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Abstract

This paper is devoted to discuss on the existence and uniqueness of
weak solutions to time-fractional elliptic equations having time dependent
variable coefficients. To obtain the main result, our strategy is to combine
Galerkin method, a basic inequality for fractional derivative of convex
Lyapunov candidate functions, the Yoshida approximation sequence and
the weak compactness argument.
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1 Introduction

Diffusion equations with fractional-order derivatives in time (which is called
as time-fractional diffusion equations) have been introduced in Physics by Nig-
matullin [N86] to describe super slow diffusion process in a porous medium with
the structure type of fractal geometry (Koch’s tree). Then, by the probabilistic
point of view, in the paper [MK2000], Metzler and Klafter have pointed out that
a time-fractional diffusion equation generates a non-Markovian diffusion process
with a long memory. After that, Roman and Alemany [RA94] have considered
continuous-time random walks on fractals and observed that the average prob-
ability density of random walks on fractals obeys a diffusion equation with a
fractional time derivative asymptotically. Another context where such systems
appear is the modelling of evolution processes in materials with memory, see
e.g., [P93, C99].
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The existence of solutions to time-fractional partial differential equations has
been studied by many authors. In [EK04], using Fourier transform, the authors
have obtained a fundamental solution for time-fractional elliptic equations with
smooth coefficient. Combining Galerkin method and the Yoshida approximation
sequence, in [Z09], the author has proposed a way to prove existence of certain
weak solutions to abstract evolutionary integro-differential equations in Hilbert
spaces. By virtue of the operator theory in functional analysis and the eigen-
function expansion method for symmetry elliptic operators, in [SY11], Sakamoto
and Yamamoto have proved the existence and uniqueness of the weak solution
for a fractional diffusion-wave equation. Based on a definition of the Caputo
derivative on a finite interval in fractional Sobolev spaces, Gorenflo, Luchko
and Yamamoto [GLY15] have investigated solutions (in the distribution sense)
to time-fractional diffusion equations from the operator theoretic viewpoint. In
the recent work, by a classical variational approach, K.V. Bockstal [B20] has es-
tablished the existence of a unique weak solution to a class of fractional diffusion
equations with Caputo derivative.

However, to the best of our knowledge, the development of this theory is still in
its infancy and requires further researches. The main difficulty which one have
to face is the meaning of the initial condition of solutions and the correctness of
the formulation of weak solutions. In this paper, we focus on an initial-boundary
value problem with the zero initial condition for time-fractional elliptic equa-
tions having time dependent variable coefficients which can not apply Fourier
transformation to solve them. To overcome the aforementioned obstacles, our
strategy is to use Galerkin method, a basic inequality for fractional derivative
of convex Lyapunov candidate functions, the Yoshida approximation sequence
and the weak compactness argument.

The paper is organized as follows. In section 2, we recall some preliminary results
on fractional calculus. Then, we give the setting of the problem and propose
a clear definition of a weak solution to a time fractional elliptic equation with
time dependent variable coefficients. The main result of the paper is Theorem
8 on the existence and uniqueness of weak solutions introduced in section 3.

To conclude the introduction, we will introduce some notations used throughout
the rest of the article. Denote by N the set of natural numbers and by R the set
of real numbers. For any natural d ∈ N, let Rd be the d-dimensional Euclidean
space. For a open subset Ω of Rd, let C∞c (Ω) denote the space of infinitely
differentiable functions f : Ω → R with the compact support in Ω, Lp(Ω),
p ∈ N, be the set of measurable functions f : Ω→ R such that∫

Ω

|f(x)|pdx <∞,

H1(Ω) be the Sobolev space containing all locally integrable functions f : Ω→ R
such that f and its weak derivatives belong to L2(Ω), H1

0 (Ω) be the closure of
C∞c (Ω) in H1(Ω), and H−1(Ω) be the dual space of H1

0 (Ω). Fix T > 0, denote
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by W 1
1 ([0, T ];R) the space of functions f : [0, T ];R such that f and its weak

derivative belong to the space L1([0, T ];R) and W 1
2 ([0, T ];H−1(Ω)) by the space

of functions f : [0, T ]→ H−1(Ω) such that f and the weak derivative belong to
the space L2([0, T ];H−1(Ω)).

