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1 Introduction17

In the experiment to study the Chlofibric acid synthesis (Phan-Tan-Luu & Mathieu,18

2000), the response measured was the reaction yield. The seven 2-level factors studied are:19

(1) Solution C addition temperature (25oC and 45oC); (2) Solution B addition temperature20

(25oC and 45oC); (3) Stirring duration of the reactional medium before the addition of21

solution B (5min and 60min); (4) Solution B addition duration (30min and 60 min); (5)22

Ratio NaOH/C (4 and 5.6); (6) Ratio B/C (1 and 1.5); and (7) Soda nature (Pearl and23

Pastille). The design for this experiment is a 27−3
IV , a fractional factorial design (FFD) of24

resolution IV, with the first four factors forming a factorial and the remaining factors are25

generated by the following design generators 7 = 123, 5 = 134 and 6 = 234. This design can26

also be considered as a fold-over design (FOD) with eight runs as in Figure 1, forming the27

first half-fraction design (HFD) matrix. The other HFD matrix is obtained by reversing28

the signs of all columns of the original HFD matrix.29

30

Figure 1: HFD matrix of the Chlofibric acid synthesis experiment.31

By construction, the main effects (MEs) of the design, whose HFD matrix is shown in32

Figure 1, are orthogonal to each other and to the 2-factor interactions (2FIs). However,33

the 2FIs pairs are aliased with each other: 12 = 37 = 56, 13 = 27 = 45, 14 = 35 =34

67, 15 = 26 = 34, 16 = 25 = 47, 17 = 23 = 45 and 24 = 36 = 57. Is there another design35

having the same number of factors and runs with no fully aliased 2FIs?36

Errore et al. (2017), hereafter abbreviated as EJLN, point out four desirable features37

for screening designs, such as the one for the Chlofibric acid synthesis experiment: (i)38
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orthogonality of MEs; (ii) orthogonality of MEs and 2FIs; (iii) orthogonality of 2FIs with39

one another and (iv) small run size. The Plackett-Burman designs and resolution III FFDs40

have features (i) and (iv) but not (ii) and (iii). The resolution IV FFDs, such as the one41

used in the Chlofibric acid synthesis experiment, have all desirable features except (iii).42

Finally, the resolution V FFDs have all desirable features except (iv). EJLN extended the43

work of Lin, Miller & Sitter (2008) and other authors on fold-over non-orthogonal designs,44

and introduced a new class of efficient 2-level FODs. EJLN-efficient FODs are available for45

m (the number of factors), ranging from 3 to 13, and the number of runs being equal to or46

greater than 2m. Being FODs, these designs have MEs orthogonal to 2FIs. In addition,47

they can be constructed such that the fully aliased 2FIs can be eliminated.48

The purposes of this paper are: (i) to introduce some algorithms for constructing FODs49

using the G2-aberration criterion (Tang & Deng, 1999); (ii) to compare the constructed50

FODs with those of EJLN and the 2-level designs of strength 3 for 32, 40 and 48 runs in51

Schoen & Mee (2012), and some regular FFDs for up to 64 runs in the literature and (iii)52

to construct a catalogue of G2-aberration FODs for up to 32 factors.53

The book chapter of Phan-Tan-Luu & Mathieu (2000) and the book of Lewis et al.54

(1999) provide the necessary background knowledge for those working on chemical data55

on FFDs and related design concepts such as the Hadamard matrices, design resolution,56

confounding effects, fold-over designs, screening designs, etc. Examples on the use of the57

G2-aberration and G-aberration criteria as design quality measures can be found in Ingram58

& Tang (2005), Schoen & Mee (2012), Schoen et al. (2017), Vazquez et al. (2019) and59

other authors.60

2 Using G2-aberration as a surrogate criterion for find-61

ing FODs62

Consider a 2-level design, whose model includes the MEs and 2FIs, constructed from63

the n×m design matrix D = (dui), u = 1, . . . , n; i = 1, . . . ,m:64
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yu = β0 +
m∑
i=1

βidui +
m−1∑
i=1

m∑
j=i+1

βijduiduj + εu u = 1, . . . , n. (1)

Here, yu is the response at run u; β’s are the unknown parameters; and εu (εu iid65

