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1 Introduction and results

The complex Monge-Ampère operator is one of the important notions of
pluripotential theory and complex variables. On the class of smooth plurisub-
harmonic functions, the operator is defined by

(ddcu)n = n!4ndet

(
∂2u

∂zj∂zk

)
dV2n,

where dV2n is the volume form in Cn. Bedford and Taylor [2] introduced
in 1982 the notion of complex Monge-Ampère operator as a positive Radon
measure for the class of locally bounded plurisubharmonic functions. They
showed that the operator is well-defined on this class, i.e. it is continuous
on decreasing sequences of continuous plurisubharmonic functions. Later on,
Cegrell [4] generalized in 2004 the notion to a subclass of unbounded plurisub-
harmonic functions.

The plurisubharmonic functions have been generalized in several direc-
tions. El Kadiri [7] introduced in 2003 the notion of F -plurisubharmonic
functions in an F -open set which extends the notion of plurisubharmonic
functions in a natural way. Later on, El Kadiri and Wiegerinck [10] gave in
2014 the notion of complex Monge-Ampère measure on the class of finite
F -plurisubharmonic functions as a non-negative measure. Recently, Trao,
Viet and Hong [20] studied in 2017 the notion of Cegrell’s classes for F -
plurisubharmonic functions. They introduced the following definition.

Definition 1.1. A bounded, connected, F -open set Ω is called F -hyperconvex
if there exist a negative bounded plurisubharmonic function γΩ defined on a
bounded hyperconvex domain Ω′ ⊃ Ω such that Ω = {γΩ > −1} and −γΩ is
F -plurisubharmonic in Ω.

Observe that a Euclidean open set is F -hyperconvex if and only if it
is hyperconvex. In [20], the authors give non obvious an example of F -
hyperconvex. We recall this in the following example.

Example 1.2. Let {aj} be a dense sequence in the close unit disk D ⊂ C.
Theorem 4.14 in [1] deduce that there exist hj ∈ F(D) such that hj(aj) =

−∞ and
ddchj =

1

2j
δaj in D,

where δaj denotes the Dirac measure at aj. Then,

h =
+∞∑
k=1

hk
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is a plurisubharmonic function in D. Assume that

{h > −1

2
} 6= ∅.

Let Ω be a connected component of the F -open set D ∩ {h > −1}. Then, Ω

is F -hyperconvex.

The purpose of this paper is to study the pluripolar part of complex
Monge-Ampère measures of F -plurisubharmonic functions in bounded F -
hyperconvex domains. It is natural to expect a suitable definition which is
an expansion of complex Monge-Ampère measure of unbounded plurisubhar-
monic functions. Notice that complex Monge-Ampère measure is F -locally
defined on the class of finite F -plurisubharmonic functions. Hence, it is
needed to find an another approach in studying this problem. The technique
that we use in this article is taken from [6] (also see [12], [19]).

Some notions in our results can be found in Section 2. The first main
result of this paper is as follows.

Theorem 1.3. Let Ω ⊂ D b Cn be F-hyperconvex domains. Assume that
a ≥ 0 and u ∈ F(Ω). Then,

û := sup{ϕ ∈ F-PSH−(D) : ϕ ≤ u+ a on Ω} ∈ F(D).

and ∫
D

(ddc max(û,−1))n ≤
∫

Ω

(ddc max(u,−1)n.

Moreover,

NP (ddcû)n ≤ 1Ω∩{û=u+a}NP (ddcu)n on QB(Ω).

Now, assume that the domain D is hyperconvex, Cegrell [4] showed that
1D(ddcû)n is a Radon measure onD. The second main result of this paper give
the information on pluripolar part of the complex Monge-Ampère measures
(ddcû)n.

Theorem 1.4. Let D, Ω, a, u, û be as in Theorem 1.3. Assume that D is
hyperconvex. Then, the Borel measure in Cn which is defined by

P (ddcu)n := 1D∩{û=−∞}(dd
cû)n

does not depend on a and D. Moreover,

(ddcû)n = 0 on D\Ω

and ∫
D

(ddcû)n ≤
∫

Ω∩{u<−a}
(ddc max(u,−a− t))n, ∀t > 0.
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Observe that the above result tells us that P (ddcu)n vanishes outside of
Ω. To provide some more of its properties, we need the following definition
from [20].

