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Abstract. We investigate the energy decay of hyperbolic system of wave-wave with generalized acoustic
boundary conditions in d-dimensional space, with the equations being coupled through boundary connection.

First, by spectrum approach combining with a general criteria of Arendt-Batty, we prove that our model is

strongly stable. Then, after proving that this system lacks the exponential stability, we establish different type
of polynomial energy decay rates provided that the coefficients of the acoustic boundary conditions satisfy some

assumptions. Further, we present some appropriate examples and show that our assumptions have been set

correctly. Finally, we prove that the obtained energy decay rate is optimal in particular case.
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1. Introduction

Let Ω be an open bounded domain in Rd, with a boundary Γ = ∂Ω of class C2. We denote by Ω1,Ω2

the open bounded sets of Ω, such that Ω2 = Ω\Ω1, with the interface I = ∂Ω1 ∩ ∂Ω2, and boundaries Γ1,Γ2

respectively, satisfying Γj = ∂Ωj\I (j = 1, 2) such that Γ1 ∩ Γ2 = ∅, as shown in the figure below (see Figure
1).
For m ∈ N∗, we further fix a vector valued function C ∈ C0,1(Γ1;Cm), a matrix valued function B ∈
C0,1(Γ1;Mm(C)), and for every x ∈ Γ1, an inner product (·, ·)x in Cm such that

ℜ(B(x)V, V )x ≤ 0, ∀V ∈ Cm.

For every x ∈ Γ1, let M(x) ∈ Mm(C) be the Hermitian positive-definite matrix associated with this inner
product (·, ·)x, i.e.

(V1, V2)x = V2
T
M(x)V1, ∀V1, V2 ∈ Cm.

From now on we further assume that M is Lipschitz continuous on Γ1. For the sake of brevity, if there is no
confusion we use the notation (·, ·) to denote (·, ·)x. The associated norm is denoted by ∥·∥.

The system that describes the model is the following

(1.1)



utt(x, t)− a∆u(x, t) = 0, in Ω1 × (0,∞),

ytt(x, t)− b∆y(x, t) = 0, in Ω2 × (0,∞),

u(x, t)− y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t) + b∂ν2y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t)− (η(x, t), C) = 0, on Γ1 × (0,∞),

ηt(x, t) + Cut(x, t)−Bη(x, t) = 0, on Γ1 × (0,∞),

y(x, t) = 0, on Γ2 × (0,∞),

where u and y are complex valued functions (representing the transverse displacement in the case Ω ⊂ R and
the potential velocity in the case Ω ⊂ Rd, with d ≥ 2), a and b are two positive constants, νi(x), i = 1, 2
denotes the outer unit normal vector to the point x ∈ ∂Ωi, and ∂νi is the corresponding normal derivative and
η denotes the acoustic control variable. System (1.1) is considered with the following initial conditions:

(1.2)


u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω2,

η(x, 0) = η0(x), x ∈ Γ1.

Γ2

I

Ω2

Ω1
Γ1

Figure 1. N-dimensional Model
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Let u, y, η be smooth solutions of system (1.1). We define their associated energy by

E(t) =
1

2

(∫
Ω1

|ut|2dx+ a

∫
Ω1

|∇u|2dx+

∫
Ω2

|yt|2dx+ b

∫
Ω2

|∇y|2dx+

∫
Γ1

∥η∥2dΓ
)
.

A direct calculation gives
d

dt
E(t) =

∫
Γ1

ℜ(B(x)η, η)dΓ ≤ 0,

and thus implies that system (1.1) is dissipative in the sense that the energy E(t) is non-increasing with respect
to time variable t.

1.1. Motivation. Acoustic conditions refer to approaches in many real life applications of mathematical
physics and engineering. Since Morse [30] introduce such a damping on the boundary of wave equation,
many authors were interested to study this problem ([8],[41],[13]). Recently, Abbas et el. [2], on a given open
bounded domain Ω in Rd, with a Lipschitz boundary Γ divided into two disjoint parts Γ0 and Γ1, consider the
following system

(1.3)



ytt(x, t)−∆y(x, t) = 0, in Ω, t > 0,

y(x, t) = 0, on Γ1, t > 0,

∂ν1y(x, t)− (δ(x, t), C) = 0, on Γ0, t > 0,

δt(x, t) + Cyt(x, t)−Bδ(x, t) = 0, on Γ0, t > 0,

with the following initial conditions:

(1.4)

 y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,

δ(x, 0) = δ0(x), x ∈ Γ0,

where y is a complex valued function and δ denotes the dynamical control variable, with C ∈ C0,1(Γ0;Cm),
and B ∈ C0,1(Γ0,Mm(C)), m ∈ N∗. For every x ∈ Γ0, M(x) ∈ Mm(C) denotes a Hermitian positive-definite
matrix associated with this inner product (·, ·)x, i.e.

(δ1, δ2)x = δ2
T
M(x)δ1, ∀ δ1, δ2 ∈ Cm.

Moreover, under an assumption on the behaviour of ℜ((isI − B)−1C,C) for all large enough real numbers
s, they established the polynomial energy decay rate of the system (1.3)-(1.4). Further, they presented some
appropriate examples and showed that their assumptions have been set correctly. To our knowledge the ob-
tained decay rate is not optimal, see for instance [36] and [43].

On the other hand, the wide range of attention taken nowadays in transmission problems, whether in
modeling, control of engineering, physical interactive processes, or others, has motivated the authors to proceed
with extensive studies ([23], [22],[19], [32]). Lately, Chai and Guo [16] consider two wave equations for a
transmission problem with a dynamical boundary control. In a similar domain to that described in fig. 1, they
deal with the following system

(1.5)



u
′′

i (x, t)− ai∆ui(x, t) = 0, in Ωi × (0,∞); i = 1, 2,

mu
′′

1 (x, t) + a1
∂u1(x,t)
∂ν = −βu′

1 − γa1
∂u

′
1

∂ν , on Γ1 × (0,∞),

u2(x, t) = 0, on Γ2 × (0,∞),

u1(x, t) = u2(x, t); a1
∂u1

∂ν = a2
∂u2

∂ν , on I × (0,∞),

with initial conditions

(1.6) ui(x, 0) = u0i (x), u
′

i(x, 0) = u1i (x), in Ωi × (0,∞); i = 1, 2,

where ν denotes the unit normal on the boundary of Ω and I, directed toward the exterior of Ω, m ∈ L∞(Γ1)
with m > 0, and a1, a2, β and γ are positive constants, such that βγ < m. Furthermore, they discussed
the well-posedness of the problem (1.5)-(1.6), and proved the exponential stability of the system under some
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geometric conditions, for the case where m > 0.

Here we raise two important questions we are interested in:

1. What are the consequences when two coupled waves are considered with a general acoustic boundary
condition? Will the system maintain its strong stability, and polynomial stability?

