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Abstract. Let G be a simple graph and I its edge ideal. We prove that

reg(I(s)) = reg(Is)

for s = 2, 3, where I(s) is the s-th symbolic power of I. As a consequence, we prove
the following bounds

reg Is ≤ reg I + 2s− 2, for s = 2, 3,

reg I(s) ≤ reg I + 2s− 2, for s = 2, 3, 4.

1. Introduction

The Castelnuovo-Mumford regularity (or regularity for short) is an important in-
variant of graded algebras. It bounds the maximum degree of the syzygies and the
maximum non-vanishing degree of the local cohomology modules. It is a celebrated
result that the regularity of Is is asymptotically a linear function for any homogeneous
ideal I in a polynomial ring S over a field (see [CHT, K]). It is a natural question then
to ask whether a similar result holds for symbolic powers of I. In general, Cutkosky

[Cu] gave an example of a homogeneous ideal I such that limt−→∞
reg(I(t))

t
is not

rational. So reg(I(t)) is in general far from being asymptotically a linear function. For
a monomial ideal Herzog, Hoa, and N. V. Trung [HHT] showed that the regularity
of symbolic powers is bounded by a linear function. In recent work, Dung, Hien,
Nguyen, and T. N. Trung [DHNT] have constructed a class of squarefree monomial
ideals for which reg(I(t)) is not asymptotically a linear function. On the other hand,
when I is a Stanley-Reisner ideal of a matroid or a simplicial complex of dimension
one then reg(I(t)) is a linear function of t (see [HTr, MTr]). It is not known whether
the regularity of symbolic powers of edge ideals of graphs is asymptotically a linear
function. More exactly, in this case, the first author raised the following conjecture.

Conjecture A. Let I(G) be the edge ideal of a simple graph G. Then for all s ≥ 1,

reg(I(G)(s)) = reg(I(G)s).
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It is noted that the graph G is a bipartite graph if and only if I(G)(s) = I(G)s for
all s ≥ 1 ([SVV, Theorem 5.9]). Thus, the above conjecture is trivially true in this
case. If G is not bipartite, then it must contain an odd cycle. Gu, Ha, O’Rourke, and
Skelton [GHOS] took the first step in verifying this conjecture for odd cycle graphs.
Then, Jayanthan and Kumar [JK] proved this conjecture for graphs obtained by the
clique sum of odd cycles and bipartite graphs. In recent work, Fakhari [F1, F2, F3]
established this conjecture for unicyclic graphs, Cameron-Walker graphs, and chordal
graphs.

In this paper, we prove

Theorem 1.1. Let I(G) be the edge ideal of a simple graph G. Then

reg I(G)(s) = reg(I(G)s)

for s = 2, 3.

In other words, we establish Conjecture A for s = 2, 3. We would like to note that,
in all cases where the regularity of symbolic powers of I was computed, the main
technical step was to bound the regularity of certain colon ideals. We do not know of
any direct comparison between the regularity of powers and symbolic powers of ideals
when the regularity of the corresponding symbolic/ordinary power is unknown. We
will now outline the idea of proof of Theorem 1.1.

(1) We reduce the problem of comparing the regularity of two monomial ideals
to the problem of comparing radicals of the colon of these ideals by certain
monomials, see Lemma 2.12 and Lemma 2.13.

(2) By Lemma 2.14 and induction, we further reduce to studying degree complexes
of symbolic powers/ordinary powers of edge ideals of special exponents. We
then analyze these degree complexes in detail via the Stanley-Reisner corre-
spondence.

This procedure for comparing regularity of two monomial ideals is especially useful
when the two ideals are closely related; for example, an ideal versus its integral closure,
various types of powers of an ideal. Furthermore, our study of degree complexes of
symbolic/ordinary powers reveals interesting information on the extremal exponents
of powers of edge ideals which will be exploited further in subsequent work to study
the regularity of powers of edge ideals themselves.

The main obstructions to proceed the comparison further with higher powers are:

(1) Explicit description of symbolic powers of higher powers is unknown.
(2) Even in the case where an explicit description of symbolic powers is known,

e.g. the case of perfect graphs, the number of critical exponents grows and the
radical ideals of colon ideals of powers with respect to these critical exponents
are difficult to compute.

We would like to note further that a weaker form of Conjecture A, namely, reg I(s) ≤
reg Is is easier and might be able to carry a bit further to higher powers.
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By combining a recent result of Fakhari [F4, Theorem 3.6], we establish a conjecture
of Alilooee, Banerjee, Beyarslan, and Ha [BBH, Conjecture 1] for the second and third
powers of edge ideals.

Theorem 1.2. Let I(G) be the edge ideal of a simple graph G. Then

reg(I(G)s) ≤ 2s− 2 + reg(I(G)),

for s = 2, 3.

Note that Banerjee and Nevo [BN] prove this Theorem for s = 2 by using a topo-
logical method.

For symbolic powers, we extend [F4, Corollary 3.9] to prove

Theorem 1.3. Let I(G) be the edge ideal of a simple graph G. Then

reg(I(G)(s)) ≤ 2s− 2 + reg(I(G)),

for s = 2, 3, 4.

Finally, we obtain explicit values of the regularity of small symbolic powers of I(G)
for some new classes of graphs.

Now we explain the organization of the paper. In Section 2, we recall some notation
and basic facts about the symbolic powers of a squarefree monomial ideal, the degree
complexes, and Castelnuovo-Mumford regularity. In Section 3, we prove Theorem 1.1
for s = 2. In Section 4, we prove Theorem 1.1 for s = 3. Finally, Section 5 contains
some applications of the main results.

2. Castelnuovo-Mumford regularity, symbolic powers and degree
complexes

In this section, we recall some definitions and properties concerning Castelnuovo-
Mumford regularity, the symbolic powers of a squarefree monomial ideal, and the
degree complexes of a monomial ideal. The interested reader is referred to ([BH, D,
E, S]) for more details.

2.1. Graph theory. Throughout this paper, G will denote a finite simple graph
over the vertex set V (G) = [n] = {1, 2, . . . , n} and the edge set E(G). For a vertex
x ∈ V (G), let the neighbour of x be the subset NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)},
and set NG[x] = NG(x) ∪ {x}. For a subset U of the vertices set V (G), NG(U) and
NG[U ] are defined by NG(U) = ∪u∈UNG(u) and NG[U ] = ∪u∈UNG[u]. If G is fixed,
we will use N(U) or N [U ] for short.

A subgraph H is called an induced subgraph of G if for any vertices u, v ∈ V (H) ⊆
V (G) then {u, v} ∈ E(H) if and only if {u, v} ∈ E(G). For a subset U of the vertices
set V (G), we shall denote by G[U ] the induced subgraph of G on U , and denote by
G− U the induced subgraph of G on V (G) \ U .

A m-cycle in G is a sequence of m distinct vertices 1, . . . ,m ∈ V (G) such that
{1, 2}, . . . , {m − 1,m}, {m, 1} are edges of G. We shall also use C = 12 . . .m to
denote the m-cycle whose sequence of vertices is 1, . . . ,m.
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2.2. Simplicial complex. Let ∆ be a simplicial complex on [n] = {1, . . . , n} that is a
collection of subsets of [n] closed under taking subsets. We put dimF = |F |−1, where
|F | is the cardinality of F . The dimension of ∆ is dim ∆ = max{dimF | F ∈ ∆}. It
is clear that ∆ can be uniquely determined by the set of its maximal elements under
inclusion, called by facets, which is denoted by F(∆).

A simplicial complex ∆ is called a cone over x ∈ [n] if x ∈ B for any B ∈ F(∆). If
∆ is a cone, then it is acyclic (i.e., has vanishing reduced homology).

For a face F ∈ ∆, the link of F in ∆ is the subsimplicial complex of ∆ defined by

lk∆ F = {G ∈ ∆ | F ∪G ∈ ∆, F ∩G = ∅}.

2.3. Stanley-Reisner correspondence. Let S = K[x1, . . . , xn]. We now recall the
Stanley-Reisner correspondence which corresponds a squarefree monomial ideal of S
and a simplicial complex ∆ on [n]. For each subset F of [n], let xF =

∏
i∈F xi be a

squarefree monomial in S.

Definition 2.1. For a squarefree monomial ideal I, the Stanley-Reisner complex of
I is defined by

∆(I) = {F ⊂ [n] | xF /∈ I}.
For a simplicial complex ∆, the Stanley-Reisner ideal of ∆ is defined by

I∆ = (xF | F /∈ ∆).