Definition 1.5. We say that a bounded F -hyperconvex domain Ω has the
F -approximation property if there exists an increasing sequence of negative
plurisubharmonic functions ρj defined on bounded hyperconvex domains Ωj

such that Ω ⊂ Ωj+1 ⊂ Ωj and ρj ↗ ρ ∈ E0(Ω) a.e. on Ω as j ↗ +∞.

Example 1.6. In Example 1.2, the F -hyperconvex domain Ω has the F -
approximation property.

Finally, we shall prove the following result.

Theorem 1.7. Let Ω b Cn be a F-hyperconvex domain and let u ∈ F(Ω).
Assume that Ω has the F-approximation property. Then,∫

Ω

P (ddcu)n =

∫
Ω

(ddc max(u,−1))n −
∫

Ω

NP (ddcu)n.

The remainder of this paper is organized as follows. In Section 2, we
recall some notions of (plurifine) pluripotential theory and give the proof of
Theorem 1.3. Section 3 is devoted to prove Theorem 1.4 and Theorem 1.7.

2 Subextensions of F-plurisubharmonic func-
tions

The elements of pluripotential theory (plurifine potential theory) that will
be used in this paper can be found in [1]-[21]. Let Ω ⊂ Cn be an F -open set.
Denote by QB(Cn) the measurable space on Cn generated by the Borel sets
and the pluripolar subsets of Cn. Let QB(Ω) be the trace of QB(Cn) on Ω.
Firstly, we recall the notion of F -plurisubharmonic functions from [7].

Definition 2.1. A function u : Ω→ [−∞,+∞) is called F -plurisubharmonic
(briefly, u ∈ F -PSH(Ω)) if u is F -upper semicontinuous and for every com-
plex line l in Cn, the restriction of u to any F -component of the finely open
subset l ∩ Ω of l is either finely subharmonic or ≡ −∞.

Definition 2.2. Let Ω ⊂ Cn be an F -open set and u ∈ F -PSH(Ω).
(i) If u is finite then there exist a pluripolar set E ⊂ Ω, a sequence of F -

open subsets {Oj} and plurisubharmonic functions fj, gj defined in Euclidean
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neighborhoods of Oj such that Ω = E ∪
⋃∞
j=1Oj and u = fj − gj on Oj. The

Monge-Ampère measure (ddcu)n on QB(Ω) is defined by∫
A

(ddcu)n :=
∞∑
j=1

∫
A∩(Oj\

⋃j−1
k=1Ok)

(ddc(fj − gj))n, A ∈ QB(Ω).

(ii) The non-polar part NP (ddcu)n is defined by∫
A

NP (ddcu)n = lim
j→+∞

∫
A

(ddc max(u,−j))n, A ∈ QB(Ω).

This definition is independent of Oj, fj, gj and refer to [10].
Next, we recall the definition of the Cegrell’s classes for F -plurisubharmonic

functions from [20].

Definition 2.3. Let Ω b Cn be a bounded F -hyperconvex domain, Ω′

and γΩ as in Definition 1.1, and let F -PSH−(Ω) be the set of negative
F -plurisubharmonic functions in Ω. We set

E0(Ω) := {u ∈ F -PSH−(Ω) ∩ L∞(Ω) :

∫
Ω

(ddcu)n < +∞

and ∀ε > 0, ∃δ > 0, Ω ∩ {u < −ε} ⊂ {γΩ > −1 + δ}}

and

F(Ω) := {u ∈ F -PSH−(Ω) : ∃E0(Ω) 3 uj ↘ u, sup
j≥1

∫
Ω

(ddcuj)
n < +∞}.

Now, we prove the following proposition which generalizes Lemma 3.1 in
[16].

Proposition 2.4. Let Ω ⊂ D b Cn be F-hyperconvex domains. Assume that
a > 0, u ∈ E0(Ω) and define

w := sup{ϕ ∈ F-PSH−(D) : ϕ ≤ u+ a on Ω}.

