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Abstract. New upper bounds on the first and the second Hilbert coefficients of a

Cohen-Macaulay module over a local ring are given. Characterizations are provided

for some upper bounds to be attained. The characterizations are given in terms

of Hilbert series as well as in terms of the Castelnuovo-Mumford regularity of the

associated graded module.

1. Introduction

Let (A,m) be a Noetherian local ring with an infinite residue field A/m and I an

m-primary ideal. Let M be a finitely generated A-module of dimension d. Then the

Hilbert-Samuel function H1
I,M(n) := ℓA(M/In+1M) agrees with a polynomial, so-called

Hilbert-Samuel polynomial, HP 1
I,M(n) for all n ≫ 0. If we write

HP 1
I,M(n) = e0(I,M)

(
n+ d

d

)
− e1(I,M)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I,M),

then the integers e0(I,M), ..., , e0(I,M) are called the Hilbert coefficients of M with

respect to I.

There are intensive studies on finding bounds on several Hilbert coefficients. We

refer the interested readers to the book [15] for main developments and rich references.

Our aim is to give new bounds on the first two Hilbert coefficients in terms of e0(I,M)

for Cohen-Macaulay modules. Recall that e0(I,M), e1(I,M), e2(I,M) ≥ 0 and that

e3(I,M) could be negative, see [11] and [15].

In this paper we establish two upper bounds on e1(I,M). The first one (Proposition

3.1) holds for Cohen-Macaulay modules and is a slight improvement of the bound

given by Rossi and Valla for filtrations in [15, Proposition 2.8 and Proposition 2.10].

Moreover, in the case of dimension one, we can give conditions for this bound to be

attained (see Proposition 3.5 and Proposition 4.2). In difference to the approach in [15,

Section 2.2], we use here local cohomology modules of the associated graded modules

GI(M). As a consequence, we can show that if IM ⊆ mbM for some b ≥ 2, then

e1(I,M) ≤
(
e0(I,M)−b

2

)
, see Proposition 3.2. In the ring case, this result was given by

Elias [3, Proposition 2.5 and Remark 2.6] under an additional condition, which was

then removed by Hanumanthu and Huneke in [6, Corollary 3.7]. This part can be also

seen as a preparation for our study on the e2(I,M) in Section 5.

The second upper bound on e1(I,M) (Theorem 4.6) only holds for M = A and is

based on the bound given by Elias [4] in the dimension one case. When b ≥ 2, this new
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bound provides a much better bound than the above mentioned bound
(
e0(I,A)−b

2

)
, see

Remark 4.7.

For e2(I,M) we can give a new upper bound in terms of e0(I,M) and b, see Theorem

5.1. As we know that the first upper bound on e2(I,M) was given by Rhodes, see [13,

Proposition 6.1(iv)] (also see [10, Corollary 4.2] for modules over a semi-local ring). In

[5, Theorem 2.3] a much better bound is given. However, all bounds on e2(I,M) in

[13, 10, 5] involve e1(I,M), while our bound only depend on e0(I,M) (and the largest

number b such that IM ⊆ mbM). Moreover, we can characterize when this bound is

attained (Theorem 5.3). Like Proposition 3.5, the conditions in Theorem 5.3 are given

in terms of Hilbert series as well as in terms of the Castelnuovo-Mumford regularity of

the associated graded module GI(M). In the case M = A and b ≥ 2, using Theorem

4.6 one can get a better bound than the one in Theorem 5.1, see Theorem 5.9.

We now give a brief content of the paper. In Section 2 we recall some basic notions

and give some estimations on the Hilbert function of GI(M) and of GI(M). In Section

3 we give two bounds on e1(I,M) (see Propositions 3.1 and 3.2) and characterize when

the first bound in Propositions 3.1 is attained, provided dimM = 1. In Section 4 we

restrict to the case M = A. Here we give further structures of I and A such that

the first bound in Propositions 3.1 is attained, see Proposition 4.2. Then we prove an

essentially new bound on e1(I) (Theorem 4.6). Main known upper bounds on e1(I)

of an m-primary ideal I of an one-dimensional Cohen-Macaulay ring (A,m) such that

I ⊊ m2 are summarized in Remark 4.8. In the last Section 5, we prove the new bounds

on e2(I,M) (Theorems 5.1 and 5.9), and give equivalent conditions for the bound in

Theorem 5.1 to be attained (Theorem 5.3).

2. Preliminaries

Let R = ⊕n≥0Rn be a Noetherian standard graded ring over a local Artinian ring

(R0,m0). Let E be a finitely generated graded module of dimension d. The function

HE(n) := ℓR0(En) is called Hilbert function of E. For all n ≫ 0, it agrees with the

so-called Hilbert polynomial denoted by HPE(t), that is polynomial of degree d − 1.

The number

pn(E) := min{n| HE(t) = HPE(t) for all t ≥ n},
is called the postulation number of HE.

If we denote by R+ := ⊕n>0Rn the irrelevant ideal of R then we set

ai(E) := sup{n| H i
R+

(E)n ̸= 0},

0 ≤ i ≤ d. The Castelnuovo-Mumford regularity of E is the number:

reg(E) := max{ai(E) + i| 0 ≤ i ≤ d}.

Let (A,m) be a Noetherian local ring with an infinite residue field A/m and I an m-

primary ideal. Let M be a finitely generated A-module of dimension d. The associated

graded module of I with respect to M is the standard A/I-algebra

GI(M) := ⊕n≥0I
nM/In+1M,
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There is another way to define the Hilbert coefficients ei(I,M) already defined in

the introduction. We recall here this approach from [15, Section 1.3]. The function

HI,M(n) := HGI(M)(n) = ℓA(I
nM/In+1M)

is called the Hilbert function of M . The Hilbert polynomial of M is HPI,M = HPGI(M).

By the Hilbert-Serre theorem, the Hilbert series

(2.1) PI,M(z) :=
∑
n≥0

HI,M(n)zn,

is a rational function of z, that means one can find a polynomial QI,M(z) ∈ Z[z] such
that QI,M(1) ̸= 0 and

PI,M(z) =
QI,M(z)

(1− z)d
.

If we set for every i ≥ 0

(2.2) ei(I,M) =
Q

(i)
I,M(1)

i!
,

where Q
(i)
I,M denotes the i-th derivation of QI,M , then for all 0 ≤ i ≤ d, this value of

ei(I,M) agrees with the one defined in the introduction. Moreover, unlike the definition

in the introduction, using (2.2) we can talk about the Hilbert coefficients ei(I,M) with

i > d. This simple observation is useful in the study of the second Hilbert coefficient,

where we can reduce the case of dimension two to dimension one.

Together with Hilbert series, the power series

P 1
I,M(z) :=

∑
n≥0

ℓ(M/In+1M)zn =
PI,M(z)

(1− z)d+1

is also often used; this is called Hilbert-Samuel series.

In the sequel we use the following notations

pn(I,M) := pn(GI(M)) = min{n| HPI,M(t) = HI,M(t) for all t ≥ n},

and if M = A then we write HI := HI,A, HPI := HPI,A, pn(I) := pn(I, A), ei(I) :=

ei(I, A) and so on.

Recall that an element x ∈ I is called M-superficial (of order one) for I, if there

exists a non-negative integer c such that

(In+1M : x) ∩ IcM = InM,

for all n ≥ c. When M = A we simply say that x is a superficial element for I. This

is equivalent to the condition that the initial form

x∗ ∈ G(I) := ⊕n≥0I
n/In+1

has degree one and it is a filter-regular element on the associated graded module GI(M)

which means

[0 :GI(M) x
∗]m = 0 for all m ≫ 0.
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(See, e.g., the equivalence of (1) and (5) in [15, Theorem 1.2].) A sequence x1, ..., xs ∈ I

is called M-superficial sequence for I if xi is an M/(x1, ..., xi−1)M -superficial element,

for I for i = 1, ..., s.