The Stanley-Reisner ring of ∆ is the quotient by the Stanley-Reisner ideal, K[∆] =
S/I∆.

From the definition, it is easy to see the following:

Lemma 2.2. Let I, J be squarefree monomial ideals of S = K[x1, . . . , xn]. Then

(1) ∆(I) is a cone over t ∈ [n] if and only if xt is not divided by any minimal
generator of I.

(2) ∆(I + J) = ∆(I) ∩∆(J).
(3) ∆(I ∩ J) = ∆(I) ∪∆(J).

2.4. Castelnuovo-Mumford regularity. Let m = (x1, . . . , xn) be the maximal ho-
mogeneous ideal of S = K[x1, . . . , xn] a polynomial ring over a field K. For a finitely
generated graded S-module L, let

ai(L) =

{
max{j ∈ Z | H i

m(L)j 6= 0} if H i
m(L) 6= 0

−∞ otherwise,

where H i
m(L) denotes the i-th local cohomology module of L with respect to m. Then,

the Castelnuovo-Mumford regularity (or regularity for short) of L is defined to be

reg(L) = max{ai(L) + i | i = 0, . . . , dimL}.
The regularity of L can also be defined via the minimal graded free resolution. Assume
that the minimal graded free resolution of L is

0←− L←− F0 ←− F1 ←− · · · ←− Fp ←− 0.
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Let ti(L) be the maximal degree of graded generators of Fi. Then,

reg(L) = max{ti(L)− i | i = 0, . . . , p}.

From the minimal graded free resolution of S/J , we obtain reg(J) = reg(S/J) + 1
for a non-zero and proper homogeneous ideal J of S.

2.5. Symbolic powers. Let I be a non-zero and proper homogeneous ideal of S. Let
{P1, . . . , Pr} be the set of the minimal prime ideals of I. Given a positive integer s,
the s-th symbolic power of I is defined by

I(s) =
r⋂
i=1

IsSPi
∩ S.

For f ∈ S and xa = xa11 ...x
an
n , we denote ∂(f)

∂(xa)
the partial derivative of f with

respect to xa. For each s, we denote

I〈s〉 = (f ∈ S | ∂f
∂xa
∈ I, for all xa with |a| = s− 1),

the s-th differential power of J . When K is a field of characteristic 0 and I is a radical
ideal, it is a well-known theorem of Nagata-Zariski that I(s) = I〈s〉.

When f is a monomial, we denote ∂∗(f)
∂∗(xa)

the ∗-partial derivative of f with respect

to xa, which is derivative without coefficients. In general, ∂f/∂xa = c∂∗(f)/∂∗(xa)
for some constant c. Similarly, we define

I [s] = (f ∈ S | ∂
∗f

∂∗xa
∈ I, for all xa with |a| = s− 1),

the s-th ∗-differential power of I. When the characteristic ofK is equal to 0, I〈s〉 = I [s].
In general, we only have I〈s〉 ⊆ I [s]. When I is a squarefree monomial ideal, we first
prove that the symbolic powers of I is equal to the ∗-differential powers of I.

Lemma 2.3. Let I be a squarefree monomial ideal. Then I(s) = I [s].

Proof. This result is folkloric, though we could not find a reference so we give a
simple proof here. Let P1, . . . , Pr be the minimal prime ideals of I. Then note that
I(s) = P s

1 ∩ · · · ∩ P s
r . Let f be a monomial in I(s) and a ∈ Nn such that |a| = s − 1.

Since f ∈ P s
i for all i = 1, . . . , r, ∂∗f/∂∗xa ∈ Pi. Thus, ∂∗f/∂∗xa ∈ P1 ∩ · · · ∩ Pr = I.

Therefore, f ∈ I [s].
Conversely, assume by contradiction that I [s] strictly contains I(s). Let f = xr11 ...x

rn
n

be a minimal generator of I [s] of smallest degree that is not in I(s). In particular,
f /∈ P s for some minimal prime P of I. Since I is a squarefree monomial ideal, P
is generated by variables, without loss of generality, we assume that P = (x1, ..., xt).
Since f /∈ P s, r1 + ... + rt < s. Take a = (r1, ..., rt, s − 1 − r1 − ... − rt, 0, .., 0), then
|a| = s − 1. Now, we have ∂∗(f)/∂∗(xa) | xrt+1

t+1 ...x
rn
n , which is not contained in P .

Thus, ∂∗(f)/∂∗(xa) /∈ I, a contradiction. �
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For a monomial f in S, we denote supp(f), the support of f , the set of all indices
i ∈ [n] such that xi|f . For an exponent a ∈ Zn, we denote supp(a) = {i ∈ [n] | ai 6=
0}, the support of a. For any subset V ⊂ [n], we denote

IV = (f | f is a monomial which belongs to I and supp(f) ⊆ V )

be the restriction of I on V . We have

Corollary 2.4. Let I be a squarefree monomial ideal and f be a monomial in S.

Denote V = supp(f). Then, f ∈ I(s) if and only if f ∈ I(s)
V .

Proof. Since IV ⊆ I, if f ∈ I
(s)
V then f ∈ I(s). Conversely, assume that f ∈ I(s).

For any b such that supp b ⊆ V and |b| = s − 1, by Lemma 2.3 ∂∗(f)/∂∗(xb) ∈ I.
But supp(∂∗(f)/∂∗(xb)) ⊆ supp(f) = V , thus ∂∗(f)/∂∗(xb) ∈ IV . By Lemma 2.3,

f ∈ I(s)
V . �

As a consequence of Corollary 2.4, we deduce a generalization of [GHOS, Corollary
4.5] for squarefree monomial ideals.

Corollary 2.5. Let I be a squarefree monomial ideal in S. Let V ⊆ [n], and IV be
the restriction of I to V . Then for all s ≥ 1,

reg I
(s)
V ≤ reg I(s).

Proof. By Corollary 2.4, I
(s)
V is the restriction of I(s) to V . Let {t, . . . , n} = [n] \

V . Then, I
(s)
V + (xt, ..., xn) = I(s) + (xt, ..., xn). The conclusion follows from [NV2,

Proposition 3.11] and the fact that xt, ..., xn is a regular sequence with respect to

S/I
(s)
V . �

2.6. Edge ideals and their symbolic powers. Let G be a simple graph over the
vertex set V (G) = [n] = {1, 2, . . . , n}. The edge ideal of G is defined to be

I(G) = (xixj | {i, j} ∈ E(G)) ⊆ S.

For simplicity, we often write i ∈ G (resp. ij ∈ G) instead of i ∈ V (G) (resp.
{i, j} ∈ E(G)).

A clique of size t in G is an induced subgraph of G which is a complete graph over
t-vertices. We also called a clique of size 3 a triangle.

Let J1(G) be the ideal generated by all squarefree monomials xixjxr where {i, j, r}
forms a triangle in G. Let J2(G) be the ideal generated by all squarefree monomials
xixjxrxs where {i, j, r, s} forms a clique of size 4 in G and all squarefree monomials
xC where C is a 5-cycle of G.

We have the following expansion formula of the second and third symbolic powers
of an edge ideal. Note that the first formula is [Su, Corollary 3.12].

Theorem 2.6. Let I be the edge ideal of a simple graph G. Then

I(2) = I2 + J1(G).
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Proof. Using Lemma 2.3, it is easy to see that the left hand side contains the right
hand side. Conversely, let f ∈ I(2) be a monomial generator. By Lemma 2.4, we may
assume that supp f = V (G). If G contains a triangle, then f ∈ J1(G). If G contains
a cycle of length ≥ 4, then f ∈ I2. Thus we may assume that G do not contain any
cycles. In this case I(G)(2) = I(G)2, thus f ∈ I2. �

Theorem 2.7. Let I be the edge ideal of a simple graph G. Then

I(3) = I3 + IJ1(G) + J2(G).