N(0, σ2)) is the error associated with run u. Note that the first m + 1 terms in (1) form66

the ME model. In matrix notation, (1) can be written as y = Xβ + ε, where X is the67

model matrix of size n × p with p = 1 + m + (m2 ). The uth row of X can be written68

as (1, du1, . . . , dum, du1du2, . . . , du(m−1)dum). The information matrix X′X contains the69

following elements: (i)
∑
di, (i = 1, . . . ,m); (ii)

∑
didj, (i < j); (iii)

∑
didjdk, (i < j <70

k); and (iv)
∑
didjdkdl (i < j < k < l), where i, j, k, l = 1, . . . ,m and the summations71

are taken over n design points. The number of summations of the types (i), (ii), (iii) and72

(iv) are m, (m2 ), (m3 ) and (m4 ) respectively.73

For regular FFDs - i.e. 2m−k FFDs whose the first m−k factors form a factorial and the74

remaining k factors are generated by k generators, like those in Table 12.15 of Box (1978)75

or Appendix G of Mee (2009) - the summations in (i)-(iv) are either 0 or ±n. If all the76

summations of the types (i) and (ii) are zeros and at least one of the type (iii) is nonzero,77

it is called resolution III. If all the summations of the types (i)-(iii) are zeros and at least78

one of the type (iv) is nonzero, it is called resolution IV. Finally, if all the summations of79

the types (i)-(iv) are zeros, it is called resolution V. For non-regular FFDs which include80

non-orthogonal designs, the summations of the types (i)-(iv) can take a value between −n81

and n. This means that, unlike regular FFDs in which any two effects are either orthogonal82

or fully aliased, non-regular FFDs might possess two effects that are partially aliased, i.e.83

they are neither orthogonal nor fully aliased.84

We use A1, A2, A3 and A4 to denote the sums of squares of the summations of the85

types (i)-(iv) divided by n2, respectively. For the regular FFD in the Introduction, readers86

can verify that all summations of the types (i), (ii) and (iii) are 0’s. Of the 35 (=(7
4))87

summations of the type (iv), the following seven summations
∑
d1d2d3d7 =

∑
d1d2d5d6 =88 ∑

d1d3d4d5 =
∑
d1d4d6d7 =

∑
d2d3d4d6 =

∑
d2d4d5d7 =

∑
d3d5d6d7 = 16 and the89

remaining summations are 0’s. The A4 value of this FFD is 7 = (7 × 162)/162. For a90
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regular FFD, A4, called the number of length-4 words, is also a number producing full91

aliasing and each length-4 word defines three fully aliased 2FIs pairs. The first length-492

word 1237, for example, defines three fully aliased 2FIs pairs 12=37, 13=27 and 17=23.93

As for a FOD (i.e. a design whose first HFD matrix is D and the second is −D), its94

A’s with odd subscripts will be zeros, and its A2 and A4 will be the same as D. Our95

approach to using G2-aberration criterion as a surrogate criterion for finding FODs is to96

find the most D-efficient design among the designs with the minimum (A2, A4) pair. A97

FOD d∗ constructed from the HFD matrix D∗ (with A∗2 and A∗4) is said to have less G298

aberration (and to be more desirable) than a FOD d constructed from the HFD matrix D99

with A2 and A4 having the same number of factors and runs, when A∗2 < A2, or A∗2 = A2100

and A∗4 < A4.101

Although the G2 aberration criterion is computationally-cheap and popular, there is102

no guarantee that the most D-efficient FOD has the minimum (A2, A4). At the same103

time, the most D-efficient design might not be the most desirable one. Note that sums104

of squares of the summations of the types (i)-(iv) are the sum of squares of the elements105

of X′X, and minimizing them is equivalent to minimizing trace (X′X)2 given a constant106

trace (X′X). This is similar to the case of 2-level designs being the same as minimizing107 ∑
λ2
i given a constant

