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Abstract

This paper provides a comprehensive study on quantitative properties of linear
mixed fractional-order systems with multiple time-varying delays. The delays can
be bounded or unbounded. We first obtain a result on existence and uniqueness of
solutions to these systems. Then, we prove a necessary and sufficient condition for
their positivity. Finally, we provide a necessary and sufficient criterion to characterize
asymptotic stability of positive linear mixed fractional-order systems with multiple
time-varying delays.
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1 INTRODUCTION

Fractional differential equations are widely used to describe memory and hereditary properties of materials and processes. For
details, see1,2,3 and the references therein. On the other hand, time-delay systems have received considerable attention due to
the fact that many processes include after-effect phenomena in their inner dynamics, see, e.g.,4,5,6. While positive systems play
a key role in understanding many processes in biological and medical sciences, see e.g.,7,8. Recently, positive system theory
has gained renewed interest from the viewpoint of convex optimization. We refer the reader to an interesting paper on Lq∕Lp
Hankel norm9 and a paper on geometric programming for optimal positive linear systems10. As such, the qualitative theory of
positive fractional-order systems with delays is an important research topic, which is the main focus of this paper.
One of the important problems in the dynamical system theory of time-delay fractional-order systems is stability analysis.

Using the characteristic polynomial, in11,12, the authors obtained conditions depending on magnitude of the delay for asymptotic
stability of fractional-order systems with the linear part comprises a pure delay. In13,14, by using Lyapunov-candidate-functions,
the authors proposed some results on stability of fractional systems with delays. An analytical approach based on the Laplace
transform and ‘inf-sup’ method for studying finite-time stability of singular fractional-order switched systems with delay was
presented in15. By using the Lyapunov method combined with the concept of uniformly positive definite matrix functions
and Hamilton–Jacobi–Riccati inequalities, robust stability of the almost periodic solution to uncertain impulsive functional
differential systems of fractional order was investigated in16. In17 the authors studied robust stability of a fractional-order time-
delay system in the frequency domain based on finite spectrum assignment.
Up to now, in our view, an important contribution to the study of asymptotic behavior of solutions to positive mixed fractional-

order systems with delays is the paper by Shen and Lam18. In that paper, the authors reported a criterion for positivity of a linear
mixed fractional-order systems with a time-varying delay. They also obtained a result on asymptotic stability of a positive linear
mixed fractional-order system with a bounded time-varying delay.
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Let d ∈ ℕ, �̂ = (�1,… , �d) ∈ (0, 1] ×⋯ × (0, 1], r > 0, m ∈ ℕ. Motivated by18, in this paper, we consider the following
linear mixed fractional-order systems with multiple unbounded time-varying delays

CD�̂
0+x(t) = Ax(t) +

m
∑

1
Bkx(t − ℎk(t)), t > 0, (1)

with the initial condition x(⋅) = �(⋅) ∈ C([−r, 0];ℝd) on [−r, 0], where
CD�̂

0+x(t) = (
CD�1

0+x1(t),… ,C D�k
0+xk(t),… ,C D�d

0+xd(t))
T

is a column vector in which CD�k
0+ is the Caputo derivative operator of the order �k, A = (aij)1≤i,j≤d , Bk = (bkij)1≤i,j≤d , ℎk ∶

[0,∞)→ ℝ≥0 is continuous and satisfies the growth rate as in19. Our main aim is to study asymptotic stability of system (1) for
the case it is positive. It is worth noting that the approaches as in11,12 (based on the eigenvalues of the characteristic polynomials)
and18 (based on comparing the trajectory of the time-varying delay system with that of the constant delay system) cannot be
applied for (1) where the delays ℎk(⋅) (1 ≤ k ≤ m) are time-varying and unbounded.
This paper is organized as follows. In Section 2, we first introduce a result on existence and uniqueness of global solutions to

linear mixed fractional-order with multiple time-varying delays. Then, we give a necessary and sufficient condition to charac-
terize positivity of these systems. The main result of the paper is given in Section 3. In particular, in Theorem 1, we provide a
necessary and sufficient criterion to ensure asymptotic stability of positive linear mixed fractional-order systems with bounded
and unbounded time-varying delays.
Before concluding this section, we introduce some notations which are used throughout this paper. Let ℕ be the set of natural

numbers, ℤ≥0 be the set of nonnegative integers, ℝ (ℝ≥0) be the set of real numbers (nonnegative real numbers, respectively),
and ℝd be the d-dimensional Euclidean space endowed with a norm ‖ ⋅ ‖. Without loss of generality, in this paper we use the
symbol ‖ ⋅ ‖ to denote the max norm of Euclidean spaces. For any [a, b] ⊂ ℝ, let C([a, b];ℝd) be the space of continuous
functions � ∶ [a, b] → ℝd . A matrix A = (aij)1≤i,j≤d ∈ ℝd×d is called Metzler if aij ≥ 0 for all 1 ≤ i ≠ j ≤ d. A matrix
A ∈ ℝd×d is said to be Hurwitz if its spectrum �(A) satisfies

�(A) ⊂ {� ∈ ℂ ∶ Re � < 0}.

