MULTI-TERM FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN POWER GROWTH FUNCTION SPACES IN "FCAA" JOURNAL

Vu Kim Tuan ${ }^{1}$, Dinh Thanh Duc ${ }^{2}$, and Tran Dinh Phung ${ }^{3}$

Abstract

In this paper we characterize the Laplace transform of functions with power growth square averages and study several multi-term Caputo and Riemann-Liouville fractional integro-differential equations in this space of functions.

MSC 2010: Primary: 44A10, 26A33; Secondary: 45J05
Key Words and Phrases: functions with power growth square averages; Laplace transform; Caputo fractional derivative; Riemann-Liouville fractional derivative; fractional integro-differential equation

1. Introduction

Denote by \mathcal{L} and \mathcal{L}^{-1} the Laplace transform and its inverse transform [9]

$$
\begin{align*}
& F(s)=(\mathcal{L} f)(s):=\int_{0}^{\infty} e^{-s t} f(t) d t \\
& f(t)=\left(\mathcal{L}^{-1} F\right)(t):=\frac{1}{2 \pi i} \int_{\text {Res }=d} F(s) e^{s t} d s \tag{1.1}
\end{align*}
$$

The Laplace transform of functions with bounded growth averages, introduced in [10], has been characterized in [8]

Theorem 1.1. [8] A function $F(s)$ is the Laplace transform of f such that

$$
\begin{equation*}
f \in B S A\left(\mathbb{R}_{+}\right) \quad \Longleftrightarrow \sup _{T>0} \frac{1}{T+1} \int_{0}^{T}|f(t)|^{2} d t<\infty \tag{1.2}
\end{equation*}
$$

(C) Year Diogenes Co., Sofia
pp. $\mathrm{xxx}-\mathrm{xxx}$, DOI:
if and only if $F(s)$ is holomorphic in the right-half plane $\operatorname{Re} s>0$, and

$$
\begin{equation*}
\sup _{x>0} \frac{x}{x+1} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y<\infty \tag{1.3}
\end{equation*}
$$

For the following Caputo and Riemann-Liouville fractional integrodifferential equations

$$
\begin{align*}
& { }^{\mathcal{C}} \partial_{t}^{\alpha} f(t)+k f(t)+\int_{0}^{t} g(t-\tau) f(\tau) d \tau=h(t), \quad f(0)=f_{0}, \tag{1.4}\\
& { }_{0+}^{\alpha} f(t)+k f(t)+\int_{0}^{t} g(t-\tau) f(\tau) d \tau=h(t), \quad I_{0+}^{1-\alpha} f(0+)=f_{0}, \quad \frac{1}{2}<\alpha \leq 1, \tag{1.5}
\end{align*}
$$

where ${ }^{\mathcal{C}} \partial_{t}^{\alpha}, D_{0+}^{\alpha}$, and $I_{0+}^{1-\alpha}$ are the Caputo and Riemann-Liouville fractional derivatives and the Riemann-Liouville fractional integral [4], it was shown [8] that if $g, h \in L^{1}\left(\mathbb{R}_{+}\right)$, and $\|g\|_{1}<k$, then the Caputo fractional integro-differential equation $(\overline{1.4}$) and the Riemann-Liouville fractional integro-differential equation (1.5) have unique solutions f from $B S A\left(\mathbb{R}_{+}\right)$.

In this paper we will study multi-term Caputo and Riemann-Liouville fractional integro-differential equations. The solutions as it turns out will have some power growth at infinity. It is well known [9] that if $f(t)$ is locally integrable and has a power growth, then $F(s)$ exists and is holomorphic in the right-half plane Res>0. The Tauberian theorem for the Laplace transform [9]

$$
\begin{equation*}
f(t) \sim \frac{A t^{p-1}}{\Gamma(p)}, \quad t \rightarrow \infty \quad \Longrightarrow \quad F(s) \sim \frac{A}{s^{p}} \quad s \rightarrow 0_{+} \quad p>0 \tag{1.6}
\end{equation*}
$$

says that, moreover, if $f(t)$ grows as t^{p-1} at infinity, then $F(s)$ grows as s^{-p} at 0 .

The converse question is if $F(s)$ is holomorphic in the right-half plane Re $s>0$, and has a power growth at 0 , whether it is the Laplace transform of a power growth function. The answer turns out affirmative if we consider functions of square average power growth instead of functions with pointwise power growth.

2. Functions with Square Average Power Growth

We now generalize the class of functions investigated in [8] to functions with square average power growth on $\mathbb{R}_{+}=(0 ; \infty)$.