∑
λi, where λ1, λ2, . . . are the eigenvalues of X′X. Clearly, smaller108 ∑

λ2
i tends to give smaller

∑
λ−1
i and larger Πλi, which are related to the well-known A-109

and D-optimality criteria, respectively.110

3 The FOLD algorithms111

In this section, we will describe three algorithms for constructing an HFD matrix D of112

size n×m (m ≤ n), from which a FOD for m factors in 2n runs can be constructed. For113

all three algorithms, we have to calculate A2 and A4. To calculate A2 and A4, we calculate114

vector Ju of length (m2 ) + (m4 ) for each row u of D, (u = 1, . . . , n):115

Ju = (du1du2, . . . , du(m−1)dum, du1du2du3du4, . . . , du(m−3)du(m−2)du(m−1)dum). (2)
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We then calculate J =
∑n

u=1 Ju and set A2 and A4 equal to the sums of squares of the first116

(m2 ) elements of J and the last (m4 ) elements of J divided by n2 respectively.117

118

(i) FOLD1: FOLD1 makes use of an input ±1 matrix of order n ≥ m. FOLD1 picks a119

random sample of m distinct columns from the input matrix. Each sample makes up one120

“try”. Among all tries which result in the minimum (A2, A4) pair, we choose the one with121

the maximum D-efficiency defined as:122

Deff =
1

2n
|X′1X1|

1
m+1 (3)

where X1 is the model matrix corresponding to the intercept term and the linear MEs.123

Remarks:124

1. If n = 4t, where t is an integer, a chosen Hadamard matrix (Hedayat & Wallis,125

1978) of order n is used as the input matrix. A ±1 square matrix H of order n is126

Hadamard if H′H = nI, where I is the identity matrix. Hadamard matrices of order127

up to n = 256 are available at http://neilsloane.com/hadamard/. If n = 4t − 1,128

the core of a normalized Hadamard matrix (a Hadamard matrix with all of the129

elements of the first row and first column are +1) of order n+ 1 will be used.130

2. FOLD1 makes use of the Theorem 4.16 of Hedayat & Wallis (1978). This theorem131

states that if H is a semi-normalized Hadamard matrix (a Hadamard matrix with all132

of the elements of the first column are +1), using H as a HFD matrix will result in133

a strength-3 orthogonal array (OA). Also note that deleting the first column of this134

Hadamard matrix will result in a strength-2 OA.135

(ii) FOLD2: FOLD2 and FOLD3 are used when we want to construct a design from136

scratch, or when we want to add additional columns to m0 columns of an HFD matrix.137

These two algorithms are also used to construct FODs with the fully aliased 2FIs pairs138

eliminated. Let max2 and max4 denote the maximum values (in terms of the absolute139
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values) of the first (m2 ) and the last (m4 ) elements of J . When max4 becomes n, we un-140

derstand that there are fully aliased 2FIs in the design. To eliminate these fully aliased141

2FIs, we impose the condition max4 < c, where c < n, in selecting the candidate designs.142

The (column-wise) interchange algorithm FOLD2 is used when we wish to impose the143

equal-occurrence constraint (of ±)upon each column of the HFD matrix D (each column144

has half of its elements at +1 and half at −1). FOLD2 has two steps:145

1. Randomly allocate 1 to half of number of elements of columns j of D (j = m0 +146

1, . . . ,m), and −1 to the remaining elements. Calculate vector J and the (A2, A4) pair.147

2. For column j of D (j = m0 + 1, . . . ,m), search for a pair of different elements such148

that swapping them results in the smallest pair (A2, A4). If found, swap them and update149

D and J . Repeat this step until no further improvement on (A2, A4) can be made.150

For each parameter set (m, n), Steps 1-2 make up one “try”. Choose the one with the151

maximum Deff among all tries which result in the minimum (A2, A4) pair.152

153

(iii) FOLD3: The coordinate-exchange algorithm FOLD3 is used when there is no need154

for us to impose the equal-occurrence constraint upon each column of the HFD matrix D.155

Unlike FODs constructed by FOLD1 and FOLD2, designs constructed by FOLD3 cannot156

be blocked into two orthogonal blocks (using the first HFD matrix as the first block and the157

second half as the second block). The main difference between our implementation of the158

coordinate-exchange algorithm and the one of EJLN is the use of the objective function.159