Let n, m ∈ ℕ and A = (aij)
1≤j≤m
1≤i≤n , B = (Bij)

1≤j≤m
1≤i≤n ∈ ℝn×m. We write A ≻ B (A ⪰ B) if aij > bij (aij ≥ bij , respectively) for all

1 ≤ i ≤ n, 1 ≤ j ≤ m. The matrix A is said to be nonnegative if aij ≥ 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. For � ∈ (0, 1) and an
integrable function x ∶ [a, b]→ ℝ, the Riemann–Liouville integral operator of x(⋅) with the order � is defined by

(I�a+x)(t) ∶=
1
Γ(�)

t

∫
a

(t − �)�−1x(�) d�, t ∈ (a, b],

where Γ(⋅) is the Gamma function. The Caputo fractional derivative CD�
a+x of a function x ∈ AC([a, b];ℝ) is defined by

(CD�
a+x)(t) ∶= (I

1−�
a+ Dx)(t), t ∈ (a, b],

where AC([a, b];ℝ) denotes the space of absolutely continuous functions and D is the classical derivative.

2 POSITIVITY OF LINEAR MIXED-ORDER FRACTIONAL SYSTEMSWITH
TIME-VARYING DELAYS

Let �̂ = (�1,… , �d) ∈ (0, 1] ×⋯ × (0, 1] ⊂ ℝd , T , r > 0, m ∈ ℕ. Consider the following system on (0, T ]

CD�̂
0+x(t) = Ax(t) +

m
∑

1
Bkx(t − ℎk(t)) + Uw(t), (2)

and x(⋅) = �(⋅) ∈ C([−r, 0];ℝd) on [−r, 0], where A = (aij)1≤i,j≤d , Bk = (bkij)1≤i,j≤d (1 ≤ k ≤ m), U = (uij)1≤i,j≤d ∈ ℝd×d and
w(⋅) ∈ C([0, T ];ℝd). Assume that ℎk ∶ [0, T ]→ ℝ≥0 (1 ≤ k ≤ m) is continuous such that

(F1) ℎk(0) > 0;

(F2) t − ℎk(t) ≥ −r for all t ∈ [0, T ];

(F3) ℎk(0) ≠ ℎl(0) for any 1 ≤ k ≠ l ≤ m.
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Using the same arguments as in the proof of20, Lemma 6.2, pp. 86, we see that a vector valued function '(⋅, �) ∈ C([−r, T ];ℝd) is a
solution of (2) with x(⋅) = �(⋅) on [−r, T ] if and only if it satisfies the time-delay integral system on (0, T ],

xi(t) = �i(0) +
1

Γ(�i)

t

∫
0

(t − s)�i−1
∑

1≤j≤d

(

aijxj(s) +
∑

1≤k≤m
bkijxj(s − ℎk(s)) + uijwj(s))ds, 1 ≤ i ≤ d,

and x(⋅) = �(⋅) on [−r, 0].
Surprisingly, up to now, there has been no result reported in the literature on existence and uniqueness of solutions to mixed

fractional-order systems with multiple time-varying delays. Hence, we first introduce here a rigorous proof for existence and
uniqueness of global solutions to the system in (2).

Lemma 1 (Existence and uniqueness of linear mixed fractional-order with time-varying delays). Assume that ℎk ∶ [0, T ] →
ℝ≥0 (1 ≤ k ≤ m) is continuous such that condition (F2) holds. Then, for any �(⋅) ∈ C([−r, 0];ℝd) and w(⋅) ∈ C([0, T ];ℝd),
system (2) with initial condition x(t) = �(t), t ∈ [−r, 0] has a unique solution '(⋅, �) on [−r, T ].

Proof. Let
C� ∶=

{

� ∈ C([−r, T ];ℝd) ∶ �(t) = �(t), t ∈ [−r, 0]
}

and define a functional ‖ ⋅ ‖
 on C� by

‖�‖
 = max
t∈[0,T ]

�∗(t)
exp (
t)

,

where 
 > 0 is fixed and chosen later and �∗(t) = max−r≤�≤t ‖�(�)‖. Notice that ‖ ⋅ ‖
 is a norm and (C�, ‖ ⋅ ‖
 ) is a Banach
space. On this space, we establish an operator � ∶ C� → C� as follows.

