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Abstract

We obtained convergence rates of the collocation approximation by deep ReLU neural net-
works of the solution u to elliptic PDEs with lognormal inputs, parametrized by y from the
non-compact set R∞. The approximation error is measured in the norm of the Bochner space
L2(R∞, V, γ), where γ is the infinite tensor product standard Gaussian probability measure on
R∞ and V is the energy space. Under a certain assumption on `q-summability for the lognormal
inputs (0 < q < 2), we proved that given arbitrary number δ > 0 small enough, for every integer
n > 1, one can construct a compactly supported deep ReLU neural network φn :=

(
φj
)m
j=1

of size at most n on Rm with m = O
(
n1−δ

)
, and a sequence of points

(
yj
)m
j=1
⊂ Rm (which

are independent of u) so that the collocation approximation of u by Φnu :=
∑m
j=1 u

(
yj
)

Φj ,

which is based on the m solvers
(
u
(
yj
))m
j=1

and the deep ReLU network φn, gives the twofold

error bounds: ‖u− Φnu‖L2(R∞,V,γ) = O
(
m−(1/q−1/2)

)
= O

(
n−(1−δ)(1/q−1/2)

)
, where Φj are

the extensions of φj to the whole R∞. We also obtained similar results for the case when the
lognormal inputs are parametrized on RM with very large dimension M , and the approximation

error is measured in the
√
gM -weighted uniform norm of the Bochner space L

√
g
∞ (RM , V ), where

gM is the density function of the standard Gaussian probability measure on RM .

Keywords and Phrases: High-dimensional approximation; Collocation approximation; Deep
ReLU neural networks; Parametric elliptic PDEs; Lognormal inputs.
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1 Introduction

Partial differential equations (PDEs) with parametric and stochastic inputs are a common model
used in science and engineering. Stochastic nature reflects the uncertainty in various parameters
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presented in the physical phenomenon modelled by the equation. A central problem of computa-
tional uncertainty quantification is efficient numerical approximation for parametric and stochastic
PDEs which has been of great interest and achieved significant progress in recent decades. There is
a large number of non-deep-neural-network papers on this topic to mention all of them. We point
out just some works [3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 24, 36, 60, 61] which are directly related to our
paper. In particular, collocation approximations which are based on a finite number of particular
solvers to parametric and stochastic PDEs, were considered in [8, 9, 10, 14, 15, 18, 24, 60].

The approximation universality of neural networks has been achieved a basis understanding
since the 1980’s ([6, 13, 25, 37]). Deep neural networks in recent years have been rapidly developed
in theory and applications to a wide range of fields due to their advantage over shallow ones. Since
their application range is getting wider, theoretical analysis discovering reasons of these significant
practical improvements attracts special attention [2, 20, 44, 55, 56]. In recent years, there has
been a number of interesting papers that addressed the role of depth and architecture of deep
neural networks for non-adaptive and adaptive approximation of functions having a particular
regularity [1, 22, 29, 32, 31, 42, 39, 50, 48, 58, 59]. High-dimensional approximations by deep
neural networks have been studied in [43, 52, 16, 19], and their applications to high-dimensional
PDEs in [23, 27, 28, 30, 33, 46, 51]. Most of these papers employed the rectified linear unit (ReLU)
as the activation function of deep neural networks since the ReLU is a simple and preferable in
many applications. The output of such a deep neural network is a continuous piece-wise linear
function which is easily and cheaply computed. The reader can consult the recent survey papers
[21, 47] for various problems and aspects of neural network approximation and bibliography.

Recently, a number of papers have been devoted to various problems and methods of deep
neural network approximation for parametric and stochastic PDEs such as dimensionality reduction
[57], deep neural network expression rates for generalized polynomial chaos expansions (gpc) of
solutions to parametric elliptic PDEs [17, 49], reduced basis methods [38] the problem of learning
the discretized parameter-to-solution map in practice [26], Bayesian PDE inversion [33, 34, 45],
etc. Note that except [17] all of these papers treated parametric and stochastic PDEs with affine
inputs on the compact set I∞ := [−1, 1]∞. The authors of paper [49] proved dimension-independent
deep neural network expression rate bounds of the uniform approximation of solution to parametric
elliptic PDE with affine inputs on I∞ based on n-term truncations of the non-orthogonal Taylor gpc
expansion. The construction of approximating deep neural networks relies on weighted summability
of the Taylor gpc expansion coefficients of the solution which is derived from its analyticity. The
paper [17] investigated non-adaptive methods of deep ReLU neural network approximation of
the solution u to parametric and stochastic elliptic PDEs with lognormal inputs on non-compact
set R∞. The approximation error is measured in the norm of the Bochner space L2(R∞, V, γ),
where γ is the tensor product standard Gaussian probability on R∞ and V is the energy space.
The approximation is based on an m-term truncation of the Hermite gpc of u. Under a certain
assumption on `q-summability (0 < q <∞) for the lognormal inputs, it was proven that for every
integer n > 1, one can construct a non-adaptive compactly supported deep ReLU neural network
φn of size ≤ n on Rm with m = O(n/ log n), having m outputs so that the summation constituted
by replacing Hermite polynomials in the m-term truncation by these m outputs approximates u

with the error bound O
(

(n/ log n)−1/q
)

. The authors of [17] also obtained some results on similar

problems for parametric and stochastic elliptic PDEs with affine inputs, based on the Jacobi and
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Taylor gpc expansions.

In the present paper, we are interested in constructing deep ReLU neural networks for colloca-
tion approximation of the solution to parametric elliptic PDEs with lognormal inputs. We study
the convergence rate of this approximation in terms of the size of deep ReLU neural networks.

Let D ⊂ Rd be a bounded Lipschitz domain. Consider the diffusion elliptic equation

− div(a∇u) = f in D, u|∂D = 0, (1.1)

for a given right-hand side f and diffusion coefficient a as functions on D. Denote by V := H1
0 (D)

the energy space and H−1(D) the dual space of V . Assume that f ∈ H−1(D) (in what follows
this preliminary assumption always holds without mention). If a ∈ L∞(D) satisfies the ellipticity
assumption

0 < amin ≤ a ≤ amax <∞,

by the well-known Lax–Milgram lemma, there exists a unique solution u ∈ V to the equation (1.1)
in the weak form ∫

D
a∇u · ∇v dx = 〈f, v〉, ∀v ∈ V.

We consider diffusion coefficients having a parametrized form a = a(y), where y = (yj)j∈N is
a sequence of real-valued parameters ranging in the set R∞. Denote by u(y) the solution to the
parametrized diffusion elliptic equation

− div(a(y)∇u(y)) = f in D, u(y)|∂D = 0. (1.2)

The resulting solution operator maps y ∈ R∞ 7→ u(y) ∈ V . The goal is to achieve numerical
approximation of this complex map by a small number of parameters with a guaranteed error in
a given norm. Depending on the nature of the modeled object, the parameter y may be either
deterministic or random. In the present paper, we consider the so-called lognormal case when the
diffusion coefficient a is of the form

a(y) = exp(b(y)) (1.3)

with b(y) in the infinite-dimensional form:

b(y) =

∞∑
j=1

yjψj , y ∈ R∞, (1.4)

where the yj are i.i.d. standard Gaussian random variables and ψj ∈ L∞(D). We also consider
the finite-dimensional form when

b(y) =

M∑
j=1

yjψj , y ∈ RM , (1.5)

with finite but very large dimension M .

We briefly describe the main results of the present paper.
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We investigate non-adaptive collocation methods of high-dimensional deep ReLU neural net-
work approximation of the solution u(y) to parametrized diffusion elliptic PDEs (1.2) with log-
normal inputs (1.3) in the infinite-dimensional case (1.4) and finite-dimensional case (1.5). In the
infinite-dimensional case (1.4), the approximation error is measured in the norm of the Bochner
space L2(R∞, V, γ), where γ is the infinite tensor product standard Gaussian probability on R∞.
Assume that there exists a sequence of positive numbers ρ = (ρj)j∈N such that for some 0 < q < 2,∥∥∥∥∥∥

∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<∞ and ρ−1 =
(
ρ−1
j

)
j∈N
∈ `q(N).

Then, given an arbitrary number δ with 0 < δ < min (1, 1/q − 1/2), for every integer n > 1, we
can construct a compactly supported deep ReLU neural network φn :=

(
φj
)m
j=1

of size at most n

on Rm with m = O
(
n1−δ), and a sequence of points Yn :=

(
yj
)m
j=1
⊂ Rm so that

(i) The deep ReLU neural network φn and sequence of points Yn are independent of u;

(ii) The output dimension of φn is m = O
(
n1−δ);

(iii) The depth of φn is O(nδ);

(iv) The support of φn is contained in the hyper-cube [−T, T ]m with T = O
(
n1−δ);

(v) If Φj is the extension of φj to the whole R∞ by Φj(y) = φj

(
(yj)

m
j=1

)
for y = (yj)j∈N ∈ R∞,

the collocation approximation of u by the function

Φnu :=
m∑
j=1

u
(
yj
)

Φj ,

which is based on the m solvers
(
u
(
yj
))m
j=1

and the deep ReLU network φn, gives the twofold
error estimates

‖u− Φnu‖L2(R∞,V,γ) = O
(
m
−
(

1
q
− 1

2

))
= O

(
n
−(1−δ)

(
1
q
− 1

2

))
. (1.6)

Notice that the error bound in m in (1.6) is the same as the error bound of the collocation
approximation of u by the sparse-grid Lagrange gpc interpolation based on m the same particular
solvers

(
u
(
yj
))m
j=1

, which so far is the best known result [15, Corollary 3.1]. Moreover, the

convergence rate (1 − δ)(1/q − 1/2) with respect to the size of the deep ReLU network in the
collocation approximation, is comparable with the convergence rate 1/q − 1/2 with respect to
the number of particular solvers in the collocation approximation by sparse-grid Lagrange gpc
interpolation.

We also obtained similar results in manner of the items (i)–(v) in the finite-dimensional case
(1.5) with the approximation error measured in the

√
gM -weighted uniform norm of the Bochner
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space L
√
g
∞ (RM , V ), where gM is the density function of the standard Gaussian probability measure

on RM .