2. Is it possible to improve the decay rate obtained by Abbas and Nicaise?

The main goal of this paper is to generalize the systems and improve the results of the above problems.
In this regard, we propose a system of two waves in a transmission problem with a generalized acoustic
boundary condition. More precise, we consider the system (1.1)-(1.2), and prove its well-posedness and strong
stability. Moreover, we improve the polynomial decay rates, that were obtained in [2], using an assumption on
the behaviour of (Bv, v). Additionally, we introduce some illustrative examples, to confirm our assumption.
Furthermore, we prove the optimality in the one-dimensional case for some particular sample of the generalized
system. The proposed idea is more general and superior to the prevailing ideas, and to our knowledge, this
work is not done before.

1.2. Literature. In recent years, researchers have shown interest in studying the stability of systems, in partic-
ular coupled systems that describe the connection of materials that appears frequently in several fields such as
engineering technology. The mathematical problem that deals with the propagation of the wave among differ-
ent materials are called transmission problem (also known as interface problem, or problem with discontinuous
coefficients), which in turn is of major importance for mathematical studies in many physical and living systems.

Among the applications of wave equations is the noise suppression in the structural acoustic systems, which
is of great interest in physics and engineering. In fact, Acoustic controls deal with sound and vibration, for
example in reduction of unwanted noise. That is to say, it is referred to as noise control. Morse, who has made
several contributions to theoretical atomic physics, shows in his book ”Vibration and Sound” that the new
mathematical techniques which have been developed for the working out of quantum mechanics can be used
to analyze such problems. A course given by him at the Massachusetts Institute of Technology led to writing
his book. According to the preface to the first edition, which appeared in 1936, it is intended primarily as a
textbook for students of physics, of mathematical physics, and of communication engineering. His book was
first published in 1948, and since his book first appeared, the science of acoustic has expanded in many direc-
tions. It has been used increasingly in exploring the properties of matter, in plasma-physics, in meteorology
and astrophysics, in quantum mechanics and many other fields. It takes new importance and significance both
scientifically and technologically.

In this paper we consider the generalization of the so-called acoustic boundary conditions, that was intro-
duced by Morse and Ingard [30] (for m = 2), where they use the model for a wave assumed to be at a definite
frequency. Then in the 1970’s, in a series of papers, Beale [8], [6],[7] proved the global existence and regularity
of solutions in a Hilbert space of data with finite energy by means of semi group methods. In [41], Rivera
and Qin establish the polynomial energy decay in R3. In contrast to other studies of acoustic/structure in-
teraction, Graber [13] consider the non linear coupling, more precisely he considers a wave equation with non
linear acoustic boundary conditions. Nicaise and Abbas [2] prove the polynomial stability of a wave system
with generalized acoustic boundary control, where they show their results in Rd, under an assumption on the
behavior of ℜ((iλI−B)−1C,C) for all real numbers s with large enough modulus. Some particular cases of the
generalized acoustic problem are the wave equation with dynamical control feedback, that has been treated in
[44] (with m = 1 and d = 1), and in [43], [36] (with m = 1 and d ≥ 2).

Transmission problems as well had received the attention, and there have been fruitful results concerning
existence, regularity, controllability and decay estimate of the solutions of different types of such problems. For
example, Lions [20] studied the existence, uniqueness and regularity of solutions for the transmission problem
of wave equation with Dirichlet boundary condition, further he proved the exact controllability using Hilbert
Uniqueness Method. Whereas, the exact controllability for plate equation were proved by Liu and Williams
[24] and Aassila [1]. Besides Marzocchi’s work [28] in which he proved the exponential decay of semi-linear
problems in 1-dimensional space between elastic and thermo-elastic materials, and after that he extend his
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work to higher dimensions with the help of Naso [29]. For the transmission problem with frictional damping,
Bastos and Raposo proved in [4] the well-posedness and exponential stability of the total energy.

The wide range of applications on these models, whether in modeling, control of engineering, physical in-
teractive processes, or others, has motivated the authors to proceed with extensive studies. In 2000, Rivera
and Oquendo [31] studied the wave propagation over materials consisting of elastic and viscoelastic components,
where they confirmed that the corresponding solutions decay exponentially to zero no matter how small the
interval of the viscoelastic part is. The following year, they checked out in [38] the asymptotic behavior of
beams that are made of two different materials, with one of them having a localized thermoelastic effect. Their
main objective was to show that the solutions decay exponentially to zero as time goes to infinity, no matter
how small the interval where the thermal dissipation is effective. Later, in 2004 they proved the exponential
stability under some geometric control conditions for the thermoelastic plates transmission problem [39]. At
that time Zuazua and Zhang follow up on their searches that they started in 2003 and completed to get ex-
cess results and papers [45],[46], [47] on fluid-structure interactions with naive transmission condition at the
interface. They showed the complexity of decay and control problems of such interaction, even in one space
dimension, and proved a sharp polynomial decay rate of type 1

t2 for the energy of smooth solutions. Also, they
worked on a similar model but with more natural transmission condition than the formal one. Then in 2005,
they worked with Rauch in [37] on higher dimensions, analyzing the fluid-structure interaction model of the
coupled equations at the interface with a suitable transfer condition, and obtained the result of the 1

t type
polynomial decay, which was not sharp in general. Carrying on, in 2006 Duyckaerts [12] acted on fluid-structure
interaction model, formed of heat and wave equations taking place in two distinct domains with an interface
that is controlled by a transmission condition. He dealt with natural and näıve transmission problems, proved
the polynomial decay result obtained by another author under interface geometrically controlling the wave
domain, as well as he improved the speed of logarithmic decay for the solution of the system with a transmis-
sion condition. In [40], Rivera and Naso had exponential decay results for the thermoelasticity transmission
problem. In the same year (2007), Rivera with Lapa [19] verified the existence of a global solution that decays
exponentially for the nonlinear transmission problem for the wave equation with time-dependent coefficients
and linear internal damping. Furthermore, Zhang and Zuazua [48] analyzed the long time behavior of coupled
(wave-heat) equations evolved in two bounded domains with natural transmission condition at the interface,
where they obtained a polynomial decay result for smooth solutions of the system under suitable geometric
assumption guaranteeing that the heat domain envelopes the wave one. In absence of geometric conditions
they got a logarithmic decay result for the system with more simplified transmission conditions at interface.
In 2010, Georgi and Fernando investigated in [10] the large time behavior of the solutions of mixed boundary
value problem, and found that the energy of the solutions of the transmission problem in bounded domains
with dissipative boundary conditions decay exponentially. Recently, in 2016 Lulu and Wang [27] traced the
transmission problem of Schrodinger equation with a viscous damped equation (which acts as a controller of
the system), finding that this system achieves strong stability. In 2017, Zuazua and Han [17] discussed the
asymptotic behavior of transmission problem solutions on star-shaped networks of interconnected elastic and
thermoelastic rods, and demonstrated their exponential decay rate.