(��)i(t) = �i(0) +
1

Γ(�i)

t

∫
0

(t − s)�i−1
(

∑

1≤j≤d
aij�j(s) +

∑

1≤k≤m
bkij�j(s − ℎk(s)) + uijwj(s)

)

d�,

for t ∈ (0, T ], 1 ≤ i ≤ d, and (��)(t) = �(t) on [−r, 0]. To complete the proof of this lemma, we only have to show that � is
contractive. For that, for any �(⋅), �̂(⋅) ∈ C�, t ∈ [0, T ], 1 ≤ i ≤ d, we have

I(t) = |(��)i(t) − (��̂)i(t)|

≤ 1
Γ(�i)

t

∫
0

(t − s)�i−1
∑

1≤j≤d

(

|aij||�j(s) − �̂j(s)|

+
∑

1≤k≤m
|bkij||�j(s − ℎk(s)) − �̂j(s − ℎk(s))|

)

ds

≤
max1≤i≤d

(
∑d
j=1(|aij| +

∑

1≤k≤m |b
k
ij|)

)

exp (
t)

Γ(�i)

×

t

∫
0

(t − s)�i−1 exp (−
(t − s))
(� − �̂)∗(s)
exp (
s)

ds.

Hence,

I(t) ≤
max1≤i≤d

(
∑

1≤j≤d(|aij| +
∑

1≤k≤m |b
k
ij|)

)

exp (
t)

Γ(�i)

t

∫
0

v�i−1 exp (−
v)dv‖� − �̂‖


≤
max≤i≤d

(
∑

1≤j≤d(|aij| +
∑

1≤k≤m |b
k
ij|)

)

exp (
t)

Γ(�i)��i


t

∫
0

u�i−1 exp (−u)du‖� − �̂‖
 ,

which implies
|(��)i(t) − (��̂)i(t)|

exp (
t)
≤ max
1≤i≤d

∑

1≤j≤d(|aij| +
∑

1≤k≤m |b
k
ij|)


�i
‖� − �̂‖
 , (3)
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where we used the fact that
∞

∫
0

u�i−1 exp (−u)du = Γ(�i)

and the estimates
‖�(s) − �̂(s)‖, ‖�(s − ℎk(s)) − �̂(s − ℎk(s))‖ ≤ (� − �̂)∗(s)

for s ∈ [0, T ], 1 ≤ k ≤ m. From (3), we obtain

(�� − ��̂)∗(t)
exp (
t)

≤ max
1≤l≤d

max1≤i≤d
∑d
j=1(|aij| +

∑

1≤k≤m |b
k
ij|)


�l
‖� − �̂‖


for all t ∈ [0, T ]. Thus,

‖�� − ��̂‖
 ≤ max
1≤l≤d

max1≤i≤d
∑

1≤j≤d(|aij| +
∑

1≤k≤m |b
k
ij|)


�l
‖� − �̂‖
 .

By choosing 
 > 0 such that

max
1≤l≤d

max1≤i≤d
∑

1≤j≤d(|aij| +
∑

1≤k≤m |b
k
ij|)


�l
< 1,

then � is contractive. Banach fixed point theorem implies that this operator has a fixed point in (C�, ‖ ⋅ ‖
 ) which is also the
unique solution to initial value problem (2) with the initial condition x(t) = �(t), t ∈ [−r, 0]. The proof is complete.

Our main aim in this section is to introduce a criterion to characterize positivity of linear mixed-order fractional systems with
time-varying delays.

Definition 1. System (2) is positive if for any �(t) ⪰ 0 on [−r, 0] andw(t) ⪰ 0 on [0, T ], its solution '(⋅, �) satisfies '(t, �) ⪰ 0
on [0, T ].

The main result in this section is the following proposition.

Proposition 1 (Necessary and sufficient condition for positivity). Let ℎk ∶ [0, T ] → ℝ≥0 (1 ≤ k ≤ m) be continuous such
that conditions (F1), (F2) and (F3) hold. Then, system (2) is positive if and only if A is Metzler, Bk (1 ≤ k ≤ m) and U are
nonnegative.

Proof. Necessity: Let system (2) be positive. We first show that U = (uij)1≤i,j≤d is nonnegative. To do this, assume that there is
an element ui0j0 < 0. By choosing �(t) = 0 on [−r, 0] and w(t) = ej0 on [0, T ], we have the representation of the i0-component
of '(⋅, �) as

'i0(t, �) =
1

Γ(�i0)

t

∫
0

(t − s)i0−1
∑

1≤j≤d
ai0j'j(s, �)ds +

1
Γ(�i0)

t

∫
0

(t − s)i0−1
∑

1≤k≤m

∑

1≤j≤d
bki0j'j(s − ℎk(s), �)ds

+ 1
Γ(�i0)

t

∫
0

(t − s)i0−1ui0j0ds, t ∈ [0, T ],

where ej0 = (0,… , 1,… , 0)T denotes the unit vector in ℝd with the j0-coordinate equals to 1. Hence, for t0 > 0 small enough,
for example, for all t ∈ [0, t0],

t − ℎk(t) < − max
1≤k≤m

ℎk(0)∕2,
∑

1≤j≤d
ai0j'j(s, �) < |ui0j0 |,

then

'i0(t0, �) =
1

Γ(�i0)

