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Abstract

In this paper we characterize the Laplace transform of functions with
power growth square averages and study several multi-term Caputo and
Riemann-Liouville fractional integro-differential equations in this space of
functions.
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1. Introduction

Denote by L and L−1 the Laplace transform and its inverse transform
[9]

F (s) = (Lf)(s) :=

∫ ∞
0

e−stf(t) dt,

f(t) = (L−1F )(t) :=
1

2πi

∫
Res=d

F (s) est ds.

(1.1)

The Laplace transform of functions with bounded growth averages, intro-
duced in [10], has been characterized in [8]

Theorem 1.1. [8] A function F (s) is the Laplace transform of f such
that

f ∈ BSA(R+) ⇐⇒ sup
T>0

1

T + 1

∫ T

0
|f(t)|2 dt <∞, (1.2)
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if and only if F (s) is holomorphic in the right-half plane Re s > 0, and

sup
x>0

x

x+ 1

∫ ∞
−∞
|F (x+ iy)|2 dy <∞. (1.3)

For the following Caputo and Riemann-Liouville fractional integro-
differential equations

C∂αt f(t) + kf(t) +

∫ t

0
g(t− τ)f(τ)dτ = h(t), f(0) = f0, (1.4)

α
0+f(t)+kf(t)+

∫ t

0
g(t−τ)f(τ)dτ = h(t), I1−α0+ f(0+) = f0,

1

2
< α ≤ 1,

(1.5)
where C∂αt , D

α
0+, and I1−α0+ are the Caputo and Riemann-Liouville frac-

tional derivatives and the Riemann-Liouville fractional integral [4], it was
shown [8] that if g, h ∈ L1(R+), and ‖g‖1 < k, then the Caputo frac-
tional integro-differential equation (1.4) and the Riemann-Liouville frac-
tional integro-differential equation (1.5) have unique solutions f fromBSA(R+).

In this paper we will study multi-term Caputo and Riemann-Liouville
fractional integro-differential equations. The solutions as it turns out will
have some power growth at infinity. It is well known [9] that if f(t) is locally
integrable and has a power growth, then F (s) exists and is holomorphic in
the right-half plane Re s > 0. The Tauberian theorem for the Laplace
transform [9]

f(t) ∼ Atp−1

Γ(p)
, t→∞ =⇒ F (s) ∼ A

sp
s→ 0+ p > 0, (1.6)

says that, moreover, if f(t) grows as tp−1 at infinity, then F (s) grows as
s−p at 0.

The converse question is if F (s) is holomorphic in the right-half plane
Re s > 0, and has a power growth at 0, whether it is the Laplace transform
of a power growth function. The answer turns out affirmative if we con-
sider functions of square average power growth instead of functions with
pointwise power growth.

2. Functions with Square Average Power Growth

We now generalize the class of functions investigated in [8] to functions
with square average power growth on R+ = (0;∞).

Definition 2.1. By BSAp(R+), the linear space of functions with
square average power growth of order p ≥ 0, we denote the set of locally
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integrable functions f on R+ such that

sup
T>0

1

(T + 1)p

∫ T

0
|f(t)|2 dt <∞, (2.7)

and

BSA∞(R+) =
⋃
p>0

BSAp(R+). (2.8)

We say f ∈ BSAmp (R+) if f, f ′, ...., f (m) ∈ BSAp(R+).

Clearly, BSA0(R+) = L2(R+), and BSAp(R+) ⊂ BSAp′(R+) if p < p′.
It is readily seen that L2(R+) ∪ L∞(R+) ⊂ BSAp(R+), p ≥ 1, and by
Hölder’s inequality Lq(R+) ⊂ BSAp(R+), for 2 ≤ q ≤ ∞, p ≥ 1. However,
note that, for p ≥ 0, we have f(t) = tp ∈ BSA2p+1(R+), and yet f(t) /∈
Lq((R+)), 0 < q <∞.