2 Fractional calculus

We briefly recall an abstract framework of fractional calculus.

Let α ∈ (0, 1], [0, T ] ⊂ R and x : [0, T ] → R be a measurable function such

that
∫ T

0
|x(τ)| dτ < ∞. The right-handed Riemann–Liouville integral operator

of order α is defined by

(Iα0+x)(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1x(τ) dτ,

where Γ(·) is the Gamma function. The left-handed Riemann–Liouville integral
operator of order α is defined by

(IαT−x)(t) :=
1

Γ(α)

∫ T

t

(τ − t)α−1x(τ) dτ.

We have the following result on the relation between the right-handed and left-
handed Riemann–Liouville integral operators.

Theorem 2.1 (The Hardy–Littlewood form of fractional integration by parts).
If p > 1, q > 1, 0 < α < 1, 1

p + 1
q − 1 ≤ α, and

f ∈ Lp([0, T ];R), g ∈ Lq([0, T ];R),

then ∫ T

0

(Iα0+f(t))g(t)dt =

∫ T

0

f(t)IαT−g(t)dt.

Proof. See [LY37].

The right-handed Riemann–Liouville fractional derivative RLDα
a+x of x on [0, T ]

is defined by

RLDα
0+x(t) := (DI1−α

0+ x)(t) for almost t ∈ [0, T ],

where D = d
dt is the usual derivative. The left-handed Riemann–Liouville frac-

tional derivative RLDα
T−x of x on [0, T ] is defined by

RLDα
T−x(t) := −(DI1−α

T− x)(t) for almost t ∈ [0, T ].
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Theorem 2.2. The formula∫ T

0

f(t)RLDα
0+g(t)dt =

∫ T

0

g(t)RLDα
T−f(t)dt

is valid for 0 < α < 1, f ∈ IαT−(Lp), g ∈ Iα0+(Lq) and 1
p + 1

q − 1 ≤ α.

Proof. See [SKM93, Corollary 2, pp. 46].

The right-handed Caputo fractional derivative of x on [0, T ] is defined by

CDα
0+x(t) =RLDα

a+(x(t)− x(0)) for almost t ∈ [0, T ]

and the left-handed Caputo fractional derivative of x on [0, T ] is defined by

CDα
T−x(t) =RLDα

T−(x(t)− x(T )) for almost t ∈ [0, T ].

We have a sufficient condition for the existence of fractional derivative.

Theorem 2.3. Let f ∈ AC([0, T ];R), α ∈ (0, 1), then RLDα
0+f and RLDα

T−f
exist almost everywhere. Moreover, RLDα

0+f,
RLDα

T−f ∈ L
r([0, T ];R), 1 ≤ r ≤

1
α , and

RLDα
0+f(t) =

1

Γ(1− α)

[f(0)

tα
+

∫ t

0

f ′(τ)

(t− τ)α
dτ
]
,

RLDα
T−f(t) =

1

Γ(1− α)

[ f(T )

(T − t)α
−
∫ T

t

f ′(τ)

(τ − t)α
dτ
]
.

Proof. See [SKM93, Lemma 2.2, pp. 35–36].

Definition 2.4. Let u ∈ L1([0, T ];H1
0 (Ω)). We define the weak Riemann–

Liouville fractional derivative of the order α of u, RLDα
0+u(t), as below∫ T

0

ϕ(t)RLDα
0+u(t)dt =

∫ T

0

RLDα
T−ϕ(t)u(t)dt

for all ϕ ∈ C∞c ((0, T );R).
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3 Weak solutions to time-fractional elliptic equa-
tions

Let Ω be a bounded domain in Rd with the boundary ∂Ω ∈ C1, T > 0 and
α ∈ (0, 1). Denote ΩT = (0, T ]× Ω. We consider the equation of the order α

∂αu(t, x)

∂tα
−

d∑
i,j=1

∂xi(aij(t, x)∂xju(t, x))

+

d∑
j=1

bj(t, x)∂xju(t, x) + c(t, x)u(t, x) = f(t) (1)

for (t, x) ∈ ΩT , where ∂αu(t,·)
∂tα is the weak Riemann–Liouville fractional deriva-

tive of the order α of u with respect to the time variable t and

(a1) aij , bj , c ∈ L∞(ΩT ;R) for all 1 ≤ i, j ≤ d;

(a2) aij = aji for all 1 ≤ i, j ≤ d;

(a3) there exists θ > 0 such that
∑d
i,j=1 aij(t, x)ξiξj ≥ θ‖ξ‖2 for a.e. t ∈ (0, T ),

x ∈ Ω and for all ξ ∈ Rd;

(a4) f ∈ L∞([0, T ];H−1(Ω)).