Proof. Using Lemma 2.3, it is easy to see that the left hand side contains the right
hand side. Conversely, let f ∈ I(3) be a monomial generator. By Lemma 2.4, we
can assume that supp(f) = V (G). If G contains a 5-cycle, then f ∈ J2(G). If the
matching number of G is at least 3, then f ∈ I3. Thus, we may assume that G does
not contain a cycle of length ≥ 5. If G does not contain a triangle, then G is bipartite,
and thus I(G)(3) = I(G)3, and we are done. Thus we may assume that G contains
a triangle, called 123. Let f = xα1

1 · · · xαn
n where αi ≥ 1. If two of the exponents

α1, α2, α3 is at least 2, then f ∈ IJ1(G). Thus, assume that α2 = α3 = 1. By Lemma
2.3, ∂∗f/∂∗(x2x3) = xα1

1 x
α4
4 · · ·xαn

n ∈ I. If xα4
4 · · ·xαn

n ∈ I then f ∈ IJ1(G). Thus,
we may assume that xα4

4 · · ·xαn
n /∈ I, and x1x4 ∈ I. If α1 > 1, then f ∈ IJ1(G) as

(x1x4) · (x1x2x3)|f . Thus, we may assume that α1 = 1. Similarly, we deduce that
x2xi and x3xj ∈ I for some i, j ≥ 4. If |{4, i, j}| = 3, then f ∈ I3. If |{4, i, j}| = 1,
then f ∈ J2(G), as {1, 2, 3, 4} forms a clique of size 4. Now, assume that i = 4, and
j 6= 4. In this case x1x2x4 ∈ J1(G) and thus (x1x2x4)(x3xj) ∈ IJ1. This concludes
our proof. �

2.7. Degree complexes. For a monomial ideal I in S, Takayama in [T] found a
combinatorial formula for dimK H

i
m(S/I)a for all a ∈ Zn in terms of certain simplicial

complexes which are called degree complexes. For every a = (a1, . . . , an) ∈ Zn we
set Ga = {i | ai < 0} and write xa = Πn

j=1x
aj
j . Thus, Ga = ∅ whenever a ∈ Nn.

The degree complex ∆a(I) is the simplicial complex whose faces are F \ Ga, where
Ga ⊆ F ⊆ [n], so that for every minimal generator xb of I there exists an index i 6∈ F
with ai < bi. It is noted that ∆a(I) may be either the empty set or {∅} and its vertex
set may be a proper subset of [n]. The next lemma is useful to compute the regularity
of a monomial ideal in terms of its degree complexes.

Lemma 2.8. Let I be a monomial ideal in S. Then

reg(S/I) = max{|a|+ i | a ∈ Nn, i ≥ 0, H̃i−1(lk∆a(I) F ;K) 6= 0

for some F ∈ ∆a(I) with F ∩ supp a = ∅}.
In particular, if I = I∆ is the Stanley-Reisner ideal of a simplicial complex ∆ then

reg(K[∆]) = max{i | i ≥ 0, H̃i−1(lk∆ F ;K) 6= 0 for some F ∈ ∆}.

Proof. By [CHHKTT, Proposition 2.5],

reg(S/I) = max{|a|+ |Ga|+ i | a ∈ Zn, i ≥ 0, H̃i−1(∆a(I);K) 6= 0}.
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Assume, reg(S/I) = |a| + |Ga| + i for some a ∈ Zn. By maximality, we can assume
ai = −1 for all i ∈ Ga. Let a+ ∈ Nn by a+

i = ai if i /∈ Ga and a+
i = 0 otherwise. Then,

∆a(I) = lk∆a+ (I) Ga; reg(S/I) = |a+|+ i and H̃i−1(lk∆a+ (I) Ga; k) 6= 0. It implies that

reg(S/I) ≤ max{|a|+ i | a ∈ Nn, i ≥ 0, H̃i−1(lk∆a(I) F ;K) 6= 0

for some F ∈ ∆a(I) with F ∩ supp a = ∅}.

Converserly, if H̃i−1(lk∆a(I) F ;K) 6= 0 for some a ∈ Nn, i ≥ 0, F ∈ ∆a(I) with F ∩
supp a = ∅, we only put b ∈ Zn such that bi = −1 for all i ∈ F and bi = ai otherwise.

Then, H̃i−1(∆b(I);K) 6= 0 and |b| + |Gb| + i = |a| + i and using again [CHHKTT,
Proposition 2.5], we obtain the converse inequality.

If I = I∆ is the Stanley-Reisner ideal of a simplicial complex ∆, as in the proof
of [T, Theorem 1], H̃i(∆a(I), K) = 0 for all i for each a ∈ Nn such that there is
a component aj ≥ 1. Then, we only consider aj = 0 for all j (i.e. a = 0). From
definition, ∆0(I) = ∆. This completes our proof. �

Remark 2.9. Let I be a monomial ideal in S and a vector a ∈ Zn. In the proof of
Theorem 1 in [T], he showed that if there exists j ∈ [n] \ Ga such that aj ≥ ρj =
max{degxj(u) | u is a minimal monomial generator of I} then ∆a(I) is a cone. Thus,
we only consider some vectors a which belongs to the finite set

Γ(I) = {a ∈ Nn | aj < ρj for all j = 1, . . . , n}.

From this, we obtain an upper bound of the regularity of a monomial ideal in terms
of its degree complexes.

Corollary 2.10. Let I be a monomial ideal in S. Then

reg(S/I) ≤ max{|a|+ reg(K[∆a(I)]) | a ∈ Γ(I)}.

One might expect that this inequality becomes an equality. Unfortunately, this is
not the case.

Example 2.11. Let I = x1(x2, x3, x4, x5) be an edge ideal in S = K[x1, . . . , x5].
For each s ≥ 2, let xa = (x2x3x4x5)s−1. Then, a ∈ Γ(Is). Furthermore, we have
reg(S/Is) = 2s − 1, |a| = 4s − 4, and reg(K[∆a(Is))] = 0. Thus, reg(S/Is) <
max{|a|+ reg(K[∆a(Is)]) | a ∈ Γ(Is)}.

We call a pair (a, i) ∈ Nn×N an extremal exponent of the ideal I, if reg(S/I) =
|a|+ i as in Lemma 2.8. It is clear that if (a, i) ∈ Nn×N is an extremal exponent of
I then xa /∈ I and ∆a(I) is not a cone over t with t ∈ supp a. From the definition, it
is easy to see the following

Lemma 2.12. Let I, J be proper monomial ideals of S. Let (a, i) be an extremal
exponent of I. If ∆a(I) = ∆a(J), then reg I ≤ reg J . In particular, if J ⊆ I and
∆a(I) = ∆a(J) for all exponent a ∈ Nn such that xa /∈ I then reg I ≤ reg J.
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Proof. By definition, there exists a face F ∈ ∆a(I) such that suppF ∩ supp a = ∅
and H̃i−1(lk∆a(I) F ;K) 6= 0 and reg I = |a|+ i. Since ∆a(I) = ∆a(J), by Lemma 2.8
reg J ≥ |a|+ i as required. �

The next lemma appeared in [MTru], and we would like to sketch the proof for
completeness. It is very useful to compute the degree complexes of powers of an edge
ideal in this paper.

Lemma 2.13. Let I be a monomial ideal in S and a ∈ Nn. Then

I∆a(I) =
√
I : xa.

In particular, xa ∈ I if and only if ∆a(I) is the void complex.

Proof. For any F ⊆ [n], let xF =
∏

i∈F xi. We have

xF ∈ I∆a(I) ⇐⇒ F /∈ ∆a(I)⇐⇒ ∃ xb ∈ G(I) such that ∀ i /∈ F, bi ≤ ai

⇐⇒ ∃ t ∈ N \{0}, (xF )txa ∈ I ⇐⇒ xF ∈
√
I : xa.

�

The following lemma is essential to using the induction method in studying the
regularity of a monomial ideal.

Lemma 2.14. Let I be a monomial ideal and the pair (a, i) ∈ Nn×N be its extremal

exponent. If x is a variable that appears in
√
I : xa and x /∈ supp a, then

reg(I) = reg(I, x).

Proof. Let J = (I, x). Then, we know that reg J ≤ reg I (see, for example [NV2,
Proposition 3.11]). Thus, it suffices to prove the reverse inequalities. As x does not
belong to support of a, then

√
J : xa =

√
I : xa + (x) =

√
I : xa.

By Lemma 2.13, ∆a(I) = ∆a(J). The conclusion follows from Lemma 2.8. �

Since we will deal with radical ideals of the colon ideals of monomial ideals, the
following simple observation will be useful later on.