The paper is organized as follows. In Section 2, we present a necessary knowledge about deep
ReLU neural networks. Section 3 is devoted to collocation methods of deep ReLU neural network
approximation of functions in Bochner spaces L2(R∞, X, γ) or in L2(RM , X, γ) related to a Hilbert
space X and the tensor product standard Gaussian probability measure γ. In Section 4, we apply
the results in the previous section to the collocation approximation by deep ReLU neural networks
of the solution u to the parametrized elliptic PDEs (1.2) with lognormal inputs (1.3) on in the
infinite case (1.4) and finite case (1.5).

Notation As usual, N denotes the natural numbers, Z the integers, R the real numbers and
N0 := {s ∈ Z : s ≥ 0}. We denote R∞ the set of all sequences y = (yj)j∈N with yj ∈ R.
Denote by F the set of all sequences of non-negative integers s = (sj)j∈N such that their support
supp(s) := {j ∈ N : sj > 0} is a finite set. For s ∈ F, put |s|1 :=

∑
j∈N sj . For a set G, we denote

by |G| the cardinality of G. If a = (aj)j∈J is a sequence of positive numbers with any index set
J , then we use the notation a−1 := (a−1

j )j∈J . We use letters C and K to denote general positive
constants which may take different values, and Cα,β,... and Kα,β,... when we want to emphasize the
dependence of these constants on α, β, ..., or when this dependence is important in a particular
situation.

2 ReLU neural networks

In this section, we present some auxiliary knowledge on deep ReLU neural networks which will be
used as a tool of approximation. We will consider deep feed-forward neural networks that allows
connections of neurons in non-neighboring layers. The ReLU activation function is defined by
σ(t) := max{t, 0}, t ∈ R. We denote: σ(x) := (σ(x1), . . . , σ(xd)) for x = (x1, . . . , xd) ∈ Rd.

Let us recall a standard definition of deep ReLU neural network and relevant terminology. Let

d, L ∈ N, L ≥ 2, N0 = d, and N1, . . . , NL ∈ N. Let W ` =
(
w`i,j

)
∈ RN`×(

∑`−1
i=1 Ni), ` = 1, . . . , L, be

an N` ×
(∑`−1

i=1 Ni

)
matrix, and b` = (b`j) ∈ RN` . A ReLU neural network Φ (on Rd) with input

dimension d, output dimension NL and L layers is called a sequence of matrix-vector tuples

Φ =
(
(W 1, b1), . . . , (W L, bL)

)
,

in which the following computation scheme is implemented:

z0 := x ∈ Rd;

z` := σ

(
W `

(
z0, . . . ,z`−1

)T
+ b`

)
, ` = 1, . . . , L− 1;

zL := W L
(
z0, . . . ,zL−1

)T
+ bL.
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We call z0 the input and with an ambiguity we use the notation Φ(x) := zL for the output of
Φ. In some places we identify a ReLU neural network with its output. We adopt the following
terminology.

• The number of layers L(Φ) = L is the depth of Φ;

• The number of nonzero w`i,j and b`j is the size of Φ and denoted by W (Φ);

• When L(Φ) ≥ 3, Φ is called a deep ReLU neural network, and otherwise, a shallow ReLU
neural network.

There are two basic operations which neural networks allow for. This is the parallelelization
of several neural networks and the concatenation of two neural networks. The reader can find for
instance, in [32] (see also [21, 47]) for detailed decriptions as well for the following two lemmas on
these operations.

Lemma 2.1 (Parallelization) Let N ∈ N, λj ∈ R, j = 1, . . . , N . Let Φj, j = 1, . . . , N be deep
ReLU neural networks with input dimension d. Then we can explicitly construct a deep ReLU
neural network denoted by Φ so that

Φ(x) =
N∑
j=1

λjΦj(x), x ∈ Rd.

Moreover, we have

W (Φ)≤
N∑
j=1

Wj and L(Φ) = max
j=1,...,N

Lj .

The network Φ is called the parallelization of the deep ReLU neural networks Φj, j = 1, . . . , N .

Lemma 2.2 (Concatenation) Let Φ1 and Φ2 be two ReLU neural networks such that output
layer of Φ1 has the same dimension as input layer of Φ2. Then, we can explicitly construct a
ReLU neural network Φ such that Φ(x) = Φ2(Φ1(x)) for x ∈ Rd. Moreover we have

W (Φ) ≤ 2W (Φ1) + 2W (Φ2) and L(Φ) = L(Φ1) + L(Φ2).

The deep ReLU neural network Φ is called the concatenation of the deep ReLU neural networks Φ1

and Φ2.

The following lemma was proven in [49, Proposition 3.3].

Lemma 2.3 For every δ ∈ (0, 1), d ∈ N, d ≥ 2, we can explicitly construct a deep ReLU neural
network ΦP so that

sup
x∈[−1,1]d

∣∣∣∣∣
d∏
j=1

xj − ΦP (x)

∣∣∣∣∣ ≤ δ.
6



Furthermore, if xj = 0 for some j ∈ {1, . . . , d} then ΦP (x) = 0 and there exists a constant C > 0
independent of δ and d such that

W (ΦP ) ≤ Cd log(dδ−1) and L(ΦP ) ≤ C log d log(dδ−1) .

Let ϕ1 be the continuous piece-wise function with break points {−2,−1, 1, 2} such that ϕ1(x) =
x if x ∈ [−1, 1] and supp(ϕ1) ⊂ [−2, 2]. It is easy to verify that ϕ1 can be realized exactly by a deep
ReLU neural network (still denoted by ϕ1) with size W (ϕ1) ≤ C for some positive constant C.
Similarly, let ϕ0 be the ReLU neural network that realizes the continuous piece-wise function with
break points {−2,−1, 1, 2} and ϕ0(x) = 1 if x ∈ [−1, 1], supp(ϕ0) ⊂ [−2, 2]. Clearly W (ϕ0) ≤ C
for some positive constant C.

The following lemma directly derived from the realization of the functions ϕ0 and ϕ1 by deep
ReLU neural network and Lemma 2.3 (see also [17, Lemma 2.4]).

Lemma 2.4 Let ϕ be either ϕ0 or ϕ1. For every δ ∈ (0, 1), d ∈ N, we can explicitly construct a
deep ReLU neural network Φ so that

sup
x∈[−2,2]d

∣∣∣∣∣
d∏
j=1

ϕ(xj)− Φ(x)

∣∣∣∣∣ ≤ δ.
Furthermore, supp(Φ) ⊂ [−2, 2]d and there exists a constant C > 0 independent of δ and d such
that

W (Φ) ≤ C
(
1 + d log(dδ−1)

)
and L(Φ) ≤ C

(
1 + log d log(dδ−1)) . (2.1)

3 Deep ReLU neural network approximation in Bochner spaces

In this section, we investigate collocation methods of deep ReLU neural network approximation of
functions in Bochner spaces related to a Hilbert space X and tensor product standard Gaussian
probability measures γ. Functions to be approximated have the weighted `2-summable Hermite gpc
expansion coefficients. The approximation is based on the sparse-grid Lagrange gpc interpolation
approximation. We construct such methods and prove convergence rates of the approximation
by them. The results obtained in this section will be applied to deep ReLU neural network
collocation approximation of the solution of parametrized elliptic PDEs with lognormal inputs in
the next section.

3.1 Tensor product Gaussian measures and Bochner spaces

Let γ(y) be the standard Gaussian probability measure on R with the density

g(y) :=
1√
2π
e−y

2/2, i.e., dγ(y) := g(y) dy. (3.1)
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For M ∈ N, the standard Gaussian probability measures γ(y) on RM can be defined by

dγ(y) := gM (y)d(y) =
M⊗
j=1

g(yj)d(yj), y = (yj)
M
j=1 ∈ RM ,

where gM (y) :=
⊗M

j=1 g(yj).

We next recall a concept of standard Gaussian probability measure γ(y) on R∞ as the infinite
tensor product of the standard Gaussian probability measures γ(yi):

γ(y) :=
⊗
j∈N

γ(yj), y = (yj)j∈N ∈ R∞.

The sigma algebra for γ(y) is generated by the set of cylinders A :=
∏
j∈NAj , where Aj ⊂ R are

univariate µ-measurable sets and only a finite number of Ai are different from R. For such a set
A, we have γ(A) =

∏
j∈N γ(Aj). (For details on infinite tensor product of probability measures,

see, e.g., [35, pp. 429–435].)

In what follows, we use letter U to denote either RM or R∞ and letter J to denote either M
or ∞, respectively. If X is a Hilbert space, the standard Gaussian probability measure γ on U
induces the Bochner space L2(U,X, γ) of γ-measurable mappings v from U to X, equipped with
the norm

‖v‖L2(U,X,γ) :=

(∫
U
‖v(·,y)‖2X dγ(y)

)1/2

.

For a γ-measurable subset Ω in U the spaces L2(Ω, X, γ) and L2(Ω, γ) is defined in the usual way.

In the case U = RM , we introduce also the space L
√
g
∞ (RM , X) as the set of all γ-measurable

functions v : RM → X for which the
√
gM -weighted uniform norm

‖v‖
L
√
g
∞ (RM ,X)

:= ess sup
y∈RM

(
‖v(y)‖X

√
gM (y)

)
< ∞.

One may expect an infinite-dimensional version of this space. Unfortunately, we could not give

a correct definition of space L
√
g
∞ (R∞, X) because there is no an infinite-dimensional counterpart

of the weight gM . We make use of the abbreviations: L
√
g
∞ (RM ) = L

√
g
∞ (RM ,R) and L

√
g
∞ (R) =

L
√
g
∞ (R,R).

In this section, we will investigate the problem of deep ReLU neural network approximation
of functions in L2(R∞, X, γ) or L2(RM , X, γ) with the error measured in the norms of the space

L2(R∞, X, γ) or of the space L
√
g
∞ (RM , X), respectively. (Notice that these norms are the most

important in evaluation of the error of collocation approximation of solutions of parametric and
stochastic PDEs). It is convenient to us to incorporate these different approximation problems
into unified consideration. Hence, in what follows, we use the joint notations:

L(U,X) :=

{
L
√
g
∞ (RM , X) if U = RM ,

L2(R∞, X, γ) if U = R∞;
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F :=

{
NM0 if U = RM ,
F if U = R∞;

and

N :=

{
{1, ...,M} if U = RM ,
N if U = R∞.

Here F is the set of all sequences of non-negative integers s = (sj)j∈N such that their support
supp(s) := {j ∈ N : sj > 0} is a finite set.