Functions with bounded square averages on the whole real line have
been studied first in [10]. The special case p = 1 has been considered in
[7, 8].

Now we characterize the Laplace transform of functions fromBSAp(R+).

Theorem 2.1. A function F (s) is the Laplace transform of f ∈
BSAp(R+) if and only if F (s) is holomorphic in the right-half plane Re s >
0, and

sup
x>0

(
x

x+ 1

)p ∫ ∞
−∞
|F (x+ iy)|2 dy <∞. (2.9)

P r o o f. The case p = 0 is the Paley-Wiener theorem for the Laplace
transform [6, 9]

f(t) ∈ L2(R+) ⇐⇒ F (s) is holomorphic in Re > 0,

sup
x>0

∫ ∞
−∞
|F (x+ iy)|2 dy <∞. (2.10)

For p > 0 we follow the proof in [8]. Let f ∈ BSAp(R+). Denote

f̃(T ) =
∫ T
0 f(t) dt. Integration by parts gives

F (s) :=

∫ ∞
0

e−stf(t) dt = e−sT f̃(T )
∣∣∣T=∞
T=0

+ s

∫ ∞
0

e−stf̃(t) dt, Re > 0.
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By the Hölder inequality we have, for T > 0,

|f̃(T )| ≤
∫ T

0
1.|f(t)|dt ≤

√∫ T

0
dt

∫ T

0
|f(t)|2dt =

√
T

√∫ T

0
|f(t)|2dt

≤ C
√
T (T + 1)

p
2 .

Here and throughout the paper C denotes a universal constant that can be
distinct in different places. Hence

e−sT f̃(T )
∣∣∣T=∞
T=0

= 0, Re > 0,

and

F (s) = s

∫ ∞
0

e−stf̃(t) dt, Re s > 0.

Since |f̃(t)| ≤ C
√
t(t+ 1)p, the Laplace transform of f̃(t), i.e. F (s)

s , exists
and is holomorphic in the right half plane Re s > 0.

Integration by parts yields∫ ∞
0

e−2xt|f(t)|2dt = e−2xT
∫ T

0
|f(t)|2 dt

∣∣∣∣T=∞
T=0

+2x

∫ ∞
0

e−2xT
∫ T

0
|f(t)|2 dt dT ≤ Cx

∫ ∞
0

(T + 1)pe−2xT dT

=
Ce2x

2p+1xp

∫ ∞
2x

τpe−τdτ =
Ce2x

2p+1xp
Γ(p+ 1, 2x) (2.11)

where Γ(p+ 1; 2x) is the upper incomplete Gamma function [1]. Using the
asymptotics of the upper incomplete Gamma function [1]

Γ(p, x) ∼ xp−1e−x, x→∞,
Γ(p, x) ∼ Γ(p), x→ 0,

we see that the last expression of (2.11) is bounded at infinity and ∼ x−p

at 0. Consequently,∫ ∞
0

e−2xt|f(t)|2dt ≤ C
(x+ 1

x

)p
. (2.12)

Hence, e−xtf(t) ∈ L2(R+) for any x > 0. Consequently, F (s) with Re s >
x0 > 0 is the Laplace transform of e−x0tf(t) ∈ L2(R+) at the point s− x0.
The Parseval formula for the Laplace transform in L2(R+), see [9], gives∫ ∞

0
e−2xt|f(t)|2dt =

1

2π

∫ ∞
−∞
|F (x+ iy)|2 dy, x > x0 > 0. (2.13)
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Since x0 is an arbitrary positive constant, formula (2.13) holds for any
x > 0. Combining formulas (2.12) and (2.13) we obtain∫ ∞

−∞
|F (x+ iy)|2 dy ≤ C(x+ 1)p

xp
,

that yields (2.9).
Conversely, assume that F (s) is holomorphic in the right-half plane

Re s > 0 and formula (2.9) holds. Then

sup
x>x0

∫ ∞
−∞
|F (x+ iy)|2dy <∞, x0 > 0.