Definition 2.1. By $B S A_{p}\left(\mathbb{R}_{+}\right)$, the linear space of functions with square average power growth of order $p \geq 0$, we denote the set of locally
integrable functions f on \mathbb{R}_{+}such that

$$
\begin{equation*}
\sup _{T>0} \frac{1}{(T+1)^{p}} \int_{0}^{T}|f(t)|^{2} d t<\infty, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B S A_{\infty}\left(\mathbb{R}_{+}\right)=\bigcup_{p>0} B S A_{p}\left(\mathbb{R}_{+}\right) \tag{2.8}
\end{equation*}
$$

We say $f \in B S A_{p}^{m}\left(\mathbb{R}_{+}\right)$if $f, f^{\prime}, \ldots ., f^{(m)} \in B S A_{p}\left(\mathbb{R}_{+}\right)$.
Clearly, $B S A_{0}\left(\mathbb{R}_{+}\right)=L^{2}\left(\mathbb{R}_{+}\right)$, and $B S A_{p}\left(\mathbb{R}_{+}\right) \subset B S A_{p^{\prime}}\left(\mathbb{R}_{+}\right)$if $p<p^{\prime}$. It is readily seen that $L^{2}\left(\mathbb{R}_{+}\right) \cup L^{\infty}\left(\mathbb{R}_{+}\right) \subset B S A_{p}\left(\mathbb{R}_{+}\right), p \geq 1$, and by Hölder's inequality $L^{q}\left(\mathbb{R}_{+}\right) \subset B S A_{p}\left(\mathbb{R}_{+}\right)$, for $2 \leq q \leq \infty, p \geq 1$. However, note that, for $p \geq 0$, we have $f(t)=t^{p} \in B S A_{2 p+1}\left(\mathbb{R}_{+}\right)$, and yet $f(t) \notin$ $L^{q}\left(\left(\mathbb{R}_{+}\right)\right), 0<q<\infty$.

Functions with bounded square averages on the whole real line have been studied first in [10]. The special case $p=1$ has been considered in [7, 8].

Now we characterize the Laplace transform of functions from $B S A_{p}\left(\mathbb{R}_{+}\right)$.
Theorem 2.1. A function $F(s)$ is the Laplace transform of $f \in$ $B S A_{p}\left(\mathbb{R}_{+}\right)$if and only if $F(s)$ is holomorphic in the right-half plane $\operatorname{Re} s>$ 0 , and

$$
\begin{equation*}
\sup _{x>0}\left(\frac{x}{x+1}\right)^{p} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y<\infty . \tag{2.9}
\end{equation*}
$$

Proof. The case $p=0$ is the Paley-Wiener theorem for the Laplace transform [6, 9]

$$
\begin{align*}
f(t) \in L^{2}\left(\mathbb{R}_{+}\right) \Longleftrightarrow & F(s) \text { is holomorphic in } \operatorname{Re}>0, \\
& \sup _{x>0} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y<\infty . \tag{2.10}
\end{align*}
$$

For $p>0$ we follow the proof in [8]. Let $f \in B S A_{p}\left(\mathbb{R}_{+}\right)$. Denote $\tilde{f}(T)=\int_{0}^{T} f(t) d t$. Integration by parts gives

$$
F(s):=\int_{0}^{\infty} e^{-s t} f(t) d t=\left.e^{-s T} \tilde{f}(T)\right|_{T=0} ^{T=\infty}+s \int_{0}^{\infty} e^{-s t} \tilde{f}(t) d t, \quad \operatorname{Re}>0
$$

By the Hölder inequality we have, for $T>0$,

$$
\begin{aligned}
|\tilde{f}(T)| \leq \int_{0}^{T} 1 \cdot|f(t)| d t \leq \sqrt{\int_{0}^{T} d t \int_{0}^{T}|f(t)|^{2} d t} & =\sqrt{T} \sqrt{\int_{0}^{T}|f(t)|^{2} d t} \\
& \leq C \sqrt{T}(T+1)^{\frac{p}{2}}
\end{aligned}
$$

Here and throughout the paper C denotes a universal constant that can be distinct in different places. Hence

$$
\left.e^{-s T} \tilde{f}(T)\right|_{T=0} ^{T=\infty}=0, \quad \operatorname{Re}>0
$$

and

$$
F(s)=s \int_{0}^{\infty} e^{-s t} \tilde{f}(t) d t, \quad \operatorname{Re} s>0
$$

Since $|\tilde{f}(t)| \leq C \sqrt{t(t+1)^{p}}$, the Laplace transform of $\tilde{f}(t)$, i.e. $\frac{F(s)}{s}$, exists and is holomorphic in the right half plane $\operatorname{Re} s>0$.

Integration by parts yields

$$
\begin{gather*}
\int_{0}^{\infty} e^{-2 x t}|f(t)|^{2} d t=\left.e^{-2 x T} \int_{0}^{T}|f(t)|^{2} d t\right|_{T=0} ^{T=\infty} \\
+2 x \int_{0}^{\infty} e^{-2 x T} \int_{0}^{T}|f(t)|^{2} d t d T \leq C x \int_{0}^{\infty}(T+1)^{p} e^{-2 x T} d T \\
=\frac{C e^{2 x}}{2^{p+1} x^{p}} \int_{2 x}^{\infty} \tau^{p} e^{-\tau} d \tau=\frac{C e^{2 x}}{2^{p+1} x^{p}} \Gamma(p+1,2 x) \tag{2.11}
\end{gather*}
$$

where $\Gamma(p+1 ; 2 x)$ is the upper incomplete Gamma function [1]. Using the asymptotics of the upper incomplete Gamma function [1]

$$
\begin{array}{cl}
\Gamma(p, x) \sim x^{p-1} e^{-x}, & x \rightarrow \infty \\
\Gamma(p, x) \sim & \Gamma(p), \\
x \rightarrow 0
\end{array}
$$

we see that the last expression of 2.11 is bounded at infinity and $\sim x^{-p}$ at 0 . Consequently,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x t}|f(t)|^{2} d t \leq C\left(\frac{x+1}{x}\right)^{p} \tag{2.12}
\end{equation*}
$$