Let (Hk)k∈N0 be the Hermite polynomials normalized according to
∫
R |Hk(y)|2 g(y) dy = 1.

Then a function v ∈ L2(U,X, γ) can be represented by the Hermite gpc expansion

v(y) =
∑
s∈F

vsHs(y), vs ∈ X, (3.2)

with

Hs(y) =
⊗
j∈N

Hsj (yj), vs :=

∫
U
v(y)Hs(y) dγ(y), s ∈ F . (3.3)

Notice that (Hs)s∈F is an orthonormal basis of L2(U, γ) := L2(U,R, γ). Moreover, for every
v ∈ L2(U,X, γ) represented by the series (3.2), the Parseval’s identity holds

‖v‖2L2(U,X,γ) =
∑
s∈F
‖vs‖2X .

For s, s′ ∈ F , the inequality s′ ≤ s means that s′j ≤ sj , j ∈ N . A sequence σ = (σs)s∈F is
called increasing if σs′ ≤ s for s′ ≤ s.

Assumption (I) For v ∈ L2(U,X, γ) represented by the series (3.2), there exists an increasing
sequence σ = (σs)s∈F of positive numbers strictly larger than 1 such that

∥∥σ−1
∥∥
`q(F)

≤ C < ∞
for some q with 0 < q < 2, and (∑

s∈F
(σs‖vs‖X)2

)1/2

≤ C <∞, (3.4)

where the constants C are independent of J .

Lemma 3.1 For v ∈ L2(U,X, γ) sastisfying Assumption (I), the series (3.2) converges absolutely
and therefore, unconditionally in L(U,X) to v and∑

s∈F
‖vs‖X ≤ C <∞, (3.5)

where the constant C is independent of J .
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Proof. By applying the Hölder inequality from Assumption (I) we obtain

∑
s∈F
‖vs‖X ≤

(∑
s∈F

(σs‖vs‖X)2

)1/2(∑
s∈F

σ−2
s

)1/2

≤ C
∥∥σ−1

∥∥
`q(F)

< ∞.

This proves (3.5). Hence, by the equality ‖Hs‖L2(R∞) = 1, s ∈ F, and the inequality ‖Hs‖L∞(R∞) <

1, s ∈ NM0 (which follows from (A.9) in Appendix), the series (3.2) converges absulutely, and
therefore, unconditionally to v ∈ L2(U,X, γ) since by the Parseval’s identity it already converges
to v in the norm of L2(U,X, γ).

3.2 Sparse-grid Lagrange gpc interpolation

For m ∈ N0, let Ym = (yn;k)k∈πm be the increasing sequence of the m + 1 roots of the Hermite
polynomial Hm+1, ordered as

ym,−j < · · · < ym,−1 < ym,0 = 0 < ym,1 < · · · < ym,j if m = 2j,

ym,−j < · · · < ym,−1 < ym,1 < · · · < ym,j if m = 2j − 1,

where

πm :=

{
{−j,−j + 1, ...,−1, 0, 1, ..., j − 1, j} if m = 2j;

{−j,−j + 1, ...,−1, 1, ..., j − 1, j} if m = 2j − 1.

(in particular, Y0 = (y0;0) with y0;0 = 0).

If v is a function on R taking values in a Hilbert space X and m ∈ N0, we define the function
Im(v) on R taking values in X by

Im(v) :=
∑
k∈πm

v(ym;k)Lm;k, Lm;k(y) :=
∏

j∈πm j 6=k

y − ym;j

yn;k − ym;j
, (3.6)

interpolating v at ym;k, i.e., Im(v)(ym;k) = v(ym;k). Notice that for a function v : R → R, the
function Im(v) is the Lagrange polynomial having degree ≤ m, and that Im(ϕ) = ϕ for every
polynomial ϕ of degree ≤ m.

Let
λm(Ym) := sup

‖v‖
L

√
g
∞ (R)

≤1
‖Im(v)‖

L
√
g
∞ (R)

be the Lebesgue constant. It was proven in [40, 41, 53] that

λm(Ym) ≤ C(m+ 1)1/6, m ∈ N,

for some positive constant C independent of n (with the obvious inequality λ0(Y0) ≤ 1). Hence,
for every ε > 0, there exists a positive constant Cε ≥ 1 independent of n such that

λm(Ym) ≤ (1 + Cεm)1/6+ε, ∀m ∈ N0. (3.7)
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We define the univariate operator ∆m for m ∈ N0 by

∆m := Im − Im−1,

with the convention I−1 = 0.

Lemma 3.2 For every ε > 0, there exists a positive constant Cε independent of m such that for
every function v on R,

‖∆m(v)‖
L
√
g
∞ (R)

≤ (1 + Cεm)1/6+ε‖v‖
L
√
g
∞ (R)

, ∀m ∈ N0, (3.8)

whenever the norm in the right-hand side is finite.

Proof. From the assumptions we have that

‖∆m(v)‖
L
√
g
∞ (R)

≤ 2(1 + Cm)1/6‖v‖
L
√
g
∞ (R)

, ∀m ∈ N0,

which implies (3.8).

We will use a sparse-grid Lagrange gpc interpolation as an intermediate approximation in the
deep ReLU neural network approximation of functions v ∈ L2(U,X, γ). In order to have a correct
definition of interpolation operator we have to impose some neccessary restrictions on v. Let E be
a γ-measurable subset in U such that γ(E) = 1 and E contains all y ∈ U with |y|0 < ∞ in the
case U = R∞, where |y|0 denotes the number of nonzero components yj of y. For a given E and
Hilbert space X, we define LE2 (U,X, γ) as the subspace in L2(U,X, γ) of all elements v such that
the point value v(y) (of a representative of v) is well-defined for all y ∈ E . In what folllows, E is
fixed.

For v ∈ LE2 (U,X, γ), we introduce the tensor product operator ∆s, s ∈ F , by

∆s(v) :=
⊗
j∈N

∆sj (v),

where the univariate operator ∆sj is applied to the univariate function v by considering v as a
function of variable yi with the other variables held fixed. From the definition of LE2 (U,X, γ) one
can see that the operators ∆s are well-defined for all s ∈ F . We define for s ∈ F ,

Is(v) :=
⊗
j∈N

Isj (v), Ls;k(v) :=
⊗
j∈N

Lsj ;kj (v), πs :=
∏
j∈N

πsj .

For s ∈ F and k ∈ πs, let Es be the subset in F of all e such that ej is either 1 or 0 if sj > 0,
and ej is 0 if sj = 0, and let ys;k := (ysj ;kj )j∈N ∈ U . Put |s|1 :=

∑
j∈N sj for s ∈ F . It is easy to

check that the interpolation operator ∆s can be represented in the form

∆s(v) =
∑
e∈Es

(−1)|e|1Is−e(v) =
∑
e∈Es

(−1)|e|1
∑

k∈πs−e

v(ys−e;k)Ls−e;k. (3.9)
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For a given finite set Λ ⊂ F , we introduce the gpc interpolation operator IΛ by

IΛ :=
∑
s∈Λ

∆s.

From (3.9) we obtain

IΛ(v) =
∑
s∈Λ

∑
e∈Es

(−1)|e|1
∑

k∈πs−e

v(ys−e;k)Ls−e;k. (3.10)

A set Λ ⊂ F is called downward closed if the inclusion s ∈ Λ yields the inclusion s′ ∈ Λ for
every s′ ∈ F such that s′ ≤ s.

For θ, λ ≥ 0, we define the sequence p(θ, λ) := (ps(θ, λ))s∈F by

ps(θ, λ) :=
∏
j∈N

(1 + λsj)
θ, s ∈ F , (3.11)

with abbreviations ps(θ) := ps(θ, 1) and p(θ) := p(θ, 1).

Let 0 < q <∞ and σ = (σs)s∈F be a sequence of positive numbers. For ξ > 0, define the set

Λ(ξ) := {s ∈ F : σqs ≤ ξ}. (3.12)

By the formula (3.10) we can represent the operator IΛ(ξ) in the form

IΛ(ξ)(v) =
∑

(s,e,k)∈G(ξ)

(−1)|e|1v(ys−e;k)Ls−e;k, (3.13)

where
G(ξ) := {(s, e,k) ∈ F × F × F : s ∈ Λ(ξ), e ∈ Es, k ∈ πs−e}. (3.14)

The following theorem gives an estimate for the error of the approximation of v ∈ LE2 (U,X, γ)
by the sparse-grid Lagrange gpc interpolation IΛ(ξ)v on the sampling points in the set G(ξ), which
will be used in the deep ReLU neural approximation in the next section.

Theorem 3.1 Let v ∈ LE2 (U,X, γ) satisfy Assumption (I) and let ε > 0 be a fixed number. Assume
that

∥∥p(θ, λ)σ−1
∥∥
`q(F)

≤ C <∞, where θ = 7/3 + 2ε, λ := Cε is the constant in Lemma 3.2, and

the constant C is independent of J . Then for each ξ > 1, we have that

‖v − IΛ(ξ)v‖L(U,X) ≤ Cξ−(1/q−1/2), (3.15)

where the constant C in (3.15) is independent of J , v and ξ.

A proof of this theorem is given in Appendix.
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Corollary 3.1 Let v ∈ LE2 (U,X, γ) satisfy Assumption (I) and let ε > 0 be a fixed number.
Assume that

∥∥p(θ, λ)σ−1
∥∥
`q(F)

≤ C <∞, where θ = max (7/3 + 2ε, 2/q), λ := Cε is the constant

in Lemma 3.2, and the constant C is independent of J . Then for each n > 1, we can construct a
sequence of points YΛ(ξn) := (ys−e;k)(s,e,k)∈G(ξn) so that |G(ξn)| ≤ n and

‖v − IΛ(ξn)v‖L(U,X) ≤ Cn−(1/q−1/2), (3.16)

where the constant C in (3.16) is independent of J , v and n.

Proof. Notice that this corollary was proven in [15, Corollary 3.1] for the case U = R∞. By Lemma
A.2 in Appendix |G(ξ)| ≤ Cqξ for every ξ > 1. Hence, the corollary follows from Theorem 3.1 by
sellection of ξn as the maximal number satisfying |G(ξn)| ≤ n.