Assume that
u(t, x) = 0 on [0, T ]× ∂Ω. (2)

Denote

a(u, v; t) :=

∫
Ω

−
∑

1≤i,j≤d

aij∂xju∂xiv +
∑

1≤j≤d

bj∂xjuv + cuv

for all u, v ∈ H1
0 (Ω) and u(t) := [u(t)](x) for all t ∈ [0, T ], x ∈ Ω.

Definition 3.1 (Weak solution). A function u : [0, T ] → H1
0 (Ω) is a weak

solution to the problem (1) with the condition (2) if

(i) u ∈ L2([0, T ];H1
0 (Ω)) and RLDα

0+u ∈ L2([0, T ];H−1(Ω));

(ii) for all v ∈ H1
0 (Ω)

〈RLDα
0+u(t), v〉H−1×H1

0
+ a(u(t), v; t) = 〈f(t), v〉H−1×H1

0

for a.e. t ∈ (0, T ), where 〈·, ·〉H−1×H1
0

is the duality pairing between

H−1(Ω) and H1
0 (Ω).
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3.1 Galerkin approximation solution

Let {ej}∞j=1 be smooth functions which constitutes an orthonormal basic of

L2(Ω) and a basis of H1
0 (Ω) such that

(i) −∆ek = λkek, k ∈ N;

(ii) ∫
Ω

ejej =

{
1, i = j

0, i 6= j
and

∫
Ω

DeiDej =

{
λi, i = j

0, i 6= j

For the existence of these functions, see [E98, p. 335]. Fix N ∈ N. Let
EN = span{e1, . . . , eN} and PN be the project map from L2(Ω) to EN defined

by PNu =
∑N
i=1 c

iei with u ∈ L2(Ω) has the form u =
∑∞
i=1 c

iei in which
ci =

∫
Ω
ueidx, i ∈ N. In this section, using Galerkin method, we will construct

approximation solutions to the problem (1)–(2) in EN .

Let the function uN : [0, T ]→ EN having the form

uN (t) =

N∑
i=1

ci(t)ei, t ∈ [0, T ], (3)

here ci(·), 1 ≤ i ≤ N , is continuous and has the Riemann–Liouville fractional
derivative of the order α on [0, T ]. Assume that

(RLDα
0+uN , v)L2 + a(uN (t), v; t) = 〈f(t), v〉H−1×H1

0
(4)

for a.e. t ∈ (0, T ) and
uN (0) = 0. (5)

. We obtain the following result.

Proposition 3.2. For any N ∈ N, there exists a unique solution to the problem
(4)–(5) having the form (3).

Proof. Consider the function uN : [0, T ]→ EN having the form

uN (t) =

N∑
i=1

ci(t)ei, t ∈ [0, T ],

where ci(·), 1 ≤ i ≤ N , is continuous and has the Riemann–Liouville fractional
derivative of the order α on [0, T ]. To uN (·) is a solution to (4)–(5) then ci(·),
1 ≤ i ≤ N , have to satisfy the following condition

(

N∑
i=1

RLDα
0+c

i(t)ei, ej)L2 + a(

N∑
i=1

ci(t)ei, ej ; t) = RLDα
0+c

j(t) +

N∑
i=1

ci(t)a(ei, ej ; t)

= 〈f(t), ej〉H−1×H1
0

= f j(t) (6)
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for 1 ≤ j ≤ N and almost every t ∈ (0, T ]. Moreover,

cj(0) = 0, 1 ≤ j ≤ N. (7)

Put −→c (t) = (c1(t), . . . , cN (t))T, A(t) = (a(ei, ej ; t))1≤i,j≤N , and

−→
f (t) = (f1(t), . . . , fN (t))T.