t0

∫
0

(t0 − s)i0−1
∑

1≤j≤d
ai0j'j(s, �)ds +

1
Γ(�i0)

t0

∫
0

(t0 − s)i0−1ui0j0ds

< 0,
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a contradiction. Next, assume, ad absurdum, A = (aij)1≤i,j≤d is not Metzler, that is, there exist indexes 1 ≤ i0 ≠ j0 ≤ d such
that ai0j0 < 0. Let �(⋅) ∈ C([−r, 0];ℝ

d) be a vector valued function with

�(t) =

{

ej0 , if t = 0,
0, if t ∈ [−r,−max1≤k≤m ℎk(0)∕2],

and w(t) = 0 on [0, T ]. Due to continuity of solutions and the delay ℎk(⋅) and that ℎk(0) > 0 (1 ≤ k ≤ m), we can find t0 > 0
(small enough) such that t−ℎk(t) ≤ −max1≤k≤m ℎk(0)∕2, 'j0(t, �) > 1∕2, and

∑

1≤j≤d,j≠j0
ai0j'j(t, �) <

|ai0j0 |

2
for all t ∈ [0, t0].

Then, the i0-component of '(t0, �) satisfies

'i0(t0, �) =
1

Γ(�i0)

t0

∫
0

(t0 − s)i0−1ai0j0'j0(s, �)ds +
1

Γ(�i0)

t0

∫
0

(t0 − s)i0−1
∑

1≤j≤d,j≠j0

ai0j'j(s, �)ds < 0,

a contradiction. We now prove that Bk is nonnegative for any 1 ≤ k ≤ m. From (F1) and (F3), without loss of generality, let
0 < ℎ1(0) < ⋯ < ℎm(0). First, we show that B1 is nonnegative. Suppose, ad absurdum, B1 = (b1ij)1≤i,j≤d is not nonnegative.
That is, there is b1i0j0 < 0. Choose �(⋅) ∈ C([−r, 0];ℝ

d) such that

�(t) =

⎧

⎪

⎨

⎪

⎩

0, if t = 0,
ej0 , if t ∈ [−2ℎ1(0)−ℎ2(0)

3
, −ℎ1(0)

2
],

0, if t ∈ [−r, −2ℎ2(0)−ℎ1(0)
3

],

and w(t) = 0 on [0, T ]. Then, for t0 > 0 small enough so that on the interval [0, t0]:

• −2ℎ1(0)−ℎ2(0)
3

≤ t − ℎ1(t) ≤
−ℎ1(0)
2

;

• −r ≤ t − ℎk(t) ≤
−2ℎ2(0)−ℎ1(0)

3
, 2 ≤ k ≤ m;

•
∑

1≤j≤d ai0j'j(t, �) < |b1i0j0 |.

Then, the i0-component of the solution '(⋅, �) at t = t0 verifies

'i0(t0, �) =
1

Γ(�i0)

t0

∫
0

(t0 − s)i0−1b1i0j0ds +
1

Γ(�i0)

t0

∫
0

(t0 − s)i0−1
∑

1≤j≤d
ai0j'j(s, �)ds < 0,

which implies a contradiction. By similar arguments, we also see Bk, 2 ≤ k ≤ m, is nonnegative. Thus, Bk (1 ≤ k ≤ m) are
nonnegative.
Sufficiency: Let A = (aij)1≤i,j≤d be Metzler and Bk = (bkij)1≤i,j≤d , U = (uij)1≤i,j≤d be nonnegative. We first show that if

�(t) ≻ 0 on [−r, 0] and w(t) ⪰ 0 on [0, T ], then '(t, �) ⪰ 0 on [0, T ]. Indeed, due to the fact that A is Metzler, there exists a
positive constant � > 0 such that

A = −�Id + (�Id + A),

where �Id + A is nonnegative. Then, system (2) is rewritten as
CD�̂

0+x(t) = �Idx(t) + (�Id + A)x(t) +
∑

1≤k≤m
Bkx(t − ℎk(t)) + Uw(t), t ∈ (0, T ].

By virtue of the variation of constants formula (see, e.g.,21, Lemma 3.1), the solution '(⋅, �) = ('1(⋅, �),… , 'd(⋅, �))T of (2) with
'(⋅, �) = �(⋅) on [−r, 0] has the following form:

'i(t, �) =E�i(−�t
�i)�i(0) +

t

∫
0

(t − s)�i−1E�i,�i(−�(t − s)
�i)

∑

1≤j≤d

(

(aij + ��ij)'j(s, �)

+
∑

1≤k≤m
bkij'j(s − ℎk(s), �) + uijwj(s)

)

ds (4)

for t ∈ [0, T ], 1 ≤ i ≤ d, where

�ij =

{

1, if i = j,
0, if i ≠ j,
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and

E�i(z) ∶=
∞
∑

k=0

zk

Γ(k�i + 1)
, E�i,�i(z) ∶=

∞
∑

k=0

zk

Γ(k�i + �i)

areMittag-Leffler functions. Suppose that there exists t0 > 0 so that'(t0, �)  0. From this, we can find an index i0 ∈ {1,… , d}
satisfying 'i0(t0, �) = 0. Take

t∗ = inf{t ∈ [0, T ] ∶ 'i0(t, �) = 0}.