While EJLN used Deff as the only design criterion, we use G2 aberration as the surrogate160

criterion in addition to the Deff one. FOLD3 has two steps:161

1. Randomly allocate ±1 to elements of columns j of D (j = m0 +1, . . . ,m). Calculate162

vector J and the (A2, A4) pair.163

2. For column j of D (j = m0 + 1, . . . ,m), search for an element such that changing164

its sign of the value results in the smallest pair (A2, A4). If found, change the sign of the165

value of this element and update D and J . Repeat this step until no further improvement166

on (A2, A4) can be made.167

For each parameter set (m, n), Steps 1-2 make up one “try”. Choose the one with the168
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maximum Deff among all tries which result in the minimum (A2, A4) pair, .169

4 Using FOLD algorithms to construct FODs with170

Minimal Aliasing171

Table 1 displays the quality measures of 33 FODs with m ranging from 3 to 16 and run172

sizes ≥ 2m (Cf. Table 1 of EJLN). The quality measures of these selected FODs include:173

A2, A4, max2 (and the frequency of max2 in the first (m2 ) elements of J) , max4 (and the174

frequency of max4 in the last (m4 ) elements of J), rave and rmax (= max2/n) which are the175

average and the maximum of the correlations between the MEs (in terms of the absolute176

values), the design D-efficiency Deff defined in (2) and df(2FI) which is the rank of X2, the177

model matrix for 2FIs (Schoen & Mee, 2012). Note that designs with max4 = n in this178

table (those marked with an asterisk) indicate that they have fully aliased 2FIs. We use179

1,000 tries for each parameter set in Table 1 and the whole table was constructed in about180

five minutes on a laptop with CORETMi7.181

Out of 33 FODs in Table 1, 17 have A2 = rave = rmax = 0 and Deff = 1. Of these182

17, those with n = 4 and 8 are regular resolution IV FFD and those with n = 12 and 16183

are strength-3 OAs as those constructed by Schoen & Mee (2012). The remaining designs184

are non-orthogonal FODs. Chapter 7 of Mee (2009) give detailed account of these three185

classes of designs. The HFD matrices of the FODs in Table 1 for n = 4t or n = 4t−1 were186

constructed by FOLD1 using Hadamard matrices and cores of the normalized Hadamard187

matrices, respectively. The Hadamard matrix of order 16 which was used to construct four188

designs for (m, n)= (13, 16), (14,16), (15,16) and (16, 16) was constructed by FOLD2.189

The remaining FODs were constructed by FOLD3.190

Out of 27 FODs in Table 1 of EJLN, 18 match ours in terms of the Deff measures.191

For five parameter sets (m, n)=(7, 7), (9, 11), (10, 11), (11,11) and (13, 15), the EJLN’s192

FODs are slightly more D-efficient than ours. Our designs, however, satisfy the near equal-193

occurrence constraint for each column and as a result have less G2-aberration than EJLN’s.194
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For four parameter sets (m, n)=(9, 10), (10, 10), (13, 14) and (14, 14), the EJLN’s FODs195

are also more D-efficient than ours. However, none of our FODs for these parameters sets196

have 2FIs pairs being fully aliased or close to fully aliased as as EJLN FODs. For the197

mentioned nine parameter sets, if we use the ±1 maximal-determinant matrix of order198

n in http://www.indiana.edu/~maxdet/ as input matrices, we will get the FODs with199

about the same Deff as EJLN’s.200

FODs in Table 1 with max4 = n have fully aliased 2FIs. Table 2 shows 16 non-201

orthogonal FODs with fully aliased 2FIs eliminated for n = 8 and 16. In this table, FODs202

were constructed using a pre-set value of max4 < c, where c < n. Each parameter set203

(m,n) in Table 2 has two solutions. Those with low max2 values have high max4 values204

and vice versa. FODs for n = 16 and m = 10-15 and max4 = 8 were constructed by205

FOLD2. As such, these designs satisfy the equal-occurrence constraint for each column.206

The remaining designs in Table 2 were constructed by either FOLD3 or FOLD2 with the207

equal-occurrence constraint for each column relaxed.208

Figure 2 shows two HFD matrices of two minimal aliased FODs for (m, n) =(7, 8): (a)209

the one with max2 = max4 = 4 and (b) the one with max2 = 2 and max4 = 6. Both FODs210

have the same Deff and can be used as alternative designs for the Chlofibric acid synthesis211

experiment in the Introduction. Figure 3 shows the correlation cell plots (CCPs) of the two212

