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Abstract. We address the problem of computing the smallest symplectic eigenvalues and the
corresponding eigenvectors of symmetric positive-definite matrices in the sense of Williamson’s the-
orem. It is formulated as minimizing a trace cost function over the symplectic Stiefel manifold. We
first investigate various theoretical aspects of this optimization problem such as characterizing the
sets of critical points, saddle points, and global minimizers as well as proving that non-global local
minimizers do not exist. Based on our recent results on constructing Riemannian structures on the
symplectic Stiefel manifold and the associated optimization algorithms, we then propose solving the
symplectic eigenvalue problem in the framework of Riemannian optimization. Moreover, a connection
of the sought solution with the eigenvalues of a special class of Hamiltonian matrices is discussed.
Numerical examples are presented.
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1. Introduction. Given a positive integer n, let us consider the matrix

J2n =

[
0 In
−In 0

]
∈ R2n×2n,

where In denotes the n×n identity matrix. A matrix X ∈ R2n×2k with k ≤ n is said to
be symplectic if it holds XTJ2nX = J2k. Although the term “symplectic” previously
seemed to apply to square matrices only, it has recently been used for rectangular
ones as well [48, 29]. Note that J2n is orthogonal, skew-symmetric, symplectic, and
sometimes referred to as the Poisson matrix [48]. Symplectic matrices appear in
a variety of applications including quantum mechanics [20], Hamiltonian dynamics [34,
53], systems and control theory [28, 32, 42] and optimization problems [26, 18]. The
set of all symplectic matrices is denoted by Sp(2k, 2n). When k = n, we write Sp(2n)
instead of Sp(2k, 2n). These matrix sets have a rich geometry structure: Sp(2k, 2n) is
a Riemannian manifold [29], also known as the symplectic Stiefel manifold, whereas
Sp(2n) forms additionally a noncompact Lie group [27, Lemma 1.15].

There are fundamental differences between symplectic and orthonormal matrices:
notably, Sp(2k, 2n) is unbounded [29]. However, their definitions look alike (replac-
ing J by I in the definition of symplectic matrices yields that of orthonormal ones)
and several properties of orthonormal matrices have their counterparts for symplectic
matrices, e.g., they have full rank and they form a submanifold. Of interest here is
the diagonalization of symmetric positive-definite (spd) matrices. The fact that every
spd matrix can be reduced by an orthogonal congruence to a diagonal matrix with
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positive diagonal elements is well-known and can be found in any standard linear
algebra textbook. This problem is also called the eigenvalue decomposition as the
diagonal entries of the diagonalized matrix are the eigenvalues of the given one. Its
symplectic counterpart is known as Williamson’s theorem [58] which states that for
any spd matrix M ∈ R2n×2n, there exists S ∈ Sp(2n) such that

(1.1) STMS =

[
D 0
0 D

]
,

where D = diag(d1, . . . , dn) with positive diagonal elements. This decomposition is
referred to as Williamson’s diagonal form or Williamson’s normal form of M . The
values di are called the symplectic eigenvalues of M , and the columns of S form a sym-
plectic eigenbasis in R2n. Constructive proofs of Williamson’s theorem can be found
in [52, 47, 37]. Symplectic eigenvalues have wide applications in quantum mechan-
ics and optics; they are important quantities to characterize quantum systems and
their subsystems with Gaussian states [33, 47, 40]. Especially, in the Gaussian mar-
ginal problem, knowledge on symplectic eigenvalues helps to determine local entropies
which are compatible with a given joint state [22].

The computation of standard eigenvalues is a well-established subfield in numeri-
cal linear algebra, see, e.g., [41, 56, 49] and many other textbooks related to matrix
analysis and computations. Particularly, numerical methods based on optimization
were extensively studied where either a matrix trace or Rayleigh quotient is minimized
with some constraints. The generalized eigenvalue problems (EVPs) were investigated
in [51, 39, 50, 44] using trace minimization. This approach was also applied to a spe-
cial class of Hamiltonian matrices in the context of (generalized) linear response EVP
[8, 9, 10]. The authors of [21, 2, 1, 11] approached the Rayleigh quotient or trace
minimization problem by using Riemannian optimization on an appropriately cho-
sen matrix manifold [4] such as the Stiefel manifold and the Grassmann manifold.
However, only very few works devoted to computing symplectic eigenvalues can be
found in the literature. In addition to some constructive proofs, e.g., [52, 47], which
lead to numerical methods suitable for small to medium-sized problems only, the ap-
proaches in [6, 37] are based on the one-to-one correspondence between spd matrices
and a special class of Hamiltonian ones, the so-called positive-definite Hamiltonian
(pdH) matrices. Specifically, it was proposed in [37] to compute the symplectic ei-
genvalues of M by transforming the pdH matrix J2nM into a normal form by using
elementary symplectic transformations as described in [36]. Furthermore, the sym-
plectic Lanczos method for computing several extreme eigenvalues of pdH matrices
developed in [5, 6] was also based on a similar relation. Perturbation bounds for
Williamson’s diagonal form were presented in [35].

To the best of our knowledge, there is no algorithmic work that relates the compu-
tation of symplectic eigenvalues to the optimization framework similar to that for the
standard EVP. In [33, 17], a connection between the sum of the k smallest symplectic
eigenvalues of an spd matrix and the minimal trace of a matrix function defined on the
set of symplectic matrices was established. Note that computation was not the focus
and no algorithms were discussed in these works. Moreover, no practical procedure
can be directly implied from the relation.

In this paper, building on results of [33, 17] and on various additional proper-
ties of the trace minimization problem, we construct an algorithm to compute the
smallest symplectic eigenvalues via solving an optimization problem with symplectic
constraints by exploiting the Riemannian structure of Sp(2k, 2n) investigated recently
in [29]. Our goal is not merely to find a way to minimize the trace cost function, but
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also to investigate the intrinsic connection between the symplectic EVP and the trace
minimization problem. To this end, our contributions are mainly reflected in the
following aspects. (i) We characterize the set of eigenbasis matrices in Williamson’s
diagonal form of an spd matrix (Theorem 3.6) as well as the sets of critical points
(Theorem 4.3 and Corollary 4.4), saddle points (Proposition 4.12) and the minimizers
(Theorem 4.6 and Corollary 4.7) of the associated trace minimization problem and
prove the non-existence of non-global local minimizers (Proposition 4.11). Some of
these findings turn out to be important extensions of the existing results for the stan-
dard EVP. (ii) Based on a recent development on symplectic optimization derived
in [29], we propose an algorithm (Algorithm 5.2) to solve the symplectic EVP via
Riemannian optimization. (iii) As an application, we consider computing the stan-
dard eigenvalues and the corresponding eigenvectors of the associated pdH matrix.
Numerical examples are reported to verify the effectiveness of the proposed algorithm.

To avoid ambiguity, we would like to mention that the term “symplectic eigenvalue
problem” or “symplectic eigenproblem” was also used in some works, e.g., [19, 13, 24],
in a different meaning. There, symplectic matrices are used as a tool to compute
standard eigenvalues of structured matrices such as Hamiltonian, skew-Hamiltonian,
and symplectic matrices. The motivation behind this is that symplectic similarity
transformations preserve these special structures. The resulting structure-preserving
methods are, therefore, referred to as symplectic methods. Here, we focus instead on
the computation of the symplectic eigenvalues of spd matrices, where symplectic ma-
trices are involved due to Williamson’s diagonal form (1.1), and a special Hamiltonian
EVP is considered as an application only.

The rest of the paper is organized as follows. In section 2, we introduce the nota-
tion and review some basic facts for structured matrices. In section 3, we define the
symplectic EVP, revisit Williamson’s theorem on diagonalization of spd matrices, and
characterize the set of symplectically diagonalizing matrices. We also establish a rela-
tion between the standard and symplectic eigenvalues for spd and skew-Hamiltonian
matrices. In section 4, we go deeply into the symplectic trace minimization problem
and study the connection between the symplectic EVP and trace minimization. In
section 5, we present a Riemannian optimization algorithm for computing the small-
est symplectic eigenvalues as well as the corresponding eigenvectors. Additionally, we
discuss the computation of standard eigenvalues of pdH matrices. Some numerical
results are given in section 6. Finally, the conclusion is provided in section 7.

2. Notation and preliminaries. In this section, after stating some conventions
for notation, we introduce several structured matrices used in this paper and collect
their useful properties.