By the Paley-Wiener theorem [6, 9] function F (x0+s) is the Laplace trans-
form of a function, say, fx0(t) ∈ L2(R+)

F (x0 + s) =

∫ ∞
0

e−stfx0(t) dt, Re s > 0.

Thus

F (x0 + x1 + s) =

∫ ∞
0

e(−x1−s)tfx0(t)dt

=

∫ ∞
0

e(−x0−s)tfx1(t)dt, Re s, x0, x1 > 0.

Consequently, e−x1tfx0(t) = e−x0tfx1(t). Denote f(t) = ex0tfx0(t). It is
clear that f(t) is independent of x0 > 0 and F is the Laplace transform of
f

F (s) =

∫ ∞
0

e−stf(t) dt, Re s > x0 + x1.

As e−x0tf(t) = fx0(t) ∈ L2(R+), the Parseval formula for the Laplace
transform [9] yields∫ ∞

0
e−2x0t|f(t)|2 dt =

1

2π

∫ ∞
−∞
|F (x0 + iy)|2 dy ≤ C(x0 + 1)p

xp0
, x0 > 0.

Let g be a bounded function on R+. Then∫ ∞
0

e−2xtg(e−2xt)|f(t)|2 dt ≤ ‖g‖∞
∫ ∞
0

e−2xt|f(t)|2 dt

≤ C(x+ 1)p

xp
‖g‖∞, x > 0.

(2.14)

Take

g(t) =

{
1
t , t > e−2

0, 0 < t ≤ e−2 .
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Then ‖g‖∞ = e2, and (2.14) becomes∫ 1/x

0
|f(t)|2 dt ≤ C(x+ 1)p

xp
, x > 0.

Replacing x by 1
T we arrive at

1

(T + 1)p

∫ T

0
|f(t)|2 dt ≤ C, T > 0.

Thus f ∈ BSAp(R+), and Theorem 2.1 is proved. 2

3. Special cases

Corollary 3.1. Let F (s) be holomorphic in the right half plane
Re s > 0 and |F (s)| ≤ C|s|−α, α > 1

2 . Then F is the Laplace transform of
a function f ∈ BSA2α−1(R+).

P r o o f. Because α > 1
2 , F (x+ i•) ∈ L2(R), and

x2α−1

(x+ 1)2α−1

∫ ∞
−∞
|F (x+ iy)|2dy ≤ Cx2α−1

(x+ 1)2α−1

∫ ∞
−∞

(x2 + y2)−αdy

=
C
√
πΓ
(
α− 1

2

)
Γ(α)(x+ 1)2α−1

<∞,

hence, formula (2.9) holds, i.e., f ∈ BSA2α−1(R+). 2

The following result explains the importance of BSAα(R+) in studying
fractional calculus.

Theorem 3.1. Let g ∈ L1(R+) with ‖g‖1 < k, 0 < α ≤ 1. Then

1∣∣∣sα + k +G(s)
∣∣∣ ≤ 4k

k − ‖g‖1
|s|−α, Re s > 0. (3.15)

If, moreover, 1
2 < α ≤ 1, then the inverse Laplace transform

f := L−1
(

1

sα + k +G(s)

)
(3.16)

is from BSA2α−1(R+).

P r o o f. Since g ∈ L1(R+), its Laplace transform G(s) is holomorphic
in the right half-plane, and from

|G(s)| ≤
∫ ∞
0

e−(Re s) t |g(t)| dt ≤ ‖g‖1 < k, Re(sα) ≥ 0, for Re s > 0,
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we deduce that Re (sα + k +G(s)) > 0 when Re s > 0. Consequently,
1

sα + k +G(s)
is also holomorphic in the right half-plane. Let us denote by

h(s) = k +G(s),

then h(s) is clearly holomorphic in the right half-plane, and for Re s > 0,

0 < k − ‖g‖1 ≤ Reh(s) (3.17)

and also |h(s)| < 2k.
For |s|α > 4k, Re s > 0, we have

|sα + h(s)| ≥ |s|α − |h(s)| > |s|α − 2k >
1

2
|s|α >

k − ‖g‖1
4k

|s|α. (3.18)