There have been a lot of works that can’t be listed all, for that we mention only some of them, and still
to end this paragraph we will mention some of the recent works done in the latest five years. Starting with the
work of Nordstrom and Linder [33], done in 2018, in which they introduced the notion of transmission problems
to describe a general class of problems with different dynamics coupled in time, besides to well-posedness and
stability that were analyzed for continuous and discrete problems, using both strong and weak formulations,
and a general transmission condition were obtained. In 2020, Coelho, Cavaleanti, and Valencia [11] in their
proposal address the exponential stability of the solutions of a coupled system posed on an n-dimensional
domain consisting of two parts: one made of viscoelastic material endowed with hereditary memory plus a
localized elastic material and the other made of elastic material, where the common boundary is responsible for
the transmission condition. Whereas, Guo and Chai [15] verified the exponential stabilization of transmission
problem of wave equation with linear dynamical feedback control using classical energy methods and Multiplier
technique in N -dimensional space. In 2021, Nonato, Raposo and Bastos [32] proved the exponential stability
by energy method with the construction of a suitable Lyapunov functional for the transmission problem for
one-dimensional waves with non-linear weights on the frictional damping and time varying delay. Finally, the
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work of Guo and Chai [16], in which they improved their work concerning the exponential stability of two wave
equations with linear dynamical feedback control. They discussed the well-posedness of the problem (1.5)-(1.6),
and proved the exponential decay of the energy of the system under some geometric conditions.

1.3. Organization of the Paper. This paper is organized as follows: In Section 2, we prove the well-posedness
property of system (1.1)-(1.2) using semi group theory, and the strong stability using a general criteria of
Arendt-Batty, after formulating the system into evolution problem. After that we show the lack of exponential
stability in section 3. Then in section 4, we prove the polynomial stability of the system while taking into
consideration the different cases, so that two different rates are obtained. We add some illustrative examples
in section 5, to verify our assumptions. Finally we draw a conclusion in the last section. For further concepts
and definitions, you can refer to the appendix.

2. Well-Posedness, Strong Stability and Lack of Exponential Stability of the System

This section is devoted to study the well-posedness and the strong stability of system (1.1)-(1.2) by the
semigroup approach.

2.1. Well-Posedness. We first introduce the following spaces:

H = {(u, v, y, z, η) ∈ H1(Ω1)× L2(Ω1)×H1
Γ2
(Ω2)× L2(Ω2)×

(
L2(Γ1)

)m | u = y on I},
where

H1
Γ2
(Ω2) = {y ∈ H1(Ω2) | y = 0 on Γ2}.

The Hilbert space H is equipped with the following inner product

(U,U1)H =

∫
Ω1

vv̄1dx+ a

∫
Ω1

∇u · ∇ū1dx+

∫
Ω2

zz̄1dx+ b

∫
Ω2

∇y · ∇ȳ1dx+

∫
Γ1

(η, η1)dΓ,

where U = (u, v, y, z, η), U1 = (u1, v1, y1, z1, η1) ∈ H, the space H is a Hilbert space. We next define the linear
unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) = {(u, v, y, z, η) ∈H : ∆u ∈ L2(Ω1), ∆y ∈ L2(Ω2), v ∈ H1(Ω1), z ∈ H1
Γ2
(Ω2),

a∂ν1u+ b∂ν2y = 0 on I and a∂ν1u− (η, C) = 0 on Γ1},
(2.1)

(2.2) A(u, v, y, z, η)T = (v, a∆u, z, b∆y,Bη − γ(v)C)T ,

where γ : H1(Ω1) −→ L2(Γ1) is the trace operator. Now, setting U = (u, ut, y, yt, η) as the state of system
(1.1)-(1.2), we rewrite the problem into a first-order evolution equation

(2.3) Ut = AU, U(0) = U0,

where U0 = (u0, u1, y0, y1, η0).

Proposition 2.1. The unbounded linear operator A is m-dissipative in the energy space H.

Proof. For all U = (u, v, y, z, η) ∈ D(A), we have

ℜ(AU,U) = ℜ
{
a

∫
Ω1

∇v · ∇ūdx+ a

∫
Ω1

∆uv̄dx+ b

∫
Ω2

∇z · ∇ȳdx

+ b

∫
Ω2

∆yz̄dx+

∫
Γ1

(Bη − γ(v)C, η)Cm dΓ

}
.

(2.4)

It follows, from the boundary and the transmission conditions in (2.1), that

(2.5) ℜ(AU,U) =

∫
Γ1

ℜ(B(x)η, η)dΓ ≤ 0,

that implies that A is dissipative. Now, let us prove that A is maximal. For this aim, if λ > 0 and F =
(f1, g1, f2, g2, h)

⊤ ∈ H, we look for U = (u, v, y, z, η)⊤ ∈ D(A) unique solution of

(2.6) (λI −A)U = F.

Equivalently, we have the following system
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λu− v = f1,(2.7)

λv − a∆u = g1,(2.8)

λy − z = f2,(2.9)

λz − b∆y = g2,(2.10)

(λIm −B)η + γ(v)C = h,(2.11)

where Im :
(
L2(Γ1)

)m →
(
L2(Γ1)

)m
is the identity mapping. As λ /∈ σ(B), equations (2.7) and (2.11) imply

(2.12) η = (λIm −B)−1 (h+ γ(f1)C)− λγ(u)(λIm −B)−1C.

Now, eliminating v in (2.8) by (2.7) and z in (2.10) by (2.9), we obtain the following system

λ2u− a∆u = λf1 + g1,(2.13)

λ2y − b∆y = λf2 + g2,(2.14)

with the following boundary and transmission conditions

(2.15)

a∂ν1u+
(
λu(λIm −B)−1C,C

)
=
(
(λIm −B)−1 (h+ γ(f1)C) , C

)
, on Γ1,

y = 0, on Γ2,

a∂ν1u+ b∂ν2y = 0, and u− y = 0, on I.
Set the Hilbert space H as

(2.16) H :=
{
(f, g) ∈ H1(Ω1)×H1

Γ2
(Ω2) | f = g on I

}
,

equipped with the norm

(2.17) ∥(f, g)∥2H = ∥∇f∥2L2(Ω1)
+ ∥∇g∥2L2(Ω2)

.