Hence, $e^{-x t} f(t) \in L^{2}\left(\mathbb{R}_{+}\right)$for any $x>0$. Consequently, $F(s)$ with Re $s>$ $x_{0}>0$ is the Laplace transform of $e^{-x_{0} t} f(t) \in L^{2}\left(\mathbb{R}_{+}\right)$at the point $s-x_{0}$. The Parseval formula for the Laplace transform in $L^{2}\left(\mathbb{R}_{+}\right)$, see $[9$, gives

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x t}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y, \quad x>x_{0}>0 \tag{2.13}
\end{equation*}
$$

Since x_{0} is an arbitrary positive constant, formula 2.13) holds for any $x>0$. Combining formulas (2.12) and (2.13) we obtain

$$
\int_{-\infty}^{\infty}|F(x+i y)|^{2} d y \leq \frac{C(x+1)^{p}}{x^{p}}
$$

that yields (2.9).
Conversely, assume that $F(s)$ is holomorphic in the right-half plane Re $s>0$ and formula (2.9) holds. Then

$$
\sup _{x>x_{0}} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y<\infty, \quad x_{0}>0 .
$$

By the Paley-Wiener theorem [6, 9 function $F\left(x_{0}+s\right)$ is the Laplace transform of a function, say, $f_{x_{0}}(t) \in L^{2}\left(\mathbb{R}_{+}\right)$

$$
F\left(x_{0}+s\right)=\int_{0}^{\infty} e^{-s t} f_{x_{0}}(t) d t, \quad \operatorname{Re} s>0
$$

Thus

$$
\begin{aligned}
F\left(x_{0}+x_{1}+s\right) & =\int_{0}^{\infty} e^{\left(-x_{1}-s\right) t} f_{x_{0}}(t) d t \\
& =\int_{0}^{\infty} e^{\left(-x_{0}-s\right) t} f_{x_{1}}(t) d t, \quad \operatorname{Re} s, x_{0}, x_{1}>0
\end{aligned}
$$

Consequently, $e^{-x_{1} t} f_{x_{0}}(t)=e^{-x_{0} t} f_{x_{1}}(t)$. Denote $f(t)=e^{x_{0} t} f_{x_{0}}(t)$. It is clear that $f(t)$ is independent of $x_{0}>0$ and F is the Laplace transform of f

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad \operatorname{Re} s>x_{0}+x_{1}
$$

As $e^{-x_{0} t} f(t)=f_{x_{0}}(t) \in L^{2}\left(\mathbb{R}_{+}\right)$, the Parseval formula for the Laplace transform 9 yields

$$
\int_{0}^{\infty} e^{-2 x_{0} t}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|F\left(x_{0}+i y\right)\right|^{2} d y \leq \frac{C\left(x_{0}+1\right)^{p}}{x_{0}^{p}}, \quad x_{0}>0 .
$$

Let g be a bounded function on \mathbb{R}_{+}. Then

$$
\begin{align*}
\int_{0}^{\infty} e^{-2 x t} g\left(e^{-2 x t}\right)|f(t)|^{2} d t & \leq\|g\|_{\infty} \int_{0}^{\infty} e^{-2 x t}|f(t)|^{2} d t \tag{2.14}\\
& \leq \frac{C(x+1)^{p}}{x^{p}}\|g\|_{\infty}, \quad x>0 .
\end{align*}
$$

Take

$$
g(t)=\left\{\begin{array}{rr}
\frac{1}{t}, & t>e^{-2} \\
0, & 0<t \leq e^{-2} .
\end{array}\right.
$$

Then $\|g\|_{\infty}=e^{2}$, and 2.14 becomes

$$
\int_{0}^{1 / x}|f(t)|^{2} d t \leq \frac{C(x+1)^{p}}{x^{p}}, \quad x>0
$$

Replacing x by $\frac{1}{T}$ we arrive at

$$
\frac{1}{(T+1)^{p}} \int_{0}^{T}|f(t)|^{2} d t \leq C, \quad T>0
$$

Thus $f \in B S A_{p}\left(\mathbb{R}_{+}\right)$, and Theorem 2.1 is proved.

3. Special cases

Corollary 3.1. Let $F(s)$ be holomorphic in the right half plane $\operatorname{Re} s>0$ and $|F(s)| \leq C|s|^{-\alpha}, \alpha>\frac{1}{2}$. Then F is the Laplace transform of a function $f \in B S A_{2 \alpha-1}\left(\mathbb{R}_{+}\right)$.

Pr o of. Because $\alpha>\frac{1}{2}, F(x+i \bullet) \in L^{2}(\mathbb{R})$, and

$$
\begin{aligned}
\frac{x^{2 \alpha-1}}{(x+1)^{2 \alpha-1}} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y & \leq \frac{C x^{2 \alpha-1}}{(x+1)^{2 \alpha-1}} \int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right)^{-\alpha} d y \\
& =\frac{C \sqrt{\pi} \Gamma\left(\alpha-\frac{1}{2}\right)}{\Gamma(\alpha)(x+1)^{2 \alpha-1}}<\infty
\end{aligned}
$$

hence, formula 2.9 holds, i.e., $f \in B S A_{2 \alpha-1}\left(\mathbb{R}_{+}\right)$.
The following result explains the importance of $B S A_{\alpha}\left(\mathbb{R}_{+}\right)$in studying fractional calculus.