For |s|α ≤ 4k, Re s > 0, we have

|sα + h(s)| ≥ Re(sα + h(s)) > k − ‖g‖1 >
k − ‖g‖1

4k
|s|α. (3.19)

Combining (3.18) and (3.19) we obtain (3.15). Statement (3.16) follows
from Corollary 3.1. 2

Combining Corollary 3.1 and Theory 3.1 we arrive at

Corollary 3.2. Let ‖g‖1 < k, 0 < α ≤ 1, β < α− 1
2 , then

L−1
(

sβ

sα + k +G(s)

)
∈ BSA2(α−β)−1(R+). (3.20)

As an example consider the two-parametric Mittag-Leffler function [3]

Eα,β(z) =

∞∑
j=0

zj

Γ(αj + β)
, α > 0.

We have [3]

L(tβ−1Eα,β(−ktα))(s) =
sα−β

sα + k
.

Consequently, by Corollary 3.2 if k > 0, 0 < α ≤ 1, and β > 1
2 , then

tβ−1Eα,β(−ktα) ∈ BSA2β−1(R+).

Theorem 3.2. Let g ∈ L1(R+) with ‖g‖1 < k, 0 < αn < ... < α1 <
α0 ≤ 1, and a1, a2, ..., an > 0. Then



8 V.K. Tuan, D.T. Duc, and T.D. Phung

1∣∣∣sα0 +
∑n

j=1 ajs
αj + k +G(s)

∣∣∣ ≤ Cα0
1

k − ‖g‖1
|s|−α0 , Re s > 0, (3.21)

where

C1 = max
1≤j≤n

{
[(n+ 2)aj ]

1
α0−αj , [2k(n+ 2)]

1
α0

}
. (3.22)

If, moreover, 1
2 < α0 ≤ 1, then the inverse Laplace transform

L−1
(

1

sα0 +
∑n

j=1 ajs
αj + k +G(s)

)
∈ BSA2α0−1(R+). (3.23)

P r o o f. As in the proof of Theory 3.1, G(s) is holomorphic in the
right half-plane Re s > 0, and there Re(k + G(s)) ≥ k − ‖g‖1 > 0. Since
0 < αj ≤ 1, then Re(sαj ) > 0, j = 0, 1, 2, ..., n, in Re s > 0. Together with
a1, a2, ...an > 0 we arrive at

Re
(
sα0 +

n∑
j=1

ajs
αj + k +G(s)

)
> 0,

in Re s > 0. Consequently, 1
sα0+

∑n
j=1 ajs

αj+k+G(s)
is also holomorphic in the

right half-plane. For |s| > C1,Re s > 0, we have

|s|α0

n+ 2
− aj |s|αj ≥ 0, j = 1, 2, 3, ..., n,

|s|α0

n+ 2
− k − |G(s)| ≥ 0.

Consequently,∣∣∣sα0 +
n∑
j=1

ajs
αj + k +G(s)

∣∣∣ ≥ |s|α0 −
n∑
j=1

aj |s|αj − k − |G(s)| (3.24)

≥ |s|
α0

n+ 2
+

n∑
j=1

( |s|α0

n+ 2
− aj |s|αj

)
+
( |s|α0

n+ 2
− k − |G(s)|

)
>
|s|α0

n+ 2
.

For |s| ≤ C1, Re s > 0,∣∣∣sα0 +
n∑
j=1

ajs
αj + k +G(s)

∣∣∣ ≥ Re
(
sα0 +

n∑
j=1

ajs
αj + k +G(s)

)
(3.25)

> Re(k +G(s)) ≥ k − ‖g‖1 ≥
k − ‖g‖1
Cα0
1

|s|α0 .
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Since Cα0
1 ≥ 2k(n+ 2) we have

k − ‖g‖1
Cα0
1

≤ k

2k(n+ 2)
<

1

n+ 2
.

