (2.4)

converging in the norm of C(Id).

The system (2.1)-(2.2) and above decomposition for continuous functions on the interval I goes
back to Faber [15]. The extension for tensorized Faber bases in higher dimensions was obtained in
[39, Theorem 3.10] for d = 2 and in [7, 9] for the case d ≥ 2. In [39, 7], the authors also established
the decomposition (2.4) with equivalent discrete quasi-norm for function spaces of mixed smoothness.
A generalization to B-spline interpolation and quasi-interpolation representation was obtained by the
first author of this paper in [7, 9]. Note that the sequence in (2.4) converges conditionally in C(Id) if
f ∈ C(Id), see comment in [39, Section 3.3.2]. Moreover, when f ∈ Ůα∞ we can write

f =
∑
k∈Nd0

qk(f)

with unconditional convergence in C(Id), see [39, Theorem 3.13]. In this case we have

λk,s(f) :=

d∏
i=1

(
− 1

2
∆2

2−ki−1f
(
2−ks

))
and the following estimate holds

|λk,s(f)| ≤ 2−(α+1)d2−α|k|1 , k ∈ Nd0, s ∈ Zd(k). (2.5)

We now estimate the W 1,p
0 -norm of qk(f).
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Lemma 2.2 Let d ∈ N, 1 ≤ α ≤ 2, and 1 ≤ p ≤ ∞. Then for a function f ∈ Ůα∞ and k ∈ Nd0 we
have

‖qk(f)‖
W 1,p

0
≤ 2−α|k|1+1

(p+ 1)
d−1
p 2(α+1)d

|2k|p.

Proof. Let us prove the lemma for the case 1 ≤ p <∞. The case p =∞ can be proven similarly with
a slight modification. For k ∈ Nd0, by disjoint supports of ϕk,s, s ∈ Zd(k), we have

‖qk(f)‖p
W 1,p

0

=
d∑
i=1

∫
Id

∣∣∣∣∣ ∑
s∈Zd(k)

λk,s(f)
∂

∂xi
ϕk,s(x)

∣∣∣∣∣
p

dx

≤ sup
s∈Zd(k)

|λk,s(f)|p
d∑
i=1

|Zd(k)|

(∏
j 6=i

2

∫ 2−kj−1

0
|2kj+1xj |p dxj

)(
2

∫ 2−ki−1

0
2pki+pdxi

)

≤
(

2−α|k|1

2(α+1)d

)p d∑
i=1

2|k|1

(∏
j 6=i

2

p+ 1
2−kj−1

)
2 · 2(ki+1)(p−1)

=

(
2−α|k|1

2(α+1)d

)p 1

(p+ 1)d−1

d∑
i=1

2p(ki+1).

This proves the claim.

3 Sparse-grid sampling recovery

In this section we consider the approximation by explicitly constructed linear sampling operator on
sparse grids with the error measured in the norm of the space W 1,p

0 . The optimality is investigated in
terms of sampling n-widths. We prove some tight dimension-dependent error estimates of the sampling
n-widths explicit in d and n.

We start with constructing sparse grids and sampling operators on them for approximately recov-
ering functions in Ůα∞ from their values on these grids. For β ≥ 1 and m ∈ N, we define the sets of
multi-indices

∆d
β(m) :=

{
k ∈ Nd0 : |k|1 = m− j, |k|∞ ≥ m− bβjc for j = 0, . . . ,m

}
,

and
Dd
β(m) :=

{
(k, s) : k ∈ ∆d

β(m), s ∈ Zd(k)
}
.

The definition of ∆d
β(m) is similar to ∆(α, β; ξ) =

{
k ∈ Nd0 : α|k|1−β|k|∞ ≤ ξ

}
introduced in [5] but

simpler. We also put
∆d(m) :=

{
k ∈ Nd0 : |k|1 ≤ m

}
.

It is obvious that ∆d
β(m) is a subset of ∆d(m) for all β ≥ 1.

Consider the operator

Rβ(m, f) :=
∑

k∈∆d
β(m)

qk(f) =
∑

k∈∆d
β(m)

∑
s∈Zd(k)

λk,s(f)ϕk,s, (3.1)
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k1

k2

k1

k2

k1

k2

Figure 1: Illustration of different sets of multi-indices in N2
0. The left graph is {k ∈ N2

0 : |k|∞ ≤ 20},
the middle is ∆2(20) and the right is ∆2

2(20).

and the energy-norm-based grid

Gdβ(m) :=
{

2−ks : k ∈ ∆d
β(m), s ∈ Zd(k + 1)}, 1 := (1, . . . , 1) ∈ Rd.

It is easy to see that
Gdβ(m) =

{
2−ks : k ∈ ∆̄d

β(m), s ∈ Zd(k + 1)},

where
∆̄d
β(m) :=

{
k ∈ ∆d

β(m) : k + ej 6∈ ∆d
β(m) for all j ∈ [d]

}
,

and {ej}j∈[d] is the standard basis in Rd.

We notice some important properties of the operator Rβ(m, ·) and the grid Gdβ(m). The function

Rβ(m, f) completely determined by the values of f on the grid Gdβ(m). Moreover, Rβ(m, f) inter-

polates f at the points of Gdβ(m). Thus, Rβ(m, ·) is an interpolation sampling operator on the grid

Gdβ(m). As shown in what follows, with an appropriate choice of parameter β, the function Rβ(m, f) is

suitable to approximately recovering the function f in Ůα∞ from the sample values on the grid Gdβ(m).

The following lemma gives an upper estimate of the cardinality of Dd
β(m) and Gdβ(m) showing

their sparsity.

Lemma 3.1 Let d ∈ N. We have for every β > 1 and m ∈ N,∣∣Dd
β(m)

∣∣ ≤ β

β − 1
d
(

1− 2
− 1
β−1

)−d
2m,

and hence, ∣∣Gdβ(m)
∣∣ ≤ β

β − 1
d2d
(

1− 2
− 1
β−1

)−d
2m.

Proof. Since
∣∣Gdβ(m, f)

∣∣ ≤ ∣∣Dd
β(m + d)

∣∣, it is sufficient to prove the first estimate in the lemma. We
have

|Dd
β(m)| =

∑
k∈∆d

β(m)

2|k|1 = 2m
m∑
j=0

2−j
∑

|k|1=m−j
|k|∞≥m−bβjc

1.
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Note, that for i ∈ N0 and ` ∈ [d] there are
(d−2+b(β−1)jc−i

d−2

)
multi-indices k ∈ Nd0 satisfying

k` = m− bβjc+ i, and
∑
r 6=`

kr = b(β − 1)jc − i.

From this we can estimate∑
|k|1=m−j

|k|∞≥m−bβjc

1 ≤ d
b(β−1)jc∑
i=0

(
d− 2 + b(β − 1)jc − i

d− 2

)
= d

(
d− 1 + b(β − 1)jc

d− 1

)
.

Hence,

|Dd
β(m)| ≤ d2m

m∑
j=0

2−j
(
d− 1 + b(β − 1)jc

d− 1

)
.

Putting b(β − 1)jc = k we obtain j ≥ k
β−1 and∣∣{j ∈ N0 : b(β − 1)jc = k}

∣∣ < 1

β − 1
+ 1

which leads to

|Dd
β(m)| ≤ d2m

( 1

β − 1
+ 1
) ∞∑
j=0

2
− 1
β−1

j
(
d− 1 + j

d− 1

)
= d2m

β

β − 1

(
1− 2

− 1
β−1
)−d

.

The last equality is due to
∞∑
j=0

xj
(
k + j

k

)
= (1− x)−k−1 (3.2)

for k ∈ N0 and x ∈ (0, 1) which is obtained by taking kth derivative both sides of (1−x)−1 =
∑∞

j=0 x
j .

The proof is completed.

We continue by proving a supplementary result.

Lemma 3.2 Let d ∈ N, ` ∈ N0, and 1 ≤ p ≤ ∞. Then it holds∑
k∈Nd0,|k|1=`

|2k|p ≤ d2`+d−1. (3.3)

Proof. By monotonicity in p of `p norms, it is enough to prove the lemma for p = 1. We use induction
argument with respect to d. It is obvious that the inequality holds for d = 1 and ` ∈ N0 or d ∈ N and
` = 0. Assume that ∑

k∈Nd0,|k|1=j

d∑
i=1

2ki ≤ d2j+d−1

for j = 0, . . . , `. We show that the inequality (3.3) holds for d+ 1 instead of d. Indeed, we have∑
k∈Nd+1

0 ,|k|1=`

d+1∑
i=1

2ki =
∑̀
j=0

∑
k1+...+kd=`−j

(
2j +

d∑
i=1

2ki
)

≤
∑̀
j=0

d2`−j+d−1 +
∑̀
j=0

2j
(
`− j + d− 1

d− 1

)

= d2d−1(2`+1 − 1) + 2`
∑̀
j=0

2j−`
(
`− j + d− 1

d− 1

)
.