Then t∗ > 0, 'i0(t
∗, �) = 0 and 'i0(t, �) > 0 for all t ∈ [0, t

∗). However, from (4),

'i0(t
∗, �) = E�i0 (−�t

∗�i0 )�i0(0) +

t∗

∫
0

(t∗ − s)�i0−1E�i0 ,�i0 (−�(t
∗ − s)�i0 )

∑

1≤j≤d

(

(ai0j + ��i0j)'j(s, �)

+
∑

1≤k≤m
bki0j'j(s − ℎk(s), �) + ui0jwj(s)

)

ds

≥ E�i0 (−�t
∗�i0 )�i0(0) > 0,

a contradiction. Thus, '(t, �) ≻ 0 on [0, T ]. We now consider the case where inputs �(t) ⪰ 0 on [−r, 0] and w(t) ⪰ 0 on [0, T ].
Using arguments as in22, Proposition 1, we get the initial conditions �n(⋅) = �(⋅) + 1

n
1 on [−r, 0] with n ∈ ℕ and 1 = (1,… , 1)T.

It is obvious to see that {'(⋅, �n)}∞n=1 is a decreasing sequence of continuous positive functions on [−r, T ]. Define '∗(t) ∶=
limn→∞ '(t, �n) for each t ∈ [−r, T ]. By Dini’s theorem (see, e.g.,23, Theorem 7.13, pp. 150), the sequence {'(⋅, �n)}∞n=1 converges
uniformly to '∗(⋅) and this function is also continuous and nonnegative on [−r, T ]. Notice that for each n ∈ ℕ, '(⋅, �n) verifies

'i(t, �n) =E�i(−�t
�i)(�n(0))i +

t

∫
0

(t − s)�i−1E�i,�i(−�(t − s)
�i)

∑

1≤j≤d

(

(aij + ��ij)'j(s, �n)

+
∑

1≤k≤m
bkij'j(s − ℎk(s), �

n) + uijwj(s)
)

ds,

for 1 ≤ i ≤ d, t ∈ [0, T ] and '(t, �n) = �n(t) on [−r, 0]. Let n→∞, we obtain

'∗i (t) =E�i(−�t
�i)�i(0) +

t

∫
0

(t − s)�i−1E�i,�i(−�(t − s)
�i)

∑

1≤j≤d

(

(aij + ��ij)'∗j (s)

+
∑

1≤k≤m
bkij'

∗
j (s − ℎk(s)) + uijwj(s)

)

ds,

for 1 ≤ i ≤ d, t ∈ [0, T ] and '∗(t) = �(t) on [−r, 0]. Since the original system has a unique solution (see Lemma 1) and it has
the form as in (4), '∗(⋅) is the unique solution of this system. On the other hand, as shown above, '∗(t) ⪰ 0 on [−r, T ], which
implies that '(⋅, �) is nonnegative on the existence interval [0, T ]. The proof is complete.

Remark 1. In the classical case, to prove the positivity of the time-delay system
{

dx(t)
dt

= Ax(t) +
∑

1≤k≤m Bkx(t − ℎk), t ≥ 0,
x(t) = �(t) ∈ ℝd , t ∈ [−r, 0],

one usually adopts the following representation for its solution on [0,∞)

x(t) = exp (tA)�(0) +

t

∫
0

exp ((t − s)A)
m
∑

1
Bkx(s − ℎk))ds,

see, e.g.,24, Proposition 3.1. In our opinion, this approach is also true for time-delay systems with a non-integer derivative. However,
it does not work for mixed fractional-order systems because there is not a similar variation of constants formula for solution to
these systems.

User
Highlight
voi moi t co dinh
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3 ASYMPTOTIC STABILITY OF POSITIVITY OF POSITIVE LINEAR MIXED-ORDER
SYSTEMSWITH TIME-VARYING DELAYS

Let �̂ = (�1,… , �d) ∈ (0, 1] ×⋯ × (0, 1] ⊂ ℝd ×⋯ × ℝd , r > 0, m ∈ ℕ. In this section, we consider the following linear
mixed-order fractional system on (0,∞)

CD�̂
0+x(t) = Ax(t) +

∑

1≤k≤m
Bkx(t − ℎk(t)) (5)

with x(⋅) = �(⋅) ∈ C([−r, 0];ℝd) on [−r, 0], where A,Bk ∈ ℝd×d , ℎk ∶ [0,∞) → ℝ+ (1 ≤ k ≤ m) is continuous and satisfies
the following conditions

(G1) ℎk(0) > 0;

(G2) t − ℎk(t) ≥ −r for all t ∈ [0,∞);

(G3) ℎk(0) ≠ ℎl(0) for any 1 ≤ k ≠ l ≤ m

(G4) limt→∞ t − ℎk(t) = ∞ (1 ≤ k ≤ m).