Combining (3.24) and (3.25) we obtain (3.21). Statement (3.23) follows
from Corollary 3.1. 2

Lemma 3.1. Let f ∈ BSAp(R+) and g ∈ L1(R+). Then their Laplace
convolution

h(t) = (f ∗ g)(t) :=

∫ t

0
f(t− τ) g(τ) dτ (3.26)

belongs to BSAp(R+).

P r o o f. In fact, applying the Laplace transform to (3.26), we obtain
H(s) = F (s)G(s), therefore, |H(s)| ≤ |F (s)| ‖g‖1, and

sup
x>0

( x

x+ 1

)p ∫ ∞
−∞
|H(x+ iy)|2 dy

≤ ‖g‖21 sup
x>0

( x

x+ 1

)p ∫ ∞
−∞
|F (x+ iy)|2 dy <∞.

(3.27)

2

4. Multi-Term Riemann-Liouville Fractional integro-differential
equation

Consider now the following multi-term Riemann-Liouville fractional
integro-differential equation

Dα0
0+f(t)+

n∑
j=1

ajD
αj
0+f(t)+kf(t)+

∫ t

0
g(t−τ)f(τ)dτ = h(t), I1−α0

0+ f(0+) = f0,

(4.28)

1

2
< α0 ≤ 1, 0 < αn < ... < α1 < α0,

where k, a1, a2, ..., an ∈ R+, g, h ∈ L1(R+) are given, and f is the unknown.
Here Dα

0+ is the Riemann-Liouville fractional derivative [4]

Dα
0+f(t) =

dn

dtn
In−α0+ f(t), In−α0+ f(t) =

∫ t

0

(t− τ)n−α−1

Γ(n− α)
f(τ) dτ, α < n.

(4.29)
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Special cases of (4.28) have been considered in [4].
It is well known [4] that

L
(
Dα

0+f
)

(s) = sαF (s)−
n−1∑
k=0

sn−k−1Dα+k−n
0+ f(0+), n− 1 ≤ α < n.

(4.30)

Theorem 4.1. Let k > 0, f0 ∈ R, g, h ∈ L1(R+), be given, and
‖g‖1 < k. Then the multi-term Riemann-Liouville fractional integro-differential
equation (4.28) has a unique solution f from BSA2α0−1(R+).

P r o o f. Since I1−α0
0+ f(0+) = f0, and 1−α0 < 1−αj , then I

1−αj
0+ f(0+) =

0, j = 1, 2, ..., n. Applying the Laplace transform to equation (4.28) and
taking into account (4.30) we obtain

sα0F (s)− f0 +
n∑
j=1

ajs
αjF (s) + kF (s) +G(s)F (s) = H(s). (4.31)

Solving for F (s) yields

F (s) =
f0 +H(s)

sα0 +
∑n

j=1 ajs
αj + k +G(s)

. (4.32)

Denote

M(s) =
1

sα0 +
∑n

j=1 ajs
αj + k +G(s)

, (4.33)

then according to Theory 3.2, its inverse Laplace transform, namely m(t),
belongs to BSA2α0−1(R+), and

f(t) = f0m(t) +

∫ t

0
m(t− τ)h(τ) dτ. (4.34)

Since m ∈ BSA2α0−1(R+) and h ∈ L1(R+), by Lemma 3.1, their Laplace
convolution m∗h belongs to BSA2α0−1(R+). Hence, f , defined by (4.34), is
from BSA2α0−1(R+). Using the Tauberian theorem for the Laplace trans-
form [9] we have

M(s) ∼ 1

sα0
, s→∞ =⇒ m(t) ∼ tα0−1

Γ(α0)
, t→ 0 + . (4.35)

Consequently, I1−α0
0+ m(t) ∼ 1, t → 0+. Together with (4.34) it yields

I1−α0
0+ f(0+) = f0.