The following result is now standard and useful for proceeding by induction.

Lemma 2.1. (See, e.g., [14, Proposition 1.2]) Let x ∈ I be an M-superficial element

for I. Then

(i) dim(M/xM) = d− 1,

(ii) ej(I,M/xM) = ej(I,M) for every j = 0, ..., d− 2,

(iii) ed−1(I,M/xM) = ed−1(I,M) + (−1)d−1ℓ(0 : x),

(iv) There exists an integer n0 such that for every n ≥ n0 − 1 we have

ed(I,M/xM) = ed(I,M) + (−1)d

[
n∑

i=0

ℓ(In+1M : x/InM)− (n+ 1)ℓ(0 : x)

]
,

(v) x∗ is a regular element on GI(M) if only if PI,M(z) = P 1
I,M/xM(z) =

PI,M/xM (z)

1−z

if only if x is M-regular and ed(I,M) = ed(I,M/xM).

We would like to comment that in the above statements (iv) and (v), ed(I,M/xM)

is the one defined by (2.2).

The Ratliff-Rush closure of an ideal introduced in [12] plays an important role in the

study of Hilbert functions, see e.g. [14, 15]. It is defined by

(2.3) ĨnM =
⋃
k≥1

In+kM : Ik = In+l : I l for some l ≫ 0.

Using this notion, we can compute the zero-th local cohomology module of GI(M) with

respect to G+ := ⊕n≥1I
n/In+1 as follows (see, e.g., [14, p. 26]):

(2.4) [H0
G+

(GI)M))]n =
Ĩn+1M ∩ InM

In+1M
.

We set GI(M) = GI(M)/H0
G+

(GI(M)).

Lemma 2.2. Let M be an one-dimensional A-module. Let b be a positive integer such

that IM ⊆ mbM . Then

(i) ([1, Lemma 2.5]) ℓ(GI(M)0) ≥ b.

(ii) If e0(I,M) ̸= e0(m
b,M), then ℓ(GI(M)0) ≥ b+ 1.

Proof. (i) is [1, Lemma 2.5]. It is based on the the fact ℓ(GI(M)0) = ℓ(E), where

E = M/ĨM , and the strict inclusions:

(2.5) E ⊋ mE ⊋ · · · ⊋ mbE.

(ii) Assume that mbE = 0. Then mbM ⊆ ĨM . By (2.3), it implies that

I l+1M ⊆ I l(mbM) ⊆ I l+1M,

for some l ≫ 0. Hence I l+1M = mbI lM . Let c be an integer such that mbc ⊆ I l, then

for all n > 0, it yields

I l+nM = (mb)nI lM ⊇ (mb)n+cM.
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Hence

(n+ l)e0(I,M)− e1(I,M) = ℓ(M/I l+nM)

≤ ℓ(M/(mb)n+cM) = (n+ c)e0(m
b,M)− e1(m

b,M),

for all n ≫ 0. This implies e0(I,M) ≤ e0(m
b,M), whence e0(I,M) = e0(m

b,M), a

contradiction to the assumption. So, we must have mbE ̸= 0. From (2.5) we then get

ℓ(GI(M)0) = ℓ(E) ≥ b+ 1, as required. □

Lemma 2.3. Let R be a Noetherian standard graded ring over a local Artinian ring

and E an one-dimensional Cohen-Macaulay graded R-module. Let ∆ := ∆(E) be the

maximal generating degree of E. Then

(i) HE(∆) < HE(∆ + 1) < · · · < HE(pn(E)),

(ii) HE(n) ≥ (n−∆) +HE(∆) for all ∆+ 1 ≤ n ≤ pn(E).

Proof. Let z ∈ R1 be an E-regular element. Since E is a Cohen-Macaulay module,

pn(E) = pn(E/zE) − 1. Note that ∆(E/zE) ≤ ∆ = ∆(E) and since dimE/zE = 0,

HE/zE(t) ≥ 1 for all ∆(E/zE) ≤ t ≤ pn(E/zE) − 1 = pn(E). Hence the statements

follow from the following equality

HE(n) = HE(∆) +
∑

∆+1≤i≤n

HE/zE(i).

□

The following result is a slight improvement of [15, Proposition 2.7] and the remark

after it.

Lemma 2.4. Let M be an one-dimensional Cohen-Macaulay A-module such that IM ⊆
mbM . Then

(i) a1(GI(M)) = pn(I,M)− 1 > a0(GI(M)) and reg(GI(M)) = pn(I,M),

(ii) HI,M(n) ≥ n+ b+ ℓ(H0
G+

(GI(M))n) for all 0 ≤ n ≤ pn(I,M),

(iii) ([15, Proposition 2.7(2)]) pn(I,M) ≤ e0(I,M) − b. If the equality holds, then

ℓ(GI(M)n) = n+ b for all 0 ≤ n ≤ pn(I,M).

If, in addition, e0(I,M) ̸= e0(m
b,M), then we further have:

(iv) HI,M(n) ≥ n+ b+ 1 + ℓ(H0
G+

(GI(M))n) for all 0 ≤ n ≤ pn(I,M),

(v) ([15, Remark (b) after Proposition 2.7]) pn(I,M) ≤ e0(I,M) − b − 1. If the

equality holds, then ℓ(GI(M)n) = n+ b+ 1 for all 0 ≤ n ≤ pn(I,M).

Proof. (i) By [7, Theorem 5.2], a0(GI(M)) < a1(GI(M)). From the Grothendieck-Serre

formula

HI,M(n)−HPI,M(n) = HGI,M
(n)−HPGI,M

(n) =

= ℓ(H0
G+

(GI(M))n)− ℓ(H1
G+

(GI(M))n),

it follows that pn(GI(M)) = a1(GI(M)) + 1.

(ii) From the short exact sequence

0 −→ H0
G+

(GI(M)) −→ GI(M) −→ GI(M) := GI(M)/H0
G+

(GI(M)) −→ 0,
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we get

HI,M(n) = ℓ(GI(M)n) + ℓ(H0
G+

(GI(M))n).

From (i) it follows that

pn(I,M) = a1(GI(M)) + 1 = pn(GI(M)).

Note that ∆(GI(M)) = 0, and by Lemma 2.2(i), ℓ(GI(M)0) ≥ b. Since GI(M) is a

Cohen-Macaulay module, by Lemma 2.3, we have

HI,M(n) = ℓ(H0
G+

(GI(M))n) +HGI(M)(n)

≥ ℓ(H0
G+

(GI(M))n) +HGI(M)(0) + n(2.6)

≥ ℓ(H0
G+

(GI(M))n) + b+ n,(2.7)

for all 0 ≤ n ≤ pn(GI(M)) = pn(GI(M)) = pn(I,M).

(iii) Since HI,M(n) ≤ e0(I,M) (see, e.g., the remark after Lemma 2.1 in [15]), from (ii)

we immediately get

p ≤ e0(I,M)− b− ℓ(H0
G+

(GI(M))p) ≤ e0(I,M)− b,

where p := pn(I,M). If the equality holds, then from (2.6) and (2.7) we must have

HGI(M)(0) = b and HGI(M)(p) = p+ b. From Lemma 2.3 we then get

ℓ(GI(M)n) = HGI(M)(n) = n+ b

for all 0 ≤ n ≤ p.