Lemma 2.15. Let I be a monomial ideal in S generated by the monomials f1, ..., fs
and a ∈ Nn. Then

√
I : xa is generated by

√
f1/ gcd(f1, xa), ...,

√
fs/ gcd(fs, xa),

where
√
xb =

∏
i∈suppb xi for each b ∈ Nn.

Proof. Let g be a minimal generator of
√
I : xa. Then there exists a natural number

t > 0 such that gtxa ∈ I. We may assume that f1|gtxa. In particular, f1/ gcd(f1, x
a)|gt.

Taking radical, we deduce that
√
f1/ gcd(f1, xa)|g. This concludes our proof. �
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3. Proof of Theorem 1.1 for s = 2

Let G be a simple graph with vertex set [n] and edge set E(G). Let I = I(G) be
the edge ideal of G. In this section, we will prove Theorem 1.1 for s = 2. First, we
give a property of the degree complexes of the second symbolic/ordinary power of I.

Lemma 3.1. Let I = I(G) and a ∈ Nn such that xa /∈ I(2). Then,
√
I(2) : xa =

√
I2 : xa.

In particular, ∆a(I(2)) = ∆a(I2).

Proof. By Theorem 2.6, it suffices to prove that if f is a minimal squarefree monomial
generator of

√
J1(G) : xa then f ∈

√
I2 : xa. By Lemma 2.15, we may assume that

f = x1x2x3/ gcd(x1x2x3, x
a), where 123 is a triangle in G. Since xa /∈ I(2), deg f ≥ 1.

There are two cases.

Case 1: deg f = 1. May assume that f = x1. Thus x2x3|xa. Now, x2
1x2x3 ∈ I2,

which implies that f ∈
√
I2 : xa.

Case 2: deg f ≥ 2. Therefore, one of three monomials x1x2, x2x3, x1x3 will be a
divisor of f . In particular, f ∈ I ⊆

√
I2 : xa.

By Lemma 2.13, we obtain ∆a(I(2)) = ∆a(I2) for any a ∈ Nn such that xa /∈
I(2). �

We are now in a position to prove the main result of this section.

Theorem 3.2. Let G be a simple graph and I its edge ideal. Then

reg(I(2)) = reg(I2).

Proof. By Lemma 2.12 and Lemma 2.8, reg I(2) ≤ reg I2.
Conversely, we prove by induction on n = |V (G)| that reg(S/I2) ≤ reg(S/I(2)). By

results of [HNTT, NV2], it suffices to consider the case G is connected and has no
isolated vertices. Moreover, one can see that if n ≤ 3 then I is either xy or (xy, yz)
or (xy, yz, zx) which satisfy our assertion. Put n ≥ 4.

Let (a, i) ∈ Nn×N be an extremal exponent of I2. If xa /∈ I(2), by Lemma 3.1,
∆a(I2) = ∆a(I(2)). By Lemma 2.12, reg I2 ≤ reg(S/I(2)). If xa is divisible by a
triangle, say x1x2x3 i.e. 12, 23, 13 ∈ E(G). Since G is connected and n ≥ 4, we have
N({1, 2, 3}) 6= ∅. Let r ∈ N({1, 2, 3}). One can see that r /∈ supp a by xa /∈ I2. It is

clear that xr ∈
√
I2 : xa. Using Lemma 2.14, we have

reg(I2) = reg(I2, xr) = reg((I, xr)
2, xr).

Moreover, reg((I, xr)
2, xr) = reg(J2, xr), where J is the edge ideal of the restriction of

G to V \{r}. It is noted that xr is a regular element of S/J2 then reg(J2, xr) = reg(J2).
By induction, reg(S/J2) ≤ reg(S/J (2)). By Corollary 2.5, reg(S/J (2)) ≤ reg(S/I(2))
as required. �
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4. Proof of Theorem 1.1 for s = 3

Let G be a simple graph with vertex set [n] and edge set E(G). Let I = I(G) be
the edge ideal of G. In this section, we will prove Theorem 1.1 for s = 3. First, we
prove a technical lemma for degree complexes of the third symbolic/ordinary power
of I.

Lemma 4.1. Let a ∈ Nn such that xa /∈ I(3). Assume that
√
I(3) : xa 6=

√
I3 : xa.

Let f be a minimal squarefree monomial generator
√
I(3) : xa such that f /∈

√
I3 : xa.

Then we have

(1) There exists a triangle 123 in G such that x1x2x3|xa.
(2) deg f = 1 and supp f /∈ supp a.

Proof. By Theorem 2.7 and Lemma 2.15, there are three cases as follows.

Case 1: There exists a clique of size 4, C = 1234, of G such that

f =
√
x1x2x3x4/ gcd(x1x2x3x4, xa).

If deg f ≥ 2 then supp(f) must contain at least two vertices i, j among suppC. In

particular, f ∈ I ⊆
√
I3 : xa, which is a contradiction. If deg f = 1, say f = x1. This

implies that x2x3x4|xa. But, f 3xa ∈ I3 by x3
1(x2x3x4) = (x1x2)(x1x3)(x1x4) ∈ I3,

which is a contradiction.

Case 2: There exists a 5-cycle, C = 12345, of G such that

f =
√
x1x2x3x4x5/ gcd(x1x2x3x4x5, xa).

Since f /∈
√
I3 : xa, f /∈ I. Furthermore, f |x1x2x3x4x5, we have three subcases.

Subcase 2.1. deg f = 3. We may assume that f = x1x3x5 then x2x4|xa. In this
case f 2x2x4 ∈ I3, which is a contradiction.

Subcase 2.2. deg f = 2. We may assume that f = x1x3 then x2x4x5|xa. In this
case f 2x2x4x5 ∈ I3, which is a contradiction.

Subcase 2.3 deg f = 1. We may assume that f = x1 then x2x3x4x5|xa. In this case
f 2x2x3x4x5 ∈ I3, which is a contradiction.

Case 3: There exists an edge uv and a triangle 123 in G such that

f =
√
xuxvx1x2x3/ gcd(xuxvx1x2x3, xa),

note that u, v might belong to {1, 2, 3}. In particular, supp(f) ⊆ {u, v} ∪ {1, 2, 3}.
Since f /∈

√
I3 : xa, f /∈ I. In particular, | supp(f) ∩ {u, v}| ≤ 1 and | supp(f) ∩

{1, 2, 3}| ≤ 1. There are two subcases.
Subcase 3.1. deg f ≥ 2. Since f is squarefree, | supp(f)∩{u, v}| = 1 and | supp(f)∩
{1, 2, 3}| = 1. We may assume that f = x1xu. In particular xvx2x3 is a divisor of
xa. In this case, f 2xa ∈ I3 by x2

ux
2
1xvx2x3 = xu(xuxv)(x1x2)(x1x3) ∈ I3, which is a

contradiction.
Subcase 3.2. deg f = 1. We first prove that supp f /∈ {1, 2, 3}. Assume by contra-

diction that supp f ∈ {1, 2, 3}. We may assume that f = x1.
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(1) If x1 ∈ {xu, xv}. Assume x1 = xu. It implies that xvx2x3 is a divisor of xa.

By (x1xv)(x1x2)(x1x3) ∈ I3, we have x1 ∈
√
I3 : xa.

(2) If x1 /∈ {xu, xv}. Then xuxvx2x3 is a divisor of xa. Since x2
1(xuxvx2x3) =

(xuxv)(x1x2)(x1x3) ∈ I3, x1 ∈
√
I3 : xa.

This is a contradiction. Thus supp f /∈ {1, 2, 3}. Therefore, x1x2x3|xa. Furthermore,
supp f ∈ {u, v}. We may assume that f = xu. If supp f ∈ supp a, then x2

u|xuxvx1x2x3.
Thus u = supp f ∈ {1, 2, 3}, which is a contradiction. This completes our prooof. �

Example 4.2. One might hope that in general we have for a ∈ Nn and xa /∈ I(s) then
√
I(s) : xa =

√
Is : xa + (variables).

Unfortunately, this is not the case for s ≥ 4. Indeed, let

I = (x1x2, x2x3, x3x1, x1x4, x4x5, x2x6, x6x7) and xa = x1x2x3x4x6,

then x5x7 is a minimal generator of
√
I(4) : xa but does not belong to

√
I4 : xa.

We are now in a position to prove the first inequality of the main result of this
section.

Theorem 4.3. Let G be a simple graph and I = I(G). Then

reg(I(3)) ≤ reg(I3).