Now, let (φ,ψ) ∈ H. Multiplying (2.13) and (2.14) by φ and ψ respectively, then taking their integrals over their
corresponding domain, and using the boundary and transmission conditions in (2.15), we obtain the following
variational problem:

(2.18) Sλ((u, y), (φ,ψ)) = Lλ(φ,ψ), ∀ (φ,ψ) ∈ H,

where S and L are given by

Sλ((u, y), (φ,ψ)) =

∫
Ω1

λ2uφdx+

∫
Ω2

λ2yψdx+ a

∫
Ω1

∇u · ∇φdx+ b

∫
Ω2

∇y · ∇ψdx

+ a

∫
Γ1

λ((λIm −B)−1C,C)γ(u)γ(φ)dΓ,

(2.19)

(2.20) Lλ(φ,ψ) =

∫
Ω1

(λf1 + g1)φdx+

∫
Ω2

(λf2 + g2)ψdx+ a

∫
Γ1

(
(λIm −B)−1(γ(f1)C + h), C

)
γ(φ)dΓ.

It is easy to see that Sλ is a sesquilinear and continuous form on the space H × H. Besides, Sλ is coercive
form on H× H as

ℜ
{(

(λIm −B)−1C,C
)}

= ℜ{(Q, (λIm −B)Q)} = λ||Q||2 −ℜ(Q,BQ) ≥ 0,

where Q = (λIm − B)−1C. Hence, we get that ℜSλ((u, y), (u, y)) ≥ ||(u, y)||H×H, thus the coercivity of Sλ.
Moreover, Lλ is antilinear and continuous form on H. Then, it follows by Lax-Milgram’s theorem that (2.18)
admits a unique solution (u, y) ∈ H. By choosing φ ∈ C∞

c (Ω1), ψ = 0 in (2.18), and applying Green’s formula,
we have ∫

Ω1

(
λ2u− a∆u

)
φdx =

∫
Ω1

(λf1 + g1)φdx, ∀φ ∈ C∞
c (Ω1),

which implies that the first equation of (2.13) holds in the sense of distributions in Ω1, and hence it is satisfied
in L2(Ω1). As λ

2u − λf1 − g1 belongs to L2(Ω1), the same holds for ∆u, i.e., ∆u ∈ L2(Ω1). In the same way,
choosing φ = 0 and ψ ∈ C∞

c (Ω2) in (2.18), we see that the second equation of (2.14) holds as equality in
L2(Ω2), and therefore ∆y ∈ L2(Ω2). Now, let us define the space

H1
∗,I(Ω1) =

{
f ∈ H1(Ω1) | f = 0 on I

}
.
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By taking φ ∈ H1
∗,I(Ω1), ψ = 0, and applying Green’s formula in (2.18), we obtain∫

Γ1

(
a∂ν1u+

(
λu(λIm −B)−1C,C

))
φdΓ =

∫
Γ1

(
(λIm −B)−1 (h+ γ(f1)C) , C

)
φdΓ, ∀φ ∈ H

1
2

∗,I(Γ1),

where H
1
2

∗,I(Γ1) is the corresponding trace space of H1
∗,I(Ω1) through the trace operator γ. Since H

1
2

∗,I(Γ1) is

dense in L2(Γ1), we deduce that u satisfies

a∂ν1u+
(
λu(λIm −B)−1C,C

)
=
(
(λIm −B)−1 (h+ γ(f1)C) , C

)
on Γ1.

Coming back to (2.18), and again applying Green’s formula, and using the fact that u = y and φ = ψ on I,
we get ∫

I
(a∂ν1u+ b∂ν2y)ψdΓ = 0, ∀ψ ∈ H

1
2
∗ (I),

where H
1
2
∗ (I) is the corresponding trace space of H1

∗ (Ω2) through the operator ψ 7−→ ψ|I . Due to the density

of H
1
2
∗ (I) into L2(I), we can easily check that u and y satisfy the transmission conditions of (2.15)3. Finally,

by setting

v := λu− f1, z := λy − f2, and η := (λIm −B)−1 (h+ γ(f1)C)− λu(λIm −B)−1C,

we conclude that there exists a unique U = (u, v, y, z, η) ∈ D(A) solution of equation (2.6) and thus the
operator A is m-dissipative on H. The proof is thus complete.

□
According to Lumer-Philips theorem (see [34]), Proposition 2.1 implies that the operator A generates a C0-
semigroup of contractions

(
etA
)
t≥0

in H, which gives the well-posedness of (2.3). Then, we have the following

result:

Theorem 2.2. For all U0 ∈ H, system (2.3) admits a unique weak solution

U(t) ∈ C0(R+;H).

Moreover, if U0 ∈ D(A), then the system (2.3) admits a unique strong solution

U(t) ∈ C0(R+;D(A)) ∩ C1(R+;H).

2.2. Strong Stability. This part will be specified for the prove of the strong stability of our system, without
any geometric conditions. For this, we need to introduce some spaces and definitions.

(2.21) H⋆ :=
{
(f, g) ∈ H1

Γ1
(Ω1)×H1

Γ2
(Ω2) | f = g on I

}
,

equipped with the norm

(2.22) ∥(f, g)∥2H = ∥∇f∥2L2(Ω1)
+ ∥∇g∥2L2(Ω2)

,

where

H1
Γ1
(Ω1) = {f ∈ H1(Ω1) | f = 0 on Γ1}.

Through the section, we will use the following set

Σm := {λ ∈ C : ∃x ∈ Γ1 : (λIm −B(x)) is not invertible}.

From the continuity of B, Σm is a compact subset of C. Define the linear unbounded operator ODir :
D(ODir) 7−→ L2(Ω1)× L2(Ω2) by

(2.23) D(ODir) =
{
(f, g) ∈ H⋆ : ∆f ∈ L2(Ω1), ∆g ∈ L2(Ω2), and a∂ν1 f + b∂ν2g = 0 on I

}
,

and

(2.24) ODir(f, g) = (−a∆f,−b∆g), ∀ (f, g) ∈ D(ODir).

Lemma 2.3. The linear unbounded operator ODir is a positive self-adjoint operator with a compact resolvent.
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Proof. In order to prove that ODir is a positive self-adjoint operator, we can instead prove that it is a
symmetric and m-accretive operator, that in turn easy and clear. Moreover, due to sobolev embedding, the
resolvent of the operator ODir is compact. Thus the proof is complete.

□
Then, we can consider the sequence of eigenfunctions (φO,k, ψO,k)k∈N∗ (that form an orthonormal basis of
L2(Ω1) × L2(Ω2)) of the operator ODir, corresponding to the eigenvalues (λ2O,k)k∈N∗ (repeated according to

their multiplicity), such that λ2O,k tends to infinity as k goes to infinity.
Now will state the following theorem, but before we would like to add some assumptions that we will use

through the section

(SSC1) ∀ iλ /∈ Σm, λ ∈ R∗, ∃αλ > 0 : ((iλIm −B(x))−1C(x), C(x)) ≥ αλ, ∀x ∈ Γ1.