Then the system (6)–(7) is rewritten in the form

RLDα
0+
−→c (t) +A(t)−→c (t) = CDα

0+
−→c (t) +A(t)−→c (t) =

−→
f (t), t ∈ (0, T ], (8)

−→c (0) = 0. (9)

Hence, the system (8)–(9) has a solution on [0, T ] if and only if the following
integral equation has a continuous solution

−→c (t) = − 1

Γ(α)

∫ t

0

(t−τ)α−1A(τ)−→c (τ)dτ+
1

Γ(α)

∫ t

0

(t−τ)α−1−→f (τ)dτ, t ∈ [0, T ].

(10)
On the space C([0, T ];RN ), we establish an operator as

T0ϕ(t) = − 1

Γ(α)

∫ t

0

(t−τ)α−1A(τ)ϕ(τ)dτ+
1

Γ(α)

∫ t

0

(t−τ)α−1−→f (τ)dτ, t ∈ [0, T ].

For any γ > 0, define a norm ‖ · ‖γ on C([0, T ];RN ) by

‖ϕ‖γ := max
t∈[0,T ]

‖ϕ(t)‖
exp (γt)

.

It is obvious that (C([0, T ];RN ), ‖ · ‖γ) is a Banach space. On the other hand,
for any ϕ, ϕ̃ ∈ C([0, T ];RN ) and t ∈ [0, T ], we have

‖T0ϕ(t)− T0ϕ̃(t)‖
exp (γt)

≤
ess supt∈[0,T ]‖A(t)‖

Γ(α)

∫ t

0

exp (−γ(t− τ))

(t− τ)1−α
‖ϕ(τ)− ϕ̃(τ)‖

exp (γτ)
dτ

≤
ess supt∈[0,T ]‖A(t)‖

γαΓ(α)

∫ γt

0

uα−1 exp (−u)du‖ϕ− ϕ̃‖γ

≤
ess supt∈[0,T ]‖A(t)‖

γα
‖ϕ− ϕ̃‖γ .

Hence, for γ > 0 large enough, the operator T0 is contractive in (C([0, T ];RN ), ‖·
‖γ) and has a unique fixed point which is also the solution to the system (10).
The proof is complete.

We now give some estimate of the Galerkin approximation solution.

Proposition 3.3. For any N ∈ N, there exists a positive constant C, depending
on Ω, T and the coefficients of the equation (1), such that

‖uN‖2L2([0,T ];L2(Ω)) + ‖uN‖2L2([0,T ];H1
0 (Ω)) + ‖RLDα

0+uN‖2L2([0,T ];H−1(Ω))

≤ C‖f‖2L∞([0,T ];H−1(Ω).
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Proof. First, using [T18, Theorem 2], we have

〈RLDα
0+uN (t),uN (t)〉H−1×H1

0
= 〈CDα

0+uN (t),uN (t)〉H−1×H1
0

=
( N∑
i=1

CDα
0+c

i(t)ei,

N∑
i=1

ci(t)ei

)
L2

=

N∑
i=1

ci(t)CDα
0+c

i(t)

≥ 1

2

N∑
i=1

CDα
0+(ci(t))2

=
1

2
CDα

0+

N∑
i=1

(ci(t))2

=
1

2
CDα

0+‖uN (t)‖2L2(Ω).

On the other hand, by [E98, Theorem 3, p. 300], there exist β > 0 and ν ≥ 0
such that

β‖uN (t)‖2H1
0
≤ a(uN (t),uN (t); t) + ν‖uN (t)‖2L2 for almost every t ∈ (0, T ).

Moreover, from the assumption of f and the Cauchy inequality

〈f(t),uN (t)〉H−1×H1
0
≤ ‖f(t)‖H−1(Ω)‖uN (t)‖H1

0 (Ω)

≤ 1

4β
‖f(t)‖2H−1(Ω) + β‖uN (t)‖2H1

0 (Ω).

Thus, for almost every t ∈ (0, T ),

CDα
0+‖uN (t)‖2L2(Ω) ≤ 2ν‖uN (t)‖2L2(Ω) +

1

2β
‖f(t)‖2H−1(Ω).