9



Using (3.2) we finally obtain

∑
k∈Nd+1

0 ,|k|1=`

d+1∑
i=1

2ki ≤ d2d−1(2`+1 − 1) + 2`+d ≤ (d+ 1)2`+d.

The proof is completed.

We give a preliminary dimension-dependent error estimate in terms of parameter m of the approx-
imation of a f ∈ Ůα∞ by the sampling operator Rβ(m, ·).

Theorem 3.1 Let d ≥ 2, 1 < α ≤ 2, β > α, and 1 ≤ p ≤ ∞. Then for every f ∈ Ůα∞ we have

‖f −Rβ(m, f)‖
W 1,p

0
≤ K1

d22−m(α−1)

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d , (3.4)

where K1 = K1(α, β, p) = 2(p+ 1)
1
p max

{ 2β
β−1 ,

1
2α−1−1

}
.

Proof. Let us prove the theorem for the case 1 ≤ p <∞. The case p =∞ can be proven similarly with
a slight modification. Recall that ∆d

β(m) with β > 1 is a subset of ∆d(m). Hence, for every f ∈ Ůα∞
we have

‖f −Rβ(m, f)‖
W 1,p

0
≤

∑
k∈Nd0\∆d

β(m)

‖qk(f)‖
W 1,p

0

=
∑

k∈Nd0\∆d(m)

‖qk(f)‖
W 1,p

0
+

∑
k∈∆d(m)\∆d

β(m)

‖qk(f)‖
W 1,p

0
.

(3.5)

For the first term on the right side, from Lemma 2.2 we have∑
k∈Nd0\∆d(m)

‖qk(f)‖
W 1,p

0
≤ 1

(p+ 1)
d−1
p 2(α+1)d

∑
k∈Nd0,|k|1>m

2−α|k|1+1|2k|p

=
2

(p+ 1)
d−1
p 2(α+1)d

∞∑
`=m+1

2−α`
∑

k∈Nd0,|k|1=`

|2k|p.

In view of Lemma 3.2 we get

∑
k∈Nd0\∆d(m)

‖qk(f)‖
W 1,p

0
≤ d

(p+ 1)
d−1
p 2αd

∞∑
`=m+1

2−(α−1)` =
d2−(α−1)m

(p+ 1)
d−1
p 2αd(2α−1 − 1)

.

We now consider the second term on the right side of (3.5). Denote j∗ the maximum value of j such
that the set {

k ∈ Nd0 : |k|1 = m− j, |k|∞ < m− bβjc
}
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is not empty. Following the argument in the proof of [4, Theorem 3.10] and using Lemma 2.2 we get

∑
k∈∆d(m)\∆d

β(m)

‖qk(f)‖
W 1,p

0
≤

j∗∑
j=0

∑
|k|1=m−j

|k|∞<m−bβjc

‖qk(f)‖
W 1,p

0

≤ 2

(p+ 1)
d−1
p 2(α+1)d

j∗∑
j=0

∑
|k|1=m−j

|k|∞<m−bβjc

2−α|k|1 |2k|p

=
2−αm+1

(p+ 1)
d−1
p 2(α+1)d

j∗∑
j=0

2αj
∑

|k|1=m−j
|k|∞<m−bβjc

|2k|p.

(3.6)

The sum on the right side can be estimated as

j∗∑
j=0

2αj
∑

|k|1=m−j
|k|∞<m−bβjc

|2k|p ≤
j∗∑
j=0

2αj
m−1−bβjc∑

i=1

d

(
m+ d− 2− i− j

d− 2

)
2i

= d2m−1
j∗∑
j=0

2−b(β−α)jc
m−2−bβjc∑

`=0

(
d− 1 + b(β − 1)jc+ `

d− 2

)
2−`,

where in the equality we put i = m−1−bβjc−`. As in the proof of Lemma 3.1 we put b(β−1)jc = k

and get b(β − α)jc ≥ k(β−α)
β−1 − 1. Since β−α

β−1 < 1, we have

j∗∑
j=0

2αj
∑

|k|1=m−j
|k|∞<m−bβjc

|2k|p ≤
d2mβ

β − 1

∞∑
k=0

∞∑
`=0

(
d− 1 + k + `

d− 2

)
2−`2

−β−α
β−1

k

≤ d2mβ

β − 1

∞∑
k=0

∞∑
`=0

(
d− 1 + k + `

d− 2

)
2
−β−α
β−1

(k+`)

=
d2mβ

β − 1

∞∑
j=0

(
d− 1 + j

d− 2

)
2
−β−α
β−1

j
(j + 1)

= (d− 1)
d2mβ

β − 1

∞∑
j=0

(
d− 1 + j

d− 1

)
2
−β−α
β−1

j
.

From the assumption β > α > 1 and (3.2) we arrive at

j∗∑
j=0

2αj
∑

|k|1=m−j
|k|∞<m−bβjc

|2k|p ≤
d22mβ

β − 1

(
1− 2

−β−α
β−1
)−d

.

Inserting this into (3.6) we get

∑
k∈∆d(m)\∆d

β(m)

‖qk(f)‖
W 1,p

0
≤ 2β

β − 1

d22−m(α−1)

(p+ 1)
d−1
p 2(α+1)d

(
1− 2

−β−α
β−1
)d .

Since 2−d
(
1− 2

−β−α
β−1
)−d

> 1 which is due to α > 1, we finally obtain the desired estimate.
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Remark 3.2 For approximation of functions from Ůα∞, we could take the sampling operator
R�(m, f) :=

∑
|k|∞≤m qk(f) on the corresponding traditional standard grid

Gd�(m) :=
{

2−ks : |k|∞ = m+ 1, s ∈ Zd(k)
}
,

and the sampling operator R4(m, f) :=
∑
|k|1≤m qk(f) on the corresponding Smolyak grid

Gd4(m) :=
{

2−ks : |k|1 = m, s ∈ Zd(k + 1)
}
.

It is easy to see that the error of approximation in the W 1,p
0 norm of f ∈ Ůα∞ by R�(m, f) or R4(m, f)

is the same as the error of approximation in the W 1,p
0 norm of f ∈ Ůα∞ by Rβ(m, f). On the other

hand, we notice that the sparsity of the gird Gdβ(m) in the operator Rβ(m, f), is much higher than the

sparsity of the grids Gd�(m) and Gd4(m), see the estimate of |Gdβ(m)| in Lemma 3.1 in comparing with

|Gd�(m)| ≈ 2dm and |Gd4(m)| ≈ 2m+d
(
m+d−1
d−1

)
.

Some results similar to (3.4) were obtained in [4, Theorem 3.8] for the approximation in energy
norm of functions with 2nd mixed derivatives bounded in L2- or L∞-norm.

In the following theorem, from Theorem 3.1 we deduce a dimension-dependent estimate of the com-
putation complexity characterized by the number of sample values in the operator Rβ(m, ·) necessary

for approximating functions from Ůα∞ with an accuracy ε. This estimate will be used as an auxiliary
result in the next section on approximation of functions from Ůα∞ by deep ReLU neural networks.

Theorem 3.3 Let d ≥ 2, 1 < α ≤ 2, β > α, and 1 ≤ p ≤ ∞. Then there is ε0 ∈ (0, 1] such that for
every ε ∈ (0, ε0) and every f ∈ Ůα∞ we have

‖f −Rβ(m, f)‖
W 1,p

0
≤ ε

and
|Dd

β(m)| ≤ K2B
−d
1 (ε−1)

1
α−1 , |Gdβ(m)| ≤ K2(B1/2)−d(ε−1)

1
α−1 ,

with

m :=

⌈
1

α− 1
log

(
K1d

2ε−1

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d
)⌉

(3.7)

and

B1 = B1(d, α, β, p) :=
(
1− 2

− 1
β−1
)((p+ 1)

1
p 2(α+1)

(
1− 2

−β−α
β−1
)

d
α+1
d

) 1
α−1

, (3.8)

where K1 is the constant in Theorem 3.1 and K2 = K2(α, β, p) := 2β
β−1K

1
α−1

1 . Moreover, if α and p
satisfy

2
1
α − (p+ 1)

− 1
pα /2 > 1 (3.9)

and
α+ log

(
1− (p+ 1)

− 1
pα 2−1− 1

α

)
1 + log

(
1− (p+ 1)

− 1
pα 2−1− 1

α

) < β < 1− 1

log
(
1− (p+ 1)

− 1
pα 2−1− 1

α

) (3.10)

then there exist constants d(α, β, p) ∈ N and B(α, β, p) > 1 such that B1 ≥ B(α, β, p) > 1 for all
d ≥ d(α, β, p).
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Proof. Choose

ε0 = min

{
1,

K1d
2

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d
}
.