Then w ∈ E0(D) and satisfies

(ddcw)n ≤ 1Ω∩{w=u+a}(dd
cu)n in QB(D).

Proof. Without loss of generality we can assume that −1
2
≤ u < 0 in Ω,

and hence, −1
2
≤ w < 0 in D. Because Ω is an F -hyperconvex domain

so there exists a bounded hyperconvex domain Ω′ ⊃ Ω in Cn and γΩ ∈
PSH−(Ω′) ∩ L∞(Ω′) such that Ω = {γΩ > −1} and −γΩ ∈ F -PSH(Ω).
Since u ∈ E0(Ω), we can find δ > 0 such that

(2.1) Ω ∩ {u < −a} ⊂ {γΩ > −1 + 2δ} ⊂ D.
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Firstly, we claim that w ∈ E0(D). Indeed, since K := Ω ∩ {u < −a} is a
compact set, we can find ρ ∈ E0(D) such that

ρ = −1 on K.

This implies that ρ ≤ u+a on Ω, and hence, w ≥ ρ. It follows that w ∈ E0(D).
This proves the claim.

Next, we claim that

(2.2) (ddcw)n ≤ (ddcu)n on Ω ∩ {w = u+ a}.

Indeed, let j be an integer number with ja > 1. Since −a+ 1
j
< 0 and Ω′ is a

Euclidean open set, at Ω′ ∩ ∂FΩ we have u +
1

δ
γΩ < −1

δ
, hence Proposition

2.3 in [9] and Proposition 2.14 in [8] tells us that

f :=

{
max(−1

δ
, u+ 1

δ
γΩ) in Ω

−1
δ

in Ω′\Ω

and

fj :=

{
max(−1

δ
,max(u,w − a+ 1

j
) + 1

δ
γΩ) in Ω

−1
δ

in Ω′\Ω

are plurisubharmonic in Ω′. Since fj ↘ f on Ω′ and u = f− 1
δ
γΩ, max(u,w−

a+ 1
j
) = fj − 1

δ
γΩ in {γΩ > −1 + δ}, we infer by Theorem 3.2 in [3] that

(2.3) lim
j→+∞

∫
Ω

χ(ddc max(u,w − a+
1

j
))n =

∫
Ω

χ(ddcu)n

for every bounded F -continuous function χ with compact support on {γΩ >

−1 + δ}. Let K ⊂ Ω ∩ {w = u+ a} be a compact set. Since w ≤ 0 on Ω, we
obtain by (2.1) that

Ω ∩ {w = u+ a} ⊂ Ω ∩ {u ≤ −a}
⊂ {γΩ > −1 + 2δ}.

Hence, there exists a decreasing sequence of bounded F -continuous functions
{χk} with compact support on {γΩ > −1+δ} such that χk ↘ 1K as k ↗ +∞.
Using Theorem 4.8 in [10] we obtain by (2.3) that∫

K

(ddcw)n ≤ lim
j→+∞

∫
Ω

χk(dd
c max(u,w − a+

1

j
))n

=

∫
Ω

χk(dd
cu)n, ∀k ≥ 1.
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Letting k → +∞, we arrive that∫
K

(ddcw)n ≤
∫
K

(ddcu)n.

Therefore, (ddcw)n ≤ (ddcu)n on Ω ∩ {w = u+ a}. This proves the claim.
Now, since u is F -continuous on Ω and limz3Ω→∂FΩ u = 0, it follows that

the function

h :=

{
u+ a on Ω

a in D\Ω

is F -continuous on D, and hence,

U := D ∩ {w < h} is F -open set.

Let z ∈ U and let b ∈ R be such that w(z) < b < h(z). Let V be a connected
component of the F -open set D ∩ {w < b} ∩ {h > b} which contains the
point z.

We claim that w is F -maximal in V . Indeed, let G be a bounded F -open
set in Cn with G ⊂ V and let v ∈ F -PSH(G) such that v is bounded from
above on G, extends F -upper semicontinuously to GF and

v ≤ w on ∂FG.