3.3 Approximation by deep ReLU neural networks

In this section, we construct deep ReLU neural networks for collocation approximation of functions
v ∈ L2(U,X, γ). We primarily approximate v by the sparse-grid Lagrange gpc interpolation IΛ(ξ)v.
Under the assumptions of Lemma A.1(iii) in Appendix, IΛ(ξ)v can be seen as a function on Rm,
where m := min {M, bKqξc} . In the next step, we approximate IΛ(ξ)v by its truncation IωΛ(ξ)v on
a sufficiently large hyper-cube

Bm
ω := [−2

√
ω, 2
√
ω]m ⊂ Rm, (3.17)

where the parameter ω depending on ξ is chosen in an appropriate way. Finally, the function IωΛ(ξ)v
and therefore, v is approximated by a function ΦΛ(ξ)v on Rm which is constructed from a deep
ReLU neural network. Let us discribe this construction.

For convenience, we consider Rm as the subset of all y ∈ U such that yj = 0 for j > m. If g
is a function on Rm taking values in a Hilbert space X, then g has an extension to the whole U

which is denoted again by g, by the formula g(y) = g
(

(yj)
m
j=0

)
for y = (yj)j∈N .

Suppose that deep ReLU neural networks φs−e;k on the cube Bm
ω are already constructed for ap-

proximation of the polynomials Ls−e;k, (s, e,k) ∈ G(ξ). Then the network φΛ(ξ) := (φs)(s,e,k)∈G(ξ)

on Bm
ω with |G(ξ)| outputs which is constructed by parallelization, is used to construct an approx-

imation of IωΛ(ξ)v and hence of v. Namely, we approximate v by

ΦΛ(ξ)v(y) :=
∑

(s,e,k)∈G(ξ)

(−1)|e|1v(ys−e;k)φs−e;k. (3.18)

For the set Λ(ξ), we introduce the following numbers:

m1(ξ) := max
s∈Λ(ξ)

|s|1, (3.19)

and
m(ξ) := max

{
j ∈ N : ∃s ∈ Λ(ξ) such that sj > 0

}
. (3.20)
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Denote by ei = (eij)j∈N ∈ F the element with eii = 1 and eij = 0 for j 6= i.

In this section, we will prove our main results on deep ReLU neural network approximation of
functions v ∈ LE2 (U,X, γ) with the error measured in the norm of the space L2(R∞, X, γ) or of the

space L
√
g
∞ (RM , X), which are incorporated into the following joint theorem.

Theorem 3.2 Let v ∈ LE2 (U,X, γ) satisfy Assumption (I). Let θ be any number such that θ ≥ 3/q.
Assume that the sequence σ = (σs)s∈F in Assumption (I) satisfies σei′ ≤ σei if i′ < i, and that∥∥p(θ)σ−1

∥∥
`q(F)

≤ C < ∞, where the constant C is independent of J . Let Kq, Kq,θ and Cq be

the constants in the assumptions of Lemma A.1 and of Lemma A.2 in Appendix. Then for every
ξ > 1, we can construct a deep ReLU neural network φΛ(ξ) := (φs−e;k)(s,e,k)∈G(ξ) on Rm with

m :=

{
min {M, bKqξc} if U = RM ,
bKqξc if U = R∞,

and a sequence of points YΛ(ξ) := (ys−e;k)(s,e,k)∈G(ξ) having the following properties.

(i) The deep ReLU neural network φΛ(ξ) and sequence of points YΛ(ξ) are independent of v;

(ii) The output dimension of φΛ(ξ) are at most bCqξc;

(iii) W
(
φΛ(ξ)

)
≤ Cξ1+2/θq log ξ;

(iv) L
(
φΛ(ξ)

)
≤ Cξ1/θq(log ξ)2;

(v) supp
(
φΛ(ξ)

)
⊂ [−T, T ]m, where T := 4

√
bKq,θξc;

(vi) The approximation of v by ΦΛ(ξ)v gives the error estimate

‖v − ΦΛ(ξ)v‖L(U,X) ≤ Cξ−(1/q−1/2). (3.21)

Here the constants C are independent of J , v and ξ.

Let us briefly draw a plan of the proof of this theorem. We will give a detailted proof for the
case U = R∞ and then point out that the case U = RM can be proven in the same way with slight
modification.

In what follows in this section, all definitions, formulas and assertions are given for the case
U = R∞, and for ξ > 1, we use the letters m and ω only for the notations

m := bKqξc, ω := bKq,θξc, (3.22)

where Kq and Kq,θ are the constants defined in Lemma A.1 in Appendix. As mentioned above,
we primarily approximate v ∈ L2(R∞, X, γ) by the gpc interpolation IΛ(ξ)v. In the next step,
we approximate IΛ(ξ)v by its truncation IωΛ(ξ)v on the hyper-cube Bm

ω , which will be constructed
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below. The final step is to construct a deep ReLU neural network φΛ(ξ) := (φs−e;k)(s,e,k)∈G(ξ) to
approximate IωΛ(ξ)v by ΦΛ(ξ)v of the form (3.18).

For a function ϕ defined on R, we denote by ϕω the truncation of ϕ on B1
ω, i.e.,

ϕω(y) :=

{
ϕω(y) if y ∈ B1

ω

0 otherwise.
(3.23)

If νs ⊂ {1, ...,m}, we put

Lωs,k(y) :=
m∏
j=1

Lωsj ;kj (yj), y ∈ Rm.

We have Lωs,k(y) =
∏m
j=1 Lsj ;kj (yj) if y ∈ Bm

ω , and Lωs,k(y) = 0 otherwise. For a function v ∈
LE2 (R∞, X, γ), we define

IωΛ(ξ)(v) :=
∑

(s,e,k)∈G(ξ)

(−1)|e|1v(ys−e;k)Lωs−e;k. (3.24)

Let the assumptions of Theorem 3.2 hold. By Lemma A.1(iii) in Appendix for every ξ > 1
we have m(ξ) ≤ m. Hence, for every (s, e,k) ∈ G(ξ), Ls−e;k and Lωs−e;k and therefore, IΛ(ξ)v
and IωΛ(ξ)v can be considered as functions on Rm. For g ∈ L2(Rm, X, γ), we have ‖g‖L2(Rm,X,γ) =

‖g‖L2(R∞,X,γ) in the sense of extension of g. We will make use of these facts without mention.

To prove Theorem 3.2 we will use some intermediate approximations for estimation of the
approximation error as in (3.21). Suppose that the deep ReLU neural network φΛ(ξ) and therefore,
the function ΦΛ(ξ) are already constructed. By the triangle inequality we have

‖v − ΦΛ(ξ)v‖L2(R∞,X,γ) ≤ ‖v − IΛ(ξ)v‖L2(R∞,X,γ) + ‖IΛ(ξ)v − IωΛ(ξ)v‖L2(Rm\Bmω ,X,γ)

+ ‖IωΛ(ξ)v − ΦΛ(ξ)v‖L2(Bmω ,X,γ) + ‖ΦΛ(ξ)v‖L2(Rm\Bmω ,X,γ).
(3.25)

Hence the estimate (3.21) will be done via the bound Cξ−(1/q−1/2) for every of the four terms in
the right-hand side. The first term is already estimated as in Theorem 3.1. The estimates for
the others will be carried out in the following lemmas (Lemmas 3.3–3.5). To complete the proof
of Theorem 3.2 we have also to prove the bounds of the size and depth of φΛ(ξ) according to the
items (iii) and (iv) which are given in Lemma 3.6 below.

For v ∈ LE2 (R∞, X, γ) satisfying Assumption (I), by Lemma 3.1 the series (3.2) converges
unconditionally in L2(R∞, X, γ) to v. Therefore, the formula (3.10) for Λ = Λ(ξ) can be rewritten
as

IΛ(ξ)(v) =
∑

s∈Λ(ξ)

∑
s′∈F

vs′
∑
e∈Es

(−1)|e|1
∑

k∈πs−e

Hs′(ys−e;k)Ls−e;k. (3.26)

Hence, we also have by the definition (3.24)

IωΛ(ξ)(v) =
∑

s∈Λ(ξ)

∑
s′∈F

vs′
∑
e∈Es

(−1)|e|1
∑

k∈πs−e

Hs′(ys−e;k)Lωs−e;k. (3.27)
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Lemma 3.3 Under the assumptions of Theorem 3.2, for every ξ > 1, we have that∥∥∥IΛ(ξ)v − IωΛ(ξ)v
∥∥∥
L2(R∞,X,γ)

≤ Cξ−(1/q−1/2), (3.28)

where the constant C is independent of v and ξ.

Proof. By the equality∥∥Ls−e;k − Lωs−e;k

∥∥
L2(R∞,γ)

= ‖Ls−e;k‖L2(Rm\Bmω ,γ) , ∀(s, e,k) ∈ G(ξ),

and the triangle inequality, noting (3.26) and (3.27), we obtain∥∥∥IΛ(ξ)v − IωΛ(ξ)v
∥∥∥
L2(R∞,X,γ)

≤
∑

s∈Λ(ξ)

∑
s′∈F
‖vs′‖X

∑
e∈Es

∑
k∈πs−e

|Hs′(ys−e;k)| ‖Ls−e;k‖L2(Rm\Bmω ,γ) .

Let (s, e,k) ∈ G(ξ) be given. Then we have

Ls−e;k =

m∏
j=1

Lsj−ej ;kj (yj), y ∈ Rm,

where Lsj−ej ;kj is a polynomial in variable yj , of degree not greater than m1(ξ) ≤ ω. Hence,
applying Lemma A.7 in Appendix with taking account of (3.22) gives

‖Ls−e;k‖L2(Rm\Bmω ,γ) ≤ Cξe
−K1ξ ‖Ls−e;k‖L2(Rm,γ) .

From Lemmas A.3 and A.4 and Lemma A.1(ii) in Appendix we derive that

‖Ls−e;k‖L2(Rm,γ) =
∏
j∈N

∥∥Lsj−ej ;kj∥∥L2(R,γ)
≤
∏
j∈N

eK2(sj−ej)

≤
∏
j∈N

eK2sj = eK2|s|1 ≤ eK2m1(ξ) ≤ eK3ξ1/θq ,

and ∑
k∈πs

|Hs′(ys−e;k)| ≤ eK4|s|1 ≤ eK4m1(ξ) ≤ eK5ξ1/θq . (3.29)

Summing up, we arrive at∥∥∥IΛ(ξ)v − IωΛ(ξ)v
∥∥∥
L2(R∞,X,γ)

≤ C1ξ exp
(
−K1ξ + (K2 +K5)ξ1/θq

) ∑
s∈Λ(ξ)

∑
s′∈F
‖vs′‖X

∑
e∈Es

∑
k∈πs−e

1

≤ C1ξ exp
(
−K1ξ +K6ξ

1/θq
)
|G(ξ)|

∑
s′∈F
‖vs′‖X .

