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ABSTRACT
In this paper, we are interested in giving sufficient conditions of a quaternionic
plurisubharmonic function defined on a bounded quaternionic hyperconvex domain
such that it can be approximated by a decreasing sequence of smooth functions. As
an application, we study the geometric property of quaternionic B-regular domains.
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1. Introduction

The classical theory of plurisubharmonic functions is one of the important and central
problems of complex variables. In recent years these functions has been generalized
in several directions, e.g., q-plurisubharmonic functions, m-subharmonic functions,
plurifinely plurisubharmonic functions, etc.

In 2003, S. Alesker [1] have introduced and studied a class of plurisubharmonic
functions of quaternionic variables on the flat quaternionic space Hn, which extends
the notion of plurisubharmonic functions on open subsets of Cn to open subsets of
Hn in a natural way. Recall that a function defined on open subsets of Hn is quater-
nionic plurisubharmonic if it is upper semi-continuous and its restriction to any right
quaternionic line is subharmonic (in the usual sense). Later on, S. Alesker [2] stud-
ied the plurisubharmonic functions on arbitrary quaternionic manifolds. The class of
the plurisubharmonic functions of quaternionic variables has most of the properties
of usual plurisubharmonic functions, e.g. these are closed under addition, satisfy the
maximum principle, standard smoothing techniques are available, etc. However, this
class nevertheless reflect a rather different geometry behind, which is often essential
when studying a given problem in analysis.

The purpose of this paper is to investigate the geometry of the domains that admit
a quaternionic plurisubharmonic, exhaustion function. Firstly let us introduce the
following definition.

Definition 1.1. Let Ω be a bounded domain in Hn. We say that Ω is quaternionic hy-
perconvex if it admits a negative, quaternionic plurisubharmonic, exhaustion function
ϕ on Ω.
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From the definition of quaternionic plurisubharmonic functions, it is easy to see
that every plurisuharmonic functions (in the usual sense) defined on a subset of C2n

are quaternionic plurisubharmonic, and hence, every bounded hyperconvex domain
(in the usual sense) in C2n is quaternionic hyperconvex. However, the converse is not
true (for example {q ∈ H : 1 < ‖q‖ < 2} is quaternionic hyperconvex in H but is not
hyperconvex).

The aim of this study is to consider the approximation of a quaternionic plurisubhar-
monic function u by a decreasing sequence of smooth, strictly quaternionic plurisub-
harmonic, exhaustion functions {us}. Our first result is the following theorem.

Theorem 1.2. Let Ω b Hn be a bounded quaternionic hyperconvex domain and let u
be a negative, quaternionic plurisubharmonic, exhaustion function in Ω. Assume that
the function

u(q)− c‖q‖2, q ∈ Ω,

is quaternionic plurisubharmonic in Ω, for some c ≥ 0. Then, there exists a decreasing
sequence of negative, smooth functions {us} defined on Ω such that:

(i) us are negative, quaternionic plurisubharmonic, exhaustion functions in Ω;
(ii) us(q)− (1− s−1)c‖q‖2 are strictly quaternionic plurisubharmonic in Ω;
(iii) {us} converges pointwise to u in Ω.

Here, we say that a function ϕ is called strictly quaternionic plurisubharmonic if for
every open set U b Ω, there exists a constant cU > 0 such that ϕ(q) − cU‖q‖2 is
quaternionic plurisubharmonic on U .

Now, assume that u is a negative quaternionic plurisubharmonic function defined in
bounded hyperconvex domain Ω and ϕ is a negative, quaternionic plurisubharmonic
exhaustion function of Ω. Observe that the functions max(u, sϕ) are negative, quater-
nionic plurisubharmonic, exhaustion in Ω and the sequence {max(u, sϕ)} decreases to
u as s → +∞. Hence, from Theorem 1.2 (in the case c = 0), we easily deduce the
following.

Corollary 1.3. Let Ω b Hn be a bounded quaternionic hyperconvex domain. Then, for
every negative quaternionic plurisubharmonic function u in Ω, there exists a decreas-
ing sequence of negative, smooth, strictly quaternionic plurisubharmonic, exhaustion
functions {us} defined on Ω that converges pointwise to u on Ω.

In particular, Ω admits a negative, smooth, strictly quaternionic plurisubharmonic,
exhaustion function.

Our second result is the theorem about the geometric properties of quaternionic
B-regular domains.