For linear systems, asymptotic stability in the Lyapunov sense and attractivity are equivalent, see e.g.,25, Theorem 6. Hence, in this
paper, we use the following definition for asymptotic stability of system (5).

Definition 2. System (5) is said to be asymptotically stable if for any �(⋅) ∈ C([−r, 0];ℝd), its solution '(⋅, �) converges to the
origin as t→∞.

Based on Proposition 1 about positivity of time-delay linear fractional-order systems, we obtain a necessary and sufficient
condition for asymptotic stability of positive linear mixed-order fractional systems with unbounded time-varying delays in the
following theorem.

Theorem 1 (A characterization of the asymptotic stability). Assume that system (5) is positive. Then, it is asymptotically stable
if and only if A +

∑

1≤k≤m Bk is Hurwitz.

Proof. Necessity: Let the positive system (5) be asymptotically stable. Suppose, ad absurdum, A +
∑

1≤k≤m Bk is not Hurwitz.
Notice that A is Metzler and Bk (1 ≤ k ≤ m) is nonnegative and thus A +

∑

1≤k≤m Bk is also Metzler. From26, Theorem 2.5.3, p. 114,
we have (A +

∑

1≤k≤m Bk)� ⪰ 0 for any � ≻ 0. Choose and fix such a positive vector � ∈ ℝd , and put e0(t) ∶= '(t, �) − � for
all t ∈ [−r,∞). Then, e0(⋅) is the unique solution to the system

CD�̂
0+x(t) = Ax(t) +

∑

1≤k≤m
Bkx(t − ℎk(t)) + (A +

∑

1≤k≤m
Bk)�, t > 0, (6)

x(⋅) = 0 on [−r, 0].

On the other hand, by virtue Proposition 1, system (6) is positive. Hence, e0(t) ⪰ 0 on [0,∞). This implies that '(t, �) ⪰ � ≻ 0,
∀t ∈ [0,∞). It is a contradiction because from the original assumption, limt→∞ '(t, �) = 0.
Sufficiency: Let A +

∑

1≤k≤m Bk be Hurwitz. By virtue26, Theorem 2.5.3, p. 114, we can find a vector � ≻ 0 such that

(A +
∑

1≤k≤m
Bk)� ≺ 0. (7)

First step: In this step, we will prove that there exists t1 > 0 and � ∈ (0, 1) such that

'(t, �) ≺ ��, ∀t ≥ t1. (8)

For that, at first, let u0(t) = � − '(t, �), t ≥ −r. Then, u0(⋅) is the unique solution of the system
CD�̂

0+u0(t) = Au0(t) +
∑

1≤k≤m
Bku0(t − ℎk(t)) − (A +

∑

1≤k≤m
Bk)�, t > 0,

u0(t) = 0, t ∈ [−r, 0].

This system is positive, hence, u0(t) ⪰ 0 on [0,∞), which implies that '(t, �) ⪯ � for all t ≥ 0. Next, let y(⋅) is the unique
solution of the system

{

CD�̂
0+y(t) = Ay(t) +

∑

1≤k≤m Bk�, t > 0,
y(0) = �.
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Using the same arguments as above, we see that 0 ≺ y(t) ⪯ � for all t ≥ 0. Moreover,

0 ⪯ '(t, �) ⪯ y(t), t ≥ 0. (9)

Now, for any c > 0, define u1(t) = y(t) − y(t + c), t ≥ 0. This vector valued function satisfies the system
{

CD�̂
0+u1(t) = Au1(t), t > 0,

u1(0) ⪰ 0.
(10)

Due to the fact that system (10) is positive, u1(t) ⪰ 0 for all t ≥ 0, that is, y(t) ⪰ y(t + c), for all t ≥ 0. In particular,

(S1) 0 ≺ y(t) ⪯ � for all t ≥ 0;

(S2) y(⋅) is decreasing on [0,∞).

From (S1) and (S2), the limit limt→∞ y(t) exists. Put y∗ = limt→∞ y(t) and denote by  the Laplace transform. In light of the
Final value theorem (see, e.g.,20, Theorem D13), we obtain

lim
s→+0

s{CD�̂
0+y(⋅)} = lim

t→∞
CD�̂

0+y(t)

= lim
t→∞

(Ay(t) +
∑

1≤k≤m
Bk�)

= Ay∗ +
∑

1≤k≤m
Bk�.