Hence, by Lemma 3.1, Lemma A.2 in Appendix and the inequality 1/θq ≤ 1/3 we get∥∥∥IΛ(ξ)v − IωΛ(ξ)v
∥∥∥
L2(R∞,X,γ)

≤ C2ξ
2 exp

(
−K1ξ +K6ξ

1/θq
)
≤ Cξ−(1/q−1/2).
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The previous lemma gives the bound of the second term in the right-hand side of (3.25), i.e., the
error bound for the approximation of sparse-grid Lagrange interpolation IΛ(ξ)v by its truncation
IωΛ(ξ)v on Bω

m for v ∈ L2(R∞, X, γ). As the next step, we will construct a deep ReLU neural

network φΛ(ξ) := (φs−e;k)(s,e,k)∈G(ξ) on Rm for approximating IωΛ(ξ)v by the function ΦΛ(ξ)v given

as in (3.18), and prove the bound of the error as the third term in the right-hand side of (3.25).

For s ∈ N0, we represent the univariate interpolation polynomial Ls;k in the form of linear
combination of monomials:

Ls;k(y) =:

s∑
`=0

bs;k` y`. (3.30)

From (3.30) for each (s, e,k) ∈ G(ξ) we have

Ls−e;k =

s−e∑
`=0

bs−e;k
` y`, (3.31)

where the summation
∑s−e

`=0 means that the sum is taken over all ` such that 0 ≤ ` ≤ s− e, and

bs−e;k
` =

m∏
j=1

b
sj−ej ;kj
`j

, y` =

m∏
j=1

y
`j
j .

Indeed, we have

Ls−e;k =
m∏
j=1

Lsj−ej ;kj (yj) =
m∏
j=1

sj−ej∑
`j=0

b
sj−ej ;kj
`j

y
`j
j

=
s−e∑
`=0

 m∏
j=1

b
sj−ej ;kj
`j

y` =
s−e∑
`=0

bs−e;k
` y`.

By (3.27) and (3.31) we get for every y ∈ Bm
ω ,

IωΛ(ξ)(v)(y) =
∑

(s,e,k)∈G(ξ)

(−1)|e|1v(ys−e;k)

s−e∑
`=0

bs−e;k
`

(
4
√
ω
)|`|1 m∏

j=1

(
yj

4
√
ω

)`j
. (3.32)

Let ` ∈ F be such that 0 ≤ ` ≤ s − e. For ` 6= 0, with an appropriate change of variables,

the term
∏m
j=1

( yj
4
√
ω

)`j can be represented in the form
∏|`|1
j=1 ϕ1(xj) where ϕ1 is defined before

Lemma 2.4. We put

Bs := max
e∈Es,k∈πs−e

max
0≤`≤s−e

∣∣bs−e;k
`

∣∣, (3.33)
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and

δ−1 := ξ1/q−1/2
∑

s∈Λ(ξ)

eK|s|1ps(2)
(
4
√
ω
)|s|1 Bs, (3.34)

where K is the constant in Lemma A.3 in Appendix. Hence, by Lemma 2.4, for every (s, e,k) ∈
G(ξ) and ` satisfying 0 < ` ≤ s− e, there exists a deep ReLU neural network φs−e;k

` on Rm such
that

sup
y∈Bmω

∣∣∣∣∣∣
m∏
j=1

(
yj

4
√
ω

)`j
− φs−e;k

`

(
y

4
√
ω

)∣∣∣∣∣∣ ≤ δ, (3.35)

and

supp

(
φs−e;k
`

(
·

4
√
ω

))
⊂ B|ν`|4ω . (3.36)

In the case when ` = 0, we fix an index j ∈ νs and define the deep ReLU neural network

φs−e;k
0 (y) := bs−e;k

0 ϕ0

(
yj

4
√
ω

)
.

Then |bs−e;k
0 − φs,0(y)| = 0 for y ∈ Bm

ω . Observe that size and the depth of φs,0 are bounded

by a constant. For ` 6= 0, from Lemma 2.4 one can see that the size and the depth of φs−e;k
` are

bounded as

W
(
φs−e;k
`

)
≤ C

(
1 + |`|1

(
log |`|1 + log δ−1

))
≤ C

(
1 + |`|1 log δ−1

)
(3.37)

and

L
(
φs−e;k
`

)
≤ C

(
1 + log |`|1

(
log |`|1 + log δ−1

))
≤ C

(
1 + log |`|1 log δ−1

)
(3.38)

due to the inequality |`|1 ≤ δ−1. In the following we will use the convention |0|1 = 1. Then the
estimates (3.37) and (3.38) holds true for 0 ≤ ` ≤ s.

We define the deep ReLU neural network φs−e;k on Rm by

φs−e;k(y) :=

s−e∑
`=0

bs−e;k
`

(
4
√
ω
)|`|1 φs−e;k

`

(
y

4
√
ω

)
, y ∈ Rm, (3.39)

which is the parallelization deep ReLU neural network of the component deep ReLU neural net-

works φs−e;k
`

(
·

4
√
ω

)
. From (3.36) it follows

supp (φs−e;k) ⊂ B| supp(s)|
4ω . (3.40)

We define φΛ(ξ) := (φs−e;k)(s,e,k)∈G(ξ) as the deep ReLU neural network realized by parallelization

of φs−e;k, (s, e,k) ∈ G(ξ). Consider the approximation of IωΛ(ξ)v by

ΦΛ(ξ)v(y) :=
∑

(s,e,k)∈G(ξ)

(−1)|e|1v(ys−e;k)φs−e;k. (3.41)
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Lemma 3.4 Under the assumptions of Theorem 3.2, for every ξ > 1, we have∥∥∥IωΛ(ξ)v − ΦΛ(ξ)u
∥∥∥
L2(Bmω ,X,γ)

≤ Cξ−(1/q−1/2), (3.42)

where the constant C is independent of v and ξ.

Proof. According to Lemma 3.1 the series (3.2) converges uncondionally to v. Hence, for every
y ∈ Bm

ω , we have by (3.27)

IωΛ(ξ)(v)(y) =
∑

s∈Λ(ξ)

∑
s′∈F

vs′
∑
e∈Es

(−1)|e|1
∑

k∈πs−e

Hs′(ys−e;k)
s−e∑
`=0

bs−e;k
`

(
4
√
ω
)|`|1 m∏

j=1

(
yj

4
√
ω

)`j
,

(3.43)
and by (3.41)

ΦΛ(ξ)v(y) =
∑

s∈Λ(ξ)

∑
s′∈F

vs′
∑
e∈Es

(−1)|e|1
∑

k∈πs−e

Hs′(ys−e;k)

s−e∑
`=0

bs−e;k
`

(
4
√
ω
)|`|1 φs−e;k

`

(
y

4
√
ω

)
.

(3.44)
From these formulas and (3.35) we derive the inequality∥∥∥IωΛ(ξ)v − ΦΛ(ξ)v

∥∥∥
L2(Bmω ,X,γ)

≤
∑

s∈Λ(ξ)

∑
s′∈F
‖vs′‖X

∑
e∈Es

∑
k∈πs−e

|Hs′(ys−e;k)|
s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ (4√ω)|`|1 δ.
(3.45)

We have by (3.33)

s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ ≤ Bs

∏
j∈νs−e

sj ≤ ps(1)Bs,

and by Lemma A.3 in Appendix∑
e∈Es

∑
k∈πs−e

|Hs′(ys−e;k)| ≤
∑
e∈Es

eK|s−e|1 ≤ 2|s|0eK|s|1 ≤ ps(1)eK|s|1 . (3.46)

This together with (3.45), Lemma 3.1 and (3.34) yields that∥∥∥IωΛ(ξ)v − ΦΛ(ξ)v
∥∥∥
L2(Bmω ,X,γ)

≤
∑

s∈Λ(ξ)

δBsps(1)
∑
s′∈F
‖vs′‖X

(
4
√
ω
)|s|1 ∑

e∈Es

∑
k∈πs−e

|Hs′(ys−e;k)|

≤
∑
s′∈F
‖vs′‖X δ

∑
s∈Λ(ξ)

eK|s|1ps(2)
(
4
√
ω
)|s|1 Bs

≤ Cξ−(1/q−1/2).

In the previous lemma, we proved the bound of the third term in the right-hand side of (3.25),
i.e., the error bound for the approximation of IωΛ(ξ)v by the function ΦΛ(ξ)v for v ∈ L2(R∞, X, γ).
As the last step in the error estimation, we will establish the bound for the fourth term in the
right-hand side of (3.25).
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Lemma 3.5 Under the assumptions of Theorem 3.2, for every ξ > 1, we have∥∥ΦΛ(ξ)v
∥∥
L2((Rm\Bmω ),X,γ)

≤ Cξ−(1/q−1/2), (3.47)

where the constant C is independent of v and ξ.

Proof. We use the formula (3.44) to estimate the norm
∥∥ΦΛ(ξ)v

∥∥
L2((Rm\Bmω ),X,γ)

. From (3.35) one

can easily see that
∣∣φs−e;k

`

( y
4
√
ω

)∣∣ ≤ 2, ∀y ∈ Rm. Hence, by Lemma A.7 in Appendix,∥∥∥∥φs−e;k
`

(
·

4
√
ω

)∥∥∥∥
L2(Rm\Bmω ,γ)

≤ 2 ‖1‖L2(Rm\Bmω ,γ) ≤ C1m exp (−K1ω) .