For ε ∈ (0, ε0) we take m as in (3.7). This implies that

m− 1 <
1

α− 1
log

(
K1d

2ε−1

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d
)
≤ m.

Hence from Theorem 3.1 and Lemma 3.1 we obtain

‖f −Rβ(m, f)‖
W 1,p

0
≤ ε

and

|Dd
β(m)| ≤ d2m

β

β − 1

(
1− 2

− 1
β−1
)−d

≤ 2d
β

β − 1

(
1− 2

− 1
β−1
)−d( K1d

2ε−1

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d
) 1

α−1

≤ 2β

β − 1
K

1
α−1

1

(
1− 2

− 1
β−1
)−d( d(α+1)/d

(p+ 1)
1
p 2(α+1)

(
1− 2

−β−α
β−1
)
) d

α−1

(ε−1)
1

α−1

= K2B
−d
1 (ε−1)

1
α−1

(3.11)

which is the first statement. To prove the second one, we show that under the conditions (3.9) and
(3.10) it holds (

1− 2
− 1
β−1
)(α−1)

(p+ 1)
1
p 2α+1

(
1− 2

−β−α
β−1
)
> 1.

Indeed, the last inequality is equivalent to

1

(p+ 1)
1
p 2α+1

<
(
1− 2

− 1
β−1
)(α−1)(

1− 2
−β−α
β−1
)
. (3.12)

If β − α ≥ 1 then
(
1− 2

− 1
β−1
)
≤
(
1− 2

−β−α
β−1
)
. Hence, the last inequality is fulfilled if

1

(p+ 1)
1
p 2α+1

<
(
1− 2

− 1
β−1
)α ⇐⇒ β < 1− 1

log
(
1− (p+ 1)

− 1
pα 2−1− 1

α

) .
If β − α < 1 then

(
1− 2

− 1
β−1
)
>
(
1− 2

−β−α
β−1
)
. Hence the inequality (3.12) is fulfilled if

1

(p+ 1)
1
p 2α+1

<
(
1− 2

−β−α
β−1
)α ⇐⇒ β >

α+ log
(
1− (p+ 1)

− 1
pα 2−1− 1

α

)
1 + log

(
1− (p+ 1)

− 1
pα 2−1− 1

α

) .
Assigning

1− 1

log
(
1− (p+ 1)

− 1
pα 2−1− 1

α

) > α+ log
(
1− (p+ 1)

− 1
pα 2−1− 1

α

)
1 + log

(
1− (p+ 1)

− 1
pα 2−1− 1

α

)
we find 2

1
α − (p + 1)

− 1
pα /2 > 1. Since d

α+1
d tends to 1 when d → ∞, there are d(α, β, p) ∈ N and

B(α, β, p) > 1 such that B1 ≥ B(α, β, p) > 1 for all d ≥ d(α, β, p). The proof is completed.
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Remark 3.4 For 1 ≤ p ≤ 2 the condition (3.9) is satisfied for all α ∈ (1, 2], and, therefore, we can
always find β = β(α) > α, d(α) ∈ N, and B(α) > 1 such that B1 ≥ B(α) > 1 for all d ≥ d(α). In this
case, the approximation error is going to 0 as fast as the exponent B−d1 when d tending to ∞.

We show the optimality in terms of sampling n-widths of the sampling operator Rβ(m, ·) on the
grid Gdβ(m) with the number of sample points |Gdβ(m)| ≤ n, by giving dimension-dependent tight
upper and lower bounds of the sampling n-widths rn.

Theorem 3.5 Let d ≥ 2, 1 < α ≤ 2, β > α, and 1 ≤ p ≤ ∞. Then there is n0 ∈ N such that for
n ≥ n0 we have

3

M4α−1

( 3

2p+ 2

)1/p
B−d∗ n−(α−1) ≤ rn ≤ Kα−1

2 B∗−dn−(α−1) (3.13)

where B∗ := 18 · 31/pM−1, M = ‖M3‖Lp(R), B
∗ := (B1/2)α−1, K2 and B1 are given in Theorem 3.3.

The lower bound holds for n ≥ 2. Moreover, we can explicitly define m(n) ∈ N so that |Gdβ(m(n))| ≤ n
and for the sampling operator Rβ(m(n), ·) on the grid Gdβ(m(n)), we have that

rn ≤ sup
f∈Ůα∞

‖f −Rβ(m(n), f)‖
W 1,p

0
≤ Kα−1

2 B∗−dn−(α−1).

Proof.

Upper bound. We take n0 the smallest positive integer such that
(
K2(B1/2)−d

)α−1
n
−(α−1)
0 < ε0. For

n ≥ n0, we define
ε =

(
K2(B1/2)−d

)α−1
n−(α−1).

By Theorem 3.3 there is m(n) ∈ N such that

‖f −Rβ(m(n), f)‖
W 1,p

0
≤
(
K2(B1/2)−d

)α−1
n−(α−1),

and |Gdβ(m(n))| ≤ n. If we define the set of points Xn = Gdβ(m(n)) then by the definition of
Rβ(m(n), f) we obtain

rn ≤ sup
f∈Ůα∞

‖f −Rβ(m(n), f)‖
W 1,p

0
≤
(
K2(B1/2)−d

)α−1
n−(α−1) = Kα−1

2 B∗−dn−(α−1).

Lower bound. Let us prove the lower bound for the case 1 ≤ p < ∞. The case p = ∞ can be proven
similarly with a slight modification. Our strategy to prove the lower bound is as follows. Based on
the obvious inequality

rn ≥ inf
Xn⊂Id

sup
f∈Ůα∞, f(xj)=0,xj∈Xn

‖f‖
W 1,p

0
, (3.14)

where the infimum is taken over all sets Xn of n points. For any point set Xn = {xj}nj=1 in Id, we will

construct a test function f ∈ Ůα∞ vanishing at the points xj , j = 1, . . . , n, and prove that the norm
‖f‖

W 1,p
0

is bounded from below by the quantity in the left side of (3.13).

Let M3 be the B-spline with knots at the points 0, 1, 2, 3, i.e.,

M3(x) =
1

2


x2 if 0 ≤ x < 1

−2x2 + 6x− 3 if 1 ≤ x < 2

(3− x)2 if 2 ≤ x < 3
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and M3(x) = 0 otherwise. Let ψ(x) := M3(3x). We define the univariate non-negative functions ψk,s
by

ψk,s(x) := ψ(2kx− s+ 1), k ∈ N0, s = 1, . . . , 2k.

One can also verify that

suppψk,s = Ik,s =: [2−k(s− 1), 2−ks], int Ik,s ∩ int Ik,s′ = ∅, s 6= s′.

For every n ∈ N, n ≥ 2, we choose m ∈ N such that 2m−2 < n ≤ 2m−1. Let Jm be the set of s such
that Xn ∩ int

(
Im,s × [0, 1]d−1

)
= ∅. Then we have |Jm| ≥ 2m−1. We define the function

fm(x) := 18−d2−αm

( ∑
s∈Jm

ψm,s(x1)

)
d∏
j=2

ψ0,1(xj), x ∈ Id

and show that
∆2,u

h (fm,x) ≤
∏
j∈u
|hj |α, x ∈ Id, h ∈ [−1, 1]d, u ⊂ [d], (3.15)

following partly in [11]. Let us prove this inequality for u = [d] and h ∈ Id, the general case of u can
be proven in a similar way with a slight modification. We have

∆
2,[d]
h (fm,x) = 18−d2−αm∆2

h1

( ∑
s∈Jm

ψm,s(x1)

)
d∏
j=2

∆2
hj
ψ0,1(xj).

By using the formula

∆2
h(f, x) = h2

∫
R
f (2)(x+ y)[h−1M2(h−1y)] dy, h ∈ R

for univariate function f having locally absolutely continuous f ′, see e.g. [13, page 45], we get

∆2
h1

( ∑
s∈Jm

ψm,s(x1)

)
= h2

1

∫
R

( ∑
s∈Jm

ψm,s(t)

)′′
h−1

1 M2

(
(h−1

1 (t− x1)
)

dt

= 9h2
122m

∫
R

( ∑
s∈Jm

χ0
m,s(t)

)
h−1

1 M2

(
(h−1

1 (t− x1)
)

dt,

where χ0
m,s(t) = χI1m,s − 2χI2m,s + χI3m,s and χ

Ijm,s
are characteristic functions of the intervals

Ijm,s :=

[
2−m(s− 1) +

2−m(j − 1)

3
, 2−m(s− 1) +

2−mj

3

]
, j = 1, 2, 3.