In the Euclidean space R2n, ei denotes the i-th canonical basis vector for
i = 1, . . . , 2n. The Euclidean inner product of two matrices X,Y ∈ Rn×m is de-
noted by 〈X,Y 〉 := tr(XTY ), where tr(·) is the trace operator and XT stands for the
transpose of X. Given A ∈ Rm×m, sym(A) := 1

2 (A + AT ) denotes the symmetric
part of A. We let diag(a1, . . . , am) ∈ Rm×m denote the diagonal matrix with the
components a1, . . . , am on the diagonal. This notation is also used for block diagonal
matrices, where each ai is a submatrix block. We use span(A) to express the subspace
spanned by the columns of A. Furthermore, Ssym(n), SPD(n), and Sskew(n) denote
the sets of all symmetric, symmetric positive-definite, and skew-symmetric n×n mat-
rices, respectively. For a twice continuously differentiable function f : Rn×m → R, we
denote by ∇f(X) and ∇2f(X), respectively, the Euclidean gradient and the Hessian
of f at X. Moreover, Dh(X) stands for the Fréchet derivative at X of a mapping h
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between Banach spaces, if it exists.
A matrix H ∈ R2n×2n is called Hamiltonian if (JT2nH)T = JT2nH. It is well-

known, e.g., [45], that the eigenvalues of such a matrix appear in pairs (λ,−λ), if
λ ∈ R∪ iR, or in quadruples (λ,−λ, λ,−λ), if λ ∈ C\{R∪ iR}. Here, i =

√
−1 denotes

the imaginary unit. Further, a Hamiltonian matrix H ∈ R2n×2n is called positive-
definite Hamiltonian (pdH) if its symmetric generator JT2nH is positive definite. The
eigenvalues of the pdH matrix are purely imaginary [7].

A matrix N ∈ R2n×2n is called skew-Hamiltonian if (JT2nN)T = −JT2nN . Each ei-
genvalue of N has even algebraic multiplicity. Skew-Hamiltonian matrices play an im-
portant role in the computation of eigenvalues and invariant subspaces of Hamiltonian
matrices, see [16] for a survey.

A matrix K ∈ R2n×2n is called orthosymplectic, if it is both orthogonal and
symplectic, i.e., KTK = I2n and KTJ2nK = J2n. We denote the set of 2n × 2n or-
thosymplectic matrices by OrSp(2n). It is well-known that similarity transformations
of Hamiltonian, skew-Hamiltonian and symplectic matrices with (ortho)symplectic
matrices preserve the corresponding matrix structure. This property is often used in
structure-preserving algorithms for solving structured EVPs, e.g., [45, 24, 16].

Next, we present some useful facts on symplectic and orthosymplectic matrices
which will be exploited later.

Proposition 2.1. i) Let S ∈ Sp(2n). Then S−1, ST ∈ Sp(2n).
ii) The set of orthosymplectic matrices OrSp(2n) is a group characterized by

OrSp(2n) =

{
K =

[
K1 K2

−K2 K1

]
: KT

1 K2 = KT
2 K1, K

T
1 K1 +KT

2 K2 = I

}
.

iii) For S, T ∈ Sp(2k, 2n), span(S) = span(T ) if and only if there exists a matrix
K ∈ Sp(2k) such that T = SK.

Proof. i) These facts have been proved in various sources, e.g., [33, Section 2] or
[34, Proposition 2 in Chapter 1].

ii) The representation for elements of OrSp(2n) has been proved in [20, Sec-
tion 2.1.2] or [30, Section 7.8.1]. This set is a group because it is the intersection of
two groups with the same operation and identity element.

iii) If k = n, the proof is straightforward since Sp(2n) is a group. Otherwise, the
sufficiency immediately follows from the relation T = SK. To prove the necessity, we
assume that S, T ∈ Sp(2k, 2n) with span(S) = span(T ). Then there exists a nonsin-
gular matrix K ∈ R2k×2k such that T = SK. The simplecticity of K is verified by
KTJ2kK = KTSTJ2nSK = TTJ2nT = J2k.

3. Williamson’s theorem revisited. In this section, we discuss Williamson’s
theorem and related issues in detail. This includes a definition of symplectic eigen-
vectors, a characterization of symplectically diagonalizing matrices, and the methods
for computing Williamson’s diagonal form for general spd matrices and for spd and
skew-Hamiltonian matrices.

3.1. Williamson’s diagonal form and symplectic eigenvectors. First, we
review some facts related to Williamson’s theorem. Let a matrix M ∈ SPD(2n) be
transformed into Williamson’s diagonal form (1.1) with a symplectic transformation
matrix S = [s1, . . . , sn, sn+1, . . . , s2n] and a diagonal matrix D = diag(d1, . . . , dn)
with the symplectic eigenvalues on the diagonal in the non-decreasing order, i.e.,
0 < d1 ≤ . . . ≤ dn. In this case, we will say that S symplectically diagonalizes M or
that S is a symplectically diagonalizing matrix, when M is clear from the context.
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Note that the set of symplectic eigenvalues, also called the symplectic spectrum of M ,
is known to be unique [20, Theorem 8.11], while the symplectically diagonalizing
matrix S is not unique. It has been shown in [20, Proposition 8.12] that if S and T
symplectically diagonalize M , then S−1T ∈ OrSp(2n).

The multiplicity of the symplectic eigenvalue dj , j = 1, . . . , n, is the number of
times it is repeated in D. Note that this definition differs from that for standard
eigenvalues, where the appearance of the eigenvalue in diag(D,D) is counted. The
reasons for this discrepancy will get cleared after introducing symplectic eigenvectors,
see, e.g., [17, 38] and the references therein.

A pair of vectors (u, v) in R2n is called (symplectically) normalized if 〈u, J2nv〉 = 1.
Two pairs of vectors (u1, v1) and (u2, v2) are said to be symplectically orthogonal if

〈ui, J2nvj〉 = 〈ui, J2nuj〉 = 〈vi, J2nvj〉 = 0 for i 6= j, i, j = 1, 2.

A matrix X = [u1, . . . , uk, v1, . . . , vk] ∈ R2n×2k is said to be normalized if each pair
(ui, vi), i = 1, . . . , k, is normalized. It is called symplectically orthogonal if the pairs of
vectors (ui, vi) are mutually symplectically orthogonal. Note that the symplecticity
of X is equivalent to the fact that X is normalized and symplectically orthogonal.
For k = n, a normalized and symplectically orthogonal vector set forms a symplectic
basis in R2n.

The two columns of a matrix X ∈ R2n×2 are called a symplectic eigenvector pair
of M ∈ SPD(2n) associated with a symplectic eigenvalue λ if it holds

(3.1) MX = J2nX

[
0 −λ
λ 0

]
.

If X is additionally symplectic, we call its columns a normalized symplectic eigenvector
pair. Since each symplectic eigenvalue always needs a pair of symplectic eigenvectors
to define, this explains the above definition of the multiplicity.

More general, the columns of X ∈ R2n×2k are called a symplectic eigenvector set
of M ∈ SPD(2n) associated with the symplectic eigenvalues λ1, . . . , λk, if it holds

(3.2) MX = J2nX

[
0 −Λ
Λ 0

]
with Λ = diag(λ1, . . . , λk). If X is, in addition, symplectic, we say that its columns
form a normalized symplectic eigenvector set.

Remark 3.1. If X ∈ Sp(2k, 2n) satisfies (3.2), then due to the uniqueness of
the symplectic eigenvalues (conventionally arranged in non-decreasing order), there
always exists a strictly increasingly ordered index set Ik = {i1, . . . , ik} ⊂ {1, . . . , n}
such that Λ = diag(di1 , . . . , dik). Therefore, in this paper, we will use XIk to denote
any normalized symplectic eigenvector set associated with the symplectic eigenvalues
di1 , . . . , dik . If Ik = {1, . . . , k}, we will write X1:k.

Multiplying both sides of Williamson’s diagonal form (1.1) from the left with
S−T = J2nSJ

T
2n, we obtain

(3.3) MS = J2nSJ
T
2n

[
D 0
0 D

]
= J2nS

[
0 −D
D 0

]
.

This implies that for any ordered index set Ik = {i1, . . . , ik} ⊂ {1, . . . , n}, the columns
of the symplectic submatrix [si1 , . . . , sik , sn+i1 , . . . , sn+ik ] of S form a normalized sym-
plectic eigenvector set of M associated with di1 , . . . , dik . Note that [csi, csn+i] with
c 6∈ {−1, 0, 1} is a symplectic eigenvector pair associated with di but not normalized.
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Taking into account (3.3), Williamson’s theorem can alternatively be restated as
follows: For any M ∈ SPD(2n), there exists a normalized symplectic eigenvector set
of M that constitutes a symplectic basis in R2n.

Next, we collect some useful facts on symplectic eigenvectors.

Proposition 3.2. [38, Corollaries 2.4 and 5.3] Let M ∈ SPD(2n).
i) Any two symplectic eigenvector pairs corresponding to two distinct symplectic

eigenvalues of M are symplectically orthogonal.
ii) Let λ be a symplectic eigenvalue of M of multiplicity m and let the columns

of X ∈ R2n×2m be a normalized symplectic eigenvector set associated with λ.
Then the columns of a matrix Y ∈ R2n×2m form also a normalized symplectic
eigenvector set associated with λ if and only if there exists K ∈ OrSp(2m)
such that Y = XK.