This together with (3.44) implies that∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤
∑

s∈Λ(ξ)

∑
s′∈F
‖vs′‖X

∑
e∈Es

∑
k∈πs−e

∣∣Hs′(ys−e;k)
∣∣ s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ (4√ω)|`|1 ∥∥∥∥φs−e;k
`

(
·

4
√
ω

)∥∥∥∥
L2(Rm\Bmω ,γ)

≤ C1m exp (−K1ω)
∑

s∈Λ(ξ)

(
4
√
ω
)|s|1 ∑

s′∈F
‖vs′‖X

∑
e∈Es

∑
k∈πs−e

∣∣Hs′(ys−e;k)
∣∣ s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ .
By a tensor product argument from Lemma A.6 in Appendix and the inequality s − e ≤ s for
e ∈ Es, we deduce the estimates

s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ ≤ eK2|s|1s! ≤ eK2|s|1 |s||s|11 , (3.48)

which and (3.46) give∑
k∈πs−e

∣∣Hs′(ys−e;k)
∣∣ s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ ≤ ∑
k∈πs−e

∣∣Hs′(ys−e;k)
∣∣ eK2|s|1 |s||s|11 ≤ ps(1)eK2|s|1 |s||s|11 . (3.49)

This in combining with (3.22), (3.29), Lemma 3.1 allows us to continue the estimation as∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤ C1m exp (−K1ω)
∑
s′∈F
‖vs′‖X

∑
s∈Λ(ξ)

(
4
√
ω
)|s|1 ps(1)eK2|s|1 |s||s|11

≤ C2m exp (−K1ω)
∑

s∈Λ(ξ)

(
4
√
ω
)|s|1 ps(1)eK2|s|1 |s||s|11

≤ C2ξ exp (−K1ξ)
(
C3ξ

1/2
)m1(ξ)

eK2m1(ξ)
[
m1(ξ)

]m1(ξ)
∑

s∈Λ(ξ)

ps(1).

Hence, by Lemma A.1(ii) in Appendix we have that∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤ C2ξ exp (−K1ξ)
(
C3ξ

1/2
)Kq,θξ1/θq

eK3Kq,θξ
1/θq(

Kq,θξ
1/θq
)Kq,θξ1/θqC4ξ

≤ C5ξ
2 exp(−K1ξ +K4ξ

1/θq log ξ +K5ξ
1/θq).
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Since 1/θq ≤ 1/3, we obtain ∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤ Cξ−(1/q−1/2).

To complete the proof of Theorem 3.2, we have to establish the bounds of the size and depth
of the deep ReLU neural network φΛ(ξ) as in (iii) and (iv).

Lemma 3.6 Under the assumptions of Theorem 3.2, the input dimension of φΛ(ξ) is at most
bKqξc, for every ξ > 1, the output dimension of φΛ(ξ) at most bCqξc,

W
(
φΛ(ξ)

)
≤ Cξ1+2/θq log ξ, (3.50)

and

L
(
φΛ(ξ)

)
≤ Cξ1/θq(log ξ)2, (3.51)

where the constants C are independent of v and ξ.

Proof. The input dimension of φΛ(ξ) is not greater than m(ξ) which is at most bKqξc by
Lemma A.1(iii) in Appendix. The output dimension of φΛ(ξ) is the number |G(ξ)| which is at
most bCqξc by Lemma A.2 in Appendix.

By Lemmas 2.1 and 2.4 and (3.37) the size of φΛ(ξ) is estimated as

W
(
φΛ(ξ)

)
≤

∑
(s,e,k)∈G(ξ)

W (φs−e;k) ≤
∑

s∈Λ(ξ)

∑
e∈Es

∑
k∈πs−e

s−e∑
`=0

W
(
φs−e;k
`

)
(3.52)

≤ C1

∑
s∈Λ(ξ)

∑
e∈Es

∑
k∈πs−e

s−e∑
`=0

(
1 + |`|1 log δ−1

)
, (3.53)

where we recall,

δ−1 := ξ1/q−1/2
∑

s∈Λ(ξ)

eK1|s|1ps(2)
(
4
√
ω
)|s|1 Bs,

Bs := max
e∈Es,k∈πs−e

max
0≤`≤s−e

∣∣bs−e;k
`

∣∣.
From (3.48) it follows that

Bs ≤ max
e∈Es,k∈πs−e

s−e∑
`=0

∣∣∣bs−e;k
`

∣∣∣ ≤ exp
(
K2ξ

1/θq log ξ
)
,
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which by Lemma A.1(i) in Appendix implies

δ−1 ≤ ξ1/q−1/2 exp
(
K2ξ

1/θq log ξ
) ∑

s∈Λ(ξ)

ps(2)

≤ C2ξ
1/q+1/2 exp

(
K3ξ

1/θq log ξ
)
≤ C2 exp

(
K3ξ

1/θq log ξ
)
.

Hence,

log(δ−1) ≤ K4ξ
1/θq log ξ. (3.54)

and consequently, (
1 + |`|1 log δ−1

)
≤
(

1 + |s|1K4ξ
1/θq log ξ

)
≤ C2ξ

2/θq log ξ.

From (3.52)–(3.53) and Lemma A.2 in Appendix we obtain the desired bound of the size of φΛ(ξ):

W
(
φΛ(ξ)

)
≤ C2ξ

2/θq log ξ
∑

s∈Λ(ξ)

∑
e∈Es

∑
k∈πs−e

s−e∑
`=0

1

≤ C2ξ
2/θq log ξ

∑
(s,e,k)∈G(ξ)

ps(1) ≤ C3ξ
1+2/θq log ξ.

By using Lemma 2.1, (3.38), (3.54) and Lemma A.1(ii) in Appendix, we prove that the depth
of φΛ(ξ) is bounded as in (3.51):

L
(
φΛ(ξ)

)
≤ max

(s,e,k)∈G(ξ)
L (φs−e;k) ≤ max

(s,e,k)∈G(ξ)
max

0≤`≤s−e
L
(
φs−e;k
`

)
≤ C4 max

(s,e,k)∈G(ξ)
max

0≤`≤s−e

(
1 + log |`|1 log δ−1

)
≤ C4 max

s∈Λ(ξ)

(
1 + log |s|1 log δ−1

)
≤ C4 max

s∈Λ(ξ)

(
1 + log

(
Kq,θξ

1/θq
) (

K5ξ
1/θq log ξ

))
≤ C5ξ

1/θq(log ξ)2.

We are now in a position to give a formal proof of Theorem 3.2.

Proof. [Proofs of Theorem 3.2] From (3.25), Theorem 3.1 and Lemmas 3.3–3.5, for every ξ > 1,
we deduce that ∥∥v − ΦΛ(ξ)v

∥∥
L2(R∞,X,γ)

≤ Cξ−(1/q−1/2).

The claim (vi) is proven. The claim (i) follows directly from the construction of the deep ReLU
neural network φΛ(ξ) and the sequence of points YΛ(ξ), the claims (ii)–(iv) from Lemma 3.6 and
the claim (v) from Lemma A.1(iii) in Appendix and (3.40). Thus, Theorem 3.2 is proven for the
case when U = R∞.
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The case U = RM can be proven in the same way with a slight modification. Counterparts of
all definitions, formulas and assertions which have been used in the proof of the case U = R∞, are
true for the case U = RM . In the proof of this case, in parlicular, the used equality ‖Hs‖L2(R∞) = 1,

s ∈ F, is replaced by the inequality ‖Hs‖L
√
g
∞ (RM )

< 1, s ∈ NM0 .

4 Application to parametrized elliptic PDEs

In this section, we apply the results in the previous section to the deep ReLU neural network
approximation of the solution u to the parametrized elliptic PDEs (1.2) with lognormal inputs
(1.3). This is based on the weighted `2-summability of the series (‖us‖V )s∈F in following lemma
which has been proven in [4, Theorems 3.3 and 4.2].

Lemma 4.1 Assume that there exist a number 0 < q <∞ and an increasing sequence ρ = (ρj)j∈N
of numbers strictly larger than 1 such that

∥∥ρ−1
∥∥
`q(N )

≤ C <∞ and∥∥∥∥∥∥
∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

≤ C <∞,

where the constants C are independent of J . Then we have that for any η ∈ N ,∑
s∈F

(σs‖us‖V )2 ≤ C <∞ with σ2
s :=

∑
‖s′‖`∞(F)≤η

(
s

s′

) ∏
j∈N

ρ
2s′j
j , (4.1)

where the constant C is independent of J .

The following two lemmas are proven in [15, Lemmas 5.2 and 5.3].

Lemma 4.2 Let the assumptions of Lemma 4.1 hold. Then the solution map y 7→ u(y) is γ-
measurable and u ∈ L2(U, V, γ). Moreover, u ∈ LE2 (U, V, γ) where

E :=

{
y ∈ R∞ : sup

j∈N
ρ−1
j |yj | <∞

}
(4.2)

having γ(E) = 1 and containing all y ∈ R∞ with |y|0 <∞ in the case when U = R∞.

Lemma 4.3 Let 0 < q < ∞, ρ = (ρj)j∈N be a sequence of positive numbers such that∥∥ρ−1
∥∥
`q(N )

≤ C < ∞, where the constant C is independent of J . Let θ be an arbitrary non-

negative number and p(θ) = (ps(θ))s∈F the sequence given as in (3.11). For η ∈ N, let the

sequence σ = (σs)s∈F be defined as in (4.1). Then for any η > 2(θ+1)
q , we have∥∥p(θ)σ−1

∥∥
`q(F)

≤ C <∞,

where the constant C is independent of J .
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We are now in position to formulate our main results on collocation deep ReLU neural network
approximation of the solution u to parametric elliptic PDEs with lognormal inputs.

Theorem 4.1 Under the assumptions of Lemma 4.1, let 0 < q < 2. Then, given an arbitrary
number δ > 0, for every integer n > 1, we can construct a deep ReLU neural network φΛ(ξn) :=

(φs−e;k)(s,e,k)∈G(ξn) of the size W
(
φΛ(ξn)

)
≤ n on Rm with

m :=


min

{
M,

⌊
K
(

n
logn

) 1
1+δ

⌋}
if U = RM ,⌊

K
(

n
logn

) 1
1+δ

⌋
if U = R∞,

and a sequence of points YΛ(ξn) := (ys−e;k)(s,e,k)∈G(ξn) having the following properties.

(i) The deep ReLU neural network φΛ(ξn) and sequence of points YΛ(ξn) are independent of u;

(ii) The output dimension of φΛ(ξn) is at most

⌊
K
(

n
logn

) 1
1+δ

⌋
;

(iii) L
(
φΛ(ξn)

)
≤ Cδ

(
n

logn

) δ
2(1+δ)

(log n)2;

(iv) supp
(
φΛ(ξn)

)
⊂ [−T, T ]m, where T := Cδ

(
n

logn

) 1
2(1+δ)

;

(v) The approximation of u by ΦΛ(ξn)u defined as in (3.18), gives the error estimate

‖u− ΦΛ(ξn)u‖L(U,V ) ≤ C
(

n

log n

)− 1
1+δ

(
1
q
− 1

2

)
.