THEOREM 3.1. Let $g \in L^{1}\left(\mathbb{R}_{+}\right)$with $\|g\|_{1}<k, 0<\alpha \leq 1$. Then

$$
\begin{equation*}
\frac{1}{\left|s^{\alpha}+k+G(s)\right|} \leq \frac{4 k}{k-\|g\|_{1}}|s|^{-\alpha}, \quad \operatorname{Re} s>0 \tag{3.15}
\end{equation*}
$$

If, moreover, $\frac{1}{2}<\alpha \leq 1$, then the inverse Laplace transform

$$
\begin{equation*}
f:=\mathcal{L}^{-1}\left(\frac{1}{s^{\alpha}+k+G(s)}\right) \tag{3.16}
\end{equation*}
$$

is from $B S A_{2 \alpha-1}\left(\mathbb{R}_{+}\right)$.
P r o o f. Since $g \in L^{1}\left(\mathbb{R}_{+}\right)$, its Laplace transform $G(s)$ is holomorphic in the right half-plane, and from

$$
|G(s)| \leq \int_{0}^{\infty} e^{-(\operatorname{Re} s) t}|g(t)| d t \leq\|g\|_{1}<k, \operatorname{Re}\left(s^{\alpha}\right) \geq 0, \quad \text { for } \quad \operatorname{Re} s>0
$$

we deduce that $\operatorname{Re}\left(s^{\alpha}+k+G(s)\right)>0$ when $\operatorname{Re} s>0$. Consequently, $\frac{1}{s^{\alpha}+k+G(s)}$ is also holomorphic in the right half-plane. Let us denote by

$$
h(s)=k+G(s),
$$

then $h(s)$ is clearly holomorphic in the right half-plane, and for $\operatorname{Re} s>0$,

$$
\begin{equation*}
0<k-\|g\|_{1} \leq \operatorname{Re} h(s) \tag{3.17}
\end{equation*}
$$

and also $|h(s)|<2 k$.
For $|s|^{\alpha}>4 k, \quad \operatorname{Re} s>0$, we have

$$
\begin{equation*}
\left|s^{\alpha}+h(s)\right| \geq|s|^{\alpha}-|h(s)|>|s|^{\alpha}-2 k>\frac{1}{2}|s|^{\alpha}>\frac{k-\|g\|_{1}}{4 k}|s|^{\alpha} . \tag{3.18}
\end{equation*}
$$

For $|s|^{\alpha} \leq 4 k, \quad \operatorname{Re} s>0$, we have

$$
\begin{equation*}
\left|s^{\alpha}+h(s)\right| \geq \operatorname{Re}\left(s^{\alpha}+h(s)\right)>k-\|g\|_{1}>\frac{k-\|g\|_{1}}{4 k}|s|^{\alpha} . \tag{3.19}
\end{equation*}
$$

Combining (3.18) and (3.19) we obtain (3.15). Statement (3.16) follows from Corollary 3.1.

Combining Corollary 3.1 and Theory 3.1 we arrive at
Corollary 3.2. Let $\|g\|_{1}<k, 0<\alpha \leq 1, \beta<\alpha-\frac{1}{2}$, then

$$
\begin{equation*}
\mathcal{L}^{-1}\left(\frac{s^{\beta}}{s^{\alpha}+k+G(s)}\right) \in B S A_{2(\alpha-\beta)-1}\left(\mathbb{R}_{+}\right) \tag{3.20}
\end{equation*}
$$

As an example consider the two-parametric Mittag-Leffler function [3]

$$
E_{\alpha, \beta}(z)=\sum_{j=0}^{\infty} \frac{z^{j}}{\Gamma(\alpha j+\beta)}, \quad \alpha>0
$$

We have [3]

$$
\mathcal{L}\left(t^{\beta-1} E_{\alpha, \beta}\left(-k t^{\alpha}\right)\right)(s)=\frac{s^{\alpha-\beta}}{s^{\alpha}+k}
$$

Consequently, by Corollary 3.2 if $k>0,0<\alpha \leq 1$, and $\beta>\frac{1}{2}$, then $t^{\beta-1} E_{\alpha, \beta}\left(-k t^{\alpha}\right) \in B S A_{2 \beta-1}\left(\mathbb{R}_{+}\right)$.