Proof. We prove by induction on n = |V (G)|. Let (a, i) be an extremal exponent
of I(3). By Lemma 2.12, we may assume that ∆a(I(3)) 6= ∆a(I3). By Lemma 2.13

and Lemma 4.1, there exists a variable, xt ∈
√
I(3) : xa such that xt /∈ suppxa. By

Lemma 2.14, reg I(3) = reg(I(3), xt). Let J be the restriction of I to V (G) \ {t}. Then
by induction reg J (3) ≤ reg J3. Thus,

reg I(3) = reg(J (3), xt) ≤ reg(J3, xt) ≤ reg I3,

where the last inequality follows from [NV2, Proposition 3.11]. �

To prove the reverse inequality reg(S/I3) ≤ reg(S/I(3)), we also use induction on
n = |V (G)|. By results of [HNTT, NV2], it suffices to consider the case G is connected
and has no isolated vertices.

Moreover, one can see that if n ≤ 3 then I is either xy or (xy, yz) or (xy, yz, zx)
which satisfy our assertion.

For simplicity of exposition, throughout the rest of this section, we always assume
that (a, i) ∈ Nn×N is an extremal exponent of I3 and n ≥ 4, where I = I(G). It is
clear that xa /∈ I3. Then, we will fix a face F ∈ ∆a(I3) such that F ∩ supp(a) = ∅ and

H̃i−1(lk∆a(I3) F ;K) 6= 0. By Lemma 2.12, it suffices to consider the cases xa /∈ I(3)

with ∆a(I(3)) 6= ∆a(I3) or xa ∈ I(3).
We will need a series of lemmas for each form of a.

Lemma 4.4. If xa ∈ J2(G) and it is divisible by xC, where C is a 5-cycle of G, then
reg I3 ≤ reg I(3).
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Proof. Without loss of generality, we may assume that xa = x1x2x3x4x5 · f , where
C = 12345 is a 5-cycle of G and a monomial f ∈ S. Since xa /∈ I3, supp(f)∩N(C) = ∅
and supp(f) is an independent set ofG. If n ≥ 6, by the connected property ofG, there

exists a neighbor r of C and it does not belong to supp a. In particular, xr ∈
√
I3 : xa.

By Lemma 2.14, we have

reg I3 = reg(I3, xr) = reg((I, xr)
3, xr).

Similarly to the proof of Theorem 3.2, by induction and Corollary 2.5, we have

reg((I, xr)
3, xr) = reg(J3, xr) = reg(J3) ≤ reg(J (3)) ≤ reg I(3).

If n = 5, then xa = x1x2x3x4x5 and ∆a(I
3) = {∅}. In particular, i = 0, thus

regS/I3 = |a|+ i = 5 ≤ regS/I(3). �

In the next three lemma, we will use the following claim which is easy to see from
Lemma 2.2.

Claim A: Let G be a connected simple graph and I be its edge ideal. Let r ∈ V (G)
and J be a squarefree monomial ideal such that xr does not appear in any of its
minimal squarefree monomial generators. If xu ∈ J for all u ∈ NG(r) then the
simplicial complex of I + J is a cone over r.

Lemma 4.5. If xa ∈ IJ1(G) then reg(I3) ≤ reg(I(3)).

Proof. Without loss of generality, we may assume that xa = x1x2x3xuxv · f , where
C = 123 is a 3-cycle; uv is an edge of G and a monomial f ∈ S. Since xa /∈ I3,
supp(f) ∩N({1, 2, 3}) = ∅.

We next distinguish some cases:

Case 1: |N({1, 2, 3}) \ {u, v, 1, 2, 3}| ≥ 1. Let r ∈ N({1, 2, 3}) \ {1, 2, 3, u, v}. So

r /∈ supp(f). Then r /∈ supp a and xr ∈
√
I3 : xa. With the same lines of the proof of

Lemma 4.4, we have reg(I3) ≤ reg(I(3)).

Case 2: |N({1, 2, 3}) \ {u, v, 1, 2, 3}| = 0. By n ≥ 4 and G is connected, we must
have |{u, v}\{1, 2, 3}| ≥ 1 and |{u, v}∩N({1, 2, 3})| ≥ 1. If v ∈ N({1, 2, 3}) and u /∈
N({1, 2, 3}). HenceN({1, 2, 3}) = {1, 2, 3, v}. By xa /∈ I3, we must have supp(f)∪{u}
is an independent set of G (so u /∈ N(supp(f))) and supp(f) ∩N({1, 2, 3, u}) = ∅. It
is noted that u may belong to supp(f). One can check that

√
I3 : xa = I + (xi | i ∈ N({1, 2, 3, u} ∪ supp(f))).

Hence, xu /∈
√
I3 : xa. Using Claim A, ∆a(I3) is a cone over u ∈ supp(a), a contra-

diction.
Therefore, u, v ∈ N({1, 2, 3}) i.e. N({1, 2, 3}) = {u, v, 1, 2, 3}. If V (G) prop-

erly contains {1, 2, 3, u, v}, then by the connectedness property, there exists t ∈
N({1, 2, 3, u, v}) \ {1, 2, 3, u, v}. So, t /∈ supp(f) i.e. t /∈ supp(a). Now xt ∈

√
I3 : xa

by x1x2x3xuxvxt ∈ I3. By Lemma 2.14, and induction, we have reg(I3) ≤ reg(I(3)).
Finally, if V (G) = {1, 2, 3, u, v}, then ∆a(I3) = {∅}. Thus, i = 0, and regS/I3 =
|a|+ i = 5 ≤ regS/I(3). �
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Lemma 4.6. If xa ∈ J2(G) and it is divisible by xC, where C is a clique of size 4 in
G, then reg(I3) ≤ reg(I(3)).

Proof. Without loss of generality, we may assume that xa = x1x2x3x4 · f , where 1234
is a clique of size 4 in G and a monomial f ∈ S. Using Lemma 4.5, we may assume
that supp(f) ∩ N({1, 2, 3, 4}) = ∅. By xa /∈ I3, we must have supp(f) is either an
independent set of G or the empty set. If there exists r ∈ N(1) ∩ N(2) \ {3, 4}
then xr ∈

√
I3 : xa and r /∈ supp(a). Using Lemma 2.14 and similarly with the

proof of Theorem 3.2, we obtain reg(I3) ≤ reg(I(3)). Hence, we can assume that
N(i) ∩N(j) = {1, 2, 3, 4} \ {i, j} for all 1 ≤ i 6= j ≤ 4. Then, one can see that
√
I3 : xa = I +

∑
1≤i 6=j≤4

N(i) · N(j) + (xi | i ∈ N(supp(f)) ∪ {1, 2, 3, 4})

where N(U)·N(W ) = (xixj | i ∈ N(U), j ∈ N(W )) is an ideal in S for any U,W ⊂ [n].
If f 6= 1, we assume that r ∈ supp(f). Using again the Claim A, ∆a(I3) is a cone

over r ∈ supp(a), a contradiction.
If f = 1, then xa = x1x2x3x4. Then,
√
I3 : xa = I +

∑
1≤i 6=j≤4

N(i) ·N(j) + (x1, x2, x3, x4)

= I +N({1, 2, 3}) ·N(4) +N({1, 2}) ·N(3) +N(1) ·N(2) + (x1, x2, x3, x4).

Note that N({1, 2, 3}) = N [{1, 2, 3}] as 123 is a triangle in G. Let L = I+N({1, 2}) ·
N(3) +N(1) ·N(2) + (x1, x2, x3, x4). Then,

√
I3 : xa = (L+ (xi | i ∈ N({1, 2, 3}))) ∩ (L+ (xi | i ∈ N(4))).

Let ∆ = ∆a(I3) and Γ1,Γ2 be the simplicial complexes which are corresponding to
L+ (xi | i ∈ N({1, 2, 3})) and L+ (xi | i ∈ N(4)). Hence,

∆ = Γ1 ∪ Γ2.

Moreover, lk∆(F ) = lkΓ1 F ∪ lkΓ2 F . Applying the Mayer-Vietoris sequence, we have

· · · → H̃i−1(lkΓ1 F ;K)⊕ H̃i−1(lkΓ2 F ;K)→ H̃i−1(lk∆ F ;K)→

H̃i−2(lkΓ1 F ∩ lkΓ2 F ;K)→ · · ·
Since the middle term is nonzero, this implies that either the term on the left or the
term on the right is nonzero. In particular, we have three cases.