Put v(t) := ‖uN (t)‖2L2 , h(t) := 1
2β ‖f(t)‖2H−1 and use the comparison principle

for solutions to fractional differential equation and the variation of constants
formula for solutions to the equations (see [CT17, Lemma 3.1]), we obtain the
estimate

v(t) ≤
∫ t

0

(t− τ)α−1Eα,α(2ν(t− τ)α)h(τ)dτ for a.a. t ∈ [0, T ].

This implies that

‖uN (t)‖2L2(Ω) ≤
TαEα,α+1(2νTα)‖f‖2L∞(0,T ;H−1(Ω))

2β
for a.a. t ∈ [0, T ]. (11)

Next, by the similar arguments as above, we see that

CDα
0+‖uN (t)‖2L2(Ω) + β‖uN (t)‖2H1

0 (Ω) ≤
1

β
‖f(t)‖2H−1(Ω) + 2ν‖uN (t)‖2L2(Ω).
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Furthermore,

CDα
0+‖uN (t)‖2L2(Ω) = RLDα

0+‖uN (t)‖2L2(Ω) =
d

dt
I1−α
0+ (‖uN (t)‖2L2(Ω)),

I1−α
0+ (‖uN (t)‖2L2(Ω))|

T
0 + β‖uN‖2L2(0,T ;H1

0 (Ω))

≤
T‖f‖2L∞(0,T ;H−1(Ω))

β
+ 2ν

∫ T

0

‖uN (t)‖2L2(Ω)dt,

Thus,

β‖uN‖2L2([0,T ];H1
0 (Ω)) ≤

T‖f‖2L∞([0,T ];H−1(Ω))

β
+ 2ν

∫ T

0

‖uN (t)‖2L2(Ω)dt.

This combines with (11) implies that there is a constant C1 > 0 such that

‖uN‖2L2([0,T ];H1
0 (Ω)) ≤ C1‖f‖2L∞([0,T ];H−1(Ω)). (12)

Finally, fix any v ∈ H1
0 (Ω) with ‖v‖H1

0
≤ 1, and write v = v0 + v1, where

v1 ∈ span{e1, . . . , eN} and (ei, v0) = 0, 1 ≤ i ≤ N . Using the estimate con-
cerning the bilinear operator a(·, ·) and the facts that (RLDα

0+uN (t), v1)L2 =
〈RLDα

0+uN (t), v〉H−1×H1
0
, (RLDα

0+uN (t), v1)L2+a(uN (t), v1; t) = 〈f(t), v1〉H−1×H1
0

and ‖v1‖H1
0 (Ω) ≤ ‖v‖H1

0 (Ω) ≤ 1, we obtain

|〈RLDα
0+uN (t), v〉H−1×H1

0
| ≤ |a(uN (t), v1; t)|+ |〈f(t), v1〉H−1×H1

0
|

≤ C2‖uN (t)‖H1
0 (Ω)‖v‖H1

0 (Ω) + ‖f(t)‖H−1(Ω)‖v‖H1
0 (Ω).

Hence,

‖RLDα
0+uN (t)‖H−1(Ω) ≤ C2‖uN (t)‖H1

0 (Ω) + ‖f(t)‖H−1(Ω)

which together with (13) and the estimate (12) implies

‖RLDα
0+uN‖2L2([0,T ];H−1(Ω)) ≤ C3‖f‖2L∞([0,T ];H−1(Ω)). (13)

From (11), (12) and (13), the proof is complete.

3.2 Existence and uniqueness of weak solutions

We now in a position to state the main result of the paper.