Proposition 2.3 in [9] states that the function

ϕ :=

{
max(w, v) on G
w on D\G

is F -plurisubharmonic in D. Because G ⊂ V ⊂ D ∩ {w < b}, we infer by
Theorem 2.3 in [8] that

ϕ < b on G,

and hence, ϕ ≤ h in D. This implies that ϕ = w in D. Thus, v ≤ w in G, and
therefore, w is F -maximal in V . This proves the claim. Thus, w is F -locally
F -maximal in U , and therefore, we deduce by Theorem 1 in [17] that

(ddcw)n = 0 on QB(U).

Combining this with (2.2) we conclude that

(ddcw)n ≤ 1Ω∩{w=u+a}(dd
cu)n in QB(D).

The proof is complete.
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We are now able to give the proof of theorem 1.3.

Proof of Theorem 1.3. (i) Let {uj} ⊂ E0(Ω) such that uj ↘ u in Ω as j ↗
+∞ and

(2.4) sup
j≥1

∫
Ω

(ddcuj)
n < +∞.

We define

ûj := sup{ϕ ∈ F -PSH−(D) : ϕ ≤ uj + a+
1

j
on Ω}.

It is clear that {ûj} is decreasing and converges to û in D. Proposition 2.4
tells us that ûj ∈ E0(D) and

(2.5) (ddcûj)
n 6 1Ω∩{ûj=uj+a+ 1

j
}(dd

cuj)
n in QB(D).

This implies that

sup
j≥1

∫
D

(ddcûj)
n ≤ sup

j≥1

∫
Ω

(ddcuj)
n.

Combining this with (2.4), we conclude by Proposition 2.4 in [15] that û ∈
F(D) and∫

D

(ddc max(û,−1))n = sup
j≥1

∫
D

(ddcûj)
n

≤ sup
j≥1

∫
Ω

(ddcuj)
n =

∫
Ω

(ddc max(u,−1)n.

(ii) Thanks to Theorem 4.5 in [9] we infer by (2.5) that

(ddcû)n ≤ (ddcu)n on Ω ∩ {û > −∞}.

Fix b, c ∈ R with b > c. Set

Uj := Ω ∩ {û > c} ∩ {u > b− a} ∩ {ûj < b}.

Since uj ↘ u and ûj ↘ û on Ω, we have

Uj ⊂ Ω ∩ {c < ûj < b < uj + a}
⊂ Ω ∩ {ûj < uj + a}.

Combining this with (2.5), we obtain

(ddcûj)
n = 0 on Uk,∀j ≥ k
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because Uj ⊃ Uk, ∀j ≥ k. Moreover, since û is bounded on Uk, Theorem 4.5
in [9] states that

(ddcû)n = 0 on Uk, ∀k ≥ 1.

This implies that

(ddcû)n = 0 on Ω ∩ {−∞ < û < u+ a}.

Therefore,

NP (ddcû)n ≤ 1Ω∩{û=u+a}NP (ddcu)n on QB(Ω).

This proves the theorem.

3 Pluripolar part of complex Monge-Ampère
measures

Firstly, we prove the following lemma.

Lemma 3.1. Let Ω b Cn be a F-hyperconvex domain and let {uj} ⊂ E0(Ω)

be a decreasing sequence such that

sup
j≥1

∫
Ω

(ddcuj)
n < +∞.

Then, for every ε > 0, there exists v ∈ E0(Ω) such that

sup
j≥1

∫
{v>−1}

(ddcuj)
n < ε.

Proof. Fix ε > 0. By the hypotheses we can find j0 ∈ N such that

(3.1) sup
j≥1

∫
Ω

(ddcuj)
n ≤

∫
Ω

(ddcuj0)
n +

ε

3
.

By the hypotheses we can find ϕ ∈ E0(Ω) such that −1 ≤ ϕ ≤ 0 in Ω and

(3.2) max
1≤j≤j0

∫
Ω

(1 + ϕ)(ddcuj)
n <

ε

3
.

Since {uj} is decreasing, Proposition 3.4 in [20] tells us that∫
Ω

(−ϕ)(ddcuj)
n ≥

∫
Ω

(−ϕ)(ddcuj0)
n, ∀j ≥ j0.