Furthermore,

lim
s→+0

s{CD�̂
0+y(⋅)} = lim

s→+0
s[s�1{y1(⋅)}(s) − s�1−1�1,… , s�d{yd(⋅)}(s) − s�d−1�d]

= lim
s→+0

[s�1(s{y1(⋅)}(s) − �1),… , s�d (s{yd(⋅)}(s) − �d)]

= 0

due to the fact that, for all 1 ≤ j ≤ d,
lim
s→+0

s{yj(⋅)}(s) = lim
t→∞

yj(t) = y∗j .

This leads to that y∗ = limt→∞ y(t) = −A−1
∑

1≤k≤m Bk�. Note that A is Metzler and Hurwitz. From26, Theorem 2.5.3, p. 114, −A−1 ⪰
0 which together with (7) implies that

lim
t→∞

y(t) = −A−1
∑

1≤k≤m
Bk� ≺ �. (11)

By combining (9) and (11), we can find t1 > 0 and � ∈ (0, 1) such that the estimate (8) holds.
Second step: In this step, we will show that there exists an increasing sequence {Tn}∞n=0 with T0 = 0 and limn→∞ Tn = ∞ such

that for any n ∈ ℤ≥0,
'(t, �) ⪯ �n�, ∀t ∈ [Tn, Tn+1]. (12)

To do this, we use a proof by induction. From (G4), there exists t̂1 > t1 such that t − ℎk(t) ≥ t1 for all t ≥ t̂1, 1 ≤ k ≤ m. Put
T1 ∶= t̂1. Then, (12) holds for n = 0 and '(t, �) ⪯ �� for all t ≥ T1.
Next, define y1(t) = '(t + T1, �), t ≥ 0. Then, y1(⋅) satisfies the system

{

CD�̂
0+y1(t) = Ay1(t) +

∑

1≤k≤m Bkfk(t), t > 0,
y1(0) = '(T1, �),

(13)

where fk(t) = '(t + T1 − ℎk(t + T1), �), t ≥ 0. Thus, 0 ⪯ fk(t) ⪯ �� for all t ≥ 0. Now, consider the system
{

CD�̂
0+z1(t) = Az1(t) +

∑m
1 Bk��, t > 0,

z1(0) = ��.
(14)

By the comparison principle for solutions of (13) and (14) and arguments as shown above, we obtain

• 0 ⪯ y1(t) ⪯ z1(t) ⪯ �� for all t ≥ 0;

• limt→∞ z1(t) = −A−1
∑

1≤k≤m Bk��.
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Hence, there exists t2 > 0 such that '(t + T1, �) = y1(t) ⪯ �2� for all t ≥ t2. Take t̂2 = T1 + t2, then '(t, �) ⪯ �2� for all t ≥ t̂2.
Using (G4) again, we have T2 > t̂2 so that t − ℎk(t) ≥ t̂2 for all t ≥ T2, 1 ≤ k ≤ m. Thus, (12) holds for n = 1 and '(t, �) ⪯ �2�
for all t ≥ T2. By a similar procedure, we also see that (12) holds for n = 2, 3,… , and thus the proof of Second step is complete.
Third step: From (12), we see that limt→∞ '(t, �) = 0. Let �(⋅) ∈ C([−r, 0];ℝd

+) be arbitrary. There is a positive constant 

such that

�(t) ⪯ 
�, t ∈ [−r, 0].
Due to positivity, linearity and existence and uniqueness of solutions of system (5), we have

'(t, �) ⪯ '(t, 
�) = 
'(t, �), t ≥ 0.

Thus,
0 ⪯ lim

t→∞
'(t, �) ⪯ 
 lim

t→∞
'(t, �) = 0.

This shows that system (5) is asymptotically stable.

Remark 2. In18, Theorem 2, the authors studied asymptotic stability of linear mixed fractional-order with a bounded time-varying
delay

{

CD�̂
0+x(t) = Ax(t) + Bx(t − �(t)), t ≥ 0,

x(t) = '(t) ∈ ℝd , t ∈ [−r, 0],
(15)

where 0 ≤ �(t) ≤ r for all t ≥ 0. Assume that � ≻ 0 satisfying (A + B)� ≺ 0. Their approach is to compare solution '(⋅, �) of
system (15) with the one of the following system

{

CD�̂
0+x(t) = Ax(t) + Bx(t − r), t ≥ 0,

x(t) = �, t ∈ [−r, 0].

It is easy to see that this method cannot be applied for the case where the delay �(⋅) is not bounded which is the main objective
in our research.

Remark 3. For the case where �1 =⋯ = �d = � ∈ (0, 1] and ℎk = 0 (1 ≤ k ≤ m), system (5) becomes
CD�

0+x(t) = (A +
∑

1≤k≤m
Bk)x(t), t > 0. (16)

When A and Bk (1 ≤ k ≤ m) in (16) are not required to be Metzler and nonnegative, respectively. Then, by a well-known result
from fractional calculus field (see, e.g.,20, Theorem 7.20, p. 158), system (16) is asymptotically stable if and only if the eigenvalues �
of A +

∑

1≤k≤m Bk satisfy
| arg (�)| > ��

2
. (17)

In our study, we deal with positive systems and thus A +
∑m
k=1 Bk is a Metzler matrix. From27, Theorem 4, the eigenvalue �mr

of A +
∑m
k=1 Bk with the largest real part must be real. This together with the stability condition (17) implies that �mr < 0.