Theorem 3.2. Let $g \in L^{1}\left(\mathbb{R}_{+}\right)$with $\|g\|_{1}<k, 0<\alpha_{n}<\ldots<\alpha_{1}<$ $\alpha_{0} \leq 1$, and $a_{1}, a_{2}, \ldots, a_{n}>0$. Then

$$
\begin{equation*}
\frac{1}{\left|s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)\right|} \leq \frac{C_{1}^{\alpha_{0}}}{k-\|g\|_{1}}|s|^{-\alpha_{0}}, \quad \operatorname{Re} s>0 \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=\max _{1 \leq j \leq n}\left\{\left[(n+2) a_{j}\right]^{\frac{1}{\alpha_{0}-\alpha_{j}}},[2 k(n+2)]^{\frac{1}{\alpha_{0}}}\right\} \tag{3.22}
\end{equation*}
$$

If, moreover, $\frac{1}{2}<\alpha_{0} \leq 1$, then the inverse Laplace transform

$$
\begin{equation*}
\mathcal{L}^{-1}\left(\frac{1}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)}\right) \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right) \tag{3.23}
\end{equation*}
$$

Proof. As in the proof of Theory 3.1, $G(s)$ is holomorphic in the right half-plane $\operatorname{Re} s>0$, and there $\operatorname{Re}(k+G(s)) \geq k-\|g\|_{1}>0$. Since $0<\alpha_{j} \leq 1$, then $\operatorname{Re}\left(s^{\alpha_{j}}\right)>0, j=0,1,2, \ldots, n$, in $\operatorname{Re} s>0$. Together with $a_{1}, a_{2}, \ldots a_{n}>0$ we arrive at

$$
\operatorname{Re}\left(s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)\right)>0
$$

in $\operatorname{Re} s>0$. Consequently, $\frac{1}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)}$ is also holomorphic in the right half-plane. For $|s|>C_{1}, \operatorname{Re} s>0$, we have

$$
\frac{|s|^{\alpha_{0}}}{n+2}-a_{j}|s|^{\alpha_{j}} \geq 0, \quad j=1,2,3, \ldots, n, \quad \frac{|s|^{\alpha_{0}}}{n+2}-k-|G(s)| \geq 0
$$

Consequently,

$$
\begin{align*}
& \left|s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)\right| \geq|s|^{\alpha_{0}}-\sum_{j=1}^{n} a_{j}|s|^{\alpha_{j}}-k-|G(s)| \tag{3.24}\\
& \geq \frac{|s|^{\alpha_{0}}}{n+2}+\sum_{j=1}^{n}\left(\frac{|s|^{\alpha_{0}}}{n+2}-a_{j}|s|^{\alpha_{j}}\right)+\left(\frac{|s|^{\alpha_{0}}}{n+2}-k-|G(s)|\right)>\frac{|s|^{\alpha_{0}}}{n+2} .
\end{align*}
$$

For $|s| \leq C_{1}, \operatorname{Re} s>0$,

$$
\begin{gather*}
\left|s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)\right| \geq \operatorname{Re}\left(s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)\right) \tag{3.25}\\
>\operatorname{Re}(k+G(s)) \geq k-\|g\|_{1} \geq \frac{k-\|g\|_{1}}{C_{1}^{\alpha_{0}}}|s|^{\alpha_{0}} .
\end{gather*}
$$

MULTI-TERM FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS .. 9
Since $C_{1}^{\alpha_{0}} \geq 2 k(n+2)$ we have

$$
\frac{k-\|g\|_{1}}{C_{1}^{\alpha_{0}}} \leq \frac{k}{2 k(n+2)}<\frac{1}{n+2} .
$$

Combining (3.24) and (3.25) we obtain (3.21). Statement (3.23) follows from Corollary 3.1.

Lemma 3.1. Let $f \in B S A_{p}\left(\mathbb{R}_{+}\right)$and $g \in L^{1}\left(\mathbb{R}_{+}\right)$. Then their Laplace convolution

$$
\begin{equation*}
h(t)=(f * g)(t):=\int_{0}^{t} f(t-\tau) g(\tau) d \tau \tag{3.26}
\end{equation*}
$$

belongs to $B S A_{p}\left(\mathbb{R}_{+}\right)$.
Proof. In fact, applying the Laplace transform to (3.26), we obtain $H(s)=F(s) G(s)$, therefore, $|H(s)| \leq|F(s)|\|g\|_{1}$, and

$$
\begin{align*}
& \sup _{x>0}\left(\frac{x}{x+1}\right)^{p} \int_{-\infty}^{\infty}|H(x+i y)|^{2} d y \\
& \leq\|g\|_{1}^{2} \sup _{x>0}\left(\frac{x}{x+1}\right)^{p} \int_{-\infty}^{\infty}|F(x+i y)|^{2} d y<\infty . \tag{3.27}
\end{align*}
$$

4. Multi-Term Riemann-Liouville Fractional integro-differential equation

Consider now the following multi-term Riemann-Liouville fractional integro-differential equation

$$
\begin{gather*}
D_{0+}^{\alpha_{0}} f(t)+\sum_{j=1}^{n} a_{j} D_{0+}^{\alpha_{j}} f(t)+k f(t)+\int_{0}^{t} g(t-\tau) f(\tau) d \tau=h(t), \quad I_{0+}^{1-\alpha_{0}} f(0+)=f_{0} \tag{4.28}\\
\frac{1}{2}<\alpha_{0} \leq 1,0<\alpha_{n}<\ldots<\alpha_{1}<\alpha_{0}
\end{gather*}
$$

where $k, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}_{+}, g, h \in L^{1}\left(\mathbb{R}_{+}\right)$are given, and f is the unknown. Here D_{0+}^{α} is the Riemann-Liouville fractional derivative [4]

$$
\begin{equation*}
D_{0+}^{\alpha} f(t)=\frac{d^{n}}{d t^{n}} I_{0+}^{n-\alpha} f(t), \quad I_{0+}^{n-\alpha} f(t)=\int_{0}^{t} \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} f(\tau) d \tau, \quad \alpha<n . \tag{4.29}
\end{equation*}
$$