(iv) and (v) If, in addition, e0(I,M) ̸= e0(m
b,M), then using Lemma 2.3(ii), instead

of (2.7), we get a little bit stronger inequality:

HI,M(n) ≥ ℓ(H0
G+

(GI(M))n) + b+ 1 + n,

which then implies (iv) and (v). □

3. The first Hilbert coefficient of a module

In this section we always assume that M is a Cohen-Macaulay module over a local

ring (A,m) and I is an m-primary ideal. We start with a slight improvement of [15,

Proposition 2.8 and Proposition 2.10]. Its proof is also a modification of the one of [15,

Proposition 2.8]. Note that [15, Proposition 2.8 and Proposition 2.10] is formulated

for an arbitrary filtered module (not necessarily Cohen-Macaulay).

Proposition 3.1. Let M be a Cohen-Macaulay module and of dimension d ≥ 1. Let

b be a positive integer such that IM ⊆ mbM. Then

(3.1) e1(I,M) ≤
(
e0(I,M)− b+ 1

2

)
+ b− ℓ(M/IM).

If d = 1 and the equality in (3.1) holds, then we have

(i) a0(GI(M)) ≤ 0,

(ii) Either reg(GI(M)) = pn(I,M) = e0(I,M)− b or e0(I,M) ∈ {b, b+ 1},
(iii) HI,M(n) = b+ n for all 1 ≤ n ≤ pn(I,M)− 1.
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If d = 1 and e0(I,M) > e0(m
b,M), then

(3.2) e1(I,M) ≤
(
e0(I,M)− b

2

)
+ b+ 1− ℓ(M/IM).

If the equality in (3.2) holds, then we have

(i’) a0(GI(M)) ≤ 0,

(ii’) Either reg(GI(M)) = pn(I,M) = e0(I,M)− b− 1 or e0(I,M) ∈ {b+ 1, b+ 2},
(iii’) HI,M(n) = n+ b+ 1 for all 1 ≤ n ≤ pn(I,M)− 1.

Proof. For simplicity, set e0 := e0(I,M), e1 := e1(I,M) and p := pn(I,M). By

standard technique (using Lemma 2.1) we may assume that d = 1. We have

e1 =

p−1∑
i=0

(e0 −HI,M(i)) = e0 −HI,M(0) +

p−1∑
i=1

(e0 −HI,M(i)).

Using Lemma 2.4(ii) and (iii), we get

e1 ≤ e0 −HI,M(0) +

p−1∑
i=1

(e0 − i− b− ℓ(H0
G+

(GI(M))i)

≤
e0−b−1∑
i=1

(e0 − i− b− ℓ(H0
G+

(GI(M))i) + e0 − ℓ(M/IM)(3.3)

≤
e0−b−1∑
i=1

(e0 − i− b) + e0 − ℓ(M/IM)(3.4)

=

(
e0 − b+ 1

2

)
+ b− ℓ(M/IM).

If e1 =
(
e0−b+1

2

)
+ b− ℓ(M/IM), then from (3.3) and (3.4) we must have:

(a) H0
G+

(GI(M))i = 0 for all 1 ≤ i ≤ e0 − b− 1,

(b) HI,M(i) = b+ i for all 1 ≤ i ≤ e0 − b− 1,

(c) p = e0 − b if e0 − b ≥ 2.

Since p ≤ e0 − b by Lemma 2.4(iii), (b) implies (iii). By Lemma 2.4(i), p − 1 >

a0(GI(M)). Hence (a) implies (i). Since a1(GI(M)) > a0(GI(M)) (by Lemma 2.4(i)),

reg(GI(M)) = a1(GI(M)) + 1. Using again Lemma 2.4(i), we get reg(GI(M)) = p.

Then (c) implies (ii).

Finally, if e0(I,M) > e0(m
b,M), then by Lemma 2.4(v), p ≤ e0 − b − 1. Hence as

above, we get

e1 ≤
e0−b−2∑
i=1

(e0 − i− b− 1− ℓ(H0
G+

(GI(M))i) + e0 − ℓ(M/IM)(3.5)

≤
e0−b−2∑
i=1

(e0 − i− b− 1) + e0 − ℓ(M/IM)(3.6)

=

(
e0 − b

2

)
+ b+ 1− ℓ(M/IM).
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The proof of (i’), (ii’) and (iii’) is similar to that of (i), (ii) and (iii), where (3.5) and

(3.6) are used. □

Assume that A is a Cohen-Macaulay ring. Elias [3, Proposition 2.5] showed that if

I ⊆ mb for some b ≥ 2, then under an additional condition we have:

e1(I) ≤
(
e0(I)− b

2

)
.

Using integral closures of an ideal, K. Hanumanthu and C. Huneke were able to remove

that additional condition (see [6, Corollary 3.7]). We can now extend this result to the

case of modules.

Proposition 3.2. Assume that M is a Cohen-Macaulay A-module of positive dimen-

sion and I is an m-primary ideal of (A,m) such that IM ⊆ mbM for some b ≥ 2.

Then

e1(I,M) ≤
(
e0(I,M)− b

2

)
.

Proof. Using standard technique we may assume that d = 1. If e0(I,M) > e0(m
b,M),

then the statement follows from Proposition 3.1 (3.2), since

ℓ(M/IM) > ℓ(M/mbM) ≥ b.

Assume now that e0(I,M) = e0(m
b,M). For n ≫ 0, we have

e0(I,M)(n+ 1)− e1(I,M) = ℓ(M/In+1M) ≥ ℓ(M/(mb)n+1M)

= e0(m
b,M)(n+ 1)− e1(m

b,M).

Hence e1(I,M) ≤ e1(m
b,M). Note that for n ≫ 0,

ℓ(M/(mb)n+1M) = ℓ(M/(m(n+1)bM) = e0(m,M)(n+ 1)b− e1(m,M).

This implies e0(m
b,M) = be0(m,M) and e1(m

b,M) = e1(m,M). Applying Proposition

3.1 (3.1) to the case b = 1 we get

e1(m,M) ≤
(
e0(m,M)

2

)
.

(Of course, this inequality is known in [9].) If e0(m,M) = 1, then the above in-

equality give e1(I,M) ≤ e1(m,M) = 0 and the statement trivially holds. Assume

e0 := e0(m,M) ≥ 2. Since b ≥ 2, we have be0 − b ≥ e0. Hence

e1(I,M) ≤ e1(m
b,M) = e1(m,M) ≤

(
e0
2

)
≤
(
be0 − b

2

)
=

(
e0(I,M)− b

2

)
.

□

Remark 3.3. Let us examine when the bound in Proposition 3.1 (3.1) holds in the

case dimM = 1. Let b be the largest positive integer such that IM ⊆ mbM . Note that

b ≤ ℓ(M/mbM) ≤ ℓ(M/IM) ≤ e0(I,M), and e0(I,M) ≥ e0(m
b,M) = be0(m,M). If

e0(I,M) = b, then ℓ(M/mM) = 1, e0(m,M) = 1, and from the inequality Proposition
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3.1 (3.1) we get e1(I,M) ≤ 0, whence e1(I,M) = 0. Then Proposition 3.1(3.1) becomes

an equality. Replacing A by A/Ann(M), one can now conclude that e0(I,M) = b if

and only if M ∼= A, A is a regular ring and I = (xb), where m = (x). Hence we can

exclude this case in further investigation.