We conclude this subsection by mentioning a connection between the symplectic
eigenvalues and eigenvectors of the spd matrix M and the standard eigenvalues and
eigenvectors of the pdH matrix J2nM . This result is not new and has already been
established in a slightly different form in [20, Theorem 8.11] and [38, Lemma 2.2].

Proposition 3.3. Let M ∈ SPD(2n) and let S = [s1, . . . , s2n] be a symplectically
diagonalizing matrix of M . Then dj , j = 1, . . . , n, are the symplectic eigenvalues of
M if and only if ±idj , j = 1, . . . , n, are the standard eigenvalues of the pdH matrix
H = J2nM . Moreover, for any j = 1, . . . , n, sj ± isn+j is an eigenvector of H
corresponding to the eigenvalue ±idj.

Proof. The result immediately follows from the relation (3.3).

This proposition shows that the eigenvalues of a pdH matrix H are purely ima-
ginary and that they can be determined by computing the symplectic eigenvalues of
the corresponding spd matrix M = JT2nH.

3.2. Characterization of the set of symplectically diagonalizing matri-
ces. As we mentioned before, the diagonalizing matrix in Williamson’s diagonal form
(1.1) is not unique. In this subsection, we aim to characterize the set of all symplec-
tically diagonalizing matrices.

First, note that if M ∈ SPD(2n) has only one symplectic eigenvalue of mul-
tiplicity n, then by Proposition 3.2(ii) such a set is given by SOrSp(2n), where S
is any symplectically diagonalizing matrix of M . For general case, we present two
special classes of symplectically diagonalizing matrices.

Proposition 3.4. Let M ∈ SPD(2n) and let S ∈ Sp(2n) symplectically diago-
nalize M . Then the following statements hold.

i) Let R(j,θ) ∈ R2n×2n be the Givens rotation matrix of angle θ in the plane
spanned by ej and en+j. Then SR(j,θ) symplectically diagonalizes M for any
j = 1, . . . , n and θ ∈ [0, 2π).

ii) Let Q = diag(Q1, . . . , Qq, Q1, . . . , Qq), where Qj ∈ Rmj×mj , j = 1, . . . , q, are
orthogonal, m1, . . . ,mq are multiplicities of the symplectic eigenvalues and
m1 + . . .+mq = n. Then SQ symplectically diagonalizes M .

Proof. As the product of two symplectic matrices is again symplectic, we have to
show that R(j,θ) and Q are symplectic, and that they congruently preserve diag(D,D),
i.e., RT(j,θ)diag(D,D)R(j,θ) = diag(D,D) andQTdiag(D,D)Q = diag(D,D). This can
be verified by direct calculations.

In the case n = 1, it follows from [20, Proposition 8.12] that the set of all sym-
plectically diagonalizing matrices is S SO(2), where SO(2) is the orthogonal group of
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rotations in R2. In other words, the first class of matrices in Proposition 3.4 com-
pletely characterizes the set of all symplectically diagonalizing matrices when n = 1.

For the general case n > 1, it turns out that Proposition 3.2 plays an important
role in establishing the required result. Using the first statement in this proposition,
we can show that the symplectic eigenvectors associated with distinct symplectic
eigenvalues are linearly independent, see, e.g., [20, Theorem 1.15]. Let

A(i) =

[
A

(i)
1 A

(i)
2

A
(i)
3 A

(i)
4

]
∈ R2ki×2ki , i = 1, . . . , q,

be matrices that have been decomposed into four square blocks. We will denote by

dab(A(1), . . . , A(q)) =

[
A1 A2

A3 A4

]
the 2(k1 + · · · + kq) × 2(k1 + · · · + kq) matrix generated by diagonally assembling

the blocks A
(i)
` such that A` = diag(A

(1)
` , . . . , A

(q)
` ), ` = 1, . . . , 4. Hence the notation

“dab”. If each matrix A(i) belongs to a set of matrices Φ(i), then dab(Φ(1)×· · ·×Φ(q))
denotes the set of all matrices dab(A(1), . . . , A(q)) with A(i) ∈ Φ(i), i = 1, . . . , q. It is
straightforward to verify the following lemma.

Lemma 3.5. For any set of integers k1, . . . , kq, it holds that

dab
(
OrSp(2k1)× · · · ×OrSp(2kq)

)
⊂ OrSp

(
2(k1 + · · ·+ kq)

)
.

One can check that the matrices R(j,θ) and Q in Proposition 3.4 are elements

of the set dab
(
OrSp(2k1) × · · · × OrSp(2kq)

)
with appropriately chosen k1, . . . , kq.

Indeed, for any j = 1, . . . , n, R(j,θ) ∈ dab
(
OrSp(2(j−1))×OrSp(2)×OrSp(2(n−j))

)
.

Similarly, the matrix Q belongs to the set dab
(
OrSp(2m1)× · · · ×OrSp(2mq)

)
.

We are now ready to state the main result in this subsection. Theorem 3.6 be-
low is an important improvement of the classical result [20, Proposition 8.12] in the
sense that it characterizes exactly the set of symplectically diagonalizing matrices of
M ∈ SPD(2n). Moreover, its sufficiency part covers the matrix classes in Proposi-
tion 3.4 as special cases. Finally, it is also a nontrivial generalization of Proposi-
tion 3.2(ii).

Theorem 3.6. Let M ∈ SPD(2n) have q ≤ n distinct symplectic eigenvalues
d1, . . . , dq with multiplicities m1, . . . ,mq, respectively, and let S ∈ Sp(2n) be a sym-
plectically diagonalizing matrix of M . Then T ∈ Sp(2n) symplectically diagonalizes M
if and only if there exists K ∈ dab

(
OrSp(2m1)×· · ·×OrSp(2mq)

)
such that T = SK.

Proof. First, we show the sufficiency. Lemma 3.5 implies that K ∈ OrSp(2n).
Then we obtain

TTMT = KTSTMSK = KTdiag(D,D)K = KTKdiag(D,D) = diag(D,D),

where the third equality follows from the fact that K ∈ dab
(
OrSp(2m1) × · · · ×

OrSp(2mq)
)
. This means that T symplectically diagonalizes M .

Conversely, let T symplectically diagonalize M . Let us pick any symplectic ei-
genvalue di of multiplicity mi, i = 1, . . . , q, and let Imi

= {ji + 1, . . . , ji +mi} with
ji = m1 + · · · + mi−1. Then the columns of SImi

, TImi
∈ R2n×2mi form the normal-

ized symplectic eigenvector sets associated with di. Therefore, by Proposition 3.2(ii)
there exists K(i) ∈ OrSp(2mi) such that TImi

= SImi
K(i). Ordering the columns of

TImi
and SImi

for i = 1, . . . , q as in T and S, respectively, we obtain T = SK with

K = dab
(
K(1), . . . ,K(q)

)
∈ dab

(
OrSp(2m1)× · · · ×OrSp(2mq)

)
.
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3.3. Computation of Williamson’s diagonal form. Here, we present an al-
gorithm based on [47] for computing a symplectically diagonalizing matrix S of M
in (1.1). This procedure can also be viewed as a constructive proof of Williamson’s
theorem. Since M is spd, its real symmetric square root M1/2 exists. It is easy to
check that M̃ = M1/2J2nM

1/2 is skew-symmetric and nonsingular. This matrix can
be transformed into the real Schur form

(3.4) QT M̃Q = diag

([
0 d1
−d1 0

]
, . . . ,

[
0 dn
−dn 0

])
,

where Q is orthogonal, and 0 < d1 ≤ . . . ≤ dn, see [30, Theorem 7.4.1]. Further, let

(3.5) P = [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n]

denote the perfect shuffle permutation matrix. Obviously, QP is orthogonal and it
holds

PTQT M̃QP =

[
0 D
−D 0

]
,

where D = diag(d1, . . . , dn). Finally, we set

(3.6) S = J2nM
1/2QP

[
0 −D−1/2

D−1/2 0

]
.

It can be verified that S is symplectic and STMS = diag(D,D). For ease of reference,
we summarize these steps in Algorithm 3.1.

Algorithm 3.1 Williamson’s diagonal form

Input: M ∈ SPD(2n).
Output: S ∈ Sp(2n), D = diag(d1, . . . , dn) such that STMS = diag(D,D).

1: Compute the symmetric square root M1/2 of M .
2: Compute the real Schur form (3.4) of M̃ = M1/2J2nM

1/2.
3: Set D = diag(d1, . . . , dn) and compute the symplectic matrix S as in (3.6) with
P given in (3.5).