Here the constants C, K and Cδ are independent of J , u and n.

Proof. To prove the theorem we apply Theorem 3.2 to the solution u. Without loss of generality
we can assume that δ ≤ 1/6. We take first the number θ := 2/δq satisfying the inequality θ ≥ 3/q,
and then choose a number η ∈ N satisfying the inequality η > 2(θ + 1)/q. By using Lemmas
4.1–4.3, one can check that u ∈ LE2 (U, V, γ) satisfies the assumptions of Theorem 3.2 for X = V
and the sequence (σs)s∈F defined as in (4.1), where E is the set defined in Lemma 4.2. For a given
integer n > 1, we choose ξn > 1 as the maximal number satisfying the inequality Cξδn log ξn ≤ n,
where C is the constant in the claim (ii) of Theorem 3.2. It is easy to verify that there exist
positive constants C1 and C2 independent of n such that

C1

(
n

log n

) 1
1+δ

≤ ξn ≤ C2

(
n

log n

) 1
1+δ

.

From Theorem 3.2 with ξ = ξn we deduce the desired results.

From Theorem 4.1 one can directly derive the following
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Theorem 4.2 Under the assumptions of Lemma 4.1, let 0 < q < 2 and δq := min (1, 1/q − 1/2).
Then, given an arbitrary number δ ∈ (0, δq), for every integer n > 1, we can construct a deep
ReLU neural network φΛ(ξn) := (φs−e;k)(s,e,k)∈G(ξn) of the size W

(
φΛ(ξn)

)
≤ n on Rm with

m :=

{
min

{
M,
⌊
Kn1−δ⌋} if U = RM ,⌊

Kn1−δ⌋ if U = R∞,

and a sequence of points YΛ(ξn) := (ys−e;k)(s,e,k)∈G(ξn) having the following properties.

(i) The deep ReLU neural network φΛ(ξn) and sequence of points YΛ(ξn) are independent of u;

(ii) The output dimension of φΛ(ξn) are at most
⌊
Kn1−δ⌋;

(iii) L
(
φΛ(ξn)

)
≤ Cδnδ;

(iv) supp
(
φΛ(ξn)

)
⊂ [−T, T ]m, where T := Cδn

1−δ;

(v) The approximation of u by ΦΛ(ξn)u defined as in (3.18), gives the error estimates

‖u− ΦΛ(ξn)u‖L(U,V ) ≤ Cm
−
(

1
q
− 1

2

)
≤ Cδn

−(1−δ)
(

1
q
− 1

2

)
. (4.3)

Here the constants K, C and Cδ are independent of J , u and n.

Let us compare the collocation approximation of u by the function

ΦΛ(ξn)u :=
∑

(s,e,k)∈G(ξn)

(−1)|e|1u(ys−e;k)φs−e;k, (4.4)

generated from the deep ReLU neural network φΛ(ξn) as in Theorem 4.2, and the collocation
approximation of u by the sparse-grid Lagrange gpc interpolation

IΛ(ξn)u :=
∑

(s,e,k)∈G(ξn)

(−1)|e|1u(ys−e;k)Ls−e;k. (4.5)

Both the methods are based on m the same particular solvers
(
u(ys−e;k)

)
(s,e,k)∈G(ξn)

. From

Corollary 3.1 one can see that under the assumptions of Theorem 4.2, there holds the error bound
in m for the last approximation:∥∥u− IΛ(ξn)u

∥∥
L(U,V )

≤ Cm−
(

1
q
− 1

2

)
,

which is the same as that in (4.3) for the first approximation since by the construction the parameter
m in (4.3) can be treated as independent.
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A Appendix

A.1 Auxiliary lemmas

Lemma A.1 Let θ ≥ 0 and 0 < q <∞. Let σ = (σs)s∈F be a sequence of numbers strictly larger
than 1. Then for every we have the following.

(i) If
∥∥∥p( θq)σ−1

∥∥∥
`q(F)

≤ K <∞, where the constant K is independent of J , then∑
s∈Λ(ξ)

ps(θ) ≤ Kξ ∀ξ > 1. (A.1)

In particular, if
∥∥σ−1

∥∥q
`q(F)

≤ Kq <∞, where the constant Kq is independent of J , then the

set Λ(ξ) is finite and

|Λ(ξ)| ≤ Kqξ ∀ξ > 1. (A.2)

(ii) If
∥∥p(θ)σ−1

∥∥1/θ

`q(F)
≤ Kq,θ <∞, where the constant Kq,θ is independent of J , then

m1(ξ) ≤ Kq,θξ
1
θq ∀ξ > 1. (A.3)

(iii) If σei′ ≤ σei for i′ < i, and if
∥∥σ−1

∥∥q
`q(F)

≤ Kq <∞, where the constant Kq is independent

of J , then

m(ξ) ≤ Kqξ ∀ξ > 1. (A.4)

Proof. The claim (ii) and (iii) were proven in [17, Lemmas A.1–A.2] for the case F = F. The case
F = NM0 can be proven in a similar way. Let us prove the claim (i). Indeed, we have for every
ξ > 1, ∑

s∈Λ(ξ)

ps(θ) ≤
∑

s∈F : σ−qs ξ≥1

ps(θ)ξσ−qs ≤ ξ
∑
s∈F

ps(θ)σ−qs ≤ Cξ.

Lemma A.2 Let θ ≥ 0, 0 < q <∞ and ξ > 1. Let σ = (σs)s∈F be a sequence of numbers strictly

larger than 1. If and
∥∥∥p( θ+2

q

)
σ−1

∥∥∥
`q(F)

≤ C < ∞, where the constant C is independent of J ,

then there holds ∑
(s,e,k)∈G(ξ)

ps(θ) ≤ Cξ ∀ξ > 1. (A.5)

In particular, if and
∥∥∥p(2

q

)
σ−1

∥∥∥q
`q(F)

≤ Cq <∞, where the constant C is independent of J , then

|G(ξ)| ≤ Cqξ ∀ξ > 1.
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Proof. We have for every ξ > 1,∑
(s,e,k)∈G(ξ)

ps(θ) =
∑

s∈Λ(ξ)

∑
e∈Es

∑
k∈πs−e

ps(θ) ≤
∑

s∈Λ(ξ)

ps(θ)
∑
e∈Es

|πs−e| (A.6)

≤
∑

s∈Λ(ξ)

ps(θ)|Es|ps(1) =
∑

s∈Λ(ξ)

ps(θ + 1)2|s|0 ≤
∑

s∈Λ(ξ)

ps(θ + 2) (A.7)

≤
∑

s∈F : σ−qs ξ≥1

ps(θ + 2)ξσ−qs ≤ ξ
∑
s∈F

ps(θ + 2)σ−qs ≤ Cξ.

Lemma A.3 We have for any s, s′ ∈ F ,∑
k∈πs

|Hs′(ys;k)| ≤ eK|s|1 , (A.8)

where the constant K is independent of J and s, s′.

Proof. From Cramér’s bound we deduce that (see, e.g., [15, Lemma 3.2])

|Hs(y)
√
g(y)| < 1, ∀y ∈ R, ∀s ∈ N0, (A.9)

or, equivalently,
|Hs(y)| < (2π)1/4ey

2/4, ∀y ∈ R, ∀s ∈ N0. (A.10)

Let s, s′ ∈ F and k ∈ πs be given. Notice that for the univariate Hermite polynomials, Hs(0) = 0
if s > 0, and H0 = 1. Hence, Hs′(ys;k) =

∏
j∈νs′

Hs′j
(ysj−ej ,kj ) = 0 if νs′ 6⊂ νs. For the case when

νs′ ⊂ νs, we have by (A.10),

|Hs′(ys;k)| =
∏
j∈νs′

|Hs′j
(ysj ,kj )| ≤

∏
j∈νs′

(2π)1/4e
y2sj ,kj

/4 ≤
∏
j∈νs

(2π)1/4e
y2sj ,kj

/4
. (A.11)

Therefore, ∑
k∈πs

|Hs′(ys;k)| ≤
∑
k∈πs

∏
j∈νs

(2π)1/4e
y2sj ,kj

/4
=
∏
j∈νs

(2π)1/4
∑
kj∈πsj

e
y2sj ,kj

/4
. (A.12)

The inequalities [54, (6.31.19)] yield that

|ys;k| ≤ K1
|k|√
s
, ∀k ∈ πs, ∀s ∈ N. (A.13)

Consequently,

(2π)1/4
∑
kj∈πsj

e
y2sj ,kj

/4 ≤ 2(2π)1/4

bsj/2c∑
kj=0

exp

(
K1

4

k2
j

sj

)
≤ eKsj , ∀sj ∈ N. (A.14)
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This allows us to finish the proof of the lemma as∑
k∈πs

|Hs′(ys;k)| ≤
∏
j∈νs

eKsj = eK|s|1 .

Lemma A.4 We have for any s ∈ N and k ∈ πs,

‖Ls;k‖L2(R,γ) ≤ e
Ks, (A.15)

and

‖Ls;k‖L
√
g
∞ (R)

≤ eKs, (A.16)

where the constants K are independent of s and k ∈ πs.

Proof. Notice that Ls;k is a polynomial having s single zeros {ys;j}j∈πs, j 6=k, and that Ls;k(ys;k) = 1.
Moreover, there is no any zero in the open interval (ys;k−1, ys;k) and

Ls;k(ys;k) = max
y∈[ys;k−1,ys;k]

Ls;k(y) = 1.

Hence,

|Ls;k(y)| ≤ 1, ∀y ∈ [ys;k−1, ys;k+1]. (A.17)

Let us estimate |Ls;k(y)| for y ∈ R \ (ys;k−1, ys;k+1). From the definition one can see that

Ls;k(y) :=
∏

k′∈πs k′ 6=k

y − ys;k′
ys;k − ys;k′

= As;k(y − ys;k)−1Hs+1(y), (A.18)

where

As;k :=
(
(s+ 1)!

)1/2 ∏
k′∈πs k′ 6=k

(ys;k − ys;k′)−1. (A.19)

From the inequalities [54, (6.31.22)]

π
√

2√
2s+ 3

≤ ds ≤
√

10.5√
2s+ 3

(A.20)

for the minimal distance ds between consecusive ys;k, k ∈ πs, we have that

|y − ys;k|−1 ≤ d−1
s ≤

√
2s+ 3√
10.5

<
√
s, ∀y ∈ R \ (ys;k−1, ys;k+1),

and for any s ∈ N and k, k′ ∈ πs with k′ 6= k,

|ys;k − ys;k′ |−1 ≤ C
√
s

|k − k′|
, (A.21)
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which yield for any y ∈ R \ (ys;k−1, ys;k+1),

|y − ys;k|−1|As;k| ≤
√
s
(
(s+ 1)!