Case 1: H̃i−2(lkΓ1 F ∩ lkΓ2 F ;K) 6= 0. One can see that lkΓ1 F ∩ lkΓ2 F = lkΓ1∩Γ2 F
and Γ1 ∩ Γ2 = Γ, which is the simplicial complex of I + (xi | i ∈ N({1, 2, 3, 4})). It is
noted that we also have√

I3 : xb = I + (xi | i ∈ N({1, 2, 3, 4})),
where xb = (x1x2)(x1x3x4). Thus, |b| + i − 1 ≤ reg(S/I3) = |a| + i = |b| + i − 1.
It implies that (b; i − 1) is also an extremal exponent of I3. This statement is done
from the previous Lemma 4.5.
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Case 2: H̃i−1(lkΓ1 F ;K) 6= 0. One can see that√
I3 : (x2

1x
2
2x3) = I + (xi | i ∈ N({1, 2, 3})) = L+ (xi | i ∈ N({1, 2, 3}))).

It means that Γ1 = ∆x21x
2
2x3

(I3). Then, reg(S/I3) ≥ 5 + i > |a|+ i, a contradiction.

Case 3: H̃i−1(lkΓ2 F ;K) 6= 0. We have

L+ (xi | i ∈ N(4)) = I +N({1, 2}) ·N(3) +N(1) ·N(2) + (xi | i ∈ N [4]).

Let H = I +N(1) ·N(2) + (xi | i ∈ N [4]), then

L+ (xi | i ∈ N(4)) = (H + (xi | i ∈ N({1, 2}))) ∩ (H + (xi | i ∈ N(3))).

Let γ1 and γ2 be the simplicial complexes which are corresponding to H + (xi | i ∈
N({1, 2}) = (I + (xi | i ∈ N({1, 2, 4}))) and H + (xi | i ∈ N(3)) = (I +N(1) ·N(2) +
(xi | i ∈ N({3, 4}))). Then, Γ2 = γ1 ∪ γ2. Applying the Mayer-Vietoris sequence
again, we also deduce three subcases:

Subcase 3.1: H̃i−2(lkγ1 F ∩ lkγ2 F ;K) 6= 0. One can see that γ1 ∩ γ2 is exactly the
simplicial complex of

(I + (xi | i ∈ N({1, 2, 4}))) + (I +N(1) ·N(2) + (xi | i ∈ N({3, 4})))
= I + (xi | i ∈ N({1, 2, 3, 4})),

and we deduce our statement as in the Case 1.
Subcase 3.2: H̃i−1(lkγ1 F ;K) 6= 0. Similar to Case 2, we also have a contradiction.

Subcase 3.3: H̃i−1(lkγ2 F ;K) 6= 0. We have

(I +N(1) ·N(2) + (xi | i ∈ N({3, 4})))
= (I + (xi | i ∈ N({1, 3, 4})) ∩ (I + (xi | i ∈ N({2, 3, 4})).

Let δ1 and δ2 be the simplicial complexes which are corresponding to (I + (xi | i ∈
N({1, 3, 4}))) and (I + (xi | i ∈ N({2, 3, 4}))). Applying the Mayer-Vietoris sequence

again, we also deduce that either H̃i−1(lkδ1 F ∩ lkδ2 F ;K) 6= 0 or H̃i(lkδ1 F ;K) 6= 0

or H̃i(lkδ1 F ;K) 6= 0. Moreover, δ1 ∩ δ2 is also exactly the simplicial complex of
(I+(xi | i ∈ N({1, 2, 3, 4}))). With the same argument as in the Case 1 and the Case
2, we have the desired conclusion. �

Lemma 4.7. If xa /∈ I(3) with ∆a(I(3)) 6= ∆a(I3), then reg(I3) ≤ reg(I(3)).

Proof. By Lemma 4.1 and Lemma 4.5, we can assume that xa = x1x2x3 · f where 123
is a 3-cycle of G and a monomial f ∈ S with supp(f) is an independent set of G.
First, we have

Claim B:

(1) supp(f) ∩ {1, 2, 3} = ∅.
(2) If r ∈ supp(f) then x2

r is not a divisor of f .

15



Now, let supp(f) = {4, . . . , t} for some t ≥ 4. Assume that r, s ∈ supp f are such
that r ∈ N(1, 2, 3) while s /∈ N(1, 2, 3). Since G is connected and has no isolated
vertices, there exists a neighbor of s, called u. Since supp f is an independent set,
u /∈ supp a. Furthermore, xu ∈

√
I3 : xa as xuxsx1x2x3xr ∈ I3. By Lemma 2.14 we

are done by induction. Thus, we may assume that either {4, . . . , t}∩N({1, 2, 3}) = ∅
or {4, . . . , t} ⊆ N({1, 2, 3}).

Futhermore, we also may assume that (N(i) ∩N(j)) \ {1, 2, 3} = ∅ for all 4 ≤ i 6=
j ≤ t; (N({1, 2, 3})∩N({4, . . . , t})) \ {1, 2, 3} = ∅; and N(1)∩N(2)∩N(3) = ∅ by if
either u ∈ (N(i) ∩N(j)) \ {1, 2, 3} or u ∈ N(1) ∩N(2) ∩N(3) or u ∈ (N({1, 2, 3}) ∩
N({4, . . . , t})) \ {1, 2, 3} = ∅, then xu ∈

√
I3 : xa and u /∈ supp(a) and we are done

by induction and Lemma 2.14.

Case 1: {4, . . . , t} ∩ N({1, 2, 3}) = ∅. Denote N∗(i) = N(i) \ {1, 2, 3}. In this case,
we have

Claim C:
√
I3 : xa = I+

∑
4≤i<j≤t

N(i) ·N(j)+N({1, 2, 3}) ·N({4, . . . , t})+N∗(1) ·N∗(2) ·N∗(3).

There are two subcases:
Subcase 1.1. If t ≥ 5. Let

H = I+
∑

4≤i<j≤t,(i,j)6=(t−1,t)

N(i)·N(j)+N∗(1)·N∗(2)·N∗(3)+N({1, 2, 3})·N({4, . . . , t}).

Then, √
I3 : xa = (H + (xi | i ∈ N(t− 1))) ∩ (H + (xi | i ∈ N(t))).

Let Γ1 and Γ2 be the simplicial complexes which are corresponding to H + (xi | i ∈
N(t− 1)) and H + (xi | i ∈ N(t)). Hence,

∆a(I3) = Γ1 ∪ Γ2.

Moreover, Γ1 ∩ Γ2 is the simplicial complex of H + (xi | i ∈ N({t− 1, t})). Using the
above Claim A, one can see that Γ1 is a cone over t − 1, Γ2 and Γ1 ∩ Γ2 are cones
over t. By F ∩ supp(a) = ∅, t, t− 1 /∈ F . Applying the Mayer-Vietoris sequence, this

implies that either H̃i−1(lkΓ1 F ) 6= 0 or H̃i−1(lkΓ2 F ) 6= 0 or H̃i−2(lkΓ1 F ∩ lkΓ2 F ) 6= 0,
which is a contradiction.

Subcase 1.2. If t = 4. Let H = I +N∗(1) ·N∗(2) ·N∗(3). Then,
√
I3 : xa = (H + (xi | i ∈ N({1, 2, 3}))) ∩ (H + (xi | i ∈ N(4))).

Let Γ1 and Γ2 be the simplicial complexes which are corresponding to H + (xi | i ∈
N({1, 2, 3})) and H + (xi | i ∈ N(4)). Hence,

∆a(I3) = Γ1 ∪ Γ2.

Moreover, Γ1∩Γ2 is also the simplicial complex of H+(xi | i ∈ N({1, 2, 3, 4})). Using
Claim A, we can see that Γ2 and Γ1∩Γ2 are cones over 4. By F ∩ supp(a) = ∅, 4 /∈ F .
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Applying the Mayer-Vietoris sequence, this implies that H̃i−1(lkΓ1 F ) 6= 0. On the
other hand,

H + (xi | i ∈ N({1, 2, 3}) = I + (xi | i ∈ N({1, 2, 3}).

Let b = x2
1x

2
2x3. Then

√
I3 : xb = I + (xi | i ∈ N({1, 2, 3})). Thus,

|b|+ i ≤ reg(S/I3) = |a|+ i,

which is a contradiction, as |b| > |a|.
Case 2: {4, . . . , t} ⊆ N({1, 2, 3}). If t ≥ 5, we have a contradiction by

Claim D: ∆a(I3) is a cone over 4.