Conversely, let f be given by (4.34), where m is defined as the Laplace

inverse of (4.33). Then f ∈ BSA2α0−1(R+) and I1−α0
0+ f(0+) = f0. Ap-

plying the Laplace transform to (4.34) and taking into account (4.33) we
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arrive at (4.32). Hence, (4.31) holds. The Laplace inverse of (4.31) yields
(4.28). 2

5. Multi-Term Caputo Fractional integro-differential equation

Consider the following Caputo fractional integro-differential equation

C∂α0
t f(t)+

n∑
j=1

aj
C∂

αj
t f(t)+kf(t)+

∫ t

0
g(t−τ)f(τ)dτ = h(t), f(0+) = f0,

(5.36)
1

2
< α0 ≤ 1, 0 < αn < ... < α1 < α0,

where aj , k ∈ R+, j = 1, 2, ..., n, and g, h ∈ L1(R+) are given, and f is the
unknown. Here C∂αt is the Caputo fractional derivative [4]

C∂αt f(t) =

∫ t

0

(t− τ)n−α−1

Γ(n− α)
f (n)(τ) dτ, n−1 < α < n, C∂nt f(t) = f (n)(t).

(5.37)
It is well known [4] that

L
(C∂αt f) (s) = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (5.38)

Theorem 5.1. Let k > 0, f0 ∈ R, g, h ∈ L1(R+), be given, and
‖g‖1 < k. Then the Caputo fractional integro-differential equation (5.36)
has a unique solution f from BSA2(α0−αn)+1(R+).

P r o o f. Applying the Laplace transform to equation (5.36) and taking
into account (5.38) we obtain

(sα0F (s)−sα0−1f0)+
n∑
j=1

aj(s
αjF (s)−sαj−1f0)+kF (s)+G(s)F (s) = H(s).

(5.39)
Solving for F (s) yields

F (s) =
sα0−1f0 + f0

∑n
j=1 ajs

αj−1 +H(s)

sα0 +
∑n

j=1 ajs
αj + k +G(s)

. (5.40)

Denote

Lj(s) =
sαj−1

sα0 +
∑n

j=1 ajs
αj + k +G(s)

, j = 0, 1, · · · , n,

M(s) =
1

sα0 +
∑n

j=1 ajs
αj + k +G(s)

, (5.41)
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then according to Theorem 3.2, their inverse Laplace transforms, namely
lj(t) and m(t), belong to BSA2(α0−αj)+1(R+) ⊂ BSA2(α0−αn)+1(R+), and

BSA2α0−1(R+), respectively. Moreover,

f(t) = f0 l0(t) + f0

n∑
j=1

ajlj(t) +

∫ t

0
m(t− τ)h(τ) dτ. (5.42)

Since m ∈ BSA2α0−1(R+) and h ∈ L1(R+), by Lemma 3.1, their Laplace
convolutionm∗h belongs toBSA2α0−1(R+) ⊂ BSA2(α0−αn)+1(R+). Hence,
f , defined by (5.42), is from BSA2(α0−αn)+1(R+). Using the Tauberian the-
orem for the Laplace transform [9] we have

L0(s) ∼
1

s
, s→∞ =⇒ l0(t) ∼ 1, t→ 0+,

and

Lj(s) ∼
1

sα0−αj+1 , s→∞ =⇒ lj(t) ∼
tα0−αj

Γ(α0 − αj + 1)
, t→ 0+,

j = 1, · · · , n.

Consequently, f(0+) = f0.
Conversely, let f be given by (5.42), where lj ,m are defined as the

Laplace inverse transforms of (5.41). Then f ∈ BSA2(α0−αn)+1(R+) and
f(0+) = f0. Applying the Laplace transform to (5.42) and taking into
account (5.41) we arrive at (5.40). Hence, (5.39) holds. The Laplace inverse
transform of (5.39) yields (5.36). 2

Remark 5.1. If f0 = 0, then f ∈ BSA2α0−1(R+).