Theorem 1.4. Assume that Ω is a bounded domain in Hn. Then, the following as-
sertions are equivalent:

(i) Ω is quaternionic B-regular, i.e. for every continuous functions f on ∂Ω, there
exists a quaternionic plurisubharmonic function u in Ω such that

lim
Ω3q→p

u(q) = f(p), ∀p ∈ ∂Ω;

(ii) Ω admits a negative, smooth, exhaustion function ϕ such that ϕ(q) − ‖q‖2 is
quaternionic plurisubharmonic;
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(iii) For every p ∈ ∂Ω, there exist r > 0 and a negative function ϕ defined on
Ω∩B(p, r) such that limq→p ϕ(q) = 0 and ϕ(q)−‖q‖2 is quaternionic plurisubharmonic
on Ω ∩ B(p, r).

Remark 1. Since every plurisuharmonic function is quaternionic plurisubharmonic,
Theorem 1.2 and Theorem 1.4 are generalizations from [6] and [9] in the case quater-
nionic plurisuharmonic functions and quaternionic hyperconvex domains.

2. Proof of theorem 1.2

Some elements of pluripotential theory (quaternionic potential theory) that are used
in the following were given by [1]-[10]. Firstly, we need the following result.

Lemma 2.1. Let ε > 0 and let χ : R → (0,+∞) be a smooth convex function such
that χ(t) = |t|, ∀|t| ≥ ε. Assume that Ω ⊂ Hn is an open set and u, v are smooth
quaternionic plurisubharmonic functions in Ω. Then, the function

w :=
1

2
[u+ v + χ(u− v)]

satisfies:
(i) w is smooth quaternionic plurisubharmonic in Ω;
(ii) w ≥ max(u, v) on Ω;
(iii) w = u on Ω ∩ {u− v > ε};
(iv) w = v on Ω ∩ {u− v < −ε};
(v) if u(q) − c‖q‖2 and v(q) − c‖q‖2 are quaternionic plurisubharmonic in Ω then

w(q)− c‖q‖2 is also quaternionic plurisubharmonic.

Proof. The proof is almost the same as the one given in [[6], Lemma 2.2]. For the
convenience of the reader, we sketch the proof of the lemma.

(i) Since u, v are smooth on Ω and χ is smooth in R so w is smooth on Ω. Let
M⊂ R2 be defined by

M := {(a, b) ∈ R2 : −1 ≤ a ≤ 1, at+ b ≤ χ(t), ∀t ∈ R}.

Since χ is convex so −1 ≤ χ′(t) ≤ 1, ∀t ∈ R, and therefore,

χ(t) = sup{at+ b : (a, b) ∈M}.

This implies that

w =
1

2

[
sup

(a,b)∈M
(u+ v + a(u− v) + b)

]

=
1

2

[
sup

(a,b)∈M
((1 + a)u+ (1− a)v + b)

]
.

(1)

Because the functions (1 + a)u+ (1− a)v+ b are quaternionic plurisubharmonic on Ω,
for all real numbers a, b with −1 ≤ a ≤ 1, we conclude by (1) that the function w is
quaternionic plurisubharmonic on Ω.
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(ii) Let t ∈ R be such that 0 ≤ t ≤ ε. Since χ is convex and ε = t/2 + (2ε− t)/2 so

χ(ε) ≤ χ(t)/2 + χ(2ε− t)/2,

and hence,

χ(t) ≥ 2χ(ε)− χ(2ε− t) = 2ε− (2ε− t) = t, ∀t ≥ 0.

Similarly, we also have χ(t) ≥ −t, ∀t ≤ 0. This implies that χ(t) ≥ |t|, ∀t ∈ R.
Therefore,

w =
1

2
[u+ v + χ(u− v)]

≥ 1

2
[u+ v + |u− v|] = max(u, v)

in Ω.
(iii) and (iv) are obvious.
(v) Since u(q)− c‖q‖2 and v(q)− c‖q‖2 are quaternionic plurisubharmonic in Ω, we

infer by (i) that the function

w(q)− c‖q‖2 =
1

2

{[
u(q)− c‖q‖2

]
+
[
v(q)− c‖q‖2

]
+ χ

([
u(q)− c‖q‖2

]
−
[
v(q)− c‖q‖2

])}
is quaternionic plurisubharmonic in Ω. The proof is complete.