Thus, t = 4. There are two subcases:
Subcase 2.1: |N(4) ∩ {1, 2}| = 1. Assume that x1x4 ∈ I and x2x4, x3x4 /∈ I. One

can see that
√
I3 : xa = I +N(2) ·N(3) +N({1, 2, 3}) ·N(4) + (x1).

Let J = I + (x1) +N(2) ·N(3). Then
√
I3 : xa = (J + (xi | i ∈ N(4))) ∩ (J + (xi | i ∈ N({1, 2, 3}))).

Let Γ1,Γ2 be the corresponding simplicial complexes of J + (xi | i ∈ N(4)) and
J + (xi | i ∈ N({1, 2, 3})). Then

∆a(I3) = Γ1 ∪ Γ2.

Note that Γ1 ∩Γ2 is the simplicial complex of J + (xi | i ∈ N({1, 2, 3, 4})). It is noted
that 4 /∈ F by 4 ∈ supp(a). Since Γ1 is a cone over 4, applying the Mayer-Vietoris

sequence, this implies that either H̃i−1(lkΓ2 F ;K) 6= 0 or H̃i−2(lkΓ1∩Γ2 F ;K) 6= 0.

Subcase 2.1.1. H̃i−1(lkΓ2 F ;K) 6= 0. Let b = x2
1x

2
2x3, then

√
I3 : xb = I + (xi | i ∈ N({1, 2, 3})) = J + (xi | i ∈ N({1, 2, 3})).

Thus, |b|+ i ≤ reg(S/I3) = |a|+ i, which is a contradiction, as |b| > |a|.
Subcase 2.1.2. H̃i−2(lkΓ1∩Γ2 F ;K) 6= 0. Let b = x2

1x2x3x4, then
√
I3 : xb = I + (xi | i ∈ N({1, 2, 3, 4})) = J + (xi | i ∈ N({1, 2, 3, 4})).

Thus, |b| + i − 1 ≤ reg(S/I3) = |a| + i = |b| + i − 1. Then (b, i − 1) is also an
extremal exponent with respect to I3. Furthermore, x2

1x2x3x4 = (x1x2x3) · (x1x4) is
the product of a triangle and an edge, which was treated in Lemma 4.6. From this,
we deduce that reg I3 ≤ reg I(3) as required.

Subcase 2.2: |N(4)∩{1, 2}| = 2. Assume that x1x4, x4x2 ∈ I and x3x4 /∈ I. In this
case, we have

√
I3 : xa = I +N(4) ·N({1, 2, 3}) +N(3) ·N({1, 2}) + (x1, x2).
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Let H = I + (x1, x2) + N(3) · N({1, 2}). Then
√
I3 : xa = (H + (xi | i ∈ N(4))) ∩

(H + (xi | i ∈ N{1, 2, 3})). Let δ1, δ2 be the corresponding simplicial complexes of
H + (xi | i ∈ N(4)) and H + (xi | i ∈ N({1, 2, 3})). Then

∆a(I3) = δ1 ∪ δ2.

Note that δ1 ∩ δ2 is the simplicial complex of H + (xi | i ∈ N({1, 2, 3, 4})). Applying

again the Mayer-Vietoris sequence, we deduce that either H̃i−1(lkδ1 F ;K) 6= 0 or

H̃i−1(lkδ2 F ;K) 6= 0 or H̃i−2(lkδ1∩δ2 F ;K) 6= 0, where F ∈ ∆a(I3) such that F ∩
supp(a) = ∅ and H̃i−1(lk∆a(I3) F ;K) 6= 0.

Subcase 2.2.1: H̃i−1(lkδ2 F ;K) 6= 0. It is noted that

H + (xi | i ∈ N({1, 2, 3})) = I + (xi | i ∈ N({1, 2, 3})),

which gives rise to a contradiction with similar argument as in the subcase 2.1.1.

Subcase 2.2.2: H̃i−2(lkδ1∩δ2 F ;K) 6= 0. We also have

H + (xi | i ∈ N({1, 2, 3, 4})) = I + (xi | i ∈ N({1, 2, 3, 4})),

which is the subcase 2.1.2.
Subcase 2.2.3: H̃i−1(lkδ1 F ;K) 6= 0. In this case, we have

H + (xi | i ∈ N(4)) = I + (xi | i ∈ N(4)) +N(3) ·N({1, 2})
= (I + (xi | i ∈ N({3, 4}))) ∩ (I + (xi | i ∈ N({1, 2, 4}))).

Let γ1, γ2 be the corresponding simplicial complexes of I + (xi | i ∈ N({3, 4})) and
I + (xi | i ∈ N({1, 2, 4})). Then, δ1 = γ1 ∪ γ2 and γ1 ∩ γ2 is the simplicial complex of
I + (xi | i ∈ N({1, 2, 3, 4})). Similar to the subcases 2.2.1 and 2.2.2 and γ1 is a cone
over 4, we obtain our assertion. Our proof will be completed once we prove Claim B,
Claim C, and Claim D, which is done in the sequence. �

Proof of Claim B. (1) Assume that 1 ∈ supp(f) ∩ {1, 2, 3}. By xa /∈ IJ1(G), 1r /∈ G
for any r ∈ supp(f) \ {1, 2, 3} i.e. x1 /∈

√
I3 : xa. Moreover, xr ∈

√
I3 : xa for all

r ∈ N(1) (by (xrx1)2x2x3 ∈ I3). And, the variable x1 will be not appeared in any

minimal squarefree monomial generator of
√
I3 : xa. In fact, by Lemma 2.15, if g is

a minimal squarefree monomial generator of
√
I3 : xa then g| xe1xe2xe3

gcd(xe1xe2xe3 , x
a)

for

some edges e1, e2, e3 of G. By x1|g, x2
1|xa then x3

1|xe1xe2xe3 . But xr ∈
√
I3 : xa for all

r ∈ N(1), g must be x1, which is a contradiction. Using Claim A, ∆a(I3) is a cone
over 1, a contradiction.

(2) Assume that r ∈ supp(f) and x2
r|f , then xi ∈

√
I3 : xa for all i ∈ N(r) by

(xixr)
2x1x2x3 ∈ I3. If xr ∈

√
I3 : xa, then 1r, 2r, 3r ∈ G, as there is no edges in

supp(f). Thus, xa ∈ J2(G) ⊆ I(3), a contradiction. If xr /∈
√
I3 : xa, similarly, the

variable xr will be not appeared in any minimal squarefree monomial generator of√
I3 : xa. Then ∆a(I3) is a cone over r (by again the Claim A), which is also a

contradiction. This completes our Claim B. �
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Proof of Claim C:. It is easy to see that the left hand side contains the right hand side.
To prove the reverse inclusion, let g be a minimal monomial generator of

√
I3 : xa.

By Lemma 2.15, there exist three edges e1, e2, e3 of G such that

g =

√
xe1xe2xe3

gcd(xe1xe2xe3 , x
a)
.

If supp ei ∩ supp a = ∅, then g ∈ I, thus we may assume that supp ei ∩ supp a 6= ∅ for
all i = 1, 2, 3. There are two cases:

Case 1: supp ei ⊆ supp a for some i. Assume that supp e1 ⊆ xa. This implies that

supp e1 ⊆ {1, 2, 3}. We may assume that e1 = 12. Thus, g =

√
xe2xe3

gcd(xe2xe3 , x3x4 · · ·xt)
.

Let i = supp e2 ∩ {3, 4, . . . , t} and j = supp e3 ∩ {3, 4, . . . , t}. Then i 6= j and
g = xe2xe3/xixj ∈ N(i) ·N(j).

Case 2: | supp ei ∩ supp a| = 1 for all i = 1, 2, 3. Let i = supp e1 ∩ supp a, j =
supp e2 ∩ supp a, and k = supp e3 ∩ supp a. Then i, j, k must be distinct, and g =√
xe1xe2xe3/xixjxk. If either i, j, k ≥ 4, say k ≥ 4, then g ∈ N({1, 2, 3}) · N(k). If

i, j, k ≤ 3, then {1, j, k} = {1, 2, 3}, and g ∈ N∗(1) · N∗(2) · N∗(3). This completes
Claim C. �

Proof of Claim D. Assume that g is a minimal monomial generator of
√
I3 : xa such

that x4|g. By Lemma 2.15, there exist three edges e1, e2, e3 of G such that

g =

√
xe1xe2xe3

gcd(xe1xe2xe3 , x
a)
.