If (2mh1) ≤ 1 we have from |χ0
m,s| ≤ 2

2−αm

∣∣∣∣∣∆2
h1

( ∑
s∈Jm

ψm,s(x1)

)∣∣∣∣∣ = 9hα1 (2mh1)(2−α)

∣∣∣∣∣
∫
R

( ∑
s∈Jm

χ0
m,s(t)

)
h−1

1 M2

(
(h−1

1 (t− x1)
)

dt

∣∣∣∣∣
≤ 18hα1

∫
R
h−1

1 M2

(
(h−1

1 (t− x1)
)

dt = 18hα1 ,

(3.16)

where in the last equality we used
∫
RM2(t)dt = 1. If (2mh1) > 1 we have by changing variable

2−αm

∣∣∣∣∣∆2
h1

( ∑
s∈Jm

ψm,s(x1)

)∣∣∣∣∣ = 9h2
12m(2−α)

∫
R

( ∑
s∈Jm

χ0
m,s(x1 + h1y)

)
M2(y) dy.
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Denote Km,s = suppχm,s(x1 + h1·) =
[2−m(s−1)−x1

h1
, 2−ms−x1

h1

]
. If Km,s ⊂ [0, 1] or Km,s ⊂ [1, 2] we

have ∫
R
χ0
m,s(x1 + h1y)M2(y)dy =

∫
R

(
χI1m,s − 2χI2m,s + χI3m,s

)
(x1 + h1y)M2(y)dy = 0

and there are at most three sj ∈ Jm, j = 0, 1, 2 such that j ∈ int
(
Km,sj

)
, j = 0, 1, 2. It is not difficult

to verify that ∣∣∣∣ ∫
R
χ0
m,s1(x1 + h1y)M2(y) dy

∣∣∣∣ ≤ 3

2

( 1

3 · 2mh1

)2

and ∣∣∣∣ ∫
R
χ0
m,sj (x1 + h1y)M2(y) dy

∣∣∣∣ ≤ 1

2

( 1

3 · 2mh1

)2

if j = 0, 2. From this we obtain

2−αm

∣∣∣∣∣∆2
h1

( ∑
s∈Jm

ψm,s(x1)

)∣∣∣∣∣ = 9h2
12m(2−α)

∣∣∣∣∣
∫
R

( ∑
j=0,1,2

χ0
m,sj (x1 + h1y)

)
M2(y) dy

∣∣∣∣∣
≤ 9h2

12m(2−α) 5

2

( 1

3 · 2mh1

)2
=

5

2
hα

1

(2mh1)α
≤ 5

2
hα1 .

Since hj ∈ [0, 1], j = 2, . . . , d, similar to (3.16) we can show that∣∣∣∣∣
d∏
j=2

∆2
hj
ψ0,1(xj)

∣∣∣∣∣ ≤ 18d−1
d∏
j=2

hαj .

Consequently, the inequality (3.15) is proven. This means that fm ∈ Ůα∞. Due to the disjoint supports
of ψm,s we have

‖fm‖p
W 1,p

0

= 18−pd
d∑
j=1

∫
Id

∣∣∣∣∣2−αm ∂

∂xj

( ∑
s∈Jm

ψm,s(x1)

)
d∏
j=2

ψ0,1(xj)

∣∣∣∣∣
p

dx

≥ 18−pd
∫
Id

∣∣∣∣∣2−αm ∑
s∈Jm

∂

∂x1
ψm,s(x1)

d∏
j=2

ψ0,1(xj)

∣∣∣∣∣
p

dx

= 18−pd2−pαm|Jm|
∫
I

∣∣ψ′m,1(x1)
∣∣pdx1

(∫
I
|ψ0,1(t)|pdt

)d−1

≥ 18−pd2−pαm2m−12pm3p
∫
I

∣∣M ′3(3 · 2mx1)
∣∣pdx1

(∫
I
|M3(3t)|pdt

)d−1

=
3p

2
18−pd3−d2−pm(α−1)

∫
R

∣∣M ′3(t)
∣∣pdt(∫

R
|M3(t)|pdt

)d−1

,

where in the last equality we changed variables. Since fm(ξ) = 0, ξ ∈ Xn, and∫
R

∣∣M ′3(t)
∣∣pdt =

3

p+ 1
, M :=

(∫
R
Mp

3 (t)dt
)1/p

,

by (3.14) we get

rn ≥ ‖fm‖W 1,p
0
≥ 18−d

(3p+1−d

2p+ 2

)1/p
Md−12−m(α−1) ≥ 18−d

(3p+1−d

2p+ 2

)1/p
Md−1

(n−1

4

)(α−1)

≥ 1

M4α−1

( 3p+1

2p+ 2

)1/p(
18 · 31/pM−1

)−d
n−(α−1) =

1

M4α−1

( 3p+1

2p+ 2

)1/p
B−d∗ n−(α−1).

The proof is completed.
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Corollary 3.6 Let d ≥ 2, 1 < α ≤ 2, β > α, and 1 ≤ p ≤ ∞. If 2
2
α − (p + 1)

− 1
pα > 2, then there is

n0 ∈ N such that for n ≥ n0 we have

C1B
−d
∗ n−(α−1) ≤ rn ≤ C2B

∗−dn−(α−1)

with B∗ > 1 and B∗ > 1, where the constants B∗ = B∗(p), B
∗ = B∗(α, p), C1 = C1(p), C2 = C2(α, p)

are independent of n and d.

Proof. The lower bound in the corollary for the case 1 ≤ p ≤ ∞ follows from the case p = 1 which is
obvious due to the lower bound in Theorem 3.5. By the definitions of B1 in (3.8) and of B∗ in Theorem

3.5, to prove the upper bound it is sufficient to show that under the condition 2
2
α − (p+ 1)

− 1
pα > 2 it

holds
21−α(1− 2

− 1
β−1
)(α−1)

(p+ 1)
1
p 2α+1

(
1− 2

−β−α
β−1
)
> 1

or (
1− 2

− 1
β−1
)(α−1)

(p+ 1)
1
p 22
(
1− 2

−β−α
β−1
)
> 1.

The further argument is similar to the proof of Theorem 3.3.

4 Approximation by deep ReLU neural networks

In this section, based on the result on sparse-grid sampling recovery in Theorem 3.3, for any function
f ∈ Ůα∞, we explicitly construct a deep ReLU neural network having an output that approximates f
in the W 1,p

0 -norm with a prescribed accuracy ε and prove dimension-dependent error estimates of the
number of its weights and its depth. We also prove some lower bounds for the number of weights of
this deep ReLU neural network necessary for this approximation.

There is a wide variety of neural network architectures and each of them is adapted to specific
tasks. For our purpose of approximation functions from Höder-Zygmund spaces, in this section we
introduce feed-forward deep ReLU neural networks with one-dimension output. We are interested in
deep neural networks where only connections between neighboring layers are allowed. Let us introduce
necessary definitions and elementary facts on deep ReLU neural networks.

Definition 4.1 Let d, L ∈ N, L ≥ 2.

• A deep neural network Φ with input dimension d and L layers is a sequence of matrix-vector
tuples

Φ =
(
(W 1, b1), . . . , (W L, bL)

)
where W ` = (w`i,j) is an N` × N`−1 matrix, and b` = (b`j) ∈ RN` with N0 = d, NL = 1,
and N1, . . . , NL−1 ∈ N. We call the number of layers L(Φ) = L the depth and N(Φ) =
(N0, N1, . . . , NL) the dimension of the network. The real numbers w`i,j and b`j are called edge

and node weights of the network Φ, respectively. The number of nonzero weights w`i,j and

b`j is called the number of weights of the network Φ and denoted by W (Φ), i.e., W (Φ) :=∑L
`=1

∣∣W `
∣∣
0

+
∑L

`=1 |b
`|0. We call Nw(Φ) = max`=0,...,L{N`} the width of the network Φ.

• A neural network architecture A with input dimension d and L layers is a neural network

A =
(
(W 1, b1), . . . , (W L, bL)

)
,

where elements of W ` and b`, ` = 1, . . . , L, are in {0, 1}.
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Since we only are interested in neural network with scalar output, bL is a constant. However for
consistent notation, we still use bold letter.

A graph associated to a deep neural network Φ defined in Definition 4.1 is a graph consisting of
|N(Φ)|1 nodes and

∑L
`=1 |W

`|0 edges. |N(Φ)|1 nodes are placed in L+ 1 layers which are numbered
from 0 to L. The `th layer has N` nodes which are numbered from 1 to N`. If w`i,j 6= 0, then there
is an edge connecting the node j in the layer ` − 1 to the node i in the layer `. See Figure 2 for an
illustration of a graph associated to a deep neural network.

Definition 4.2 Given L ∈ N, L ≥ 2, and a deep neural network architecture A =
(
(W

1
, b

1
), . . . ,

(W
L
, b
L

)
)
. We say that a neural network Φ =

(
(W 1, b1), . . . , (W L, bL)

)
has architecture A if

• N(Φ) = N(A)

• w`i,j = 0 implies w`i,j = 0, b
`
i = 0 implies b`i = 0 for all i = 1, . . . , N`, j = 1, . . . , N`−1, and

` = 1, . . . , L. Here w`i,j are entries of W
`

and b
`
i are elements of b

`
, ` = 1, . . . , L.