Hence, we deduce by (3.1) that∫
Ω

(1 + ϕ)(ddcuj)
n ≤

∫
Ω

(1 + ϕ)(ddcuj0)
n +

ε

3
, ∀j ≥ j0.
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Combining this with (3.2) we obtain that

(3.3)
∫

Ω

(1 + ϕ)(ddcuj)
n ≤ 2ε

3
, ∀j ≥ 1.

We put v = 5ϕ, it is easy to see that v ∈ E0(Ω) and

4(1 + ϕ)

3
> 1 on {ϕ > −1

5
}.

Hence, we conclude by (3.3) that

sup
j≥1

∫
{v>−1}

(ddcuj)
n = sup

j≥1

∫
{ϕ>− 1

5
}
(ddcuj)

n

≤ 4

3
sup
j≥1

∫
Ω

(1 + ϕ)(ddcuj)
n < ε.

This proves the lemma.

Next, we can give the proof of theorem 1.4.

Proof of Theorem 1.4. (i) Let U be a bounded hyperconvex domain such that
D b U . Put

ϕ1 := sup{ϕ ∈ PSH−(U) : ϕ ≤ u on Ω}

and
ϕ2 := sup{ϕ ∈ PSH−(U) : ϕ ≤ u+ a on Ω}.

It is easy to see that

(3.4) ϕ1 ≤ ϕ2 ≤ ϕ1 + a in U.

Since D ⊂ U , it follows that

(3.5) ϕ2 ≤ û on D,

and hence,
ϕ2 = sup{ϕ ∈ PSH−(U) : ϕ ≤ û on D}.

Lemma 4.5 in [19] tells us that

(3.6) (ddcϕ2)n ≤ 1D(ddcû)n on U.

Moreover, using Lemma 4.4 in [1] we infer by (3.5) that

(3.7) (ddcû)n ≤ (ddcϕ2)n on D ∩ {û = −∞}.
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Note that the measure 1U∩{û>−∞}(dd
cû)n vanishes on pluripolar sets of U .

Hence,
(ddcû)n = 0 on D ∩ {ϕ2 = −∞} ∩ {û > −∞}.

Combining this with (3.5), (3.6) and (3.7) we arrive at

(3.8) 1D∩{û=−∞}(dd
cû)n = 1U∩{ϕ2=−∞}(dd

cϕ2)n.

On the other hand, using (3.4) and Lemma 4.4 in [1] we obtain that

1U∩{ϕ1=−∞}(dd
cϕ1)n = 1U∩{ϕ2=−∞}(dd

cϕ2)n.

Therefore, we conclude by (3.8) that

1D∩{û=−∞}(dd
cû)n = 1U∩{ϕ1=−∞}(dd

cϕ1)n.

This implies that the measure 1D∩{û=−∞}(dd
cû)n is independent on a and D

because the function ϕ1 does not depend on a.
(ii) Let {uj} ⊂ E0(Ω) such that uj ↘ u in Ω as j ↗ +∞ and

sup
j≥1

∫
Ω

(ddcuj)
n < +∞.

Proposition 2.4 states that the functions

ûj := sup{ϕ ∈ F -PSH−(D) : ϕ ≤ uj + a+
1

j
on Ω}

belong to E0(D) and

(3.9) (ddcûj)
n ≤ 1Ω(ddcuj)

n in QB(D).

Let ε be a positive real number. By Lemma 3.1 we can find v ∈ E0(Ω) such
that

(3.10) sup
j≥1

∫
Ω∩{v>−1}

(ddcuj)
n < ε.

On the other hand, since ûj ↘ û in D, we infer by Theorem in [5] that

(ddcûj)
n → (ddcû)n in D.

Combining this with (3.9) and (3.10) we arrive at∫
D\Ω

(ddcû)n ≤
∫
D\Ω∩{v≤−1}

(ddcû)n

≤ lim inf
j→+∞

∫
D\Ω∩{v≤−1}

(ddcûj)
n
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≤ lim inf
j→+∞

∫
Ω\Ω∩{v≤−1}

(ddcuj)
n

≤ lim inf
j→+∞

∫
Ω∩{v>−1}

(ddcuj)
n < ε.