In particular, x2
4|xe1xe2xe3 . We may assume that e1, e2 contains 4. Let xe1 = x4xs,

xe2 = x4xu, then g = x4

√
xsxuxe3

gcd(xsxuxe3 , x1x2x3x5 · · ·xt)
. Since xs ∈

√
I3 : xa, and g is

minimal, xs|x1x2x3x5 · · ·xt. From s ∈ N(4), s ∈ {1, 2, 3}. We may assume that s = 1.

Similarly, u ∈ {2, 3}. Assume that u = 2, then g = x4 ·
√
xe3/ gcd(xe3 , x3x5 · · ·xt).

Since g is minimal, there is j ∈ supp(e3) ∩ {3, 5, · · · , t}. Therefore, g = x4 · (xe3/xj).
Furthermore, (xe3/xj)x

a ∈ I3 i.e. xe3/xj ∈
√
I3 : xa, which is a contradiction to the

minimality of g. �

We are now ready for the main result of the section.

Theorem 4.8. Let G be a simple graph and I its edge ideal. Then

reg I(3) = reg I3.

Proof. By Theorem 4.3, it suffices to prove that reg I3 ≤ reg I(3). Let (a, i) be an
extremal exponent of I3. Then xa /∈ I3. We have the following cases.
Case 1: xa /∈ I(3) and ∆a(I3) = ∆a(I(3). The conclusion follows from Lemma 2.12.
Case 2: xa /∈ I(3) and ∆a(I3) 6= ∆a(I(3). The conclusion follows from Lemma 4.7.
Case 3: xa ∈ I(3). The conclusion follows from Theorem 2.7, and Lemmas 4.4, 4.5,
and 4.6. �
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5. Applications

In this section, we give some applications of our main results. First, we establish
Conjecture B for s = 2 and s = 3, which extends work of Banerjee and Nevo [BN].

Theorem 5.1. Let G be a simple graph and I its edge ideal. Then

reg Is ≤ reg I + 2s− 2

for s = 2, 3.

Proof. By [F4, Theorem 3.6], we have

reg I(s) ≤ max{reg(I(s) + Is−1), reg I + 2s− 2}.
For s = 2, 3, note that I(s) ⊆ Is−1. Thus, for s = 2, by Theorem 3.2,

reg I2 = reg I(2) ≤ max{reg I, reg I + 2} = reg I + 2.

For s = 3, by Theorem 4.8,

reg I3 = reg I(3) ≤ max{reg I2, reg I + 4} = reg I + 4.

This completes our proof. �

Remark 5.2. Theorem 5.1 shows that bounds for edge ideals generalize to bounds
for second and third powers of edge ideals. For example, combinatorial bound given
by Woodroofe [W] carries over to bounds for regularity of the second/third powers of
an edge ideal.

For symbolic powers, we prove

Theorem 5.3. Let G be a simple graph and I its edge ideal. Then

reg I(s) ≤ reg I + 2s− 2

for s = 2, 3, 4.

The case s ≤ 3 was already proved in Theorem 5.1. Let s = 4. Using [F4, Theorem
3.6], we need to bound reg(I(4) + I3). First, we have

Lemma 5.4. Denote J3(G) the ideal of S generated by xC where C is a clique of size
5 in G. Then

I(4) + I3 = I3 + J1(G)J1(G) + J3(G).

Proof. Using Lemma 2.3, it is easy to see that the left hand side contains the right
hand side. Conversely, let f be a minimal generator of I(4). By Lemma 2.4, we may
assume that supp f = V (G) = [n], and G has no isolated vertices. If the matching
number of G is at least 3, then f ∈ I3. Thus, we may assume that the matching
number of G is at most 2. There are two cases:

Case 1: G contains an induced 5-cycle, called 12345. Write f = x1x2x3x4x5g.
By Lemma 2.3, this implies that x1x3g ∈ I. Since 12345 is an induced 5-cycle,
x1x3 /∈ I, thus either x1g or x3g ∈ I. We may assume that x1g ∈ I. This implies that
f = (x1g)(x2x3)(x4x5) ∈ I3.
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Case 2: G does not contains any 5-cycle. Since the matching number of G is at
most 2, by [D, Theorem 5.5.3], G is a perfect graph. The conclusion follows from [Su,
Theorem 3.10]. �

We are now ready for

Proof of Theorem 5.3. By Theorem 5.1, we may assume that s = 4. By [F4, Theorem
3.6], we have

reg I(4) ≤ max{reg(I(4) + I3), reg I + 6}.
Let H = I(4) + I3. By Lemma 5.4, H = I3 + J1(G)J1(G) + J3(G). Fix a ∈ Nn

such that xa /∈ H. We will prove that ∆a(H) = ∆a(I3). Assume by contradiction
that ∆a(H) 6= ∆a(I3). By Lemma 2.13, there exists a minimal squarefree monomial

generator f of
√
H3 : xa such that f /∈

√
I3 : xa. By Lemma 2.15, we have two cases:

Case 1: f =
√
x1x2x3x4x5/ gcd(x1x2x3x4x5, xa), where 12345 forms a clique of size

5 in G. If deg f ≥ 2, then xixj|f and f ∈ I ⊆
√
I3 : xa, which is a contradiction. If

deg f = 1, say f = x1, then x2x3x4x5|xa. But then x1 ∈
√
I3 : xa, which is also a

contradiction.

Case 2: f =
√
x1x2x3x4x5x6/ gcd(x1 · · ·x6, xa) where 123 and 456 are triangles

in G. If {1, 2, 3} ∩ N({4, 5, 6}) 6= ∅, then x1 · · ·x6 ∈ I3, which is a contradiction.

Thus, we may assume that {1, 2, 3} ∩ N({4, 5, 6}) = ∅. Since f /∈
√
I3 : xa, f /∈ I.

Since f |x1 · · ·x6, deg f ≤ 2. We may assume that supp f ⊆ {1, 4}. This implies
that x2x3x5x6|xa. But, x2

1(x2x3x5x6) = (x1x2)(x1x3)(x5x6) ∈ I3 and x2
4(x2x3x5x6) =

(x2x3)(x4x5)(x4x6) ∈ I3. In other words, x1, x4 ∈
√
I3 : xa. This implies that f ∈√

I3 : xa, which is a contradiction.
Thus, we have ∆a(H) = ∆a(I3) for all a ∈ Nn such that xa /∈ H. By Lemma 2.12,

regH ≤ reg I3 ≤ reg I + 4, where the last inequality follows from Theorem 5.1. This
concludes our proof. �

Remark 5.5. Theorem 5.3 implies that bounds for regularity of edge ideals generalize
to bounds for regularity of s-th symbolic powers of edge ideals (s ≤ 4). In particular,
upper bounds given by Herzog and Hibi [HH], and Fakhari and Yassemi [FY] hold for
s-th symbolic powers of edge ideals (s ≤ 4).

By Theorem 1.1 and Theorem 5.3, we obtain a formula of the regularity of small
symbolic powers of edge ideals of some new classes of graphs.

Corollary 5.6. Let G be a simple graph and I = I(G).

(1) If Is has a linear resolution (for s = 2 or 3) then reg(I(s)) = 2s.
(2) If reg I = µ(G) + 1, where µ(G) is the induced matching number of G, then

reg I(s) = 2s+ µ(G)− 1 for s = 2, 3, 4.

Proof. The first statement is a direct consequence of Theorem 1.1. The second state-
ment follows from Theorem 5.3 and Lemma 2.5. �
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Remark 5.7. (1) There is an infinite family of graphs G with the property that
although each edge ideal I(G) does not have a linear resolution, a higher power
does (see [N]).

(2) There are classes of graphs for which reg I = µ(G)+1, while regularity of their
symbolic powers was not known. Such examples include the class of very-well
covered graphs [JS] and weakly chordal graphs [NV1].

We end the paper with the following remark.

Remark 5.8. From the proof of Theorem 5.3, we see that

reg(I3 + J1(G)J1(G)) ≤ reg I3.

Note that I3 +J1(G)J1(G) = I3 is the integral closure of I3. The regularity of integral
closure of powers of edge ideals will be studied in detail in subsequent work.
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