Remark 5.2. Although g, h ∈ L1(R+), in general f /∈ L1(R+). In fact,
if f ∈ L1(R+), then |F (s)| ≤ ‖f‖1 for Re s ≥ 0. But if f0 6= 0, then from
(5.40) we have

F (s) ∼ Csαn−1 →∞,

as s→ 0 + . Consequently, f /∈ L1(R+).
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6. Mixed Caputo Riemann-Liouville Fractional
integro-differential equation

Now we consider the following mixed Caputo Riemann-Liouville frac-
tional integro-differential equation with a dominant Caputo fractional de-
rivative

C∂α0
t f(t) +

n∑
j=1

aj
C∂

αj
t f(t) +

m∑
j=1

bjD
βj
0+f(t) + kf(t) +

∫ t

0
g(t− τ)f(τ)dτ = h(t),

f(0+) = f0,

1

2
< α0 ≤ 1, 0 < αn < ... < α1 < α0, 0 < βm < ... < β1 < α0, (6.43)

where g, h ∈ L1(R+), a1, · · · , an, b1, · · · , bm, k ∈ R+, are given, and f is
the unknown.

Theorem 6.1. Let k > 0, f0 ∈ R, g, h ∈ L1(R+), be given, and
‖g‖1 < k. Then the mixed Caputo Riemann-Liouville fractional integro-
differential equation (6.43) has a unique solution f fromBSA2(α0−αn)+1(R+).

P r o o f. Since f(0+) = f0, then I
1−βj
0+ (0+) = 0, j = 1, · · · ,m, and

applying the Laplace transform to equation (6.43) and taking into account
(4.28) and (5.38), we obtain

(sα0F (s)− sα0−1f0) +
n∑
j=1

aj(s
αjF (s)− sαj−1f0)

+
m∑
j=1

bjs
βjF (s) + kF (s) +G(s)F (s) = H(s).

(6.44)

Solving for F (s) yields

F (s) =
f0s

α0−1 + f0
∑n

j=1 ajs
αj−1 +H(s)

sα0 +
∑n

j=1 ajs
αj +

∑m
j=1 bjs

βj + k +G(s)
. (6.45)

Denote

Lj(s) =
sαj−1

sα0 +
∑n

j=1 ajs
αj +

∑m
j=1 bjs

βj + k +G(s)
, j = 0, 1, · · · , n,

M(s) =
1

sα0 +
∑n

j=1 ajs
αj +

∑m
j=1 bjs

βj + k +G(s)
, (6.46)

then according to Theorem 3.2, their inverse Laplace transforms, namely
lj(t) and m(t), belong to BSA2(α0−αj)+1(R+) ⊂ BSA2(α0−αn)+1(R+), and
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BSA2α0−1(R+), respectively. Moreover,

f(t) = f0 l0(t) + f0

n∑
j=1

ajlj(t) +

∫ t

0
m(t− τ)h(τ) dτ. (6.47)

Since m ∈ BSA2α0−1(R+), and h ∈ L1(R+), by Lemma 3.1, their Laplace
convolutionm∗h belongs toBSA2α0−1(R+) ⊂ BSA2(α0−αn)+1(R+). Hence,
f , defined by (6.47), is from BSA2(α0−αn)+1(R+). From (6.45) we have

F (s) ∼ f0
s
, s→∞.

Using the Tauberian theorem for the Laplace transform [9] we obtain

f(t) ∼ f0, t→ 0 + .

Consequently, f(0+) = f0.
Conversely, let f be given by (6.47), where lj ,m are defined as the

inverse Laplace transforms of (6.47). Then f ∈ BSA2(α0−αn)+1(R+) and
f(0+) = f0. Applying the Laplace transform to (6.47) and taking into
account (6.46) we arrive at (6.45). Hence, (6.44) holds. The inverse Laplace
transform of (6.44) yields (6.43). 2
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