For a given deep neural network Φ =
(
(W 1, b1), . . . , (W L, bL)

)
, there exists a unique deep neural

network architecture A =
(
(W

1
, b

1
), . . . , (W

L
, b
L

)
)

such that

• N(Φ) = N(A)

• w`i,j = 0 ⇐⇒ w`i,j = 0, b
`
i = 0 ⇐⇒ b`i = 0 for all i = 1, . . . , N`, j = 1, . . . , N`−1, and ` = 1, . . . , L.

We call this architecture A the minimal architecture of Φ (this definition is proper in the sense that
any architecture of Φ is also an architecture of A.)

A deep neural network associated with an activation function. In this paper we focus on ReLU
(Rectified Linear Unit) activation function defined by σ(t) := max{t, 0}, t ∈ R. We will use the
notation σ(x) := (σ(x1), . . . , σ(xd)) for x ∈ Rd.

Definition 4.3 A deep ReLU neural network with input dimension d and L layers is a neural network

Φ =
(
(W 1, b1), . . . , (W L, bL)

)
in which the following computation scheme is implemented

z0 := x ∈ Rd,
z` := σ(W `z`−1 + b`), ` = 1, . . . , L− 1,

zL := W LzL−1 + bL.

We call z0 the input and N (Φ,x) := zL the output of Φ.

Several deep ReLU neural networks can be combined into a larger deep ReLU neural network
whose output is a linear combination of outputs of sub-networks as in the following lemma. This
combination is called parallelization. For other combinations, such as concatenation, we refer to [18,
Section 2] or [12]. Note that our parallelization construction differs slightly from that in [18] since we
only consider deep ReLU neural networks with scalar output.
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input
layer

1st

layer
2nd

layer
3rd

layer
4th

layer

output
layer

x ∈ R3 z1 ∈ R4 z2 ∈ R5 z3 ∈ R4 z4 ∈ R4 z5 ∈ R

Figure 2: The graph associated to a deep neural network with input dimension 3 and 5 layers

Lemma 4.1 Let N ∈ N, Ω ⊂ Rd be a bounded set, λj ∈ R, j = 1, . . . , N . Let Φj, j = 1, . . . , N be
deep neural networks with input dimension d, Lj layers, and Wj number of weights respectively. Then
there is a deep neural network denoted by Φ such that

N (Φ,x) =
N∑
j=1

λjN (Φj ,x), x ∈ Ω,

with L(Φ) = maxj=1,...,N{Lj} and W (Φ) =
∑N

j=1Wj +
∑

j:Lj<L
(L− Lj + 2).

Proof. We prove first for N = 2. Without loss of generality we assume that L1 ≤ L2 and

Φ1 =
(
(W 1

1, b
1
1), . . . , (W L1

1 , bL1
1 )
)
; Φ2 =

(
(W 1

2, b
1
2), . . . , (W L2

2 , bL2
2 )
)
.

If L = L1 = L2, then we can choose

Φ =
(
(W 1, b1), . . . , (W L, bL)

)
where

W 1 =

[
W 1

1

W 1
2

]
, W ` =

[
W `

1 0

0 W `
2

]
, ` = 2, . . . , L− 1, W L =

[
λ1W

L
1 λ2W

L
2

]
and

b1 =

[
b1

1

b1
2

]
, ` = 1, . . . , L1, bL = λ1b

L
1 + λ2b

L
2 .

In this case we have W (Φ) ≤W1 +W2. If L1 < L2 we construct a network Φ̃1 with output N (Φ̃,x) =
N (Φ,x) and having L2 layers. The strategy here is to modify the network Φ1 by making its output
layer satisfying N (Φ,x) + C ≥ 0, for some constant C, so that this value does not change when we
apply function σ for layers from L1 + 1 to L2. For this we put M1 = supx∈Ω |N (Φ1,x)|. Note that
N (Φ1, ·) is a continuous function on Ω hence M1 <∞. The network Φ̃1 is(

(W 1
1, b

1
1), . . . , (W L1−1

1 , bL1−1
1 ), (W L1

1 , bL1
1 +M1), (1, 0), . . . , (1, 0), (1,−M1)

)
.

Hence W (Φ̃1) ≤W1 +L2−L1 + 2. Now following procedure as the case L1 = L2 with Φ1 replaced by
Φ̃1 we obtain the assertion when N = 2. The case N > 2 is extended in a similar manner.

An illustration of parallelization of neural networks is given in Figure 3.
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input
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output
N (Φ,x)

Φ1

Φ2

Figure 3: The graph associated to parallelization of two neural networks

Let us introduce a concept of special deep neural network borrowed from [12]. It is quite useful in
construction deep ReLU neural networks with a fixed width, whose outputs are able to approximate
multivariate functions.

Definition 4.4 A special deep neural network with input dimension d and depth L (and a given
activation function) can be defined as follows. In each hidden layer a special role is reserved for d first
(top) nodes and the last (bottom) node. The top d nodes and the bottom node are free of the activation
function, other nodes in each hidden layer have the activation function. The top d nodes are used
to simply copy the input x. The d parallel concatenations of all these top nodes can be viewed as
special channels that skip computation altogether and just carry x forward. They are called the source
channels. The bottom node in each hidden lawyer is used to collect intermediate outputs by addition.
The concatenation of all these nodes is called collation channel. This channel never feeds forward into
subsequent calculation, it only accepts previous calculations.

An illustration of special deep neural network is given in Figure 4.

Lemma 4.2 Let Φ be a special deep ReLU neural network with input dimension d depth L. Then there
is a deep ReLU neural network Φ′ such that, Nw(Φ′) = Nw(Φ), L(Φ′) = L, and N (Φ′,x) = N (Φ,x),
x ∈ Id.

Proof. The proof follows from [12, Remark 3.1]. First note, that the input x belongs to Id = [0, 1]d,
we have x = σ(x). For ` = 1, . . . , L, the bottom node in the `-th layer collects a continuous piece-wise
linear function g`(x) on Id, and the output is N (Φ,x) =

∑L−1
`=1 g`(x). Thus, there is a constant c` such

that g`(x) + c` ≥ 0 for all x ∈ Id. Hence we take Φ′ having the same graph as Φ but the computation
at `-th nodes in the collation channel is replaced by σ(g`(x) + c`) = g`(x) + c`, and the output node is

N (Φ′,x) =

L−1∑
`=1

σ(g`(x) + c`)−
L−1∑
`=1

c` = N (Φ,x).

We now consider the problem of approximation of functions from Ůα∞ by deep ReLU neural net-
works. For every ε > 0 and every f ∈ Ůα∞, we will construct a deep ReLU neural network Φf having
an architecture Aε independent of f , and the output N (Φf , ·) which approximates f with accuracy
ε, and give dimension-dependent upper bounds for the number of weights and the depth of Φf . Our
strategy is as follows. Based on the result in Theorem 3.3 on approximation of f by the sparse-grid
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sourse
channels

Figure 4: The graph associated to a special neural network with two source channels and 5 layers

sampling sum Rβ(m, f), we use Rβ(m, f) as a mediate approximation, and then construct a deep
ReLU neural network Φf for approximating this sum by the output N (Φf , ·). Since Rβ(m, f) is a sum
of tensor products of hat functions, first of all we will process the approximation such tensor products
by deep ReLU neural networks which can be done based on a result in the following lemma which has
been proven in [30, Proposition 2.6] on approximating by deep ReLU neural networks the product of
d numbers.

Lemma 4.3 For any δ ∈ (0, 1), d ∈ N, d ≥ 2, there exists a deep ReLU neural network ΦP such that

sup
x∈[−1,1]d

∣∣∣∣∣
d∏
i=1

xi −N (ΦP ,x)

∣∣∣∣∣ ≤ δ,
and

ess sup
x∈[−1,1]d

sup
j=1,...,d

∣∣∣∣∣ ∂∂xj
d∏
i=1

xi −
∂

∂xj
N (ΦP ,x)

∣∣∣∣∣ ≤ δ,
where ∂

∂xj
denotes a weak partial derivative. Furthermore, there exists a constant C independent of

δ ∈ (0, 1) and d ∈ N such that

W (ΦP ) ≤ Cd log(dδ−1) and L(ΦP ) ≤ C log d log(dδ−1) .

Moreover, if xj = 0 for some j ∈ [d], then N (ΦP ,x) = 0.

The last statement N (ΦP ,x) = 0 (d = 2) when x1 · x2 = 0 was proved in [34, Proposition 3.1],
see also [18, Proposition C.2] and [29, Proposition 4.1]. But this implies that the statement also holds
for general d since the network ΦP is constructed as an binary tree of the network ΦP when d = 2.
Inspecting the proof of Lemma 4.3, see [30, Proposition 2.6] and [34, Proposition 3.3] we also find that
when x ∈ Id it holds Nw(ΦP ) ≤ 12d. The above lemma immediately yields the following lemma on
approximating by deep ReLU neural networks tensor products of d hat functions.