Theorem 3.4. Consider the problem (1)–(2). Suppose that assumptions (a1)–
(a4) hold. Then, this problem has a unique weak solution.
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Proof. First, we prove the system (1)–(2) has at least one weak solution. From
(12) and (13), by the Banach–Aloaglu theorem, there exist a sequence {nk}∞k=1

such that

unk ⇀ u in L2
0([0, T ];H1

0 (Ω)), (14)
RLDα

0+unk ⇀ v in L2([0, T ];H−1(Ω)). (15)

Let ϕ ∈ C∞c ((0, T );R) and ψ ∈ H1
0 (Ω) be arbitrary. Then,∫ T

0

〈v(t), φ(t)ψ〉H−1×H1
0
dt = lim

k→∞

∫ T

0

〈RLDα
0+unk(t), φ(t)ψ〉H−1×H1

0
dt

= lim
k→∞

∫ T

0

φ(t)〈RLDα
0+unk(t), ψ〉H−1×H1

0
dt

= lim
k→∞

∫ T

0

RLDα
T−φ(t)〈unk(t), ψ〉H−1×H1

0
dt

=

∫ T

0

RLDα
T−φ(t)〈u(t), ψ〉H−1×H1

0
dt

=

∫ T

0

〈RLDα
0+u(t), ϕ(t)ψ〉H−1×H1

0
dt

=

∫ T

0

ϕ(t)〈RLDα
0+u(t), ψ〉H−1×H1

0
dt,

which implies
v(t) = RLDα

0+u(t). (16)

Fix N,M ∈ N and N > M . For any ϕ ∈ C∞0 ([0, T ];R) and w ∈ EM , we see
that∫ T

0

〈RLDα
0+uN (t), ϕ(t)w〉H−1×H1

0
dt =

∫ T

0

ϕ(t)〈RLDα
0+uN (t), w〉H−1×H1

0

→
∫ T

0

ϕ(t)〈RLDα
0+u(t), w〉H−1×H1

0
,

∫ T

0

a(uN (t), ϕ(t)w; t)dt =

∫ T

0

ϕ(t)a(uN (t), w; t)dt

→
∫ T

0

ϕ(t)a(u(t), w; t)dt,

and ∫ T

0

〈f(t), ϕ(t)w〉H−1×H1
0
dt =

∫ T

0

ϕ(t)〈f(t), w〉H−1×H1
0
dt.

Thus,
〈RLDα

0+u(t), w〉H−1×H1
0

+ a(u(t), w; t) = 〈f(t), w〉H−1×H1
0
. (17)
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By combining (14), (15), (16) and (17), there exists a unique weak solution to
the problem (1)–(2).

Next, we give a proof for the uniqueness of weak solutions to (1)–(2). Suppose
that u1, u2 are two weak solution to this system. Define u := u1 − u2. Then, u
satisfies

〈(k ∗ u)′(t), v〉H−1×H1
0

+ a(u(t), v; t) = 0, v ∈ H1
0 (Ω), a.a. t ∈ (0, T ).

Let v = u(t), then for almost every t ∈ (0, T )

〈RLDα
0+u(t), u(t)〉H−1×H1

0
+ a(u(t), u(t); t) = 〈(k ∗ u)′(t), u(t)〉H−1×H1

0

+ a(u(t), u(t); t) = 0, (18)

where k(t) = 1
Γ(1−α)tα for t > 0. Motivated by Rico Zacher [VZ08, pp. 291–

292], we will approximate the operator d
dt (k ∗u) by the sequences { ddt (kn ∗u)}n,

where kn(t) := ns(t) = nEα(−ntα) (note that by using Laplace transform, we
see that s(·) is the unique solution to the equation s(t) + n(l ∗ s)(t) = 1, t > 0,

where l(t) = tα−1

Γ(α) , t > 0, see [KTT20, p. 3]). We rewrite the equation (18) as

below

〈(kn ∗ u)′(t), u(t)〉H−1×H1
0

+ a(u(t), u(t); t) = hn(t), a.a. t ∈ (0, T ) (19)

with

hn(t) := 〈(kn ∗ u)′(t)− (k ∗ u)′(t), u(t)〉H−1×H1
0
, a.a. t ∈ (0, T ).

By virtue of [Z09, Lemma 2.1],

1

2

d

dt
(kn ∗ ‖u(·)‖2L2(Ω))(t) ≤ (

d

dt
(kn ∗ u)(t), u(t))L2(Ω), a.a. t ∈ (0, T ).

On the other hand, there exists d ≥ 0 such that

a(u(t), u(t); t) ≥ −ν‖u(t)‖2L2(Ω).