Special cases of 4.28) have been considered in (4]. It is well known [4] that

$$
\begin{equation*}
\mathcal{L}\left(D_{0+}^{\alpha} f\right)(s)=s^{\alpha} F(s)-\sum_{k=0}^{n-1} s^{n-k-1} D_{0+}^{\alpha+k-n} f(0+), \quad n-1 \leq \alpha<n . \tag{4.30}
\end{equation*}
$$

Theorem 4.1. Let $k>0, f_{0} \in \mathbb{R}, g, h \in L^{1}\left(\mathbb{R}_{+}\right)$, be given, and $\|g\|_{1}<k$. Then the multi-term Riemann-Liouville fractional integro-differential equation 4.28) has a unique solution f from $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$.

Proof. Since $I_{0+}^{1-\alpha_{0}} f(0+)=f_{0}$, and $1-\alpha_{0}<1-\alpha_{j}$, then $I_{0+}^{1-\alpha_{j}} f(0+)=$ $0, j=1,2, \ldots, n$. Applying the Laplace transform to equation 4.28) and taking into account (4.30) we obtain

$$
\begin{equation*}
s^{\alpha_{0}} F(s)-f_{0}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}} F(s)+k F(s)+G(s) F(s)=H(s) . \tag{4.31}
\end{equation*}
$$

Solving for $F(s)$ yields

$$
\begin{equation*}
F(s)=\frac{f_{0}+H(s)}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)} . \tag{4.32}
\end{equation*}
$$

Denote

$$
\begin{equation*}
M(s)=\frac{1}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)}, \tag{4.33}
\end{equation*}
$$

then according to Theory 3.2 , its inverse Laplace transform, namely $m(t)$, belongs to $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$, and

$$
\begin{equation*}
f(t)=f_{0} m(t)+\int_{0}^{t} m(t-\tau) h(\tau) d \tau \tag{4.34}
\end{equation*}
$$

Since $m \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$and $h \in L^{1}\left(\mathbb{R}_{+}\right)$, by Lemma 3.1, their Laplace convolution $m * h$ belongs to $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$. Hence, f, defined by (4.34), is from $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$. Using the Tauberian theorem for the Laplace transform [9] we have

$$
\begin{equation*}
M(s) \sim \frac{1}{s^{\alpha_{0}}}, \quad s \rightarrow \infty \quad \Longrightarrow \quad m(t) \sim \frac{t^{\alpha_{0}-1}}{\Gamma\left(\alpha_{0}\right)}, \quad t \rightarrow 0+. \tag{4.35}
\end{equation*}
$$

Consequently, $I_{0+}^{1-\alpha_{0}} m(t) \sim 1, \quad t \rightarrow 0+$. Together with (4.34) it yields $I_{0+}^{1-\alpha_{0}} f(0+)=f_{0}$.

Conversely, let f be given by (4.34), where m is defined as the Laplace inverse of (4.33). Then $f \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$and $I_{0+}^{1-\alpha_{0}} f(0+)=f_{0}$. Applying the Laplace transform to 4.34) and taking into account 4.33) we
arrive at (4.32). Hence, (4.31) holds. The Laplace inverse of (4.31) yields (4.28).

5. Multi-Term Caputo Fractional integro-differential equation

Consider the following Caputo fractional integro-differential equation

$$
{ }^{\mathcal{C}} \partial_{t}^{\alpha_{0}} f(t)+\sum_{j=1}^{n} a_{j}{ }^{\mathcal{C}} \partial_{t}^{\alpha_{j}} f(t)+k f(t)+\int_{0}^{t} g(t-\tau) f(\tau) d \tau=h(t), \quad f(0+)=f_{0},
$$

$$
\begin{equation*}
\frac{1}{2}<\alpha_{0} \leq 1,0<\alpha_{n}<\ldots<\alpha_{1}<\alpha_{0} \tag{5.36}
\end{equation*}
$$

where $a_{j}, k \in \mathbb{R}_{+}, j=1,2, \ldots, n$, and $g, h \in L^{1}\left(\mathbb{R}_{+}\right)$are given, and f is the unknown. Here ${ }^{\mathcal{C}} \partial_{t}^{\alpha}$ is the Caputo fractional derivative [4]
${ }^{\mathcal{C}} \partial_{t}^{\alpha} f(t)=\int_{0}^{t} \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} f^{(n)}(\tau) d \tau, \quad n-1<\alpha<n, \quad{ }^{\mathcal{c}} \partial_{t}^{n} f(t)=f^{(n)}(t)$.
It is well known [4] that

$$
\begin{equation*}
\mathcal{L}\left({ }^{\mathcal{C}} \partial_{t}^{\alpha} f\right)(s)=s^{\alpha} F(s)-\sum_{k=0}^{n-1} s^{\alpha-k-1} f^{(k)}(0), \quad n-1<\alpha \leq n . \tag{5.38}
\end{equation*}
$$

Theorem 5.1. Let $k>0, f_{0} \in \mathbb{R}, g, h \in L^{1}\left(\mathbb{R}_{+}\right)$, be given, and $\|g\|_{1}<k$. Then the Caputo fractional integro-differential equation (5.36) has a unique solution f from $B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$.