FODs, whose HFD matrices are in Figure 1 and Figure 2b. These plots, proposed by Jones213

& Nachtsheim (2011), display the magnitude of the correlation (in terms of the absolute214

values) between MEs and 2FIs in screening designs. The color of each cell ranges from215

white (no correlation) to dark (correlation of 1 or close to 1). As expected, both CCPs in216

Figures 3a and 3b show that the MEs are orthogonal to the 2FIs. Figure 3a shows that217

there are 21 fully aliased 2FIs pairs. Figure 3b shows that the correlation among MEs is218

mild and, unlike Figure 3a, none of the 2FIs are fully aliased with the other 2FIs.219
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220

Figure 2: Two HFD matrices of two minimal aliased FODs with the same Deff for (m, n)221

=(7, 8): (a) with max2 = max4 = 4 ; (b) with max2 = 2 and max4 = 6.222
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Figure 3: CCPs of the two FODs whose HFD matrices are in Figure 1 and Figure 2b.225

We also used FOLD1 with chosen Hadamard matrices of order 12, 16, 20, 24, 28 and226

32 to construct strength-3 OAs for 24, 32, 40, 48, 56 and 64 runs, and compare those for227

32, 40, 48 runs with the ones of Schoen & Mee (2012) and the regular resolution IV FFDs228

with A3 = A5 = 0 for 32 and 64 runs in Table G.3 of Mee (2009). The Hadamard matrices229

of the order 12, 20, 24 and 28 are the Plackett–Burman designs and the one of the order230
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32 is had32.pal.txt taken from http://neilsloane.com/hadamard/. The one order 16231

was constructed by FOLD2. Our constructed strength-3 OAs match those of Schoen &232

Mee (2012) in terms of A4, max4 (and the frequencies of max4) and df(2FI). For the design233

with (m, n)= (10, 16), FOLD2 produces the solution with A4 = 15 and three counts of234

max4=16. The one of Schoen & Mee (2012) has A4 = 16.5 but with a single count of235

max4=16.236

Irvine, et al. (1996) described a 213−9 experiment investigating the best method to237

remove lignin during the pulping stage without negatively impacting strength and yield.238

The 13 factors are: (A) Wood chips presoaked (No or Yes), (B) Chips pre-steamed for 10239

min 110oC (No or Yes), (C) Initial effective alkali level (%) 6 or 12, (D) Sulfide level in240

impregnation (%) 3 or 10; (E) Liquor (Black or White), (F) Liquor/wood ratio (3.5:1 or241

6:1), (G) Impregnation temperature (oC) (110 or 150), (H) Impregnation pressure (kPa)242

(190 or 1140), (J) Impregnation time (min) (10 or 40), (K) Anthraquinone (%) (0.00243

or 0.05), (L) Cook temperature (oC) (165 or 170), (M) Water quench (No or Yes), (N)244

Extended alkali wash for 1 hour (No or Yes). The design generators for this fraction245

(Figure 4a) are E = -AD, F = -ABCD, G = ABC, H = BCD, J = -AC, K = -BD, L =246

ACD, M = -AB, and N = -BC. The three response variables are the Kappa number, tear247

index and yield. This experiment was also described in Mee (2009) p. 184-186.248

The data analysis of the experiment in the previous paragraph could only show two249

marginally significant MEs: H and K. To make the result of this experiment more trust-250

worthy, we assume the scientist repeats it using a fold-over of the mentioned design as251

the HFD matrix. Let us study four candidate FODs for 13 factors in 32 runs using the252

HFD matrices in Figures 4a, 4b, 4c and 4d: (a) a 213−8
IV FFD, (b) a strength 3-OA for253

(m, n) = (13, 16) in Table 1, (c) a non-orthogonal FOD for (m, n) = (13, 16) with254

max2=12 and max4=10 in Table 2, and (d) a non-orthogonal FOD (m, n) = (13, 16) with255

max2=4 and max4=8 in Table 2. It can be seen that the worst correlation of the 2FIs pairs256

of the first two FODs is 1, of the 3rd FOD is 0.75 (=12/16) and of 4th FOD is 0.5 (=8/16).257