(SSC2) ∀ iλ ∈ Σm, λ ∈ R∗, : ∀M ⊂ Γ1 : mes (M) > 0, ∃x ∈M : (η, C(x)) ̸= 0, ∀ 0 ̸= η ∈ Ker(iλIm−B(x)).

(SSC3) ∀ iλ ∈ Σm, λ ∈ R∗, C /∈ Ker (iλIm +B⋆)
⊥

on Γ1.

(SSC4) Σm ∩ {±iλO,k, k ∈ N∗} = ∅.

Theorem 2.4. Assume that (SSC1)-(SSC4) hold, 0 /∈ Σm and Σm∩ iR∗ is countable. Then, the C0-semigroup
of contraction (etA)t≥0 is strongly stable on H in the following sense

lim
t→+∞

||etAU0||H = 0, ∀ U0 ∈ H.

According to Theorem A.2, to prove Theorem 2.4, we need to prove that the operator A has no pure imaginary
eigenvalues and σ(A) ∩ iR is countable. The proof of these results is not reduced to the analysis of the point
spectrum of A on the imaginary axis since its resolvent is not compact. Hence the proof of Theorem 2.4 has
been divided into the following two Lemmas.

Lemma 2.5. Under the assumptions of Theorem 2.4, the operator iλI −A is injective, for all λ ∈ R.

Proof. By contradiction argument, let λ ∈ R, and assume that there exists U = (u, v, y, z, η)⊤ ∈ D(A) \ {0},
such that

(2.25) AU = iλU.

Equivalently, we have the following system

v = iλu,(2.26)

a∆u = iλv,(2.27)

z = iλy,(2.28)

b∆y = iλz,(2.29)

Bη − γ(v)C = iλη.(2.30)

Eliminating v in (2.27) and in (2.30) by (2.26), and eliminating z in (2.29) by (2.28), we obtain the following
system:

λ2u+ a∆u = 0, in Ω1,(2.31)

λ2y + b∆y = 0, on Ω2,(2.32)

(iλIm −B)η + iλuC = 0, on Γ1,(2.33)

with the following boundary and transmission conditions

(2.34)

a∂ν1u− (η, C) = 0, on Γ1,

y = 0, on Γ2,

a∂ν1u+ b∂ν2y = 0, and u− y = 0, on I.
In order to study the solution of (2.31)-(2.34), we will distinguish several cases.

9



Case 1. iλ /∈ Σm. In this case we again distinguish between two cases.
Case 1.1. λ = 0. Then from (2.33) and (2.34)1 we get

∂νu = 0 and η = 0, on Γ1.

Multiplying equation (2.31) by u and equation (2.32) by y, integrating by parts, and using (2.34), we get

a

∫
Ω1

∥∇u∥2dx+ b

∫
Ω2

∥∇y∥2dx = 0.

It follows that U = 0, which contradicts the fact that U ̸= 0.

Case 1.2. λ ̸= 0. Then, by the proof of Proposition 2.1, we deduce that problem (2.31)-(2.34) admits a
unique solution (u, y) ∈ H, and it satisfies the following variational equation:

(2.35) Siλ((u, y), (φ,ψ)) = 0, ∀ (φ,ψ) ∈ H,

where S is given by

Siλ((u, y), (φ,ψ)) =−
∫
Ω1

λ2uφdx−
∫
Ω2

λ2yψdx+ a

∫
Ω1

∇u · ∇φdx+ b

∫
Ω2

∇y · ∇ψdx

+ ia

∫
Γ1

λ((iλIm −B)−1C,C)γ(u)γ(φ)dΓ.

(2.36)

In particular, for (φ,ψ) = (u, y), we have

−
∫
Ω1

|λu|2dx−
∫
Ω2

|λy|2dx+ a

∫
Ω1

|∇u|2dx+ b

∫
Ω2

|∇y|2dx

+ ia

∫
Γ1

λ((iλIm −B)−1C,C)|γ(u)|2dΓ = 0.

(2.37)

Then, taking the imaginary part of (2.37), and using the fact that λ ̸= 0, we get

(2.38) ℜ
{∫

Γ1

(iλIm −B)−1C,C)|γ(u)|2dΓ
}

= 0,

which together with (SSC1) condition yields

u = 0, on Γ1.

On the other hand, using equation (2.33) and (2.34)1, and the fact that iλ /∈ Σm, we obtain

η = −iλ(iλIm −B)−1Cu = 0, and ∂νu = 0 on Γ1.

Consequently, u satisfies the following system:

(2.39)

{
λ2u+ a∆u = 0 in Ω1,

u = ∂ν1u = 0 on Γ1.

Hence, Holmgren uniqueness theorem (see [21]) yields

(2.40) u = 0 in Ω1.

It follows, from the transmission conditions, that

(2.41) y = ∂ν2y = 0 on I,
which together with (2.32) gives

(2.42)

{
λ2y + b∆y = 0 in Ω2,

y = ∂ν2y = 0 on I.
Again, by the Holmgren uniqueness theorem we have

(2.43) y = 0 in Ω2.
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Summing up, we have proved that U = 0. This contradicts the fact that U ̸= 0.

Case 2. iλ ∈ Σm. Assume that η ̸= 0 (on the contrary we repeat the same proof in Case 1.2.). Then
there exists Γ⋆,1 ⊂ Γ1 with mes(Γ⋆,1) > 0, such that η ̸= 0 on Γ⋆,1. We distinguish two cases.

Case 2.1. u = 0 in Ω1 or y = 0 in Ω2.
Assume that u = 0 in Ω1, then from the transmission condition (2.34)3 we deduce that y satisfies system (2.42),
and consequently y = 0 in Ω2. On the other hand, from (2.33) and (2.34)1, we deduce that

(η, C(x)) = 0, and 0 ̸= η ∈ Ker(iλIm −B(x)), ∀x ∈ Γ⋆,1,

which is in contradiction with (SSC2). Similarly, if y = 0. Then, η = 0 and consequently U = 0 which
contradicts the fact that U ̸= 0.

Case 2.2. u ̸= 0 in Ω1 and y ̸= 0 in Ω2. From equation (2.33), we deduce that

Cu ∈ R(iλIm −B)) = Ker (iλIm +B⋆)
⊥
, on Γ1,

which implies, from condition (SSC3), that

u = 0 on Γ1.

Therefore, there exists (u, y) ∈ D(ODir) such that

ODir(u, y) = (−a∆,−b∆)(u, y) = λ2(u, y),

hence ∃ k ∈ N⋆ such that λ2 = λ2Dir,k. Now going back to (2.33), we get

(±iλDir,k −B)η = 0 on Γ1.

Then using the assumption (SSC4), it implies that

η = 0 on Γ1.

Consequently, we have from (2.34)1 that
∂ν1u = 0 on Γ1.