Proof. Applying the Laplace transform to equation (5.36) and taking into account (5.38) we obtain

$$
\begin{equation*}
\left(s^{\alpha_{0}} F(s)-s^{\alpha_{0}-1} f_{0}\right)+\sum_{j=1}^{n} a_{j}\left(s^{\alpha_{j}} F(s)-s^{\alpha_{j}-1} f_{0}\right)+k F(s)+G(s) F(s)=H(s) . \tag{5.39}
\end{equation*}
$$

Solving for $F(s)$ yields

$$
\begin{equation*}
F(s)=\frac{s^{\alpha_{0}-1} f_{0}+f_{0} \sum_{j=1}^{n} a_{j} s^{\alpha_{j}-1}+H(s)}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)} . \tag{5.40}
\end{equation*}
$$

Denote

$$
\begin{align*}
L_{j}(s) & =\frac{s^{\alpha_{j}-1}}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)}, j=0,1, \cdots, n \\
M(s) & =\frac{1}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+k+G(s)} \tag{5.41}
\end{align*}
$$

then according to Theorem 3.2, their inverse Laplace transforms, namely $l_{j}(t)$ and $m(t)$, belong to $B S A_{2\left(\alpha_{0}-\alpha_{j}\right)+1}\left(\mathbb{R}_{+}\right) \subset B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$, and $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$, respectively. Moreover,

$$
\begin{equation*}
f(t)=f_{0} l_{0}(t)+f_{0} \sum_{j=1}^{n} a_{j} l_{j}(t)+\int_{0}^{t} m(t-\tau) h(\tau) d \tau \tag{5.42}
\end{equation*}
$$

Since $m \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$and $h \in L^{1}\left(\mathbb{R}_{+}\right)$, by Lemma 3.1, their Laplace convolution $m * h$ belongs to $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right) \subset B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$. Hence, f, defined by (5.42), is from $B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$. Using the Tauberian theorem for the Laplace transform [9] we have

$$
L_{0}(s) \sim \frac{1}{s}, \quad s \rightarrow \infty \quad \Longrightarrow \quad l_{0}(t) \sim 1, \quad t \rightarrow 0+
$$

and

$$
\begin{aligned}
& L_{j}(s) \sim \frac{1}{s^{\alpha_{0}-\alpha_{j}+1}}, \quad s \rightarrow \infty \quad \Longrightarrow \quad l_{j}(t) \sim \frac{t^{\alpha_{0}-\alpha_{j}}}{\Gamma\left(\alpha_{0}-\alpha_{j}+1\right)}, \quad t \rightarrow 0+ \\
& \quad j=1, \cdots, n
\end{aligned}
$$

Consequently, $f(0+)=f_{0}$.
Conversely, let f be given by (5.42), where l_{j}, m are defined as the Laplace inverse transforms of 5.41). Then $f \in B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$and $f(0+)=f_{0}$. Applying the Laplace transform to (5.42) and taking into account (5.41) we arrive at (5.40). Hence, (5.39) holds. The Laplace inverse transform of (5.39) yields (5.36).

REmark 5.1. If $f_{0}=0$, then $f \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$.
Remark 5.2. Although $g, h \in L^{1}\left(\mathbb{R}_{+}\right)$, in general $f \notin L^{1}\left(\mathbb{R}_{+}\right)$. In fact, if $f \in L^{1}\left(\mathbb{R}_{+}\right)$, then $|F(s)| \leq\|f\|_{1}$ for $\operatorname{Re} s \geq 0$. But if $f_{0} \neq 0$, then from (5.40) we have

$$
F(s) \sim C s^{\alpha_{n}-1} \rightarrow \infty,
$$

as $s \rightarrow 0+$. Consequently, $f \notin L^{1}\left(\mathbb{R}_{+}\right)$.

6. Mixed Caputo Riemann-Liouville Fractional integro-differential equation

Now we consider the following mixed Caputo Riemann-Liouville fractional integro-differential equation with a dominant Caputo fractional derivative

$$
\begin{align*}
& \mathcal{C}_{t}^{\alpha_{0}} f(t)+\sum_{j=1}^{n} a_{j}{ }^{\mathcal{C}} \partial_{t}^{\alpha_{j}} f(t)+\sum_{j=1}^{m} b_{j} D_{0+}^{\beta_{j}} f(t)+k f(t)+\int_{0}^{t} g(t-\tau) f(\tau) d \tau=h(t), \\
& \quad f(0+)=f_{0}, \\
& \quad \frac{1}{2}<\alpha_{0} \leq 1, \quad 0<\alpha_{n}<\ldots<\alpha_{1}<\alpha_{0}, \quad 0<\beta_{m}<\ldots<\beta_{1}<\alpha_{0}, \tag{6.43}
\end{align*}
$$

where $g, h \in L^{1}\left(\mathbb{R}_{+}\right), a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{m}, k \in \mathbb{R}_{+}$, are given, and f is the unknown.