Lemma 3.4. Let M be a Cohen-Macaulay module of positive dimension d and I an

m-primary ideal. Let b be the largest positive integer such that IM ⊆ mbM . Assume

that e0(I,M) > b and

e1(I,M) =

(
e0(I,M)− b+ 1

2

)
+ b− ℓ(M/IM).

Then b = 1.

Proof. Assume that b ≥ 2. First assume that d = 1. We have

e1(I,M) =
(
e0(I,M)−b+1

2

)
+ b− ℓ(M/IM)

=
(
e0(I,M)−b

2

)
+ e0(I,M)− ℓ(M/IM).

Since e0(I,M) ≥ ℓ(M/IM), the above equality together with the inequality in Propo-

sition 3.2 imply that

(3.7) e1(I,M) =

(
e0(I,M)− b

2

)
,

and e0(I,M) = ℓ(M/IM). Since M is an one-dimensional Cohen-Macaulay module,

e0(I,M) = ℓ(M/xM) for some x ∈ I. This implies IM = xM , i.e. we can assume

that I is a parameter ideal. Then e1(I,M) = 0, and by (3.7), e0(I,M) ≤ b + 1. By

the assumption, we get e0(I,M) = b+ 1.

Since b + 1 = e0(I,M) ≥ e0(m
b,M) = be0(m,M) and b ≥ 2, we can conclude that

e0(m,M) = 1. Let y ∈ m such that e0(m,M) = ℓ(M/yM). Note that ℓ(M/yM) ≥
ℓ(M/mM) = µ(M). Hence, then we must have yM = mM and M is generated by

one element, say M = Au. Replacing A by A/Ann(M), we may assume that M = A.

Then A is a regular ring, m = (y), see Remark 3.3. Since x ∈ mb and b is the largest

number satisfying this property, it implies that x = ryb for some unit r. But then

e0(I,M) = e0(x,A) = b, a contradiction. Hence, the assumption b ≥ 2 is wrong and

then b = 1.

Now assume that d ≥ 2. Let x1, ..., xd−1 be an M -superficial sequence for I. Let

N = M/(x1, ..., xd−1)M . Then dimN = 1 and

e1(I,N) =

(
e0(I,N)− b+ 1

2

)
+ b− ℓ(N/IN).

Since IN ⊆ mbN , we must have b = 1. □

Below are some characterizations for the equality in (3.1).
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Proposition 3.5. Let M be an one-dimensional Cohen-Macaulay A-module and I an

m-primary ideal. Let b be the largest positive integer such that IM ⊆ mbM . Assume

that e0(I,M) ≥ b+ 2. Then the following conditions are equivalent:

(i) e1(I,M) =
(
e0(I,M)−b+1

2

)
+ b− ℓ(M/IM),

(ii) PI,M(z) =
ℓ(M/IM)+(b+1−ℓ(M/IM))z+

∑e0(I,M)−b
i=2 zi

1−z
,

(iii) a0(GI(M)) ≤ 0 and reg(GI(M)) = e0(I,M)− b,

(iv) reg(GI(M)) =
(
e0(I,M)−b+2

2

)
+ b− e1(I,M)− ℓ(M/IM)− 1.

If one of the above conditions is satisfied, then b = 1 and e0(I,M) = e0(m,M).

Proof. For simplicity, in this proof we set e0 := e0(I,M), e1 := e1(I,M) and p :=

pn(I,M).

(ii) =⇒ (i) is immediate from (2.2).

(i) =⇒ (ii) Assume that e1 =
(
e0−b+1

2

)
+1−ℓ(M/IM). Since e0 ≥ b+2, by Proposition

3.1(ii) and (iii), p = e0 − b, HI,M(n) = i+ b for all 1 ≤ i ≤ e0 − b− 1 and HI,M(n) = e0
for all n ≥ e0 − b. Substituting these values into the definition (2.1) of the Hilbert

series we then get (ii).

(i) =⇒ (iii) By Proposition 3.1(i), a0(GI(M)) ≤ 0. Since e0 ≥ b + 2, by Proposition

3.1(ii), reg(GI(M)) = e0 − b.

(iii) =⇒ (ii) By Lemma 2.4(i), we have p = reg(GI(M)) = e0−b. Since a0(GI(M)) ≤ 0,

ℓ(I tM/I t+1M) = HGI(M)(t) = HGI(M)(t) for all t ≥ 1.

On the other hand, by Lemma 2.4(iii),

HGI(M)(t) =

{
t+ b if 0 ≤ t ≤ e0 − b− 1,

e0 if t ≥ e0 − b.

Hence
PI,M(z) = ℓ(M/IM) +

∑e0−b−1
t=1 (t+ b)zt +

∑
t≥e0−b e0z

t

=
ℓ(M/IM)+(b+1−ℓ(M/IM))z+

∑e0−b
i=2 zi

1−z
.

(i) =⇒ (iv) Using (i) ⇔ (iii), we have

reg(GI(M)) = e0 − b

=
(
e0−b+2

2

)
−
(
e0−b+1

2

)
+ e1 + ℓ(M/IM)− b− e1 − ℓ(M/IM) + b− 1

=
(
e0−b+2

2

)
+ b− e1 − ℓ(M/IM)− 1.

(iv) =⇒ (i) By [1, Proposition 2.1], reg(GI(M)) ≤ e0 − b. Therefore

reg(GI(M)) ≤ e0 − b

=
(
e0−b+2

2

)
−
(
e0−b+1

2

)
+ e1 + ℓ(M/IM)− b− e1 − ℓ(M/IM) + b− 1

≤
(
e0−b+2

2

)
+ b− e1 − ℓ(M/IM)− 1 (by Proposition 3.1).

By virtue of (iv), this implies e1 =
(
e0
2

)
+ 1− ℓ(M/IM).
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Finally assume (i). By Lemma 3.4, b = 1. Further, since e0 − 1 ≥ 2, we have(
e0−1
2

)
+1 ≤

(
e0
2

)
. Hence, if e0 ̸= e0(m,M), by virtue of Proposition 3.1(3.2), we cannot

have (i), a contradiction. □

Example 3.6. Let A = k[[t2, t3]] and M = m. Then e0(m,M) = e0(m, A) = 2, while

e1(m, A) = 1 and e1(m,M) = 0. Hence, the condition (i) of Proposition 3.5 is satisfied

for both pairs (m, A) and (m,M). Note that ℓ(mn/mn+1) = 2 for all n ≥ 1. So,

pn(m, A) = 1 and pn(m,M) = 0. The ring Gm(A) and the module GI(M) are Cohen-

Macaulay, but reg(Gm(A)) = 1 = e0(m, A)−1, while reg(Gm(M)) = 0 < e0(m,M)−1 =

1. This shows that no of the conditions (ii), (iii) and (iv) in Proposition 3.5 holds. So

the condition e0(I,M) ≥ b+ 2 in Proposition 3.5 cannot be omitted.

Using (iv) and (v) of Lemma 2.4 and (i’), (ii’) and (iii’) of Proposition 3.1, similar

arguments of the proof of Proposition 3.5 give:

Proposition 3.7. Let M be an one-dimensional Cohen-Macaulay A-module and I an

m-primary ideal such that I ⊆ mb, e0(I,M) > e0(m
b,M) and e0(I,M) ≥ b + 3, where

b is a positive integer. Then the following conditions are equivalent:

(i) e1 =
(
e0(I,M)−b

2

)
+ b+ 1− ℓ(M/IM),

(ii) PI,M(z) =
ℓ(M/IM)+(b+2−ℓ(M/IM))z+

∑e0(I,M)−b−1
i=2 zi

1−z
,

(iii) a0(GI(M)) ≤ 0 and reg(GI(M)) = e0(I,M)− b− 1,

(iv) reg(GI(M)) =
(
e0(I,M)−b+1

2

)
+ b− e1(I,M)− ℓ(M/IM).