Now, we recall the definition of the convolution. Let B(0, 1) ⊂ Hn be the unit ball
and let ρ ∈ C∞0 (B(0, 1)) be such that 0 ≤ ρ ≤ 1, ρ(q) depends only on ‖q‖ and∫

{‖q‖<1}
ρ(q)dV4n(q) = 1,

where dV4n is the Lebesgue measure in Hn. Assume that ε > 0 and u is a subharmonic
function in an open subset Ω of Hn. Define

u ∗ ρε(q) :=

{∫
{‖p‖<1} u (q − εp) ρ(p)dV4n(p) if q ∈ Ωε,

0 otherwise.

Here, Ωε := {q ∈ Ω : dist(q, ∂Ω) > ε}. We have the following.

Lemma 2.2. Let Ω be an open set in Hn and let u be a negative function defined on
Ω such that the function

v(q) := u(q)− c‖q‖2, q ∈ Ω

is quaternionic plurisubharmonic in Ω, for some constant c ≥ 0. Then, u ∗ ρε ↘ u on
Ω as ε↘ 0. Moreover, for all ε > 0, the functions

u ∗ ρε(q)− c‖q‖2
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are negative, smooth quaternionic plurisubharmonic in Ωε.

Proof. Since u < 0 in Ω and u(q) = v(q) + c‖q‖2, q ∈ Ω so u is negative quaternionic
plurisubharmonic in Ω. By the classical results for subharmonic functions, it is easy
to see that u ∗ ρε are negative, smooth quaternionic plurisubharmonic functions in Ωε

and u ∗ ρε ↘ u on Ω as ε↘ 0.
Now, fix ε > 0. For q ∈ Ωε, we have

v ∗ ρε(q) =

∫
{‖p‖<1}

v (q − εp) ρ(p)dV4n(p)

=

∫
{‖p‖<1}

[
u (q − εp)− c‖q − εp‖2

]
ρ(p)dV4n(p)

= u ∗ ρε(q)− c‖q‖2 + w(q).

(2)

Here,

w(q) := c

∫
{‖p‖<1}

(
‖q‖2 − ‖q − εp‖2

)
ρ(p)dV4n(p).

We claim that w is quaternionic plurisubharmonic in q. Indeed, we can write q =
(x1, x2, . . . , x4n) and p = (y1, y2, . . . , y4n). Put

as :=

∫
{‖p‖<1}

ysρ(p)dV4n(p), s = 1, . . . , 4n,

and

b :=

∫
{‖p‖<1}

‖p‖2ρ(p)dV4n(p).

It is easy to see that

‖q‖2 − ‖q − εp‖2 =

4n∑
s=1

[x2
s − (xs − εys)2]

= 2ε

4n∑
s=1

xsys − ε2
4n∑
s=1

y2
s = 2ε

4n∑
s=1

xsys − ε2‖p‖2.

This implies that

w(q) = 2εc

4n∑
s=1

asxs − ε2bc.

Hence, w|H is harmonic, for every subspace H ⊂ R4n. In particular, the restriction of
w to any right quaternionic line is subharmonic. Thus, w is quaternionic plurisubhar-
monic. This proves the claim, and therefore, we conclude by (2) that u ∗ ρε(q)− c‖q‖2
is negative, smooth quaternionic plurisubharmonic in Ωε. The proof is complete.

We now able to give the proof of theorem 1.2.
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Proof of theorem 1.2. Without loss of generality we can assume that Ω b B(0, 1).
Let {δs} be a decreasing sequence of positive real numbers such that

0 < δs <
δs−1

2
<

1

2s2
(3)

and

{u < −δs} b {u < −6
√
δs+1}. (4)

Observe that δs+1 < 6
√
δs+1 because δs+1 ∈ (0, 1). Hence,

{u < −6
√
δs+1} ⊂ {u < −δs+1} b Ω.

Therefore, we reduce by (4) that there exists a decreasing sequence of positive real
numbers {εs} such that 0 < εs < δs and

{u < −δs}+ B(0, 2εs) b {u < −6
√
δs+1} b Ωεs . (5)

Now, we set ψ(q) := ‖q‖2 − 3, q ∈ Hn and

vs := (1−
√
δs)u ∗ ρεs + δsψ.

Since u ≤ u ∗ ρεs ≤ 0 on Ω and 0 < δs < 1 so

(1−
√
δs)u ∗ ρεs − (1−

√
δs+1)u ∗ ρεs+1

≤ −(1−
√
δs+1)u on Ω.