Theorem 6.1. Let $k>0, f_{0} \in \mathbb{R}, g, h \in L^{1}\left(\mathbb{R}_{+}\right)$, be given, and $\|g\|_{1}<k$. Then the mixed Caputo Riemann-Liouville fractional integrodifferential equation (6.43) has a unique solution f from $B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$.

Proof. Since $f(0+)=f_{0}$, then $I_{0+}^{1-\beta_{j}}(0+)=0, j=1, \cdots, m$, and applying the Laplace transform to equation (6.43) and taking into account (4.28) and (5.38), we obtain

$$
\begin{align*}
\left(s^{\alpha_{0}} F(s)-s^{\alpha_{0}-1} f_{0}\right) & +\sum_{j=1}^{n} a_{j}\left(s^{\alpha_{j}} F(s)-s^{\alpha_{j}-1} f_{0}\right) \\
& +\sum_{j=1}^{m} b_{j} s^{\beta_{j}} F(s)+k F(s)+G(s) F(s)=H(s) . \tag{6.44}
\end{align*}
$$

Solving for $F(s)$ yields

$$
\begin{equation*}
F(s)=\frac{f_{0} s^{\alpha_{0}-1}+f_{0} \sum_{j=1}^{n} a_{j} s^{\alpha_{j}-1}+H(s)}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+\sum_{j=1}^{m} b_{j} s^{\beta_{j}}+k+G(s)} . \tag{6.45}
\end{equation*}
$$

Denote

$$
\begin{gather*}
L_{j}(s)=\frac{s^{\alpha_{j}-1}}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+\sum_{j=1}^{m} b_{j} s^{\beta_{j}}+k+G(s)}, \quad j=0,1, \cdots, n, \\
M(s)=\frac{1}{s^{\alpha_{0}}+\sum_{j=1}^{n} a_{j} s^{\alpha_{j}}+\sum_{j=1}^{m} b_{j} s^{\beta_{j}}+k+G(s)}, \tag{6.46}
\end{gather*}
$$

then according to Theorem 3.2, their inverse Laplace transforms, namely $l_{j}(t)$ and $m(t)$, belong to $B S A_{2\left(\alpha_{0}-\alpha_{j}\right)+1}\left(\mathbb{R}_{+}\right) \subset B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$, and
$B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$, respectively. Moreover,

$$
\begin{equation*}
f(t)=f_{0} l_{0}(t)+f_{0} \sum_{j=1}^{n} a_{j} l_{j}(t)+\int_{0}^{t} m(t-\tau) h(\tau) d \tau \tag{6.47}
\end{equation*}
$$

Since $m \in B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right)$, and $h \in L^{1}\left(\mathbb{R}_{+}\right)$, by Lemma 3.1, their Laplace convolution $m * h$ belongs to $B S A_{2 \alpha_{0}-1}\left(\mathbb{R}_{+}\right) \subset B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$. Hence, f, defined by (6.47), is from $B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$. From (6.45) we have

$$
F(s) \sim \frac{f_{0}}{s}, \quad s \rightarrow \infty .
$$

Using the Tauberian theorem for the Laplace transform [9] we obtain

$$
f(t) \sim f_{0}, \quad t \rightarrow 0+
$$

Consequently, $f(0+)=f_{0}$.
Conversely, let f be given by (6.47), where l_{j}, m are defined as the inverse Laplace transforms of (6.47). Then $f \in B S A_{2\left(\alpha_{0}-\alpha_{n}\right)+1}\left(\mathbb{R}_{+}\right)$and $f(0+)=f_{0}$. Applying the Laplace transform to 6.47) and taking into account (6.46) we arrive at (6.45). Hence, (6.44) holds. The inverse Laplace transform of (6.44) yields (6.43).

Acknowledgements

The second author would like to thank the Vietnam Institute for Advanced Study in Mathematics VIASM for support during his visit to VIASM, and Huynh Van Ngai (Quy Nhon University), for fruitful discussions.

References

[1] M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing, Dover, New York (1972).
[2] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In. A. Carpinteri and F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York (1997), 223-276.
[3] R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).
[4] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).
[5] F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey. Frac. Cal. Appl. Anal. 10, No 3 (2007), 269-308.
[6] R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Amer. Math. Soc. Coll. Publ. 19, 1934.
[7] Vu Kim Tuan, Laplace transform of functions with bounded averages. International Journal of Evolution Equations 1, No 4 (2005), 429-433.
[8] Vu Kim Tuan, Fractional integro-differential equations in Wiener spaces. Fract. Calc. Appl. Anal. 23, No 5 (2020), 1300-1328; DOI: 10.1515/fca-2020-0065.
[9] D.V. Widder, The Laplace Transform. Princeton Univ. Press, Princeton (1946).
[10] N. Wiener, Generalized harmonic analysis. Acta Math. 55(1930), 117258.
${ }^{1}$ Department of Mathematics
University of West Georgia
Carrollton, GA 30118, USA
e-mail: vu@westga.edu (Corr. author) Received: November 20, 2020
${ }^{2}$ Department of Mathematics and Statistics
Quy Nhon University
Binh Dinh, Vietnam
e-mail: dinhthanhduc@qnu.edu.vn
${ }^{3}$ Department of Mathematics and Statistics
University of Finance - Marketing
Ho Chi Minh City, Vietnam
e-mail: td.phung@ufm.edu.vn