4. The first Hilbert function of an m-primary ideal

In this section we consider the case M = A, that is we study the first Hilbert

coefficient of an m-primary ideal I of a Cohen-Macaulay local ring (A,m). If b ≥ 2, see

Theorem 4.6 below. If b = 1, then the Rossi-Valla bound in the statement (i) of the

following lemma is clearly much better.

Lemma 4.1. Let (A,m) be a d-dimensional Cohen-Macaulay ring and I an m-primary

ideal. Then

(i) ([14, Theorem 3.2])

(4.1) e1(I) ≤
(
e0(I)

2

)
−
(
µ(I)− d

2

)
− ℓ(A/I) + 1,

where µ(I) denotes the number of generators of I.

(ii) (A partial case of [14, Theorem 3.2]) If d = 1, then we also have

e1(I) ≤
(
e0(I)

2

)
−
(
µ(Ĩ)− 1

2

)
− ℓ(A/Ĩ) + 1.

Proof. There is an unclear step in the proof of [14, Theorem 3.2] in the case d = 1:

from the context, λ in [14, (8)] should be ℓ(A/Ĩ), see at the beginning of [14, Section
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3]. Therefore we give here a correction of this part. So, we may assume that d = 1 and

we need to show

(4.2) e1(I) ≤
(
e0(I)

2

)
−
(
µ(I)− 1

2

)
− ℓ(A/I) + 1.

If µ(I) = 1, then I is a parameter ideal, which implies e1(I) = 0 and the inequality

holds true. Now let µ(I) ≥ 2. By [14, Theorem 3.1],

(4.3) e1(I) ≤
(
e0(I)

2

)
−
(
g − 1

2

)
− ℓ(A/Ĩ) + 1,

where

g = ℓ(Ĩ/Ĩ2) +
∑
i≥2

ℓ

(
Ĩ i+1

IĨ i + Ĩ i+2

)
.

At the end of the proof of [14, Theorem 3.1], it is shown that

g ≥ ℓ(Ĩ/Ĩ2 + Im) + ℓ(Ĩ2 + Im/Im)

= ℓ(Ĩ/Im) = ℓ(Ĩ/I) + µ(I).

Set l̃ := ℓ(Ĩ/I). Then we get

(
g − 1

2

)
+ ℓ(A/Ĩ) ≥

(
µ(I)− 1 + l̃

2

)
+ ℓ(A/Ĩ)

=

(
µ(I)− 1

2

)
+

(2µ(I)− 3)l̃ + l̃2

2
+ ℓ(A/Ĩ)

≥
(
µ(I)− 1

2

)
+

l̃(l̃ + 1)

2
+ ℓ(A/Ĩ) (since µ(I) ≥ 2).(4.4)

If l̃ = 0, then ℓ(A/Ĩ) = ℓ(A/I). If l̃ ≥ 1, then

(4.5)
l̃(l̃ + 1)

2
+ ℓ(A/Ĩ) ≥ l̃ + ℓ(A/Ĩ) = ℓ(A/I).

In both cases, from (4.4) we get

(4.6)

(
g − 1

2

)
+ ℓ(A/Ĩ) ≥

(
µ(I)− 1

2

)
+ ℓ(A/I).

Combining this with (4.3) we immediately get (4.2). □

Using the Rossi-Valla bound (4.1) we can immediately see that if I satisfies the

condition (i) of Proposition 3.5 (with M = A), then µ(I) ≤ 2. However, if I is a

parameter ideal, then e1(I) = 0, while
(
e0(I)
2

)
+ 1 − ℓ(A/I) =

(
e0(I)
2

)
+ 1 − e0(I) ≥ 1,

provided e0(I) ≥ 3. This contradicts the condition (i). So, µ(I) = 2. Below are

more information on the structure of I and A itself, when I satisfies the condition

(i) of Proposition 3.5, or equivalently, when the Rossi-Valla bound (4.1) is attained,

provided µ = 2.
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Proposition 4.2. Let (A,m) be an one-dimensional Cohen-Macaulay ring and I an

m-primary ideal such that e0(I) ≥ 3 and e1(I) =
(
e0(I)
2

)
+ 1− ℓ(A/I). Then we have

(i) Ĩ = m, I2 = mI and µ(I) = 2.

(ii) µ(m) ∈ {2, 3}, and
(iii) If µ(m) = 2, then I = m and G(m) is a Cohen-Macaulay ring.

(iv) If µ(m) = 3, then In = mn for all n ≥ 2 and ℓ(A/I) = 2. In this case

depthG(I) = 0.

Proof. We set e0 := e0(I). (i) µ(I) = 2 was shown above. By Proposition 3.1(ii), b = 1

and pn(I) = e0(I)− 1. Hence, by Lemma 2.4(iii), ℓ(G(I)0) = 1. By (2.4), we then get

ℓ(A/Ĩ) = ℓ(G(I)0) = 1. Since Ĩ ⊆ m, we must have Ĩ = m. By Proposition 3.1(iii),

ℓ(I/I2) = 2. Since 2 = µ(I) = ℓ(I/mI) ≤ ℓ(I/I2) = 2, we get I2 = mI.

(ii) Since µ(I) = 2, the equality in (4.1) also holds for I. From (4.4), (4.5) and (4.6)

we must have ℓ(Ĩ/I) ≤ 1. Since Ĩ = m, we get ℓ(A/I) ≤ 2, and by Lemma 4.1(ii), we

now have (
e0
2

)
+ 1− ℓ(A/I) = e1 ≤

(
e0
2

)
−
(
µ(m)− 1

2

)
.

This implies
(
µ(m)−1

2

)
≤ 1, whence µ(m) ≤ 3. By Proposition 3.5, e0(m) = e0(I) ≥ 3.

Hence µ(m) ≥ 2.

Assume that a is an element in a minimal basis of I. We first show that a ̸∈ m2.

Assume by contrary, that a ∈ m2. Since Ĩ = m, we get

a ∈ m2 ∩ I = (Ĩ)2 ∩ I ⊆ Ĩ2 ∩ I.

By Proposition 3.5(iii) and (2.4), we get

0 = H0
G(I)+

(G(I))1 ∼=
Ĩ2 ∩ I

I2
,

which implies

(4.7) Ĩ2 ∩ I = I2.

Hence a ∈ I2, a contradiction.

The condition that any element in a minimal basis of I does not belong to m2 implies

that the images of a1, a2 of a minimal basis of I in m/m2 are linearly independent. This

means that {a1, a2} is a part of minimal basis of m.

(iii) If µ(m) = 2 then I = m and H0
G+

(G(I))0 = 0. Since a0(G(I)) ≤ 0 (by Proposition

3.5(iii)), H0
G+

(G(I)) = 0, and G(m) = G(I) is a Cohen-Macaulay ring.

(iv) Assume now that µ(m) = 3. As shown above ℓ(A/I) ≤ 2. So we must have

ℓ(A/I) = 2. Assume that m = (a1, a2, a3), where {a1, a2} is a minimal basis of I.

Moreover, we may assume that both elements a1, a2 are non-zero divisors of A. Since

Ĩ = m, by (4.7), we have

a1a3 ∈ I ∩ (Ĩ)2 ⊆ I ∩ Ĩ2 = I2 = (a1, a2)
2.