Then using Holmgren’s theorem, we deduce that u = 0, which is impossible. The proof is thus complete.
□

Lemma 2.6. Assume that (SSC1) is satisfied. Then we have

σ(A) ∩ iR∗ ⊆ Σm ∩ iR∗.

Proof. Let λ ∈ R∗. Assume that iλ ∈ σ(A) and iλ /∈ Σm, we aim is to find a contradiction by proving that
iλ ∈ ρ(A). Indeed, under assumption (SSC1), using Lemma 2.5 Case 1.2., we have iλ − A is injective, then
it is left to prove the surjectivity of iλ−A, i.e to prove

R(iλI −A) = H.
In fact, let F = (f1, g1, f2, g2, h)

⊤ ∈ H, we look for U = (u, v, y, z, η)⊤ ∈ D(A) solution of

(2.44) (iλI −A)U = F.

Equivalently, we have the following system

iλu− v = f1,(2.45)

iλv − a∆u = g1,(2.46)

iλy − z = f2,(2.47)

iλz − b∆y = g2,(2.48)

iλη −Bη + γ(v)C = h,(2.49)

with the following boundary and transmission conditions

(2.50) u = y, a∂ν1u = −b∂ν2y on I, a∂ν1u = (η, C) on Γ1, and y = 0 on Γ2.
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Eliminating v in (2.49) by (2.45), and assuming iλ /∈ σ(B), we get

(2.51) η = (iλI −B)−1 (h− C(iλγ(u)− γ(f1))) .

Eliminating v in (2.46) by (2.45), and z in (2.48) by (2.47), we get

(2.52)



λ2u+ a∆u = −g1 − iλf1 in Ω1,

λ2y + b∆y = −g2 − iλf2 in Ω2,

u = y, ∂ν1u = −∂ν2y on I,

a∂ν1u = (η, C) on Γ1,

y = 0 on Γ2.

Let (φ,ψ) ∈ H, where H is defined by (2.16). Multiplying the first equation of (2.52) by φ and the second
one by ψ, integrating and using by parts integration, yield

− λ2
∫
Ω1

uφ̄dx− λ2
∫
Ω2

yψ̄dx+ a

∫
Ω1

∇u · ∇φ̄dx+ b

∫
Ω2

∇y · ∇ψ̄dx

+ iλ

∫
Γ1

((iλI −B)−1C,C)γ(u)γ(φ̄)dΓ =

∫
Ω1

(g1 + iλf1)φ̄dx

+

∫
Ω2

(g2 + iλf2)ψ̄dx+

∫
Γ1

((iλI −B)−1(h+ Cγ(f1)), C)γ(φ̄)dΓ.

(2.53)

Here we note that Lax-Milgram Lemma cannot be applied because the coercivity is not available. Therefore,
we use a compact perturbation argument. For that purpose, let us introduce the sesquilinear form

(2.54) aλ((u, y), (φ,ψ)) = a

∫
Ω1

∇u · ∇φ̄dx+ b

∫
Ω2

∇y · ∇ψ̄dx.

This sesquilinear form aλ is continuous and coercive on H. Then, by Lax-Milgram Lemma, the operator

Aλ : H → H′ : (u, y) → Aλ(u, y),

with Aλ(u, y)((φ,ψ)) = aλ((u, y), (φ,ψ)) is an isomorphism. Now, let us set

Rλ : H → H′ : (u, y) → Rλ(u, y),

with

Rλ(u, y)((φ,ψ)) = −λ2
∫
Ω1

uφ̄dx− λ2
∫
Ω2

yψ̄dx+ iλ

∫
Γ1

((iλI −B)−1C,C)γ(u)γ(φ̄)dΓ.

Due to the continuity of B and C and Cauchy-Schwarz’s inequality, we see that

|Rλ(u, y)((φ,ψ))| ≤ λ2 ||(u, y)||L2 ||(φ,ψ)||L2 + Cλ||u||L2(Γ1)||φ||L2(Γ1)

≤ λ2 ||(u, y)||L2 ||(φ,ψ)||L2 + Cλ||(u, y)||L2
T
||(φ,ψ)||L2

T
,

(2.55)

where Cλ is a positive constant depending on λ and

L2 = L2(Ω1)× L2(Ω2) and L2T = L2(Γ1)× L2(Γ2).

Now, for ε ∈ (0, 12 ) we set the following space

Hε =
{
(φ,ψ) ∈ H

1
2+ε(Ω1)×H

1
2+ε(Ω2) : φ = ψ on I

}
.

Then, by a trace theorem, equation (2.55) gives

|Rλ(u, y)((φ,ψ))| ≤ λ2 ||(u, y)||L2 ||(φ,ψ)||L2 + Cλ,ε||(u, y)||H||(φ,ψ)||Hε ,(2.56)

with Cλ,ε is a positive constant depending on λ and ε. If we introduce, for ε ∈ (0, 12 ),

Hε,Γ2
= {(φ,ψ) ∈ Hε : ψ = 0 on Γ2} ,
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that is clearly a Hilbert space equipped with the inner product of Hε, we deduce, from (2.56), that

|Rλ(u, y)((φ,ψ))| ≤ Cλ,ε||(u, y)||H||(φ,ψ)||Hε ,(2.57)

where Cλ,ε is a new positive constant depending on λ and ε. Then, (2.57) means equivalently that

sup
(φ,ψ)∈Hε,(φ,ψ)̸=0

|Rλ(u, y)((φ,ψ))|
||(φ,ψ)||Hε

≤ Cλ,ε||(u, y)||H.

Accordingly, as H is subset in Hε with densely compact embedding, we deduce that Rλ(u, y) belongs to H′
ϵ with

||Rλ(u, y)||H′
ε
= sup

(φ,ψ)∈Hε,(φ,ψ)̸=0

|Rλ(u, y)((φ,ψ))|
||(φ,ψ)||Hε

≤ sup
(φ,ψ)∈H,(φ,ψ) ̸=0

|Rλ(u, y)((φ,ψ))|
||(φ,ψ)||Hε

≤ Cλ,ε||(u, y)||H.

As H is compactly and densely embedded into Hε, by duality, H′
ε is compactly embedded into H′, and therefore

Rλ is a compact operator from H into H′. Thus, we deduce that Aλ +Rλ is a Fredholm operator of index zero
from H into H′. Now by setting

Lλ((φ,ψ)) =

∫
Ω1

(g1 + iλf1)φ̄dx+

∫
Ω2

(g2 + iλf2)ψ̄dx+

∫
Γ1

((iλI −B)−1(h+ Cγ(f1)), C)γ(φ̄)dΓ.

We notice that (2.53) is equivalent to

(2.58) (Aλ +Rλ)(u, y) = Lλ in H′.