Hence, from (19), we have

d

dt
(kn ∗ ‖u(·)‖2L2(Ω))(t) ≤ 2ν‖u(t)‖2L2(Ω) + 2hn(t), a.a. t ∈ (0, T ).

This together with the positivity of l implies that

l ∗ d
dt

(kn ∗ ‖u(·)‖2L2(Ω)) ≤ 2ν(l ∗ ‖u(·)‖2L2(Ω))(t) + 2l ∗ hn(t), a.a. t ∈ (0, T ).

We will show that
lim
n→∞

hn = 0 in L1([0, T ];R). (20)
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From the facts that u ∈ L2([0, T ];H−1(Ω)), RLDα
0+u = d

dt [k∗u] ∈ L2([0, T ];H−1(Ω)),
[VZ08, Proposition 2.1, p. 293] and [VZ08, Example 2.1, p. 294], we have

k ∗ ‖u(·)‖2H−1(Ω) ∈W
1
1 ([0, T ];R).

This implies that
u ∈ D(B2), ‖u(·)‖2H−1(Ω) ∈ D(B1),

where

B1(u) =
d

dt
k ∗ u, D(B1) = {u ∈ L1(0, T ) : k ∗ u ∈W 1

1 ([0, T ];R)},

and

B2(u) =
d

dt
k∗u, D(B2) = {u ∈ L2([0, T ];H−1(Ω)) : k∗u ∈W 1

2 ([0, T ];H−1(Ω))}.

Hence, by using [VZ08, Estimate (18), p. 292], we obtain

lim
n→∞

∫ T

0

‖ d
dt

[(k − kn) ∗ u](t)‖2H−1(Ω)dt

= lim
n→∞

‖ d
dt

[(k − kn) ∗ u](·)‖2L2([0,T ];H−1(Ω)) = 0. (21)

By (21) and the Holder inequality, the following estimates hold

lim
n→∞

∫ T

0

|hn(t)|dt = lim
n→∞

∫ T

0

|〈(kn ∗ u)′(t)− (k ∗ u)′(t), u(t)〉H−1×H1
0
|dt

≤ lim
n→∞

∫ T

0

‖ d
dt

[(k − kn) ∗ u](t)‖H−1(Ω)‖u(t)‖H1
0 (Ω)

≤ lim
n→∞

‖ d
dt

[(k − kn) ∗ u](·)‖L2([0,T ];H−1(Ω))‖u‖L2([0,T ];H1
0 (Ω))

= 0,

which shows that limn→∞ hn = 0 in L1([0, T ]). Notice that

(l ∗ k)(t) =
1

Γ(α)Γ(1− α)

∫ t

0

sα−1(t− s)−αds

=
1

Γ(α)Γ(1− α)

∫ 1

0

u−α(1− u)α−1du

=
1

Γ(α)Γ(1− α)
B(α, 1− α)

= 1, ∀t > 0,

l∗ d
dt

(kn∗‖u(·)‖2L2(Ω)) =
d

dt
(kn∗l∗‖u(·)‖2L2(Ω))→

d

dt
(k∗l∗‖u(·)‖2L2(Ω)) = ‖u(·)‖2L2(Ω)
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in L1([0, T ];R) as n→∞ (see [VZ08, Estimate (19), p. 292]) and l ∗ hn → 0 in
L1([0, T ];R) as n→∞, we obtain

‖u(t)‖2L2(Ω) ≤ 2ν(l ∗ ‖u(·)‖2L2(Ω))(t), a.a. t ∈ (0, T ). (22)

From (22), using a Gronwall type inequality as in [H81, Lemma 7.1.1, p. 188],
then ‖u(t)‖2L2(Ω) = 0 a.e. in (0, T ), that is, u1 = u2. The proof is complete.

Remark 3.5. The key point in the proof of the uniqueness of weak solution to
the problem (1)–(2) is to show that hn → 0 in L1([0, T ]) as n → ∞. The
approach proposed in [Z09] can not apply directly to this situation because the
operator B = d

dt (k ∗ u) with domain D(B) = {u ∈ L2([0, T ];H1
0 (Ω)) : d

dtk ∗ u ∈
L2([0, T ];H−1(Ω))} is not m-accretive.
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