Note that M1/2 can be computed using the spectral decomposition of M , see [31,
Section 6.2]. For the computation of the real Schur form (3.4), we can employ the
skew-symmetric QR algorithm [54]. In this case, Algorithm 3.1 requires about 125n3

flops.

3.4. Williamson’s diagonal form for skew-Hamiltonian matrices. To close
this section, we present an alternative algorithm for computing Williamson’s diagonal
form of spd matrices which are additionally assumed to be skew-Hamiltonian. This
algorithm and Proposition 3.7 below will be of crucial importance and employed as
a step, which is faster than Algorithm 3.1 designed for general spd matrices, in our
optimization method for computing the symplectic eigenvalues and eigenvectors of
general spd matrices presented in Section 5.

Proposition 3.7. Let N ∈ R2n×2n be spd and skew-Hamiltonian. If S symplec-
tically diagonalizes N , then S ∈ OrSp(2n).

Proof. It has been constructively shown in [16] that any skew-Hamiltonian matrix
N can be transformed into a real skew-Hamiltonian-Schur form

(3.7) KTNK =

[
Ω11 Ω12

0 ΩT11

]
,
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where K ∈ OrSp(2n) and Ω11 ∈ Rn×n is quasi-triangular with diagonal blocks of order
one and two corresponding, respectively, to real and complex standard eigenvalues
of N . Since N is spd, we obtain that Ω11 is diagonal and Ω12 = 0. Thus, K
symplectically diagonalizes N .

Let S be any symplectically diagonalizing matrix of N and let K ∈ OrSp(2n)
be the diagonalizing matrix as in (3.7). Then by [20, Proposition 8.12], we have
K−1S ∈ OrSp(2n). This implies that S ∈ OrSp(2n).

It immediately follows from Proposition 3.7 that the standard eigenvalues of
an spd and skew-Hamiltonian matrix N coincide with the symplectic eigenvalues.
Moreover, we obtain that the symplectically diagonalizing matrix of N constructed
by Algorithm 3.1 is orthosymplectic.

An alternative method for computing Williamson’s diagonal form of N , based
on the construction of the skew-Hamiltonian-Schur form (3.7) as presented in [16,
Algorithm 10], is now summarized in Algorithm 3.2. Note that this algorithm is
strongly backward stable and costs about 23n3 flops.

Algorithm 3.2 Williamson’s diagonal form for spd and skew-Hamiltonian matrices

Input: N ∈ R2n×2n is spd and skew-Hamiltonian.
Output: K ∈ OrSp(2n), D = diag(d1, . . . , dn) such that KTNK = diag(D,D).

1: Compute the symmetric Paige/Van Loan form N = Udiag(Ω1,Ω1)UT with
U ∈ OrSp(2n) and tridiagonal Ω1 ∈ SPD(n) as described in [45].

2: Compute the symmetric Schur form Ω1 = Q1DQ
T
1 , where Q1 is orthogonal and

D = diag(d1, . . . , dn).
3: Compute the orthosymplectic matrix K = Udiag(Q1, Q1).

4. Symplectic trace minimization problem. In this section, we establish
the connection between the symplectic EVP and the symplectic trace minimization
problem. The following result is one of the main sources that inspire our work.

Theorem 4.1. [33, 17] Let a matrix M ∈ SPD(2n) have symplectic eigenvalues
d1 ≤ . . . ≤ dn. Then for any integer 1 ≤ k ≤ n, it holds

(4.1) 2

k∑
j=1

dj = min
X∈R2n×2k

f(X) := tr(XTMX) s.t. h(X) := XTJ2nX − J2k = 0.

Due to the constraint condition, the problem (4.1) can be viewed as the minimiza-
tion problem restricted to the symplectic Stiefel manifold Sp(2k, 2n). The following
lemma establishes the homogeneity of the cost function f on OrSp(2k).

Lemma 4.2. Let M ∈ SPD(2n). For X ∈ Sp(2k, 2n) and K ∈ OrSp(2k), the
cost function f in (4.1) satisfies f(XK) = f(X).

Proof. For X ∈ Sp(2k, 2n) and K ∈ OrSp(2k), we obtain that XK ∈ Sp(2k, 2n)
and

f(XK) = tr(KTXTMXK) = tr(K−1XTMXK) = tr(XTMX) = f(X).

Here, we used the fact that similar matrices have the same trace.

4.1. Critical points. First, we investigate the critical points of the optimization
problem (4.1). For this purpose, we will invoke the associated Lagrangian function

L(X,L) = tr(XTMX)− tr(L(XTJ2nX − J2k)),
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where L ∈ R2k×2k is the Lagrangian multiplier. Since the constraint function h maps
R2n×2k into Sskew(2k), the Lagrangian multiplier L can also be taken skew-symmetric.
The gradient of L with respect to the first argument at (X,L) takes the form

(4.2) ∇XL(X,L) = 2MX − 2J2nXL.

Furthermore, the action of the Hessian of L with respect to the first argument on
(W,W ) ∈ R2n×2k × R2n×2k reads

(4.3) ∇2
XXL(X,L)[W,W ] = 2 tr

(
WT (MW − J2nWL)

)
.

Next, let us recall the first- and the second-order necessary optimality conditions
[46] for the constrained optimization problem (4.1). A point X∗ ∈ R2n×2k is called
a critical point of the problem (4.1) if h(X∗) = 0 and there exists a Lagrangian
multiplier L∗ ∈ Sskew(2k) such that∇XL(X∗, L∗) = 0. These conditions are known as
the Karush-Kuhn-Tucker conditions. The first condition implies thatX∗ ∈ Sp(2k, 2n).
Using (4.2), the stationarity condition can equivalently be written as

(4.4) MX∗ = J2nX∗L∗.

Comparing (3.2) with (4.4), we obtain that any normalized symplectic eigenvector set
X of M is a critical point with the Lagrangian multiplier

L∗ =

[
0 −Λ
Λ 0

]
.

In this case, multiplying (4.4) with XT
∗ on the left and taking the trace of the resulting

equality lead to

(4.5) f(X∗) = 2tr(Λ) = 2(λ1 + · · ·+ λk).

The critical point X∗ ∈ R2n×2k with the associated Lagrangian multiplier L∗ is said
to satisfy the second-order necessary optimality condition if

∇2
XXL(X∗, L∗)[W,W ] = 2 tr

(
WT (MW − J2nWL∗)

)
≥ 0

for all W ∈ null
(
Dh(X∗)

)
:={Y ∈R2n×2k : Dh(X∗)[Y ] = Y TJ2nX∗+X

T
∗ J2nY = 0}.

Based on Proposition 3.7, we can characterize the critical points of the optimiza-
tion problem (4.1) as follows.

Theorem 4.3. Let M ∈ SPD(2n).
i) If X∗ ∈ Sp(2k, 2n) is a critical point of (4.1), then for any K ∈ OrSp(2k),

the matrix X∗K is also a critical point of (4.1).
ii) A matrix X∗ ∈ Sp(2k, 2n) is a critical point of (4.1) if and only if there exists

K ∈ OrSp(2k) such that the columns of X∗K form a normalized symplectic
eigenvector set of M .

Proof. i) If X∗ ∈ Sp(2k, 2n) is a critical point of (4.1) with the associated La-
grangian multiplier L∗, then (4.4) is fulfilled. Therefore, for any K ∈ OrSp(2k),
we obtain that X∗K ∈ Sp(2k, 2n) and MX∗K = J2nX∗L∗K = J2nX∗KK

TL∗K.
This means that X∗K is also a critical point of (4.1) with the Lagrangian multiplier
KTL∗K.

ii) Assume that the columns of Z∗ = X∗K with K ∈ OrSp(2k) form a normalized
symplectic eigenvector set of M . Then Z∗ ∈ Sp(2k, 2n) is a critical point of (4.1),
and, hence, by i), X∗ = Z∗K

−1 ∈ Sp(2k, 2n) is also a critical point of (4.1).
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Conversely, let X∗ ∈ Sp(2k, 2n) be a critical point of (4.1). Then X∗ satisfies
(4.4) which immediately implies that

(4.6) XT
∗ MX∗ = J2kL∗

with a skew-symmetric matrix L∗. We now show that XT
∗ MX∗ is spd and skew-

Hamiltonian. Since M is spd and X∗ has full column rank, we obtain that XT
∗ MX∗

is spd. Furthermore, using (4.6), we get

(J2kX
T
∗ MX∗)

T = (J2kJ2kL∗)
T = L∗ = −J2kJ2kL∗ = −J2kXT

∗ MX∗

implying that XT
∗ MX∗ is skew-Hamiltonian. Then by Propostion 3.7, there exists

K ∈ OrSp(2k) such that

(4.7) KT (XT
∗ MX∗)K =

[
Λ 0
0 Λ

]
with Λ = diag(λ1, . . . , λk). Using (4.4), (4.6), (4.7) and JT2kK = KJT2k, we deduce

MX∗K = J2nX∗L∗K = J2nX∗J
T
2kKK

TJ2kL∗K

= J2nX∗KJ
T
2kK

TXT
∗ MX∗K = J2nX∗K

[
0 −Λ
Λ 0

]
.