Hence problem (2.44) admits a unique solution (u, y) if and only if Aλ +Rλ is invertible. But Aλ + Rλ being
a Fredholm operator it is enough to prove that Aλ +Rλ is injective, i.e,

ker(Aλ +Rλ) = {0}.

Let us now fix (u,y) ∈ ker(Aλ +Rλ), then it satisfies

−λ2
∫
Ω1

uφ̄dx− λ2
∫
Ω2

yψ̄dx+ a

∫
Ω1

∇u · ∇φ̄dx+ b

∫
Ω2

∇y · ∇ψ̄dx

+ iλ

∫
Γ1

((iλI −B)−1C,C)γ(u)γ(φ̄)dΓ = 0.

(2.59)

Thus, if we set v = iλu, z = iλy and η = −iλγ(u)(iλI −B)−1C, we conclude that U = (u,v,y, z,η) ∈ D(A)
is a solution of

(iλI −A)U = 0.

Using Lemma 2.5, we deduce that U = 0. This shows that Aλ + Rλ is invertible and therefore a unique
solution (u, y) ∈ H of (2.58) exists. At this stage, by setting v = iλu − f1, z = iλy − f2 and η =
(iλI − B)−1 (h− C(iλγ(u)− γ(f1))) , we conclude that U = (u, v, y, z, η) ∈ D(A) is a solution of (2.44) and
consequently (iλI −A) is surjective. The proof is thus complete. □

Proof of Theorem 2.4. From Lemma 2.5, the operator A has no pure imaginary eigenvalues (i.e. σp(A)∩iR =
∅). Moreover, from Lemma 2.5 and Lemma 2.6, iλI − A is bijective for all λ ∈ R and since A is closed, we
conclude with the help of the closed graph theorem that iλI −A is an isomorphism for all λ ∈ R, hence that
σ(A) ∩ iR = ∅. Therefore, according to Theorem A.2, we get that the C0-semigroup of contraction (etA)t≥0 is
strongly stable. The proof is thus complete. □
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2.3. Lack of Exponential Stability. In this part, we will prove that system (1.1)-(1.2) is not exponentially
stable. In other words we will prove the following theorem:

Theorem 2.7. The C0 semigroup of contractions (etA)t≥0 is not uniformly stable in the energy space H.

According to Theorem A.3 due to Huang [18] and Prüss [35] it is sufficient to prove that the resolvent of the
operator A is not uniformly bounded on the imaginary axis. For this aim, let us start with the following
technical result.

Lemma 2.8. Define the linear unbounded operator O∆,R : D(O∆,R) 7−→ L2(Ω)× L2(Ω) by

D(O∆,R) =
{
(f, g) ∈ H : (∆f,∆g) ∈ L2(Ω1)× L2(Ω2), a∂ν1 f + b∂ν2g = 0 on I

and a∂ν1 f + (C,C)f = 0 on Γ1} ,
(2.60)

and

(2.61) O∆,R(f, g) = (−a∆f,−b∆g), ∀ (f, g) ∈ D(O∆,R).

Then, O∆,R is a positive self-adjoint operator with a compact resolvent.

Proof. To prove that O∆,R is a positive self-adjoint operator, we will show that O∆,R is a symmetric m-
accretive operator. For this aim, we will divide the proof into steps.

Step 1. (O∆,R is symmetric.) Indeed, for all (f, g), (h, k) ∈ D(O∆,R), we have

(O∆,R(f, g), (h, k))L2(Ω1)×L2(Ω2)
= −a

∫
Ω1

(∆f)hdx− b

∫
Ω2

(∆g)kdx

= a

∫
Ω1

∇f · ∇hdx+ b

∫
Ω2

∇g · ∇kdx+ a

∫
Γ1

(C,C)fhdΓ

= a

∫
Ω1

∇f · ∇hdx+ b

∫
Ω2

∇g · ∇kdx− a

∫
Γ1

f∂ν1hdΓ

= ((f, g),O∆,R(h, k))L2(Ω1)×L2(Ω2)
.

(2.62)

Thus, O∆,R is symmetric.

Step 2. O∆,R is m-accretive. Indeed, for all (f, g) ∈ D(O∆,R), we have

ℜ (O∆,R(f, g), (f, g))L2(Ω1)×L2(Ω2)
= −a

∫
Ω1

(∆f)fdx− b

∫
Ω2

(∆g)gdx

= a

∫
Ω1

|∇f |2dx+ b

∫
Ω2

|∇g|2dx+ a

∫
Γ1

(C,C)|f |2dΓ ≥ 0.

(2.63)

Thus, O∆,R is accretive operator. Now, let (F,G) ∈ L2(Ω1)× L2(Ω2) and λ > 0, looking for (f, g) ∈ D(O∆,R)
solution of

(2.64) (λI +O∆,R)(f, g) = (F,G).

Equivalently, we have the following system

λf − a∆f = F,(2.65)

λg − b∆g = G.(2.66)

Taking (φ,ψ) ∈ H, then integrating after multiplying (2.65) by φ and (2.66) by ψ, yields the two equations
added in the following form
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(2.67) a

∫
Ω1

∇f ·∇φdx+b
∫
Ω2

∇g ·∇ψdx+
∫
Γ1

(C,C)fφdΓ+λ

∫
Ω1

fφdx+λ

∫
Ω2

gψdx =

∫
Ω1

Fφdx+

∫
Ω2

Gψdx.

Letting

(2.68) S((f, g), (φ,ψ)) = a

∫
Ω1

∇f · ∇φdx+ b

∫
Ω2

∇g · ∇ψdx+

∫
Γ1

(C,C)fφdΓ + λ

∫
Ω1

fφdx+ λ

∫
Ω2

gψdx,

and

(2.69) L(φ,ψ) =

∫
Ω1

Fφdx+

∫
Ω2

Gψdx.

It is easy to see that S is a sesquilinear, continuous, and coercive form on the space H×H, and L is antilinear
and continuous form on H. Then, it follows by Lax-Milgram’s theorem that S((f, g), (φ,ψ)) = L(φ,ψ) admits a
unique solution (f, g) ∈ H. By classical elliptic regularity, we deduce that (f, g) ∈ D(O∆,R) solution of system
(2.65)-(2.66). Thus O∆,R is m-accretive.

Step 3. O∆,R has a compact resolvent.

Rλ(O∆,R) = (λI +O∆,R)
−1.

Due to Sobolev embeddings, R0(O∆,R) is compact. Then using the following resolvent identity

Rλ −Rµ = (µ− λ)RµRλ,

we deduce that the resolvent of the operator (λI+O∆,R)
−1 of O∆,R is compact, and the proof is thus complete.