Lemma 4.4 For any dimension d ≥ 2, 0 < δ < 1 and for the d-variate hat functions ϕk,s, k ∈
Nd0, s ∈ Zd(k), defined as in (2.3), there is a deep ReLU neural network Φk,s such that N (Φk,s, ·)
approximates ϕk,s with accuracy δ, and

Nw(Φk,s) ≤ Cd, W (Φk,s) ≤ Cd log(dδ−1), and L(Φk,s) ≤ C log d log(dδ−1) .

Moreover, supp(N (Φk,s, ·)) ⊂ suppϕk,s and

ess sup
x∈Id

∣∣∣∣ ∂∂xj ϕk,s(x)− ∂

∂xj
N (Φk,s,x)

∣∣∣∣ ≤ 2kj+1δ .
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Proof. Indeed, we write

yi := ϕki,si(xi) = σ
(
1− σ

(
2ki+1xi − 2(si + 1)

)
− σ

(
2(si + 1)− 2ki+1xi

))
.

Let ΦP be the deep ReLU neural network in Lemma 4.3 and y = (y1, . . . , yd) be the inputs of ΦP .
Then we obtain a deep ReLU neural network denoted by Φk,s. We have

sup
x∈Id

∣∣∣∣ d∏
i=1

ϕki,si(xi)−N (Φk,s,x)

∣∣∣∣ = sup
y∈Id

∣∣∣∣ d∏
i=1

yi −N (ΦP ,y)

∣∣∣∣ ≤ δ
and

ess sup
x∈Id

∣∣∣∣ ∂∂xj ϕk,s(x)− ∂

∂xj
N (Φk,s,x)

∣∣∣∣ = ess sup
y∈Id

∣∣∣∣∣
(

∂

∂yj

d∏
i=1

yi −
∂

∂yj
N (ΦP ,y)

)
dyj
dxj

∣∣∣∣∣ ≤ 2kj+1δ .

Moreover, we have
L(Φk,s) = L(ΦP ) + 2 and W (Φk,s) ≤W (ΦP ) + 7d.

Now, from Lemma 4.3 we obtain the desired result.

We now in position to formulate and prove the following theorem.

Theorem 4.5 Let d ≥ 2, 1 < α ≤ 2, β ≥ α and 1 ≤ p ≤ ∞. Let

ε0 = min

{
1,

d

2αd(1− 21−α)
,

K1d
2

(p+ 1)d/p2(α+1)d
(
1− 2

−β−α
β−1
)d
}
,

where K1 is the constant given in Theorem 3.3.

Then for every ε ∈ (0, ε0) there exists a deep neural network architecture Aε with the following
property. For every f ∈ Ůα∞ there exist a deep ReLU neural network Φf having the architecture Aε,
and positive constants K3 = K3(α), K4 = K4(α, β), such that

‖f −N (Φf , ·)‖W 1,p
0
≤ ε, (4.1)

and there hold the estimates

L(Aε) ≤ K3 log d log(ε−1) and W (Aε) ≤ K4B
−d
2 (ε−1)

1
α−1 log(ε−1),

where

B2 = B2(d, α, β) :=
(
1− 2

− 1
β−1
)((p+ 1)

1
p 2(α+1)

(
1− 2

−β−α
β−1
)

d
2α
d

) 1
α−1

. (4.2)

Proof. Let f ∈ Ůα∞. For ε ∈ (0, ε0) we take

m =

⌈
1

α− 1
log

(
2K1d

2ε−1

(p+ 1)d/p2(α+1)d
(
1− 2

−β−α
β−1
)d
)⌉

. (4.3)

Let (k, s) ∈ Dd
β(m) and Φk,s be the deep ReLU neural network obtained in Lemma 4.4 such that

N (Φk,s, ·) approximates ϕk,s with accuracy δ ∈ (0, 1) which is chosen later. Let Φf be the deep ReLU
neural network obtained by parallelization as in Lemma 4.1 with the output

N (Φf ,x) =
∑

k∈∆d
β(m)

∑
s∈Zd(k)

λk,s(f)N (Φk,s,x), x ∈ Id.
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Then we can write

‖f −N (Φf , ·)‖W 1,p
0
≤ ‖f −Rβ(m, f)‖

W 1,p
0

+ ‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0
, (4.4)

where Rβ(m, f) is the operator given in (3.1). With the choice of m as in (4.3) we get from Theorem
3.1

‖f −Rβ(m, f)‖
W 1,p

0
≤ K1

d22−m(α−1)

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d ≤ ε/2. (4.5)

Let us estimate the norm ‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0

. Since suppN (Φk,s, ·) ⊂ suppϕk,s we have

‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0
≤

∑
k∈∆d

β(m)

∥∥∥∥∥ ∑
s∈Zd(k)

λk,s(f)
(
ϕk,s −N (Φk,s, ·)

)∥∥∥∥∥
W 1,p

0

=
∑

k∈∆d
β(m)

(
d∑
j=1

∫
Id

∣∣∣∣∣ ∑
s∈Zd(k)

λk,s(f)

(
∂

∂xj
ϕk,s(x)− ∂

∂xj
N (Φk,s,x)

)∣∣∣∣∣
p

dx

)1/p

=
∑

k∈∆d
β(m)

(
d∑
j=1

∑
s∈Zd(k)

|λk,s(f)|p
∫
Id

∣∣∣∣ ∂∂xj ϕk,s(x)− ∂

∂xj
N (Φk,s,x)

∣∣∣∣pdx
)1/p

.

Using Lemma 4.4 and estimate (2.5) we get

‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0
≤

∑
k∈∆d

β(m)

sup
s∈Zd(k)

|λk,s(f)|

(
d∑
j=1

∑
s∈Zd(k)

2−|k|12p(kj+1)

)1/p

δ

≤ 2−(α+1)d
∑

k∈∆d
β(m)

2−|k|1α

(
d∑
j=1

2p(kj+1)

)1/p

δ

≤ 2−(α+1)d
∞∑
`=0

2−`α
∑
|k|1=`

(
d∑
j=1

2p(kj+1)

)1/p

δ.

Now Lemma 3.2 leads to

‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0
≤ d2d2−(α+1)dδ

∞∑
`=0

2−`(α−1) ≤ d2−αd

1− 21−α δ.

Define δ = δ(ε) := 1−21−α

d2−αd
ε
2 . Since ε < 2d

2αd(1−21−α)
we get δ < 1. This choice of δ gives

‖Rβ(m, f)−N (Φf , ·)‖W 1,p
0
≤ ε/2

which together with (4.4) and (4.5) proves (4.1).

We now prove the bounds for the depth and the number of weights of Φf . From Lemmata 4.1 and
3.2 we have

L(Φf ) = max
(k,s)∈Ddβ(m)

L(Φk,s) ≤ C log d log(dδ−1)

≤ C log d log

(
2d2ε−1

2αd(1− 21−α)

)
≤ K3 log d log(ε−1)

(4.6)
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for some positive constant K3 = K3(α), and

W (Φf ) ≤
∑

(k,s)∈Ddβ(m)

W (Φk,s) +
∑

(k,s):L(Φk,s)<L(Φf )

(
L(Φf )− L(Φk,s) + 2

)
≤

∑
(k,s)∈Ddβ(m)

W (Φk,s) +
∑

(k,s)∈Ddβ(m)

(
max

(k,s)∈Ddβ(m)
W (Φk,s) + 2

)

≤ 2|Dd
β(m)| max

(k,s)∈Ddβ(m)

(
W (Φk,s) + 1

)
≤ 2β

β − 1

d2m(
1− 2

− 1
β−1
)d (Cd log(dδ−1) + 1

)
.

(4.7)

Similar to (3.11) we have

d22m
(
1− 2

− 1
β−1
)−d ≤ 2d2

(
1− 2

− 1
β−1
)−d( 2K1d

2ε−1

(p+ 1)
d
p 2(α+1)d

(
1− 2

−β−α
β−1
)d
) 1

α−1

≤ 2(2K1)
1

α−1
(
1− 2

− 1
β−1
)−d( d

2α
d

(p+ 1)
1
p 2(α+1)

(
1− 2

−β−α
β−1
)
) d

α−1

(ε−1)
1

α−1 .

Inserting this into (4.7) we find

W (Φf ) ≤ K4B
−d
2 (ε−1)

1
α−1 (log ε−1)

with B2 given in (4.2) and some positive constant K4 depending on α and β.