Figure 5 displays four CCPs whose HFD matrices are in Figure 4. Note that the 213−8
IV258

FFD (or the one p. 489 of Mee, 2009) and our strength-3 OA for 13 factors in 32 runs (or259
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the one in Table 3 of Schoen & Mee, 2012) both have A4 =55. For a regular FFD, unlike260

a strength-3 OA, A4 is also the number of length 4 words producing full aliasing. As each261

length-4 word defines three fully aliased 2FIs pairs, this 213−8
IV FFD has 165 (= 3×55) fully262

aliased 2FIs pairs. Our strength-3 OAs only has 30 (= 3× 10) pairs.263

264

265

Figure 4: Four HFD matrices of four FODs for (m, n) =(13, 16): (a) a 213−8
IV FFD, (b) a266

strength 3-OA in Table 1, (c) a non-orthogonal FOD with max2=2 and max4=10 in267

Table 2, and (d) a non-orthogonal FOD with max2=4 max4=8 in Table 2.268
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Figure 5: CCPs of four FODs whose HFD matrices are in Figure 4.270

All of our strength-3 OAs match the resolution IV FFDs (with A3 = A5 = 0) of Mee271

(2009) for 32 and 64 runs in terms of A4, except six FFDs for m = 21 to 26 in 64 runs.272

The main difference between these FFDs and ours is that the summations of the type (iv)273
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of the former is either be 0 or 32, while the latter is either 0 and ±8. Thus, all of our274

strength-3 OA for 64 runs has max4 = 8, implying the worst correlation among 2FIs is only275

0.25 (=8/32). Figure 6 displays two CCPs of two designs for 21 factors in 64 runs: (a) the276

221−15
IV FFD on p. 490 of Mee (2009) with A4 = 204 and 612 (= 3× 204) fully aliased 2FIs277

pairs (b) our strength-3 OA for the same number of factors and runs. This strength-3 OA278

has A4 = 205.279
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Figure 6: CCPs of two 2-level designs for 21 factors in 64 runs: (a) the FFD of resolution282

IV of Mee (2009) and (b) our corresponding strength-3 OA.283

5 Conclusion284

The most popular designs for screening experiments up to this point are still regular285

FFDs of various resolutions. This is because they are simple to analyze: the MEs are286

orthogonal to each other, the MEs (and 2FIs) are either orthogonal or fully aliased with287

other 2FIs. The cost of a regular FFD in a multifactor experiment is a huge number of runs288
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if a resolution V design is used, or a follow-up experiment to disentangle the MEs from289

2FIs or 2FIs from other 2FIs. Like the efficient FODs of EJLN, ours offer practitioners290

additional choices for in terms of the flexible number of design runs. Some FODs expect291

the practitioners to accept certain mild non-orthogonality among MEs to avoid any 2FI292

fully aliased.293

The HFD matrices of the 49 FODs in Tables 1 and 2, the 115 FODs for 24, 32, 40, 48,294

56 and 64 runs and the Java program implementing the FOLD algorithms in Section 3 are295

in the supplemental material.296
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Table 1: Quality measures of some constructed FODs.

m n N† A2 A4 max2 max4 rave rmax Deff df(2FI)