Hence

(4.8) a1a3 = y1a
2
1 + y2a1a2 + y3a

2
2,
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for some y1, y2, y3 ∈ A. Replacing a3 by a3 − y1a1 − y2a2 in the above relation, we may

assume that

a1a3 = y3a
2
2.

Analogously, we can find z1, z2, z3 ∈ A such that

(4.9) a2a3 = z1a
2
1 + z2a1a2 + z3a

2
2.

Then
a2a

2
3 = z1a

2
1a3 + z2a1a2a3 + z3a

2
2a3

= z1a1y3a
2
2 + z2y3a

3
2 + z3a

2
2a3.

Since a2 is a non-zero divisor, this implies

a23 = z1y3a1a2 + z2y3a
2
2 + z3a2a3 ∈ I2.

Together with (4.8) and (4.9), this shows that I2 = m2, and by induction In = mn for

all n ≥ 2. In this case, by (2.4), H0
G+

(G(I))0 ∼= Ĩ
I
= m

I
̸= 0, depthG(I) = 0. □

Remark 4.3. The Cohen-Macaulayness of G(m) in (iii) of the above proposition is

known long time ago, see, e.g. [16, p. 19].

If µ(I) > 2, then the Rossi-Valla bound (4.1) is much better. An ideal, for which

the Rossi-Valla bound (4.1) is attained, may have an arbitrary number of generators.

For an example, take I = m in A = k[[ta, ta+1, ..., t2a−1]], a ≥ 3. Then e0(m) = a and

e1(m) = a− 1 =

(
e0(m)

2

)
−
(
µ(m)− 1

2

)
.

If I = m the Rossi-Valla bound (4.1) is Elias’ bound given in [2, Theorem 1.6]. In

[5, Theorem 3.1], there is a characterization in terms of Hilbert series for an one-

dimensional Cohen-Macaulay ring such that the Elias’ bound is attained. See also [14,

Proposition 3.3] for a shorter proof.

Example 4.4. Let a ≥ 3 and A = k[[ta, ta+1, ta
2−a−1]] and I = (ta, ta+1). Then

ℓ(A/I) = 2, e0(I) = e0(m) = a, e1(I) = e1(m) =

(
a

2

)
− 1 =

(
e0(I)

2

)
+ 1− ℓ(A/I).

This is the situation in (iv) of the above proposition. Note that G(m) is a Cohen-

Macaulay ring only in the case a = 3. This was indicated in [16, p. 19] in the case

a = 3 and in [2, Proposition 4.6(2)] for a ≥ 4.

We now give a new bound on e1(I) for an m-primary ideal I ⊆ mb and b ≥ 2. It is

in fact a correction of the bound given in [4, Proposition 1.1]. The following result was

stated for any dimension d ≥ 1, but the proof there is valid only for d = 1, because in

general one cannot find an element x ∈ m such that it is simultaneously superficial for

both m and I.

Lemma 4.5. [4, Proposition 1.1] Let I ⊆ mb be an m-primary ideal of an one-

dimensional Cohen-Macaulay ring A. Then

e1(I) ≤ (e0(m)− 1)(e0(I)− be0(m)) + e1(m).
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Modifying the bound in the above lemma, we can give a new bound on e1(I) for any

dimension.

Theorem 4.6. Let A be a Cohen-Macaulay ring of dimension d ≥ 1. Let I ⊆ mb be

an m-primary ideal, where b ≥ 1. Then

e1(I) ≤
1

2b− 1

(
e0(I)− b+ 1

2

)
−
(
µ(m)− d

2

)
.

Proof. First consider the case d = 1. By Lemma 4.5,

e1(I) ≤ (e0 − 1)(e0(I)− be0) + e1(m),

where we set ei := ei(m). By [2, Theorem 1.6],

e1 ≤
(
e0
2

)
−
(
µ(m)− 1

2

)
.

Hence

e1(I) ≤ (e0 − 1)(e0(I)− be0) +
e0(e0−1)

2
−
(
µ(m)−1

2

)
= e20(−b+ 1

2
) + e0(e0(I) + b− 1

2
)− e0(I)−

(
µ(m)−1

2

)
.

The function

f(t) = (−b+
1

2
)t2 + (e0(I) + b− 1

2
)t− e0(I)

reaches its maximum at t0 =
e0(I)+b− 1

2

2(b− 1
2
)

and

f(t0) =
(2e0(I)− 2b+ 1)2

8(2b− 1)
=

1

2b− 1

{(
e0(I)− b+ 1

2

)
+

1

8

}
.

Note that ⌊m+α
n

⌋ = ⌊m
n
⌋ for any integers n ≥ 1, m and a real number 0 ≤ α < 1. Hence

e1(I) ≤ ⌊f(t0)⌋ −
(
µ(m)−1

2

)
= ⌊ 1

2b−1

(
e0(I)−b+1

2

)
⌋ −

(
µ(m)−1

2

)
≤ 1

2b−1

(
e0(I)−b+1

2

)
−
(
µ(m)−1

2

)
.

Now let d ≥ 2. Let x ∈ I be a superficial element. Then e0(I/x) = e0(I), e1(I/x) =

e1(I), I/x ⊆ (m/x)b and µ(m/x) ≥ µ(m)−1. Hence, the conclusion follows by induction

on the dimension. □

Remark 4.7. Let b ≥ 2. Then Theorem 4.6 gives

(4.10) e1(I) ≤ ⌊1
3

(
e0(I)− b+ 1

2

)
⌋ −

(
µ(m)− d

2

)
.

It is easy to check that

⌊1
3

(
e0(I)− b+ 1

2

)
⌋ ≤

(
e0(I)− b

2

)
.
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This give another proof of Corollary 3.2 in the case M = A. It is clearly better than

the bound of Corollary 3.2 if m is generated by at least d+2 elements. If e0(I) ≥ b+5,

then from (4.10) we get a much better bound:

e1(I) ≤
1

2

(
e0(I)− b

2

)
−
(
µ(m)− d

2

)
.

Remark 4.8. We now give a brief account of upper bounds on e1(I) of an m-primary

ideal I of an one-dimensional Cohen-Macaulay ring A such that I ⊊ m2.

(i) The first Rossi-Valla bound (4.1):

e1(I) ≤
(
e0(I)

2

)
−
(
µ(I)− 1

2

)
− ℓ(A/I) + 1.

(ii) The second Rossi-Valla bound (see Lemma 4.1(ii)):

e1(I) ≤
(
e0(I)

2

)
−
(
µ(Ĩ)− 1

2

)
− ℓ(A/Ĩ) + 1.

(iii) Elias’ bound (see Proposition 4.5):

e1(I) ≤ (e0(m)− 1)(e1(I)− be0(m)) + e1(m).

(iv) The Hanumanthu-Huneke bound [6, Corollary 2.9]: Under the additional condi-

tion that A is an analytically unramified local domain with algebraically closed

residue field, we have

e1(I) ≤
(
e0(I)− ℓ(A/Ī) + 1

2

)
,

where Ī denotes the integral closure of I.

(v) The case b = 1 of Theorem 4.6

e1(I) ≤
(
e0(I)

2

)
−
(
µ(m)− 1

2

)
.

One can give examples to show that these bounds are independent. Note that the

bounds in (i) and (v) can be lifted to higher dimensions, while we could not do the

same for the other bounds.