To complete the proof it is sufficient to notice that Φf has the architecture Aε (independent of
f) which is defined as the minimal architecture of the deep ReLU neural network Φ obtained by
parallelization as in Lemma 4.1 with the output

N (Φ,x) =
∑

k∈∆d
β(m)

∑
s∈Zd(k)

N (Φk,s,x), x ∈ Id.

Remark 4.6 Since d2α/d tends to 1 when d → ∞, if α and p satisfy (3.9), β satisfies (3.10), then
there are d(α, β, p) ∈ N and B(α, β, p) > 1 such that B2 ≥ B(α, β, p) > 1 for all d ≥ d(α, β, p). In
this case, the approximation error is going to 0 as fast as the exponent B−d2 when d tending to ∞. See
also Remark 3.4.

For f ∈ Ůα∞ and ε ∈ (0, ε0), we observe that the width of the deep ReLU neural network Φf

constructed in Theorem 4.5 may depend on ε. To construct a deep neural network Φ′f with the
same output that has width independent of ε we can concatenate the deep ReLU networks Φk,s,
(k, s) ∈ Dd

β(m), with the help of special deep ReLU networks.

Theorem 4.7 Under the assumptions and notations of Theorem 4.5, for every ε ∈ (0, ε0) there exists
a deep neural network architecture A∗ε with the following property. For every f ∈ Ůα∞ there exist a deep
ReLU neural network Φ∗f having the architecture A∗ε, and positive constants K5 and K6 = K6(α, β)
such that

‖f −N (Φ∗f , ·)‖W 1,p
0
≤ ε, (4.8)

and there hold the estimates

Nw(A∗ε) ≤ K5d and L(A∗ε) ≤ K6B
−d
2 (ε−1)

1
α−1 log(ε−1). (4.9)
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input x

N (Φ1,x)
λ1(f)N (Φ1,x)

+ λ2(f)N (Φ2,x)

output
N (Φ,x)

Figure 5: The graph associated to concatenation of neural networks Φk,s, (k, s) ∈ Dd
β(m), (d = 2)

Proof. Consider the special deep ReLU neural network Φ′f as in Figure 5 (d = 2). We number the

set {(k, s) ∈ Dd
β(m)} from 1 to J , where J = |Dd

β(m)|. The d source channels carry x ∈ Id forward

so that it is the input of all networks Φ`, ` = 1, . . . , J . The
(∑`

j=1 L(Φj)
)
th node in the collation

channel stores the partial sum
∑`

j=1 λj(f)N (Φj ,x) of the outputs of Φ`, ` = 1, . . . , J . Hence,

N (Φ′f ,x) = N (Φf ,x) =
J∑
j=1

λj(f)N (Φj ,x), (4.10)

where Φf is the deep ReLU neural network in Theorem 4.5. From Lemma 4.4 we can find an absolute
positive constant K5 so that Nw(Φ′f ) ≤ K5d and a positive constant K6 = K6(α, β) such that

L(Φ′f ) ≤
J∑
j=1

L(Φj) ≤ C|Dd
β(m)| log d log(dδ−1) ≤ K6B

−d
2 (ε−1)

1
α−1 log(ε−1),

where the last inequality follows from (4.6) and (4.7). Hence, by Lemma 4.2 and (4.10), Φ′f generates
a deep ReLU neural network Φ∗f such that N (Φ∗f ,x) = N (Φf ,x) and, consequently, there hold (4.8)
and

Nw(Φ∗f ) ≤ K5d and L(Φ∗f ) ≤ K6B
−d
2 (ε−1)

1
α−1 log(ε−1).

The proof of existence of an architecture A∗ε of Φ∗f satisfying (4.9) is similar to the proof of existence
of Aε at the end of the proof of Theorem 4.5.

In the case when the error is measured in the norm of the space W 1,∞
0 , we are able to give

dimension-dependent lower bounds for the numbers of weights of deep ReLU networks whose outputs
approximate functions from Ůα∞ with a given accuracy. More precisely, we have the following results.

Theorem 4.8 Let d ∈ N, d ≥ 2, and 1 < α ≤ 2. Let ε ∈ (0, 24−d) and A be a neural network
architecture such that for any f ∈ Ůα∞, there is a deep ReLU neural network Φf having the architecture
A and

‖f −N (Φf , ·)‖W 1,∞
0
≤ ε.

25



Then there is a positive constant K7 = K7(α) such that

W (A) ≥ K724
− d

2(α−1) ε
− 1

2(α−1) .

If assume in addition that
L(A) ≤ C(log ε−1)λ

for some constant C > 0 and λ ≥ 0, then there exists a constant K8 = K8(α) > 0 such that

W (A) ≥ K824−
d

α−1 ε−
1

α−1 (log ε−1)−2λ−1.

Some non-dimension-dependent lower bounds have been obtained in [42, 18] for isotropic Sobolev
spaces. In order to prove the above theorem we develop some techniques in [42, 18] which are relied on
upper bounds for VC-dimension of ReLU networks with Boolean outputs [1]. We start with recalling
a definition of VC-dimension.

Definition 4.9 Let H be a set of functions h : X → {0, 1} for some set X. Then the VC-dimension of
H, denoted by VCdim(H), is defined as the supremum of all number m that there exist x1, . . . , xm ∈ X
such that for any sequence (yj)

m
j=1 ∈ {0, 1}m there is a function h ∈ H with h(xj) = yj for j = 1, . . . ,m.

The relation between VC-dimension and number of weights and depth of a neural network architecture
is given in the following lemma, see [1, Theorems 8.7 and 8.8].

Lemma 4.5 Let A be a deep neural network architecture. Let F be the class of functions-outputs
f = N (Φ, ·) of all deep ReLU neural networks Φ having the architecture A. Let a ∈ R and H be the
class of all functions hf : Id → {0, 1}, f ∈ F , defined by threshold:

hf (x) :=

{
1 if f(x) > a

0 if f(x) ≤ a.

Then
VCdim(H) ≤ CW (A)2

for some positive constant C. Moreover, there exists a C ′ > 0 such that

VCdim(H) ≤ C ′L(A)2W (A) log(W (A)).

The following elementary property of deep ReLU neural networks has been proven in [18, Lemma D.1]
which is based on the piece-wise linearity of ReLU activation function.

Lemma 4.6 Let Φ be a deep ReLU neural network, ξ ∈ (0, 1)d, and ν ∈ Rd. Then there exists an
open set G = G(ξ,ν) ⊂ (0, 1)d and δ = δ(ξ,ν) > 0 such that ξ + λδν ∈ G for λ ∈ [0, 1] and N (Φ, ·)
is affine on G.

We are now in position to prove Theorem 4.8.

Proof. Given ε ∈ (0, 24−d) and m = m(ε) ∈ N which will be chosen later. Denote L = L(A),
W = W (A) the depth and the number of weights of A. We assume that

A =
(
(W 1, b1), . . . , (W L, bL)

)
,
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where W ` is an N` × N`−1 matrix, and b` ∈ RN` with N0 = d, NL = 1, and N1, . . . , NL−1 ∈ N.
Let Φ be a deep ReLU neural network of the architecture A. For x = (x1, . . . , xd) ∈ Id and δ > 0

we put x̄ =
(
x1 + 2−m−2

3 , x2, . . . , xd
)

and define the deep ReLU neural network Φδ by parallelization
construction in Lemma 4.1 with output

N (Φδ,x) :=
N (Φ, x̄)−N (Φ, x̄− δe1)

δ
, e1 = (1, 0, . . . , 0) ∈ Rd.

Then Φδ is a deep ReLU neural network having the architecture

Ã =

(([
Id
Id

]
,

[
e1

e1

])
,

([
W 1 0

0 W 1

]
,

[
b1

b1

])
, . . . ,

([
W L−1 0

0 W L−1

]
,

[
bL−1

bL−1

]) (
[W L,W L], bL

))
,

where Id is the identity matrix of size d. It is clear that Ã has depth and number of weights

L̃ := L(Ã) = L+ 1, and W̃ := W (Ã) = 2W + 2d+ 1. (4.11)

Let a = a(m, d) ∈ R be a constant which will be clarified later. For a deep ReLU neural network Φ̃
having architecture Ã, we define the function

h(Φ̃,x) =

{
1 if N (Φ̃,x) > a/2,

0 if N (Φ̃,x) ≤ a/2,

and the set

H := H(Ã) =
{
h(Φ̃,x) : Φ̃ is a deep ReLU neural network having architecture Ã

}
.

In the following we will show that VCdim(H) ≥ 2m. For this we put

xj =

(
2−m

(
j − 3

4

)
,
1

2
, . . . ,

1

2

)
∈ (0, 1)d, j = 1, . . . , 2m.