Thus, the columns of X∗K form a normalized symplectic eigenvector set of M .

Theorem 4.3 allows us to characterize the set of all critical points of the problem
(4.1), and particularly the set of all minimizers as we will see in the next subsection.

Corollary 4.4. The set of all critical points of the minimization problem (4.1)
is the union of all XOrSp(2k), where the columns of X ∈ Sp(2k, 2n) form any possible
normalized symplectic eigenvector set of M .

Remark 4.5. We can extend Theorem 3.6 to the case S ∈ Sp(2k, 2n) with k < n
by the same proof. Now, the picture is clear. We have three different tools to track
different objects: Sp(2k) for tracking the symplectic matrices that span the same sub-
space (Proposition 2.1(iii)), the “dab” set for the symplectically diagonalizing matrices
of M (Theorem 3.6), and OrSp(2k) for the set of feasible points at which the value
of the cost function f in (4.1) is the same (Lemma 4.2) and for the set of all critical
points of (4.1) (Theorem 4.3).

4.2. Local and global minimizers. We now investigate the local and global
minimizers of the optimization problem (4.1).

Theorem 4.6. Let M ∈ SPD(2n).
i) If X∗ ∈ Sp(2k, 2n) is a global minimizer of (4.1), then for any K ∈ OrSp(2k),

the matrix X∗K is also a global minimizer of (4.1).
ii) A matrix X∗ ∈ Sp(2k, 2n) is a global minimizer of (4.1) if and only if there

exists K ∈ OrSp(2k) such that the columns of X∗K form a normalized
symplectic eigenvector set of M associated with the symplectic eigenvalues
d1, . . . , dk.

Proof. i) Let X∗ ∈ Sp(2k, 2n) is a global minimizer of (4.1) and let K ∈ OrSp(2k).
Then X∗K ∈ Sp(2k, 2n). Furthermore, by Lemma 4.2 we obtain f(X∗K) = f(X∗),
and, hence, X∗K is a global minimizer of (4.1).

ii) In view of Lemma 4.2 and (4.5), the sufficiency immediately follows from
f(X∗) = f(X∗K) = 2(d1 + · · ·+dk) for any K ∈ OrSp(2k). Conversely, if X∗ is a mi-
nimizer, it must be a critical point. Due to Theorem 4.3, there exists K ∈ OrSp(2k)
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such that X∗K is a normalized symplectic eigenvector set corresponding to a set
of symplectic eigenvalues, say di1 , . . . , dik . Taking again Lemma 4.2 and (4.5) into
account, we deduce from this fact that

2(d1 + · · ·+ dk) = f(X∗) = f(X∗K) = 2(di1 + · · ·+ dik).

Because all dij , j = 1, . . . , k, are taken from the set of positive numbers, where di,
i = 1, . . . , k, are the k smallest ones, we can conclude, after a reordering if necessary,
that dij = dj for j = 1, . . . , k.

In Appendix A, we present an alternative proof of the necessity in Theorem 4.6(ii)
which does not rely on Theorem 4.3.

Similarly to Corollary 4.4, we can now characterize the set of global minimizers
of the problem (4.1).

Corollary 4.7. The set of all global minimizers of (4.1) is the union of all
X1:kOrSp(2k), where the columns of X1:k ∈ Sp(2k, 2n) form a normalized symplectic
eigenvector set of M associated with the symplectic eigenvalues d1, . . . , dk.

Remark 4.8. If dk < dk+1, Corollary 4.7 can be considered as a symplectic ver-
sion of the corresponding result for the standard EVP, see, e.g., [50, Theorem 2.1].
In this case, X1:k can be constructed by taking the 1-st, . . ., k-th, (n + 1)-st, . . .,
(n+ k)-th columns of any symplectically diagonalizing matrix S of M . Otherwise, let
j be the largest index such that dj < dk. Then, the last k − j columns in the first
and second halves of X1:k can be any of those whose column indices are ranging from
j + 1 to j + mk and their counterparts in the second half of S, where mk denotes
the multiplicity of dk. In all related statements in the rest of this paper, by X1:k, we
include all such cases.

Next, we collect some consequences from Theorem 4.6 for the case k = n.

Corollary 4.9. Let M ∈ SPD(2n).
i) Any critical point of the minimization problem (4.1) with k = n is a global

minimizer.
ii) The set of all global minimizers of (4.1) with k = n is SOrSp(2n), where

S ∈ Sp(2n) is a symplectically diagonalizing matrix of M .

We now consider the non-existence of non-global local minimizers. In view of
Corollary 4.9, we restrict ourselves to the case k < n. A similar result for the genera-
lized EVP can be found in [39, 44]. First, we state an important technical lemma.

Lemma 4.10. Let M ∈ SPD(2n) and let the columns of X1:k and Xn−k+1:n form
any normalized symplectic eigenvector sets associated, respectively, with the k smallest
and k largest symplectic eigenvalues of M . Then for any critical point X0 of the
optimization problem (4.1), there exist a global minimizer X∗ ∈ X1:kOrSp(2k) and
an X∗ ∈ Xn−k+1:nOrSp(2k) such that X∗, X

∗ ∈ null
(
Dh(X0)

)
.

Proof. See Appendix B.

Proposition 4.11. Every local minimizer of the optimization problem (4.1) is
a global one.

Proof. Assume that there is a non-global local minimizer X0 of the problem (4.1).
Since X0 is a critical point, there is an associated Lagrangian multiplier L0. Moreover,
by Corollary 4.4, X0 can be represented as X0 = XIkK0, where K0 ∈ OrSp(2k), and
the columns of XIk form a normalized symplectic eigenvector set associated with a set
of the symplectic eigenvalues {dij , ij ∈ Ik} in which at least one of them is greater
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than dk. By Lemma 4.10, there exists a global minimizer X∗ ∈ null
(
Dh(X0)

)
. On

the account of (4.3), we get then

∇2
XXL(X0, L0)[X∗, X∗] = 2 tr(XT

∗ MX∗ −XT
∗ J2nX∗L0) = 2 tr(XT

∗ MX∗ − J2kL0)

= 2 tr(XT
∗ MX∗ −XT

0 MX0) = 4

k∑
i=1

di − 4

k∑
j=1

dij < 0,

which contradicts to the second-order necessary optimality condition for X0. This
completes the proof.

Saddle points of the cost function f in the problem (4.1) can be disclosed in the
following.

Proposition 4.12. Any normalized symplectic eigenvector set X of a matrix
M ∈ SPD(2n) associated with a symplectic eigenvalue set {dij , ij ∈ Ik}, in which
there is at least one dij such that dk < dij < dn−k+1, is a saddle point of (4.1).

Proof. Obviously, X is a critical point. Then it follows from the proof of Propo-
sition 4.11 that X is not a minimizer. Taking into account the existence of X∗ in
Lemma 4.10 and following the same proof of Proposition 4.11, we can show that X
is not a maximizer of the cost function f in (4.1) either. Hence, X is a saddle point.

Remark 4.13. Unfortunately, we were unable to prove that each element in the
matrix set Xn−k+1:nOrSp(2k) is a local maximizer. Nevertheless, we can show that f
in (4.1) has no global maximizer. Indeed, let us consider a symplectic matrix

Xa =

[
aIn,k 0

0 1/aIn,k

]
, a 6= 0,

where In,k denotes a n × k submatrix of In. For any symplectically diagonalizing
matrix S of M , SXa ∈ Sp(2k, 2n). We then get that

f(SXa) = tr(XT
a S

TMSXa) = 2(a2 +
1

a2
)tr(ITn,kDIn,k)

which tends to infinity when a→ 0.

We close this section by considering some consequences for the case k = 1.

Corollary 4.14. Let M ∈ SPD(2n) be in Williamson’s diagonal form (1.1).
i) The two columns of X ∈ Sp(2, 2n) form a normalized symplectic eigenvector

pair of M if and only if X is a critical point of the minimization problem
(4.1) with k = 1.

ii) The two columns of X1 ∈ Sp(2, 2n) form a normalized symplectic eigenvector
pair of M associated with the smallest eigenvalue d1 if and only if X1 is
a global minimizer of (4.1) with k = 1.

iii) For any j = 2, . . . , n − 1 such that d1 < dj < dn, a normalized symplectic
eigenvector pair Xj ∈ Sp(2, 2n) of M associated with dj is a saddle point of
(4.1) with k = 1.