Therefore, all the eigenvalues of this matrix have negative real parts, that is, A +
∑m
k=1 Bk is Hurwitz.

4 NUMERICAL EXAMPLES

In this section, we give two numerical examples to illustrate effectiveness of our proposed results.
Example 1:Let �̂ = (�1, �2, �3) ∈ (0, 1]×(0, 1]×(0, 1], and continuous function ℎ ∶ [0,∞)→ ℝ≥0 be defined by ℎ(t) =

t sin2 t
2
+1

for all t ≥ 0. Consider the following positive linear mixed-order fractional system with the unbounded time-varying delay
CD�̂

0+x(t) = Ax(t) + Bx(t − ℎ(t)), t ≥ 0, (18)

where

A =
⎛

⎜

⎜

⎝

−5 1 0
0.5 −4 0.5
1 0 −6

⎞

⎟

⎟

⎠

, B =
⎛

⎜

⎜

⎝

1 0 1
0 1 0
0 1 1

⎞

⎟

⎟

⎠

.

We see that the delay ℎ(t) satisfies assumptions (G1), (G2) and (G4),A is Metzler, B is nonnegative andA+B is Hurwitz. Since
the considered system is positive, by Theorem 1, system (18) is asymptotically stable, that is, for any �(⋅) ∈ C([−1, 0];ℝ3),
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FIGURE 1 Trajectories of the solution '(⋅, �) to system (18) when �1 = 0.5, �2 = 0.7, �3 = 0.8.

the solution '(t, �) → 0 as t → ∞. In Figure 1, we simulate trajectories of the solution '(⋅, �) to system (18) when �1 = 0.5,
�2 = 0.7, �3 = 0.8 and the initial condition as �(t) = (0.3, 0.5, 0.4)T on the interval [−1, 0].
Example 2: This example is used to demonstrate the necessary conditions of both Proposition 1, Theorem 1, and Remark 3. Let
�̂ = (�1, �2) ∈ (0, 1] × (0, 1], and continuous function ℎ ∶ [0,∞) → ℝ≥0 be defined by ℎ(t) = t sin2 t

2
+ 1 for all t ≥ 0. Consider

the following linear mixed-order fractional system with the unbounded time-varying delay

CD�̂
0+x(t) = Ax(t) + Bx(t − ℎ(t)), t ≥ 0, (19)

where

A =
(

0 1
0 0

)

, B =
(

0 1
−1 0

)

.

We see that A is Metzler, however, B is not nonnegative and A + B is not Hurwitz as its eigenvalues are at {j
√

2,−j
√

2}. By
Proposition 1, system (19) is not positive and thus Theorem 1 which is based on the assumption that system (19) is a positive
system cannot be applied. In Figure 2, we simulate trajectories of the solution '(⋅, �) to system (19) when �1 = 0.5, �2 = 0.7
and the initial condition as �(t) = (1, 2)T on the interval [−1, 0]. It is clear from Figure 2 that the trajectories of the solution
are not always nonnegative, and furthermore, they are unbounded, i.e., the system is not stable with the considered unbounded
time-varying delay.
To further illustrate Remark 3, we also simulate trajectories of the solution to system (19) for the case where the time-varying

delay is zero (i.e., ℎ(t) = 0), �1 = �2 = 0.8 and with initial condition as �(0) = (1, 2)T. Note that for this case, even though the
eigenvalues of the matrix A+B satisfy the stability condition for non-positive systems, i.e., | arg (�)| > ��

2
, matrix B, however,

does not satisfy the positivity condition as stated in Proposition 1. Figure 3 shows the trajectories of the solution and it is clear
that they are not always nonnegative. Hence, positivity and asymptotic stability cannot be met.

5 CONCLUSION

In this paper, by using a new weighted type norm which is adaptive with time-delay systems, we have obtained a result on
existence and uniqueness of solutions to linear mixed fractional-order systems with time-varying delays. Then, by using the
integral representation of solutions, we have derived a necessary and sufficient condition for positivity of these systems. Finally,
by comparing trajectories of solutions of a time-delay system with that of inhomogeneous systems having the inhomogeneous
parts constant and decreasing on time and the inductive principle, we have established a necessary and sufficient criterion to
guarantee asymptotic stability of positive linear mixed fractional-order systems with both multiple bounded and unbounded
time-varying delays.
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FIGURE 2 Trajectories of the solution '(⋅, �) to system (19) when �1 = 0.5, �2 = 0.7.
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FIGURE 3 Trajectories of the solution to system (19) when ℎ(t) = 0, �1 = �2 = 0.8.
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