It is clear that x̄j ∈ (0, 1)d for j = 1, . . . , 2m. For every y = (y1, . . . , y2m) ∈ {0, 1}2m , we define

fy(x) = 18−d2−αm
( 2m∑
j=1

yjψm,j(x1)

) d∏
`=2

ψ0,1(x`),

which is similar to fm(x) in the proof of Theorem 3.5. Then it holds fy ∈ Ůα∞. Moreover, we have

∂fy
∂x1

(x̄j) = 18−d2−αmyjψ
′
m,j

(
xj1 +

2−m−2

3

) d∏
`=2

ψ(xj`) = yj18−d2−αmψ
(1

2

)(d−1)
2mψ′

(1

3

)
.

From ψ
(

1
2

)
= M3

(
3
2

)
= 3

4 and ψ′
(

1
3

)
= 3M ′3(1) = 3 we get

∂fy
∂x1

(x̄j) = 4yj18−d2−(α−1)m
(3

4

)d
= 4yj2

−(α−1)m24−d.

Since fy ∈ Ůα∞, by the assumption, there exists a neural network Φy having architecture A such that

‖fy −N (Φy, ·)‖W 1,∞
0
≤ ε.
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By Lemma 4.6, for x̄j ∈ (0, 1)d, there exists an open set Gj ⊂ (0, 1)d and δj > 0 such that x̄j+λδje
1 ∈

Ḡj for λ ∈ [0, 1] and N (Φy, ·) is affine on Ḡj . Let

δ∗ = min
1≤j≤2m

δj > 0.

and B(x̄j , θj) be the open ball centered at x̄j with radius θj . Then we have

N (Φδ∗
y ,x

j) =
N (Φy, x̄

j)−N (Φy, x̄
j − δ∗e1)

δ∗
=
∂N (Φy, ξ

j)

∂x1
,

for some ξj ∈ B(x̄j , θj) ∩ Gj . In case x̄j ∈ Gj we can choose ξj = x̄j . Define m the largest positive
integer such that

ε ≤ 2−(α−1)m24−d.

We then obtain for yj = 1,

N (Φδ∗
y ,x

j) =
∂fy(x̄j)

∂x1
+
∂N (Φy, ξ

j)

∂x1
− ∂fy(x̄j)

∂x1

≥ ∂fy(x̄j)

∂x1
−
∣∣∣∣∂N (Φy, ξ

j)

∂x1
− ∂fy(ξj)

∂x1

∣∣∣∣− ∣∣∣∣∂fy(ξj)

∂x1
− ∂fy(x̄j)

∂x1

∣∣∣∣.
Since

∂fy(x)
∂x1

is a continuous function due to fy ∈ Ůα∞, α > 1. Then we can choose θj small enough
such that ∣∣∣∣∂fy(ξj)

∂x1
− ∂fy(x̄j)

∂x1

∣∣∣∣ ≤ ε

2

which implies

N (Φδ∗
y ,x

j) ≥ 4 · 2−(α−1)m24−d − 3

2
ε ≥ 5

2
· 2−(α−1)m24−d.

For yj = 0,

∣∣N (Φδ∗
y ,x

j)
∣∣ =

∣∣∣∣∂N (Φy, ξ
j)

∂x1
− ∂fy(ξj)

∂x1
+
∂fy(ξj)

∂x1
− ∂fy(x̄j)

∂x1

∣∣∣∣
≤
∣∣∣∣∂N (Φy, ξ

j)

∂x1
− ∂fy(ξj)

∂x1

∣∣∣∣+

∣∣∣∣∂fy(ξj)

∂x1
− ∂fy(x̄j)

∂x1

∣∣∣∣ ≤ 3

2
ε ≤ 3

2
· 2−(α−1)m24−d.

Putting a = 4 · 2−(α−1)m24−d, we get{
N (Φδ∗

y ,x
j) > a/2 if yj = 1,

N (Φδ∗
y ,x

j) ≤ a/2 if yj = 0.

Then for y ∈ {0, 1}2m the function

h(Φδ∗
y ,x) =

{
1 if N (Φδ∗

y ,x) > a/2,

0 if N (Φδ∗
y ,x) ≤ a/2,

belongs to H and satisfies h(Φδ∗
y ,x

j) = yj . By definition of VC-dimension, see Definition 4.9, we
obtain 2m ≤ VCdim(H). Moreover, from (4.11) and Lemma 4.5 we have

2m ≤ VCdim(H) ≤ C(2W + 2d+ 1)2.
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Since A has input dimension d and depth L ≥ 2, we find that 2d + 1 ≤ 2W . From this and
2−(α−1)(m+1)24−d ≤ ε we get

C42W 2 ≥ 2m ≥ 1

2
24−

d
α−1 ε−

1
α−1

or

W ≥ 2m ≥ 1

4
√

2C
24
− d

2(α−1) ε
− 1

2(α−1)

which is the first statement.

Concerning second one, we have

1

2
24−

d
α−1 ε−

1
α−1 ≤ C ′L̃2W̃ log W̃ = C ′(L+ 1)2(2W + 2d+ 1) log(2W + 2d+ 1)

≤ C ′′(log ε−1)2λW logW

which implies

W logW ≥ 1

2
24−

d
α−1 ε−

1
α−1 (log ε−1)−2λ.

Consider for κ < 1,

Wκ = κ24−
d

α−1 ε−
1

α−1 log(ε−1)−2λ−1.

Then we have that

logWκ = log κ− d log 24

α− 1
− (2λ+ 1) log(log ε−1) +

1

α− 1
(log ε−1) ≤ 1

α− 1
(log ε−1).

From this we obtain

Wκ logWκ ≤
κ

α− 1
24−

d
α−1 ε−

1
α−1 (log ε−1)−2λ ≤ 1

2C ′′
24−

d
α−1 ε−

1
α−1 (log ε−1)−2λ ≤W log(W )

if we choose κ
α−1 ≤ min{1, 1

2C′′ }. Consequently, we get

κ24−
d

α−1 ε−
1

α−1 (log ε−1)−2λ−1 = Wκ ≤W

which is the second statement. The proof is completed.

5 Concluding remarks

We have constructed interpolation linear algorithms of sampling recovery on sparse grids of points
which are tailored for approximation in the norm of the isotropic Sobolev space W 1,p

0 of functions
from the Hölder-Zygmund space of mixed smoothness Hα

∞(Id), α ∈ (1, 2]. These grids have a definite
advantage over the standard grids and classical Smolyak sparse grids. They are in some sense optimal
in terms of sampling n-widths rn which characterizes the best approximation error by linear algorithms
of sampling recovery of functions f from the unit ball Ůα∞ based on n sampled values of f . Moreover,
with some restrictions we proved the tight dimension-dependent estimates C1B

−d
∗ n−(α−1) ≤ rn ≤

C2B
∗−dn−(α−1) with B∗ > 1 and B∗ > 1, which show that the sampling n-widths are decreasing as

fast as the exponent B∗−d when the dimension d going to ∞.

Based on the constructed linear algorithms of sparse-grid sampling recovery, we have explicitly
constructed a deep ReLU neural network Φf having an output that approximates in W 1,p

0 -norm any

function f ∈ Ůα∞ with a prescribed accuracy ε and established a dimension-dependent estimate for
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the computation complexity characterized by number of weights W (Φf ) and the depth L(Φf ) of this

deep ReLU neural network: L(Φf ) ≤ C3 log d log(ε−1) and W (Φf ) ≤ C4B
−d
2 (ε−1)

1
α−1 log(ε−1) with

B2 > 1. Moreover, this output can be designed also as an output of another “very” deep ReLU neural
network Φ∗f having computation complexity expressing the ε-independent width Nw(Φ∗f ) ≤ C5d and

the dimension-dependent depth L(Φ∗f ) ≤ C6B
−d
2 (ε−1)

1
α−1 log(ε−1). This shows in particular, that the

computation complexity is decreasing as fast as the exponent B2
−d when the dimension d going to

∞. In the case when p =∞, we gave dimension-dependent lower bounds for the numbers of weights
of deep ReLU networks whose outputs approximate functions from Ůα∞ with a given accuracy.

Thus, we have shown that under some reasonable restrictions the curse of dimensionality can be
avoided in the both approximations by sparse-grid sampling recovery and by deep ReLU neural net-
works. The result also indicated that the decomposition of functions from the Hölder-Zygmund space
of mixed smoothness Hα

∞(Id) into tensor product Faber series plays a fundamental role in construction
of linear algorithms of sparse-grid sampling recovery and of deep ReLU neural networks for approxi-
mation of functions from Hα

∞(Id). In the present paper, our concerns are non-adaptive approximations
by sparse-grid sampling recovery and by deep ReLU neural networks for which algorithms of sampling
recovery are linear and the architecture of deep ReLU neural networks is the same for all functions.
In a forthcoming paper, we will discuss a problem of adaptive nonlinear approximation by sparse-
grid sampling recovery and by deep ReLU neural networks of multivariate functions having a mixed
smoothness.
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[8] D. Dũng. Optimal adaptive sampling recovery. Adv. Comput. Math, 34:1–41, 2011.

30
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