This implies that

vs − vs+1 = (δs − δs+1)ψ + [(1−
√
δs)u ∗ ρεs − (1−

√
δs+1)u ∗ ρεs+1

]

≤ (δs − δs+1)ψ − (1−
√
δs+1)u

< (δs − δs+1)ψ − u

on Ω because u < 0. Moreover, since −3 ≤ ψ ≤ −2 in Ω, we infer from (3) that

−δs − u > (δs − δs+1)ψ − u
> vs − vs+1

≥ (
√
δs+1 −

√
δs)u ∗ ρεs + (δs − δs+1)ψ

≥ (
√
δs+1 −

√
δs)(u ∗ ρεs + 6

√
δs)

(6)

on Ωεs . Now, since 0 < εs ≤ εs−1, we obtain by (5) that

u ∗ ρεs(q) < −6
√
δs, ∀q ∈ {u < −δs−1}+ B(0, εs).
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Combining this with (3), (5) and (6) we arrive at

{u < −δs−1} b Ωεs ∩ {u ∗ ρεs < −6
√
δs}

⊂ Ωεs ∩ {vs+1 < vs} ⊂ Ωεs ∩ {vs+1 ≤ vs}
⊂ Ωεs ∩ {u < −δs} b Ωεs−1

.

Since vs, vs+1 are continuous on Ωεs , there exists γs > 0 such that

{u < −δs−1} b Ωεs ∩ {vs − vs+1 > γs}
b Ωεs ∩ {vs − vs+1 ≥ −γs}
b {u < −δs} b Ωεs−1

.

(7)

Let χs : R → R+ be a smooth convex function such that χs(t) = |t|, ∀|t| > γs. Since
1−
√
δs > 1− s−1, Lemma 2.2 states that the function

vs(q)− [(1− s−1)c+ δs]‖q‖2

is negative, smooth, quaternionic plurisubharmonic on Ωεs . Because

min
{

(1− s−1)c+ δs, (1− (s+ 1)−1)c+ δs+1

}
≥ (1− s−1)c+ δs+1,

Lemma 2.1 implies that the function

ws :=
1

2
[vs + vs+1 + χs(vs − vs+1)]

satisfies:
(i) ws(q)− [(1− s−1)c+ δs+1]‖q‖2 is smooth, quaternionic plurisubharmonic in Ωεs ;
(ii) ws ≥ max(vs, vs+1) on Ωεs ;
(iii) ws = vs on Ωεs ∩ {vs − vs+1 > γs};
(iv) ws = vs+1 on Ωεs ∩ {vs − vs+1 < −γs}.

From (7) we have

∂{u < −δs} b Ωεs ∩ {vs+1 − vs+2 > γs+1} ∩ {vs − vs+1 < −γs}.

Hence, (iii) and (iv) imply that

ws+1 = vs+1 = ws on an open neighborhood of ∂{u < −δs}.

Therefore, the function

us :=

{
ws on {u < −δs}
wr on {u < −δr}\{u < −δr−1}, r = s+ 1, s+ 2, . . .

is negative, smooth, strictly quaternionic plurisubharmonic function in Ω. It is easy to
see that

us+1 = us on {u ≥ −δs}.

7



From (ii) and (7) we have

us+1 = ws+1 = vs+1 ≤ ws = us on {u < −δs}.

Hence, us+1 ≤ us in Ω. Since {δs} is decreasing sequence, by (iii) and (7) we arrive at

us = vs on {u < δr−1}, ∀s ≥ r.

This implies that us ↘ u in Ω as s↗ +∞. Since

(1− r−1)c+ δr+1 > (1− s−1)c, ∀r ≥ s,

we deduce by (i) that wr(q)− (1− s−1)c‖q‖2 is smooth, strictly quaternionic plurisub-
harmonic in Ωεs , and therefore, us(q)−(1−s−1)c‖q‖2 is strictly quaternionic plurisub-
harmonic in Ω. The proof is complete.

3. Proof of theorem 1.4

Proof. (ii) ⇒ (iii) is obvious. (i) ⇒ (ii): The idea of the proof is to use Sibony’s
argument from [9]. Let f be a continuous function in Hn defined by

f(q) := −2‖q‖2, q ∈ Hn.

Since Ω is quaternionic B-regular, there exists a quaternionic plurisubharmonic func-
tion u in Ω such that

lim
Ω3q→p

u(q) = f(p), ∀p ∈ ∂Ω.