Corollary 4.14 can be considered as a symplectic version of the corresponding re-
sults on the trace minimization problem for standard eigenvalues. Especially, part (i)
is similar to [3, Proposition 4.6.1]; part (ii) is similar to [3, Proposition 4.6.2(i)] with
the note that X1 is not unique; part (iii) is the same as [3, Proposition 4.6.2(iii)].
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5. Eigenvalue computation via Riemannian optimization. In this section,
we present a numerical method for solving the optimization problem (4.1). It is prin-
cipally a constrained optimization problem for which some existing methods can be
used, see, e.g., [46]. Nevertheless, maintaining the constraint is challenging. Recently,
it has been shown in [29] that the feasible set Sp(2k, 2n) constitutes a Riemannian
manifold. Moreover, two efficient methods were proposed there for optimization on
this manifold. In this section, we briefly review the necessary ingredients for a Rie-
mannian optimization algorithm for solving (4.1) and discuss the computation of the
smallest symplectic eigenvalues and the corresponding symplectic eigenvectors by us-
ing the presented optimization algorithm.

5.1. Riemannian optimization on the symplectic Stiefel manifold. Given
X ∈ Sp(2k, 2n), the tangent space of Sp(2k, 2n) at X, denoted by TXSp(2k, 2n), can
be represented as TXSp(2k, 2n) = {AJ2nX : A ∈ Ssym(2n)}, see [29, Proposition 3.3]
for detail. In view of [29, Proposition 4.1], a Riemannian metric for Sp(2k, 2n), called
the canonical-like metric, is defined as

gρ(Z1, Z2) := tr

(
ZT1

(
1

ρ
J2nXX

TJT2n − (J2nXJ2kX
TJT2n − J2n)2

)
Z2

)
,

where Z1, Z2 ∈ TXSp(2k, 2n) and ρ > 0. Consequently, the associated Riemannian
gradient of the cost function f in (4.1) has the following expression.

Proposition 5.1. Given M ∈ SPD(2n), the Riemannian gradient of the func-
tion f : Sp(2k, 2n) → R : X 7→ tr(XTMX) associated with the metric gρ is given
by gradρf(X) = AXJ2nX with the matrices AX = 4 sym

(
HXMX(XJ2k)T

)
and

HX = I + ρ
2XX

T − J2nX(XTX)−1XTJT2n.

Proof. The result directly follows from∇f(X) = 2MX and [29, Proposition 4.5].

In [29], two searching strategies relying on quasi-geodesics and symplectic Cay-
ley transform were proposed for the optimization on Sp(2k, 2n). It has also been
shown there that the Cayley-based method performs better than that based on quasi-
geodesics. Therefore, we choose the Cayley retraction as the update formula. Specif-
ically, the searching curve along −gradρf(X) ∈ TXSp(2k, 2n) is defined as

(5.1) RX(−t gradρf(X)) :=

(
I +

t

2
AXJ2n

)−1(
I − t

2
AXJ2n

)
X,

where AX is as in Proposition 5.1. Note that since the number k of required symplectic
eigenvalues is usually small, the update (5.1) can be further assembled in an efficient
way suggested in [29, Proposition 5.4].

In Algorithm 5.1, we present the Riemannian gradient method with non-monotone
line search for solving (4.1). Practically, we can stop the iteration when the gradient
of the cost function is smaller than a given tolerance ε. It has been proven in [29,
Theorem 5.6] that with standard assumptions, Algorithm 5.1 generates an infinite
sequence of which any accumulation point is a critical point of (4.1).

5.2. Computing the symplectic eigenvalues and eigenvectors. First, we
consider the computation of the smallest symplectic eigenvalue d1 of M . This case was
briefly addressed in [29] as an example. We review it here and discuss the computation
of the corresponding normalized symplectic eigenvector pair. Let X∗ ∈ Sp(2, 2n) be
a minimizer computed by Algorithm 5.1. Then we have d1 = f(X∗)/2 and by Corol-
lary 4.14(ii) the columns of X∗ provide the sought normalized symplectic eigenvector
pair.
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Algorithm 5.1 Riemannian gradient method for solving the problem (4.1)

Input: M ∈ SPD(2n); X(0) ∈ Sp(2k, 2n); ρ > 0, β, δ ∈ (0, 1), α ∈ [0, 1], q0 = 1,
c0 = f(X(0)), γ0 > 0, 0 < γmin < γmax = 1;

Output: Sequence of iterates {X(m)}.
1: for m = 0, 1, 2, . . . do
2: Set Z(m) = −gradρf(X(m)).
3: if m > 0 then

4: γm =


〈W (m−1),W (m−1)〉
|〈W (m−1),Y (m−1)〉| for odd m,

|〈W (m−1),Y (m−1)〉|
〈Y (m−1),Y (m−1)〉 for even m,

where W (m−1) = X(m) −X(m−1) and Y (m−1) = Z(m) − Z(m−1).
5: end if
6: Calculate the trial step size γk = max

(
γmin,min(γk, γmax)

)
.

7: Find the smallest integer ` such that the non-monotone condition

f
(
RX(m)(tmZ

(m))
)
≤ cm + β tm gρ

(
gradρf(X(m)), Z(m)

)
holds, where tm = γmδ

`.
8: Set X(m+1) = RX(m)(tmZ

(m)).
9: Update qm = αqm−1 + 1 and cm = αqm−1

qm
cm−1 + 1

qm
f(X(m)).

10: end for

We now consider the general case 1 ≤ k ≤ n. Assume that X∗ is a minimizer
of (4.1). According to Theorem 4.6(ii), there exists K ∈ OrSp(2k) such that the
columns of X∗K form a normalized symplectic eigenvector set of M associated with
the symplectic eigenvalues d1, . . . , dk. The sought matrix K can be computed by
symplectically diagonalizing a 2k×2k matrix XT

∗ MX∗. As XT
∗ MX∗ is spd and skew-

Hamiltonian, we can resort to Algorithm 3.2 for the sake of efficiency. We summarize
the computation of the k smallest symplectic eigenvalues of M and the corresponding
eigenvector set in Algorithm 5.2.

Algorithm 5.2 Symplectic EVP via Riemannian optimization

Input: M ∈ SPD(2n), 1 ≤ k ≤ n.
Output: k smallest symplectic eigenvalues d1, . . . , dk and the corresponding norma-

lized symplectic eigenvector set X1:k ∈ Sp(2k, 2n).
1: Solve the optimization problem (4.1) for X∗∈Sp(2k, 2n) by using Algorithm 5.1.
2: Compute Williamson’s diagonal form XT

∗ MX∗ = Kdiag(D1:k, D1:k)KT with
K ∈ OrSp(2k) and D1:k = diag(d1, . . . , dk) by using Algorithm 3.2.

3: Compute X1:k = X∗K.

Algorithm 5.2 is comparable with typical methods for large standard EVPs in
the sense that we first simplify and/or reduce the size of the problem and then solve
the small and/or simpler (symplectic) EVP. This approach may be not efficient if all
symplectic eigenvalues are required. In that case, Algorithm 3.1, for instance, could
be used.

Remark 5.2. Unlike the standard eigenvalue trace minimization problem on the
Stiefel manifold, as shown in Remark 4.13, the cost function f in (4.1) is unbounded
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from above. This comes from the fact that the Stiefel manifold is bounded while the
symplectic Stiefel manifold is not. Therefore, we cannot find largest symplectic eigen-
values in a similar manner, i.e., by maximizing the cost function. Despite this fact,
the largest symplectic eigenvalues of an spd matrix M can be computed by applying
Algorithm 5.2 to the inverse of M . As in the standard case, this follows from the
fact that the largest eigenvalues of M are the reciprocals of the corresponding smallest
ones of its inverse [20, Theorem 8.14]. This task can be done as long as the linear
equation Mx = y can be solved efficiently.

5.3. Computing the eigenvalues of positive-definite Hamiltonian ma-
trices. As an application of Algorithm 5.2, we consider the computation of standard
eigenvalues and their corresponding eigenvectors of pdH matrices. Due to nume-
rous applications, the EVPs for general Hamiltonian matrices have attracted a lot
of attention and many different algorithms were developed for such problems, e.g.,
[45, 12, 55, 16, 15], just to name a few. It is noteworthy that some of these methods
rely on the Hamiltonian-Schur form. Unfortunately, this form does not always exist,
e.g., for real Hamiltonian matrices having purely imaginary eigenvalues, which is ex-
actly the case for pdH matrices, see Proposition 3.3. In [5, 6], a symplectic Lanczos
method was developed for computing a few extreme eigenvalues of a pdH matrix H,
which exploits the symmetry and positive definiteness of its generator M = JT2nH.

Here, we present a different numerical approach for computing the eigenvalues
of pdH matrices which relies on Riemannian optimization. To the best of our know-
ledge, this is the first geometric method for the special Hamiltonian EVP. Based
on Proposition 3.3, we propose to compute the smallest (in modulus) eigenvalues of
a pdH matrix H by applying Algorithm 5.2 to the spd matrix M = JT2nH.