5. The second Hilbert coefficient

Rhodes [13, Proposition 6.1(iv)] proved that e2(I,M) ≤
(
e1(I,M)

2

)
. Combining with

the bound in Proposition 3.1, we get e2(I,M) < 1
8
e0(I,M)4. In the case I = m and

M = A, there is a much better bound given in [5, Theorem 2.3]. The bound also

involves e1(m) and some rather technical invariants. As a consequence, it was shown

there that e2(m) ≤
(
e1(m)

2

)
−
(
µ(m)−d

2

)
, which is of course better than Rhodes’ bound in

the case I = m. Applying known bounds on e1(m) to the bound in [5, Theorem 2.3],

one can show that e2(m) < 2
3
e0(m)3.

The aim of this section is to give a new bound on e2(I,M) in terms of e0(I,M),

which is less than 1
6
e0(I,M)3, and to characterize when this bound is attained. In the

case M = A, after finding some relationships between the reduction number and the
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Hilbert coefficients, using Theorem 4.6 we can give a better bound for a large class of

I, see Theorem 5.9.

Theorem 5.1. Let M be a Cohen-Macaulay module of dim(M) = d ≥ 2 over (A,m).

Let I be an m-primary ideal such that IM ⊆ mbM , where b is a positive integer. Then

e2(I,M) ≤
(
e0(I,M)− b+ 1

3

)
.

Proof. By standard technique we may assume that d = 2.

Let x ∈ I\I2 be an M -superficial element for I. Let N := M/xM . By Lemma

2.1(ii) and (iii), ei(I,M) = ei(I,N) for i = 0, 1. For short, we write p := pn(I,N) and

e0 := e0(I,M) = e0(I,N). Then

(5.1) PI,N(z) =
HI,N(0) +

∑p−1
i=0 (HI,N(i)−HI,N(i− 1))zi + (e0 −HI,N(p− 1))zp

1− z
.

By (2.2), we have

e2(I,N) =

∑p−1
i=0 (i− 1)i(HI,N(i)−HI,N(i− 1)) + p(p− 1)(e0 −HI,N(p− 1))

2!

= −
p−1∑
i=1

iHI,N(i) +
p(p− 1)

2
e0

=

p−1∑
i=1

i(e0 −HI,N(i))

≤
e0−b−1∑
i=1

i(e0 −HI,N(i)) (by Lemma 2.4(iii))(5.2)

≤
e0−b−1∑
i=1

i(e0 − i− b− ℓ(H0
G(I)+

(GI(N))i) (by Lemma 2.4(ii))

≤
e0−b−1∑
i=1

i(e0 − i− b) =

(
e0 − b+ 1

3

)
.(5.3)

Since M is a Cohen-Macaulay module, by Lemma 2.1(iv),

(5.4) e2(I,N) = e2(I,M) +
n∑

i=0

ℓ

(
I i+1M : x

I iM

)
≥ e2(I,M).

Hence the inequality (5.3) gives e2(I,M) ≤
(
e0−b+1

3

)
. □

Remark 5.2. Assume that IM ⊆ mbM . If e0(I,M) ≤ b + 1, then by the above

theorem, we get e2(I,M) ≤ 0. From the famous result of Narita [11] on the non

negativity of the second Hilbert coefficient (see [15, Proposition 3.1] for a short proof

in the module case), this implies e2(I,M) = 0. Hence we can omit this case when

dealing with the border case of the above theorem. The following result say that if the

above bound is attained, then b = 1 and I satisfies the conditions of Proposition 3.5.
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Theorem 5.3. Let M be a Cohen-Macaulay module of dim(M) = d ≥ 2 over (A,m)

and I an m-primary ideal. Let b be the largest integer such that IM ⊆ mbM . Assume

that e0(I,M) ≥ b+ 2. The following conditions are equivalent:

(i) e2(I,M) =
(
e0(I,M)−b+1

3

)
,

(ii) PI,M(z) =
ℓ(M/IM)+(1+b−ℓ(M/IM))z+

∑e0(I,M)−b
i=2 zi

(1−z)d
,

(iii) depth(GI(M)) ≥ d− 1 and e1(I,M) =
(
e0(I,M)−b+1

2

)
+ b− ℓ(M/IM),

(iv) depth(GI(M)) ≥ d− 1, reg(GI(M)) = e0(I)− b and ad−1(GI(M)) ≤ 1− d,

(v) depth(GI(M)) ≥ d − 1 and reg(GI(M)) =
(
e0(I,M)−b+2

2

)
+ b − e1(I,M) −

ℓ(M/IM)− 1.

If one of the above conditions holds, then b = 1.

Proof. For simplicity, we set ei := ei(I,M), i ∈ {0, 1, 2} and G := G(I). First, let

d = 2.

By (2.2) it is clear that (ii) implies (i). Assume (i), i.e. e2 =
(
e0−b+1

3

)
. Let x ∈ I \ I2

be an M -superficial element for I. Let N := M/xM . By Lemma 2.1, ei(I,N) =

ei(I,M) = ei for i = 0, 1, and by (5.4), e2(I,M) ≤ e2(I,N). Since e2(I,N) ≤
(
e0−b+1

3

)
(see (5.3)), we must have e2(I,N) = e2(I,M) =

(
e0−b+1

3

)
. By Lemma 2.1(v), the initial

form x∗ ∈ I/I2 is a regular element on GI(M). This means depthGI(M) > 0. Note

that GI(N) ∼= GI(M)/x∗GI(M).

Moreover, since e0 ≥ b + 2, using (5.2) and (5.3) we also have p = e0 − b, where

p := pn(I,N), and HI,N(n) = n+ b for all 1 ≤ n ≤ p. By (5.1) we then get

(5.5) PI,N(z) =
ℓ(N/IN) + (1 + b− ℓ(N/IN))z +

∑e0−b
i=2 zi

1− z
.

Therefore, using Lemma 2.1(v) again, we get (ii). Thus (i) ⇐⇒ (ii) and they imply

depthGI(M) > 0.

(ii) =⇒ (iii) The first part depthGI(M) > 0 was just shown, while the second part

immediately follows from (2.2).

(ii) =⇒ (iv) and (v) The first part depthGI(M) > 0 was shown above. Since x∗ is a

regular element on GI(M), by Lemma 2.1(v), it implies that (5.5) holds. This means

(I,N) satisfies the condition (ii) of Proposition 3.5. By the conditions (iii) and (iv) of

Proposition 3.5, we get

reg(GI(N)) =
(
e0−b+2

2

)
+ b− e1 − ℓ(N/IN)− 1,

reg(GI(N)) = e0 − b and a0(GI(N)) ≤ 0.

Note that regGI(M) = regGI(M)/x∗GI(M) = regGI(N) and ℓ(M/IM) = ℓ(N/IN).

Hence
reg(GI(M)) =

(
e0−b+2

2

)
+ b− e1 − ℓ(M/IM)− 1,

reg(GI(M)) = e0 − b.

Thus (v) is proved. Further, since a0(GI(N)) ≤ 0, from the exact sequence

0 = H0
G+

(GI(N))n ∼= H0
G+

(GI(M)/x∗GI(M))n → H1
G+

(GI(M))n−1 → H1
G+

(GI(M))n,

we get inclusions

H1
G+

(GI(M))n−1 ↪→ H1
G+

(GI(M))n,
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for all n ≥ 1. This implies that H1
G+

(GI(M))n = 0 for all n ≥ 0, or equivalently,

a1(GI(M)) ≤ −1. Summing up, (ii) also implies (iv).