3 3 6 0.33 0 1 (3) 0 (0) 0.33 0.33 0.877 3

3 4 8 0 0 0 (3) 0 (0) 0 0 1.0 3

4 4 8 0 1 0 (6) 4*(1) 0 0 1.0 3

5 5 10 0.4 1.8 1 (10) 3 (5) 0.2 0.2 0.95 5

5 6 12 0.44 1.22 2 (4) 4 (2) 0.13 0.33 0.933 6

6 6 12 0.67 3.67 2 (6) 4 (6) 0.13 0.33 0.918 6

5 7 14 0.2 1.08 1 (10) 7*(1) 0.14 0.14 0.949 7

6 7 14 0.31 3.24 1 (15) 7*(3) 0.14 0.14 0.92 7

7 7 14 0.43 7.57 1 (21) 7*(7) 0.14 0.14 0.867 7

5 8 16 0 1 0 (10) 8*(1) 0 0 1.0 7

6 8 16 0 3 0 (15) 8*(3) 0 0 1.0 7

7 8 16 0 7 0 (21) 8*(7) 0 0 1.0 7

8 8 16 0 14 0 (28) 8*(14) 0 0 1.0 7

9 9 18 0.74 18.84 5 (1) 9*(7) 0.12 0.56 0.939 9

9 10 20 0.64 16.08 2 (16) 6 (12) 0.09 0.2 0.883 10

10 10 20 0.8 26.8 2 (20) 6 (20) 0.09 0.2 0.852 10

9 11 22 0.3 14.93 1 (36) 5 (42) 0.09 0.09 0.941 11

10 11 22 0.37 24.88 1 (45) 5 (70) 0.09 0.09 0.92 11

11 11 22 0.45 39.09 1 (55) 5 (110) 0.09 0.09 0.88 11

9 12 24 0 14 0 (36) 4 (126) 0 0 1.0 11

10 12 24 0 23.33 0 (45) 4 (210) 0 0 1.0 11

11 12 24 0 36.67 0 (55) 4 (330) 0 0 1.0 11

12 12 24 0 55 0 (66) 4 (495) 0 0 1.0 11

13 13 26 0.46 68.85 1 (78) 11 (13) 0.08 0.08 0.978 13

13 14 28 0.73 61.33 2 (36) 10 (5) 0.07 0.14 0.938 14

14 14 28 0.86 85.86 2 (42) 10 (15) 0.07 0.14 0.936 14

13 15 30 0.35 57.93 1 (78) 15*(10) 0.07 0.07 0.942 15

14 15 30 0.4 81.11 1 (91) 15*(15) 0.07 0.07 0.925 15

15 15 30 0.47 110.6 1 (105) 15*(21) 0.07 0.07 0.893 15

13 16 32 0 55 0 (78) 16*(10) 0 0 1.0 15

14 16 32 0 77 0 (91) 16*(14) 0 0 1.0 15

15 16 32 0 105 0 (105) 16*(21) 0 0 1.0 15

16 16 32 0 140 0 (120) 16*(28) 0 0 1.0 15

†Run size (= 2n).

‡Frequencies.

*Designs with fully aliased 2FIs.
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Table 2: Constructed FODs with fully alised 2FIs eliminated for m = 8 and 16.

m n N† A2 A4 max2 max4 rave rmax Deff df(2FI)

5 8 16 0.38 0.62 2 (6) 4 (2) 0.15 0.25 0.932 8

6 8 16 0.56 1.88 2 (9) 4 (6) 0.15 0.25 0.913 8

7 8 16 0.75 5.5 2 (12) 6 (3) 0.14 0.25 0.898 8

8 8 16 1 11 2 (16) 6 (8) 0.14 0.25 0.869 8

5 8 16 0.25 0.75 4 (1) 4 (3) 0.05 0.5 0.953 8

6 8 16 0.5 2.5 4 (2) 4 (10) 0.07 0.5 0.921 8

7 8 16 0.75 6 4 (3) 4 (24) 0.07 0.5 0.898 8

8 8 16 1 12 4 (4) 4 (48) 0.07 0.5 0.88 8

13 16 32 0.62 52.38 2 (40) 10 (12) 0.06 0.12 0.95 16

14 16 32 0.75 73.19 2 (48) 10 (17) 0.07 0.12 0.942 16

15 16 32 0.88 99.75 2 (56) 10 (24) 0.07 0.12 0.936 16

16 16 32 1 133 2 (64) 10 (32) 0.07 0.12 0.93 16

13 16 32 0.38 53.5 4 (6) 8 (139) 0.02 0.25 0.973 16

14 16 32 0.44 75.5 4 (7) 8 (197) 0.02 0.25 0.97 16

15 16 32 0.44 102.75 4 (7) 8 (285) 0.02 0.25 0.972 16

16 16 32 0.5 137 4 (8) 8 (380) 0.02 0.25 0.97 16

†Run size (= 2n).

‡Frequencies.

§Designs matching the those of EJLN in all quality measures.
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