6. Numerical examples. In this section, we present some results of numerical
experiments demonstrating the proposed Riemannian trace minimization method,
henceforth called Riemannian. The parameters in Algorithm 5.1 are set to default
values as given in [29]. Although accumulation points of the iterates generated by
this algorithm can be proven to be critical points of the cost function in (4.1) only
[29], we never experience stagnation at a saddle point. This fact was observed in
various works and arguably explained, see [43] and references therein. For reference
and comparison, we also report the corresponding results for the restarted symplectic
Lanczos algorithm [6] (symplLanczos) and the MATLAB function eigs applied to the
associated Hamiltonian matrix. All computations were done on a workstation with
two Intel(R) Xeon(R) Processors Silver 4110 (at 2.10GHz×8, 12M Cache) and 384GB
of RAM running MATLAB R2018a under Ubuntu 18.10. The code that produced
the results is available from https://github.com/opt-gaobin/speig.

The accuracy of computed symplectic eigenvalues and eigenvector sets of M are
measured by using the normalized residual∥∥∥∥MX̃1:k − J2nX̃1:k

[
0 −D̃1:k

D̃1:k 0

]∥∥∥∥
F

‖MX̃1:k‖F
,

where X̃1:k is the computed symplectic eigenvector set associated with the symplectic
eigenvalues on the diagonal of D̃1:k = diag(d̃1, . . . , d̃k). Here, ‖ · ‖F denotes the
Frobenius matrix norm. For standard eigenvalues of H = J2nM , the normalized
residual is given by ‖HṼ − Ṽ Λ̃‖F /‖HṼ ‖F , where the columns of Ṽ ∈ C2n×2k are
the computed eigenvectors of H associated with the eigenvalues on the diagonal of

https://github.com/opt-gaobin/speig
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Λ̃ = diag(λ̃1, . . . , λ̃2k).

6.1. A matrix with known symplectic eigenvalues. We consider the spd
matrixM = Qdiag(D,D)QT withD = diag(1, . . . , n) andQ = KL(n/5, 1.2,−

√
n/5),

where L(n/5, 1.2,−
√
n/5) ∈ Sp(2n) is the symplectic Gauss transformation defined

in [23], and K =
[
<(U) =(U)
−=(U) <(U)

]
∈ OrSp(2n) with unitary U ∈ Cn×n produced by

orthogonalizing a randomly generated complex matrix. Then, the k smallest sym-
plectic eigenvalues of M are 1, . . . , k. To exhibit the accuracy of computed symplectic
eigenvalues d̃1, . . . , d̃k, we calculate the 1-norm error defined as

∑k
i=1 |d̃i − i|. In our

tests, we choose k = 5 and consider different values of n in the range between 100 and
2000. The mentioned errors and the corresponding residuals for the three methods
are shown in Figure 6.1. The sought eigenvalues for n = 2000 are given in Table 6.1.

Fig. 6.1. A matrix with known symplectic eigenvalues: the 1-norm errors of the computed
symplectic eigenvalues (left) and the corresponding normalized residuals (right)

Table 6.1
5 smallest symplectic eigenvalues of a 4000 × 4000 spd matrix M computed by different methods

i×eigs(H) symplLanczos(M) Riemannian(M)
0.000000000003296i + 1.000000000009247 1.000000000000058 1.000000000000008

-0.000000000022122i + 1.999999999995145 2.000000000000043 1.999999999999957
0.000000000015139i + 3.000000000002913 3.000000000000062 3.000000000000074
0.000000000023914i + 3.999999999977669 3.999999999999927 3.999999999999944

-0.000000000011256i + 4.999999999993021 4.999999999999960 4.999999999999617

6.2. Weakly damped gyroscopic systems. In the stability analysis of gy-
roscopic systems, one needs to solve a special quadratic eigenvalue problem (QEP)
(λ2M + λG + K)x = 0, where M ∈ SPD(n), G ∈ Sskew(n) and K ∈ SPD(n) are,
respectively, the mass, damping and stiffness matrices of the underlying mechanical
structure. One can linearize this QEP and turn it into the standard EVP for the
Hamiltonian matrix

H =

[
I − 1

2G
0 I

] [
0 −K
M−1 0

] [
I − 1

2G
0 I

]
=

[
− 1

2GM
−1 1

4GM
−1G − K

M−1 − 1
2M

−1G

]
,

see [14] for details. This leads to the fact that JT2nH is symmetric negative definite if
G is small enough. In our experiments, we use therefore the spd matrix M = J2nH.
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In the first test, we generate M, G and K by an eigenfunction discretization of
a wire saw model as described in [57, Section 2] with the wire speed v = 0.0306 and
the dimension n = 2000 followed by a scaling down of G by 1e-3. The eigenvalues
computed by the three methods and the corresponding normalized residuals are given
in Table 6.2.

Table 6.2
5 smallest symplectic eigenvalues of a 4000 × 4000 spd matrix M = J2nH generated from the

wire saw model computed by different methods

i×eigs(H) symplLanczos(M) Riemannian(M)
0.000000000000002i + 3.140121476801627 3.140121476801632 3.140121476801794

-0.000000000000001i + 6.280242953603250 6.280242953603265 6.280242953605164
0.000000000000013i + 9.420364430404952 9.420364430404895 9.420364430404506
0.000000000000037i +12.560485907206663 12.560485907206548 12.560485907211794

-0.000000000000077i +15.700607384008093 15.700607384008212 15.700607384223552
Residual: 1.4e-12 1.7e-10 1.3e-14

In the second test, we employ the data matrices M and K from a discretized
model of a piston rod inside a combustion engine [25]. This model has size n = 8053.
Because matrix G in this model is not skew-symmetric, we replace it with a sparse
randomly generated skew-symmetric matrix whose pattern is the same as that ofM.
As the matrices in this model are large in magnitude, to improve the efficiency of our
method, we scale the matrix H by a factor of 1e-5. The obtained results given in
Table 6.3 are for these scaled data.

Table 6.3
5 smallest symplectic eigenvalues of a 16106× 16106 spd matrix M = J2nH generated from the

piston rod model computed by different methods

i×eigs(H) symplLanczos(M) Riemannian(M)
-0.000000000000001i + 0.162084145743768 0.162084145770035 0.162084145232661
0.000000000000001i + 0.325674702254120 0.325674702270259 0.325674702005421
0.000000000000006i + 0.663619676318176 0.663619676324319 0.663619676186475
0.000000000000001i + 1.350097974209022 1.350097974210526 1.350097974141396

-0.000000000000004i + 2.173559065028063 2.173559065366786 2.173559064987688
Residual: 4.4e-10 7.6e-7 9.9e-12

Some observations and remarks can be stated from these numerical examples.
The comparisons might be a bit biased since eigs is not designed for structured
matrices, whereas the symplectic Lanczos method and the Riemannian optimization
method exploit the structure of the EVP. This explains why in all three test examples
the eigenvalues computed by eigs(H) are not purely imaginary. Though, in the
symplectic Lanczos method, the residuals, which also depend on the accuracy of the
symplectic eigenvectors, are not as small as expected, the first example shows that this
method produces good approximations to symplectic eigenvalues. Compared to that,
our method yields satisfying results in the sense that both errors and residuals are
small. It should however be noted that slow convergence, especially near minimizers,
was sometimes experienced in our tests. This is well-known for first-order optimization
methods and poses a need for development of second-order methods.

7. Conclusion. We have established various theoretical properties for the sym-
plectic eigenvalue trace minimization problem. Many of them are symplectic exten-
sions of known results for the standard problem. We have also proposed a Riemannian
optimization-based numerical method that resorts to a recent development about op-
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timization on the symplectic Stiefel manifold. This method can also be employed to
compute standard eigenvalues of positive-definite Hamiltonian matrices. Numerical
examples demonstrate that the proposed method is comparable to existing approaches
in the sense of accuracy.

Acknowledgments. We would like to thank B. Fröhlich for providing us with
the data for the piston rod model.

Appendix A. Alternative proof of the necessity in Theorem 4.6(ii).
Theorem 4.3 is so strong that it does not only characterize the set of the critical
points of the minimization problem (4.1) but also helps to obtain the set of the global
minimizers as clarified in Theorem 4.6(ii). In this extra section, we will present another
proof of this theorem which does not resort to Theorem 4.3 and its consequences.

Let X∗ ∈ Sp(2k, 2n) be a minimizer of (4.1). Then it satisfies the KKT condition
(4.4) or, equivalently, XT

∗ MX∗ = J2kL∗. Since XT
∗ MX∗ is spd, an application of

Williamson’s theorem implies the existence of K ∈ Sp(2k) such that

(A.1) KTJ2kL∗K = KTXT
∗ MX∗K =

[
Λ 0
0 Λ

]
with Λ = diag(λ1, . . . , λk).