If one of the conditions (iii), (iv) and (v) is fulfilled, then one of the conditions (i),

(iii) or (iv) in Proposition 3.5 holds for the pair (I,N). Hence by Proposition 3.5(ii)

PI,N(z) =
ℓ(N/IN)+(b+1−ℓ(N/IN))z+

∑e0−b
i=2 zi

(1−z)

=
ℓ(M/IM)+(b+1−ℓ(M/IM))z+

∑e0−b
i=2 zi

(1−z)
.

Using Lemma 2.1(v), we then get (ii). The proof of the case d = 2 is completed.

Assume now d > 2. Then (ii) =⇒ (i) follows from (2.2).

Assume (i). Let x ∈ I \I2 be an M -superficial element for I and N := M/xM . Then

dimN = d− 1 and the pair (I,N) satisfies the condition (i). By induction hypothesis,

depthGI(N) ≥ d − 2. Using Sally’s descent (see [8, Lemma 2.2] or [15, Lemma 1.4]),

we can deduce that depthGI(M) ≥ d − 1. This implies that x∗ is regular on GI(M).

By Lemma 2.1(v), (ii) follows. Further, we have reg(GI(M)) = reg(GI(N)). Using the

exact sequence

Hd−2
G+

(GI(N))n ∼= Hd−2
G+

(GI(M)/x∗GI(M))n → Hd−1
G+

(GI(M))n−1 → Hd−1
G+

(GI(M))n,

one can see that ad−2(GI(N)) ≤ 2−d implies ad−1(GI(M)) ≤ 1−d. Since (I,N) satisfies

the condition (iii), (iv), (v), we then get that also (I,M) satisfies these conditions.

Conversely, assume that depthGI(M) ≥ d − 1. Then, by Sally’s descent, we get

depth(GI(N)) ≥ d−2 and x∗ is regular on GI(M). Hence, we have the following exact

sequence

0 → Hd−2
G+

(GI(N))n ∼= Hd−2
G+

(GI(M)/x∗GI(M))n → Hd−1
G+

(GI(M))n−1.

From this one can see that ad−1(GI(M)) ≤ 1− d implies ad−2(GI(N)) ≤ 2− d. Since

ei(I,M) = ei(I,N) for all i ≤ 2, if (I,M) satisfies one of the conditions (iii), (iv) and

(v), then the same condition holds for (I,N). Therefore, (i) holds for (I,N), whence

also holds for (I,M).

Finally, if one of conditions (i)...(v) is satisfied, then from the condition (iv) we see

that (I,M) satisfies the condition in Lemma 3.4. Hence b = 1. □

Example 5.4. Using Example 4.4, we can see that the pair (I,M) satisfies the condi-

tions of Theorem 5.3, where

I = (ta, ta+1, u1, ..., ud−1) ⊂ A = k[[ta, ta+1, ta
2−a−1, u1, ..., ud−1]],

(a ≥ 3, d ≥ 2) and M = A.

The above theorem says that if e0(I,M) ≥ b + 2 and b ≥ 2, then the inequality in

Theorem 5.1 is strict. For the case M = A, using the bound of Theorem 4.6, we can

give a better bound in the case b ≥ 2. We need some more preparation.

Recall that the ideal J ⊆ I is called an M-reduction of I if In+1M = JInM for all

n ≫ 0. The number:

rJ(I,M) = min{n ≥ 0| In+1M = JInM}
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is called the M-reduction number of I with respect to J . An M -reduction of I is called

minimal if it does not strictly contain another M -reduction of I. The number

r(I,M) := min{rJ(I,M)| J is a minimal M -reduction of I}

is called the M-reduction number of I. The above definitions of reductions and re-

duction numbers remain valid for any ideal I of a Noetherian ring R and any finitely

generated R-module M .

Remark 5.5. We recall here some facts on reductions.

(i) A minimal M -reduction of I is generated by exactly d elements.

(ii) A minimal M -reduction of I can be generated by a maximal M -superficial

sequence for I.

Below are some relationships between the reduction number and Hilbert coefficients.

Lemma 5.6. Let M be an one-dimensional Cohen-Macaulay module and I an m-

primary ideal such that IM ⊆ mbM for some positive integer b. Then

r(I,M) ≤ e0(I,M)− b.

Proof. Assume that x ∈ I is an M -superficial element for I such that r(I,M) =

r(x)(I,M). Then r(I,M) = r(x∗)(G+, GI(M)). By [17, Proposition 3.2],

r(x∗)(G+, GI(M)) ≤ reg(GI(M)).

By Lemma 2.4(i) and (iii), reg(GI(M)) = pn(I,M) ≤ e0(I,M) − b. Hence r(I,M) ≤
e0(I,M)− b. □

Lemma 5.7. Let M be an one-dimensional Cohen-Macaulay module and I an m-

primary ideal. Then

e2(I,M) ≤ (r′(I,M)− 1)e1(I,M),

where we set r′(I,M) := max{1, r(I,M)}.

Proof. Assume that x ∈ I is an M -superficial element for I such that r := r(I,M) =

r(x)(I,M). Set r′ := max{1, r}. By [15, Lemmas 2.1 and 2.2]

e1(I,M) =
r−1∑
j=0

ℓ(Ij+1M/xIjM).

Hence
e2(I,M) =

∑r−1
j=1 jℓ(I

j+1M/xIjM)

≤ (r′ − 1)
∑r−1

j=0 ℓ(I
j+1M/xIjM) = (r′ − 1)e1(I,M).

□

Using the above two lemmas, we can give a new bound on e2(I,M).

Proposition 5.8. Let M be a Cohen-Macaulay module of dimension d ≥ 2 and I

an m-primary ideal such that IM ⊆ mbM for some positive integer b. Assume that

e0(I,M) ≥ b+ 1. Then

e2(I,M) ≤ (e0(I,M)− b− 1)e1(I,M).

20



Proof. By standard technique, we only need to consider the case d = 2. Let x ∈ I

be an M -superficial element for I. Set N = M/xM . Then N is an one-dimensional

Cohen-Macaulay module. By the assumption, e0(I,M) − b ≥ 1. Hence, by Lemma

5.6, r′(I,M) ≤ e0(I,M) − b. Applying Lemma 5.7 to N , by Lemma 2.1(ii) and (iii),

we get

e2(I,N) ≤ (r′(I,M)− 1)e1(I,M)

≤ (e0(I,N)− b− 1)e1(I,N) = (e0(I,M)− b− 1)e1(I,M).

By (5.4), e2(I,M) ≤ e2(I,N). Hence e2(I,M) ≤ (e0(I,M)− b− 1)e1(I,M). □

Combining the above result with Theorem 4.6 we get the following bound which is

clearly better the bound of Theorem 5.1 in the case M = A and b ≥ 2.

Theorem 5.9. Let I be an m-primary ideal of a Cohen-Macaulay ring (A,m) of

dimension d ≥ 2 and such that I ⊆ mb for some positive integer b. Assume that

e0(I,M) ≥ b+ 1. Then

e2(I) ≤
3

2b− 1

(
e0(I)− b+ 1

3

)
− (e0(I)− b− 1)

(
µ(m)− d

2

)
.

Proof. We may assume that d = 2. For simplicity we set ei := ei(I), i = 0, 1, 2. By

Theorem 4.6,

e1 ≤
1

2b− 1

(
e0 − b+ 1

2

)
−
(
µ(m)− 2

2

)
.

Hence, by Proposition 5.8,

e2 ≤ (e0 − b− 1)e1

≤ (e0 − b− 1)
{

1
2b−1

(
e0−b+1

2

)
−
(
µ(m)−2

2

)}
= 3

2b−1

(
e0−b+1

3

)
− (e0 − b− 1)

(
µ(m)−2

2

)
.

□
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