It is clear that u(q) + 2‖q‖2 < 0 on Ω. According to Theorem 1.2 (in the case c = 2),
we can find a negative, smooth, strictly quaternionic plurisubharmonic, exhaustion
functions ϕ on Ω such that ϕ(q) − ‖q‖2 is quaternionic plurisubharmonic in Ω. This
proves (i) ⇒ (ii).

It remains to prove (iii) ⇒ (i). Fix p ∈ ∂Ω. We claim that there exists a negative
function up on Ω such that up(q)− ‖q‖2 is quaternionic plurisubharmonic in Ω and

lim
q→p

up(q) = 0.

Indeed, by the hypotheses we can find a positive real number rp and a negative function
ϕp defined on Ω∩B(p, rp) such that limq→p ϕp(q) = 0 and ϕp(q)−‖q‖2 is quaternionic
plurisubharmonic on Ω ∩ B(p, rp). Let ap > 1 be such that

‖q‖2 < apr
2
p, ∀q ∈ Ω.

Since the function ‖q‖2 − ‖q − p‖2, q ∈ Hn, is quaternionic plurisubharmonic, so

2apϕp(q)− ‖q‖2 − ap‖q − p‖2

= 2ap[ϕp(q)− ‖q‖2] + ap(‖q‖2 − ‖q − p‖2) + (ap − 1)‖q‖2
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is quaternionic plurisubharmonic on Ω ∩ B(p, rp). This implies that the function

ψp(q) :=

{
max(2apϕp(q)− ‖q‖2 − ap‖q − p‖2,−apr2

p) if q ∈ Ω ∩ B(p, rp)

−apr2
p otherwise

is quaternionic plurisubharmonic on Ω. Since ψp(q) < −‖q‖2, ∀q ∈ Ω, we infer that
the function

up(q) := ψp(q) + ‖q‖2, q ∈ Ω

is negative function on Ω which has the required properties. This proves the claim.
Now, assume that f is a continuous function on ∂Ω. Let {fs} be a sequence of

smooth functions in Hn such that

fs −
1

s
< f < fs on ∂Ω. (8)

Let bp,s > 0 be such that

−fs + bp,sup, fs + bp,sup ∈ QPSH(Ω). (9)

We set

u := (sup{fs −
1

s
+ bp,sup : p ∈ ∂Ω, s ∈ N∗})∗.

Here, ∗ denotes the upper semi-continuous regularization in Ω. It easy to see that u
is quaternionic plurisubharmonic on Ω. Let p, q ∈ ∂Ω and r, s ≥ 1. The inequality (8)
tells us that

(fs −
1

s
+ bp,sup) + (−fr + bq,ruq) < 0 on ∂Ω.

Hence, we infer by (9) that

fs −
1

s
+ bp,sup < fr − bq,ruq on Ω.

Therefore,

fs −
1

s
+ bp,sup ≤ u ≤ fr − bq,ruq on Ω, ∀p, q ∈ ∂Ω, ∀r, s ≥ 1.

Combining this with (8) we conclude that

lim
Ω3q→p

u(q) = f(p), ∀p ∈ ∂Ω.

The proof is complete.
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[3] Åhag P, Czyż R, Hed L. The geometry of m-hyperconvex domains. J Geom Anal. 2018;
28: 3196–3222.

[4] B locki Z. The complex Monge-Ampère operator in pluripotential theory. Lecture Notes.
2002; http://gamma.im.uj.edu.pl/∼blocki/.

[5] Cegrell U. The general definition of the complex Monge-Ampère operator. Ann Inst
Fourier (Grenoble). 2004; 54: 159–179.

[6] Cegrell U. Approximation of plurisubharmonic functions in hyperconvex domains. 2009;
Complex analysis and digital geometry, pp. 125-129. Acta Univ. Upsaliensis Skr. Uppsala
Univ. C Organ. Hist., 86, Uppsala Universitet, Uppsala.

[7] Fornæss JE, Wiegerinck J. Approximation of plurisubharmonic functions. Ark Math.
1989; 27: 257–272.

[8] Hong NX, Can HV. On the approximation of weakly plurifinely plurisubharmonic func-
tions. Indag Math. 2018; 29 1310–1317.

[9] Sibony N. Une classe de domaines pseudoconvexes. Duke Math J. 1987; 55: 299–319.
[10] Wan D, Kang Q. Potential theory for quaternionic plurisubharmonic functions. Michigan

Math J. 2017; 66: 3–20.

10