Next, we show that λj = dj , j = 1, . . . , k. To this end, let us add more columns

to X∗ to make X̃∗ ∈ Sp(2n) such that its 1-st, . . ., k-th, (n + 1)-th, . . ., (n + k)-th
columns are those ofX∗, see [20, Theorem 1.15]. It was shown in [20, Proposition 8.14],
that the symplectic spectrum is symplectic invariant. This yields that the symplectic
eigenvalues of X̃T

∗ MX̃∗ are still dj , j = 1, . . . , n. Moreover, XT
∗ MX∗ is the so-called

s-principal 2k×2k submatrix of X̃T
∗ MX̃∗, i.e., XT

∗ MX∗ is obtained from X̃T
∗ MX̃∗ by

deleting its row and columns with the indices k+ 1, . . . , n, n+k+ 1, . . . , 2n. From the
symplectic analog of Cauchy’s interlacing theorem [40, 17], we deduce that dj ≤ λj
for j = 1, . . . , k. On the other hand, taking into account that X∗ is a global minimizer
of (4.1), we obtain

2

k∑
j=1

λj = tr(KTJ2kL∗K) = min
Y ∈Sp(2k)

tr(Y TXT
∗ MX∗Y ) ≤ tr(XT

∗ MX∗) = 2

k∑
j=1

dj ,

and, hence, λj = dj for j = 1, . . . , k. Further, it follows from (4.4) and (A.1) that

MX∗K = J2nX∗KK
−1L∗K = J2nX∗K

[
0 −Λ
Λ 0

]
.

This implies that the columns of X1:k := X∗K form a normalized symplectic eigen-
vector set associated with the symplectic eigenvalues d1, . . . , dk.

It remains to show that K ∈ OrSp(2k). Define F = K−1. Since X∗ = X1:kF is
a global minimizer of (4.1), it follows that

(A.2) 2

k∑
i=1

di = tr(XT
∗ MX∗) = tr(FTXT

1:kMX1:kF ) = tr(FTdiag(Λ,Λ)F ).

We now express F in the block form as F = [A B
C G ] . By Proposition 2.1(i), we have

FT ∈ Sp(2k). This results in the following constraints for the submatrices

(A.3) AGT − CBT = I, ABT = BAT , CGT = GCT .
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Then the right-hand side of (A.2) can be more detailed as

2

k∑
i=1

di = tr
(
FTdiag(Λ,Λ)F

)
= tr(ATΛA+ CTΛC +BTΛB +GTΛG)

=

k∑
i=1

di

k∑
j=1

(a2ij + g2ij + c2ij + b2ij) ≥ 2

k∑
i=1

di

k∑
j=1

(aijgij − cijbij) = 2

k∑
i=1

di,

where “≥” appears due to the facts that (aij − gij)2 ≥ 0 and (cij + bij)
2 ≥ 0 for

all i, j = 1, . . . , k, and the last equality follows from the first relation in (A.3). The
equality case happens if and only if aij = gij and cij = −bij for i, j = 1, . . . , k. Thus,
A = G and C = −B. Then by Proposition 2.1(ii), we obtain that F ∈ OrSp(2k) and,
hence, K = F−1 ∈ OrSp(2k).

The last part of this proof is based on the ideas in [17, Theorems 5, 6]. It is
however more direct and does not invoke the notions of doubly stochastic and doubly
superstochastic matrices.

Appendix B. Proof of Lemma 4.10. We show the existence of X∗ only, as
the proof for X∗ is similar. By Corollaries 4.4 and 4.7, we can replace X0 and X∗ by
XIkK0 and X1:kK∗, respectively, with some K0,K∗ ∈ OrSp(2k) and Ik ⊂ {1, . . . , n}.
Let us assume that this lemma holds for the critical point XIk , i.e., there exists
a global minimizer X∗ of (4.1) satisfying

(B.1) XT
∗ J2nXIk +XT

IkJ2nX∗ = 0.

Then we have

(X∗K0)TJ2nX0 +XT
0 J2n(X∗K0) = KT

0 X
T
∗ J2nXIkK0 +KT

0 X
T
IkJ2nX∗K0

= KT
0 (XT

∗ J2nXIk +XT
IkJ2nX∗)K0 = 0.

This means that X∗K0 is the sought global minimizer corresponding to X0 = XIkK0.
We now prove the above assumption. Our goal is to construct K∗ ∈ OrSp(2k)

such that X∗ = X1:kK∗ satisfies (B.1) and is the global minimizer of (4.1). Let
O = XT

1:kJ2nXIk for Ik = {i1, . . . , ik} ⊂ {1, . . . , n}. We can see that O can be
written in the block form as

O =

[
0 O1

−O1 0

]
∈ R2k×2k,

where O1 = [x1, . . . , xk]TJ2n[xn+i1 , . . . , xn+ik ] ∈ Rk×k. Let c denote the number
of common indices {1, . . . , k} ∩ Ik with 0 ≤ c ≤ k. Taking Proposition 2.1(ii) into
account, we are searching for K∗ ∈ OrSp(2k) of the form

K∗ =

[
K1 K2

−K2 K1

]
,

where K1 and K2 satisfy

KT
1 K2 = KT

2 K1, KT
1 K1 +KT

2 K2 = I,(B.2)

KT
1 O1 = −OT1 K1, KT

2 O1 = OT1 K2.(B.3)
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The conditions (B.2) guarantee the orthosymplecticity of K∗, whereas the condi-
tions (B.3) imply (B.1). By definition, O1 contains exactly c 1’s. Let us denote
their positions by (i1, j1), . . . , (ic, jc). We moreover choose other k − c positions
(ic+1, jc+1), . . . , (ik, jk) in such a way that if we put 1 in O1 at all these positions,
then the resulting matrix becomes a permutation of the identity. Let us note that
while the set (i1, j1), . . . , (ic, jc) is fixed upon the given matrix O1, there are multiple
choices for (ic+1, jc+1), . . . , (ik, jk). We will construct K∗ as follows:

(K1)ij =

{
cosφl, if (i, j, l) ∈ {(ic+1, jc+1, c+ 1), . . . , (ik, jk, k)},
0, otherwise,

(K2)ij =


1, if (i, j) ∈ {(i1, j1), . . . , (ic, jc)},
sinφl, if (i, j, l) ∈ {(ic+1, jc+1, c+ 1), . . . , (ik, jk, k)},
0, otherwise,

with φl ∈ R. Note that we can use −1 instead of 1 in K2. One directly verifies that

(KT
1 K2)ij = (KT

2 K1)ij

=

{
cosφl sinφl, if (i, j, l) ∈ {(c+ 1, c+ 1, c+ 1), . . . , (k, k, k)},
0, otherwise,

(KT
1 K1)ij =

{
cos2 φl, if (i, j, l) ∈ {(c+ 1, c+ 1, c+ 1), . . . , (k, k, k)},
0, otherwise,

(KT
2 K2)ij =


1, if (i, j) ∈ {(1, 1), . . . , (c, c)},
sin2 φl, if (i, j, l) ∈ {(c+ 1, c+ 1, c+ 1), . . . , (k, k, k)},
0, otherwise.

and, hence, the relations in (B.2) are satisfied. Furthermore, we have

(KT
1 O1)ij = (−OT1 K1)ij = 0, i, j = 1, . . . , k,

(KT
2 O1)ij = (OT1 K2)ij =

{
1, if (i, j) ∈ {(1, 1), . . . , (c, c)},
0, otherwise

implying the relations in (B.3).
Though covered in the proof, we still want to show two special cases of c. If

c = 0, then O = 0 and, hence, we can choose any K∗ ∈ OrSp(2k). If c = k, i.e., X0 is
a minimizer, then O1 = I. In this case, we can take, for example, K∗ = J2k.
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Equations, Birkhäuser, Basel, 2006.

[21] A. Edelman, T. Arias, and S. Smith, The geometry of algorithms with orthogonality con-
straints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353, https://doi.org/10.1137/
S0895479895290954.

[22] J. Eisert, T. Tyc, T. Rudolph, and B. Sanders, Gaussian quantum marginal problem, Com-
mun. Math. Phys., 280 (2008), pp. 263–280, https://doi.org/10.1007/s00220-008-0442-4.

[23] H. Fassbender, The parameterized SR algorithm for symplectic (butterfly) matrices,
Mathematics of Computation, 70 (2000), pp. 1515–1541, https://doi.org/10.1090/
S0025-5718-00-01265-5.

[24] H. Fassbender, Symplectic Methods for the Symplectic Eigenproblem, Springer US, Philadel-
phia; PWN-Polish Scientific, 2002.

[25] J. Fehr, D. Grunert, P. Holzwarth, B. Fröhlich, N. Walker, and P. Eberhard,
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