)1/2 ∏
k′∈πs k′ 6=k

|ys;k − ys;k′ |−1 ≤
√
sCs

(
(s+ 1)!

)1/2
ss/2

k!(s− k)!

≤
√
sCs

(
s

k

)(
(s+ 1)!

)1/2
ss/2

s!
≤
√
s(2C)s

(
(s+ 1)!

)1/2
ss/2

s!
≤ eK1s. (A.22)

In the last step we used the Stirling’s approximation for factorial. Thus, we have proven that

|Ls;k(y)| ≤ eK1s|Hs+1(y)|, ∀y ∈ R \ (ys;k−1, ys;k+1). (A.23)

With Is;k := [ys;k−1, ys;k+1], from the last estimate and (A.17) we prove (A.15):

‖Ls;k‖2L2(R,γ) = ‖Ls;k‖2L2(Is;k,γ) + ‖Ls;k‖2L2(R\Is;k,γ)

≤ 1 + e2K1s ‖Hs‖2L2(R,γ) = 1 + e2K1s ≤ e2Ks.

The inequality (A.16) can be proven similarly by using (A.9).

Lemma A.5 Assume that p and q are polynomials on R in the form

p(y) :=
m∑
k=0

aky
k, q(y) :=

m−1∑
k=0

bky
k, (A.24)

and that p(y) = (y − y0)q(y) for a point y0 ∈ R. Then we have

|bk| ≤
m∑
k=0

|ak|, k = 0, ...,m− 1. (A.25)

Proof. From the definition we have

m∑
k=0

aky
k = −b0y0 +

m−1∑
k=0

(bk−1 − bky0)yk + bm−1y
m. (A.26)

Hence we obtain

0 = a0 + b0y0; bk = ak+1 + bk+1y0, k = 1, ...,m− 2; bm−1 = am. (A.27)

From the last equalities one can see that the lemma is trivial if y0 = 0. Consider the case y0 6= 0.
If |y0| ≤ 1, from (A.27) we deduce that

bk =
m∑

j=k+1

ajy
j−k−1
0 . (A.28)

29



and, consequently,

|bk| ≤
m∑

j=k+1

|aj ||y0|j−k−1 ≤
m∑
j=0

|aj |. (A.29)

If |y0| > 1, from (A.27) we deduce that

bk = −
k∑
j=0

ajy
−(k+1−j)
0 , (A.30)

and, consequently,

|bk| ≤
k∑
j=0

|aj ||y0|−(k+1−j) ≤
m∑
j=0

|aj |. (A.31)

Lemma A.6 Let bs;k` be the polynomial coefficients of Ls;k as in the representation (3.30). Then
we have for any s ∈ N0 and k ∈ πs,

s∑
`=0

|bs;k` | ≤ e
Kss! , (A.32)

where the constant K are independent of s and k ∈ πs.

Proof. For s ∈ N0, we represent the univariate Hermite polynomial Hs in the form

Hs(y) :=

s∑
`=0

as,`y
`. (A.33)

By using the well-known equality

Hs(y) = s!

b s2c∑
`=0

(−1)`

`!(s− 2`)!

ys−2`

2`
, (A.34)

one can derive that
s∑
`=0

|as,`| ≤ s!. (A.35)

From (A.18) we have

As;kHs+1(y) = (y − ys;k)Ls;k(y), (A.36)

where As;k is given as in (A.19). By Lemma A.5, (A.35) and (A.22), we obtain

s∑
`=0

|bs;k` | ≤
s∑
`=0

As;k

s+1∑
`′=0

|as+1,`′ | ≤ eKss! . (A.37)
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Lemma A.7 Let ϕ(y) =
∏m
j=1 ϕj(yj) for y ∈ Rm, where ϕj is a polynomial in the variable yj of

degree not greater than ω for j = 1, . . . ,m. Then there holds

‖ϕ‖L2(Rm\Bmω ,γ) ≤ Cm exp (−Kω) ‖ϕ‖L2(Rm,γ) , (A.38)

and

‖ϕ‖
L
√
g
∞ (Rm\Bmω )

≤ Cm exp (−Kω) ‖ϕ‖
L
√
g
∞ (Rm)

, (A.39)

where the constants C and K are independent of ω, m and ϕ.

Proof. The inequality (A.38) was proven in [17, Lemma 3.3]. The inequality (A.39) can be proven
in a similar way with a slight modification.

A.2 Proof of Theorem 3.1

Proof. This theorem was proven in [15, Corollary 3.1] for the case U = R∞. Let us prove it for the
case U = RM . By Lemma 3.1 the series (3.2) converges unconditionally in the space L2(RM , X, γ)
to v. Observe that IΛ(ξ)Hs = Hs for every s ∈ Λ(ξ) and ∆sHs′ = 0 for every s 6≤ s′. Hence for

the downward closed set Λ(ξ) ⊂ NM0 , we can write

IΛ(ξ)v = IΛ(ξ)

( ∑
s∈NM0

vsHs

)
=

∑
s∈NM0

vs IΛ(ξ)Hs = SΛ(ξ)v +
∑

s 6∈Λ(ξ)

vs IΛ(ξ)∩Rs
Hs,

where Rs := {s′ ∈ NM0 : s′ ≤ s}. This implies∥∥v − IΛ(ξ)v
∥∥
L
√
g
∞ (RM ,X)

≤
∥∥v − SΛ(ξ)v

∥∥
L
√
g
∞ (RM ,X)

+
∑

s 6∈Λ(ξ)

∥∥IΛ(ξ)∩Rs
Hs

∥∥
L
√
g
∞ (RM )

. (A.40)

Therefore, to prove the lemma it is sufficient to show that each term in the right-hand side is
bounded by Cξ−(1/q−1/2). The bound of the first term can be obtained from the Cauchy–Schwasz
inequality and (A.9):

‖v − SΛ(ξ)‖L
√
g
∞ (RM ,X)

≤
∑

σs>ξ1/q

‖vs‖X ‖Hs‖L
√
g
∞ (RM )

≤
∑

σs>ξ1/q

‖vs‖X

≤

 ∑
σs>ξ1/q

(σs‖vs‖X)2

1/2 ∑
σs>ξ1/q

σ−2
s

1/2

≤ C

 ∑
σs>ξ1/q

σ−qs σ
−(2−q)
s

1/2

≤ Cξ−(1/q−1/2)

 ∑
s∈NM0

σ−qs

1/2

≤ Cξ−(1/q−1/2).

(A.41)
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Let us prove the bound of the second term in the right-hand side of (A.40). We have that∥∥IΛ(ξ)∩Rs
Hs

∥∥
L
√
g
∞ (RM )

≤
∑

s′∈Λ(ξ)∩Rs

‖∆s′(Hs)
∥∥
L
√
g
∞ (RM )

. (A.42)

We estimate the norms inside the right-hand side. For s ∈ NM0 and s′ ∈ Λ(ξ) ∩ Rs, we have
∆s′(Hs) =

∏M
j=1 ∆s′j

(Hsj ). From Lemma 3.2 and (A.9) we deduce that

‖∆s′j
(Hsj )‖L

√
g
∞ (R)

≤ (1 + Cεs
′
j)

1/6+ε ‖Hsj‖L
√
g
∞ (R)

≤ (1 + Cεs
′
j)

1/6+ε,

and consequently,

‖∆s′(Hs)
∥∥
L
√
g
∞ (RM )

=
M∏
j=1

‖∆s′j
(Hsj )‖L

√
g
∞ (R)

≤ ps′(θ1, λ) ≤ ps(θ1, λ), (A.43)

where θ1 = 1/6 + ε. Substituting ‖∆s′(Hs)
∥∥
L
√
g
∞ (RM )

in (A.42) by the right-hand side of (A.43)

gives that ∥∥IΛ(ξ)∩Rs
Hs

∥∥
L
√
g
∞ (RM )

≤
∑

s′∈Λ(ξ)∩Rs

ps(θ1, λ) ≤ |Rs| ps(θ1, λ)

≤ ps(1, 1) ps(θ1, λ) ≤ ps(θ/2, λ).

From the last estimates and the assumptions we derive the bound of the second term in the
right-hand side of (A.40):∑

s 6∈Λ(ξ)

∥∥IΛ(ξ)∩Rs
Hs

∥∥
L
√
g
∞ (RM )

≤ C
∑

s 6∈Λ(ξ)

‖vs‖X ps(θ/2, λ)

≤ C

 ∑
σs>ξ1/q

(σs‖vs‖X)2

1/2 ∑
σs>ξ1/q

ps(θ/2, λ)2σ−2
s

1/2

≤ C

 ∑
σs>ξ1/q

ps(θ/2, λ)2σ−qs σ
−(2−q)
s

1/2

≤ Cξ−(1/q−1/2)

 ∑
s∈NM0

ps(θ, λ)σ−qs

1/2

≤ Cξ−(1/q−1/2),

which together with (A.40) and (A.41) proves the theorem.
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[16] D. Dũng and V. K. Nguyen. Deep ReLU neural networks in high-dimensional approximation.
Neural Netw., 142:619–635, 2021.

33
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[46] J. A. A. Opschoor, C. Schwab, and J. Zech. Exponential ReLU DNN expression of holomorphic
maps in high dimension. Constr. Approx., 2021.

[47] P. C. Petersen. Neural network theory. Available at http://pc-
petersen.eu/Neural Network Theory.pdf.

35



[48] P. C. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. Neural Netw., 108:296–330, 2018.

[49] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in UQ. Anal. Appl. (Singap.), 17:19–55, 2019.

[50] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by a number of
neurons. Communications in Computational Physics, 28:1768–1811, 2020.

[51] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differ-
ential equations . J. Comput. Phys., 375, 2018.

[52] T. Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces: optimal rate and curse of dimensionality. International Conference on Learning Rep-
resentations, 2019.

[53] J. Szabados. Weighted Lagrange and Hermite-Fejér interpolation on the real line. J. Inequal.
and Applns., 1:99–123, 1997.
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