This implies that ∫
D\Ω

(ddcû)n = 0.

(iii) Let j ≥ a be an integer number and define

ûj := sup{ϕ ∈ F -PSH−(D) : ϕ ≤ max(u,−j) + a on Ω}.

In fact, Proposition 2.4 states that ûj ∈ F(D) ∩ L∞(D) and

(ddcûj)
n ≤ 1Ω∩{ûj=max(u,−j)+a}(dd

c max(u,−j))n on QB(D).

Combining this with (ii) we infer that∫
D

(ddcûj)
n ≤

∫
Ω∩{ûj=max(u,−j)+a}

(ddc max(u,−j))n

≤
∫

Ω∩{u<−a}
(ddc max(u,−j))n.

This implies that∫
D

(ddcû)n ≤ lim sup
j→+∞

∫
Ω∩{u<−a}

(ddc max(u,−j))n,(3.11)

because ûj ↘ û onD. On the other hand, since (ddc max(u,−j))n = (ddc max(u,−a−
t))n on Ω ∩ {u ≥ −a} we infer by Proposition 2.4. in [15] that∫

Ω∩{u<−a}
(ddc max(u,−j))n

=

∫
Ω

(ddc max(u,−j))n −
∫

Ω∩{u≥−a}
(ddc max(u,−j))n

=

∫
Ω

(ddc max(u,−a− t))n −
∫

Ω∩{u≥−a}
(ddc max(u,−a− t))n

=

∫
Ω∩{u<−a}

(ddc max(u,−a− t))n.

Combining this with (3.11) we conclude that∫
D

(ddcû)n ≤
∫

Ω∩{u<−a}
(ddc max(u,−a− t))n.

The proof is complete.



The pluripolar parts of the Monge-Ampère measures of F -plurisubharmonic functions13

Finally, we give the proof of Theorem 1.7.

Proof of Theorem 1.7. Since Ω has the F -approximation property, by The-
orem 1.2 in [15] we can find a decreasing sequence of bounded hypercon-
vex domains {Ωj} and a sequence of functions ϕj ∈ PSH−(Ωj) such that
Ω ⊂ Ωj+1 ⊂ Ωj and ϕj ↗ u a.e. on Ω. Theorem 1.3 and Theorem 1.4 tell us
that

uj := sup{ϕ ∈ PSH−(Ωj) : ϕ ≤ u on Ω}

belongs to F(Ωj) and satisfies∫
Ωj

(ddc max(uj,−1))n ≤
∫

Ω

(ddc max(u,−1))n(3.12)

(ddcuj)
n ≤ 1Ω(ddcu)n on QB(Ωj ∩ {uj > −∞}).(3.13)

Observe that uj ≥ ϕj on Ωj, and hence, uj ↗ u a.e. on Ω. Therefore, we
deduce by Proposition 2.7 in [20] that∫

Ω

(ddc max(u,−1))n ≤ lim inf
j→+∞

∫
Ω

(ddc max(uj,−1))n

and ∫
Ω

NP (ddcu)n ≤ lim inf
j→+∞

∫
Ω

NP (ddcuj)
n.

Combining this with (3.12) and (3.13) we arrive at∫
Ω

(ddc max(u,−1))n = lim
j→+∞

∫
Ωj

(ddc max(uj,−1))n = lim
j→+∞

∫
Ωj

(ddcuj)
n

and ∫
Ω

NP (ddcu)n = lim
j→+∞

∫
Ωj

NP (ddcuj)
n.

This implies that

∫
Ω

(ddc max(u,−1))n = lim
j→+∞

[∫
Ωj

NP (ddcuj)
n +

∫
Ωj∩{uj=−∞}

(ddcuj)
n

]
=

∫
Ω

NP (ddcu)n +

∫
Ω

P (ddcu)n

because P (ddcu)n = 1Ωj∩{uj=−∞}(dd
cuj)

n. This proves the theorem.
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