□
Proof of Theorem 2.7 According to Theorem A.3 due to Huang [18] and Prüss [35], it is sufficient to show
that the resolvent of A is not uniformly bounded on the imaginary axis. In other words, it is enough to show
the existence of a positive real number M and some sequences λn ∈ iR, Un = (un, vn, yn, zn, ηn)

⊤ ∈ D(A), and
Fn = (f1,n, g1,n, f2,n, g2,n, hn)

⊤ ∈ H, where n ∈ N, such that

(2.70) (λnI −A)Un = Fn, ∀n ∈ N,

(2.71) ∥Un∥H =M, ∀n ∈ N,

(2.72) lim
n→∞

∥Fn∥H = 0.

From Lemma 2.8, we can consider the sequence of eigenfunctions (φn, ψn)n∈N (that form an orthonormal basis
of L2(Ω1) × L2(Ω2)) of the operator O∆,R, corresponding to the eigenvalues (µ2

n)n∈N, such that µ2
n tends to

infinity as n goes to infinity. Consequently, for all n ∈ N, they satisfy the following system

(2.73)



−a∆φn = µ2
nφn, in Ω1,

−b∆ψn = µ2
nψn, in Ω2,

φn − ψn = 0, on I,

a∂ν1φn + b∂ν2ψn = 0, on I,

∂ν1φn + (C,C)φn = 0, on Γ1,

ψn = 0 on Γ2,

with

(2.74) ∥(φn, ψn)∥2L2(Ω1)×L2(Ω2)
=

∫
Ω1

|φn|2dx+

∫
Ω2

|ψn|2dx = 1.
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Now, let us choose

(2.75) un =
φn
iµn

, vn = φn, yn =
ψn
iµn

, zn = ψn, ηn = − 1

iµn
Cγ(φn).

So, by setting Fn = (0, 0, 0, 0, −iµn
BCγ(φn)), we deduce that

(2.76) Un = (un, vn, yn, zn, hn)

is the solution in D(A) of the following equation

(2.77) (iµnI −A)Un = Fn.

Now, multiplying equation (2.73)1 and (2.73)2 by φn and ψn respectively, integrating by parts, we get

(2.78) µ−2
n a

∫
Γ1

(C,C)|φn|2dΓ + µ−2
n a

∫
Ω1

|∇φn|2dx+ µ−2
n b

∫
Ω2

|∇ψn|2dx =

∫
Ω1

|φn|2dx+

∫
Ω2

|ψn|2dx = 1.

This implies that

(2.79) ∥φn∥2H1(Ω1)
≲ µ2

n.

On the other hand, we have

∥Un∥2H =

∫
Ω1

|φn|2dx+

∫
Ω2

|ψn|2dx

+ µ−2
n

∫
Ω1

|∇φn|2dx+ µ−2
n

∫
Ω2

|∇ψn|2dx+ µ−2
n

∫
Γ1

∥Cφn∥2MdΓ ≥ 1.

(2.80)

By using the trace theorem of interpolation type (see Theorem 1.4.4 in [26] and Theorem 1.5.1.10 in [14]),
equation (2.74) and equation (2.79), we obtain

(2.81) ∥Fn∥2H = µ−2
n

∫
Γ1

∥BCφn∥2MdΓ ≲ µ−2
n ∥φn∥2L2(Γ1)

≲ µ−2
n ∥φn∥H1(Ω)∥φn∥L2(Ω) ≲ µ−1

n → 0.

Then, the resolvent of the operator A is not uniformly bounded on the imaginary axis, and consequently our
system is not uniformly (exponentially) stable. The proof is thus complete. □

3. Polynomial Stability

Since system (1.1)-(1.2) is not uniformly stable, we will look for a polynomial energy decay rate for smooth
solutions. We assume that there exists a constant δ > 0 and a point x0 ∈ Rd such that, putting r(x) = x− x0,
we have

(BMGC) (r · ν1) ≥ δ−1, ∀x ∈ Γ1, (r · ν2) ≤ 0, ∀x ∈ Γ2, and (r · ν1) ≤ 0, ∀x ∈ I,

where (·, ·) designates the scalar product in Rd.

Definition 3.1. The matrix valued function B ∈ C0,1(Γ1;Mm(C)) is said to be totally M -coercive if there
exist α = (αj)1≤j≤m, αj > 0, such that, for every x ∈ Γ1,

ℜ(B(x)V, V )x = V
T
M(x)B(x)V ≥

m∑
j=1

αj |vj |2 ∀V = (v1, · · · , vm) ∈ Cm.

Definition 3.2. For j0 ∈ {1, 2, · · · ,m}, the matrix valued function B ∈ C0,1(Γ1;Mm(C)) is said to be j0-
partially M -coercive if there exists an index α = (αj)1≤j≤m,j ̸=j0 , αj > 0, such that, for every x ∈ Γ1,

ℜ(B(x)V, V )x ≥
m∑

j=1,j ̸=j0

αj |vj |2 ∀V = (v1, · · · , vm) ∈ Cm.

16



(PSC1)


The matrix valued function −B is totally M -coercive, and

∃ j1 ∈ {1, 2, · · · ,m}, cj1,0 > 0 : ℜ
{
c2j1(x)

}
≥ cj1,0, ∀ x ∈ Γ1.

(PSC2)


∃ j0 ∈ {1, 2, · · · ,m} : −B is j0-partially M -coercive, and

∃ j2, j3 ∈ {1, 2, · · · ,m}, cj2,0, cj3,0 > 0 : j2 ̸= j3, and ℜ
{
c2jk(x)

}
≥ cjk,0, ∀x ∈ Γ1, k = 2, 3.

(PSC3)


∃ j0 ∈ {1, 2, · · · ,m} : −B is j0-partially M -coercive, and

∃ j4 ∈ {1, 2, · · · ,m} \ {j0}, cj4,0 > 0 : ℜ
{
c2j4(x)

}
≥ cj4,0, ∀x ∈ Γ1, and ck = 0, for k ̸= j4.

(PSC4)


∃ j0 ∈ {1, 2, · · · ,m}, cj0,0 > 0 : −B is j0-partially M -coercive, and ℜ

{
c2j0(x)

}
≥ cj0,0, ∀x ∈ Γ1.

∃ j5 ∈ {1, 2, · · · ,m} \ {j0}, bj0j5,0 > 0 : ℜ
{
b2j0j5(x)

}
≥ bj0j5,0, ∀x ∈ Γ1, and ck = 0, for k ̸= j0.

Theorem 3.3. Let b ≥ a. Assume that iR ⊂ ρ(A) and that the geometric conditions (BMGC) holds. Then,
the C0-semigroup of contractions

(
etA
)
t≥0

is strongly stable in the sense that, there exists a constant C > 0

such that, for all U0 ∈ D(A), the energy of system (1.1)-(1.2) satisfies the following estimation

(3.1) E(t) ≤ C
t2/ℓ

∥U0∥2D(A), ∀ t > 0

with

ℓ =

{
2, if (PSC1), or (PSC2), or (PSC3) holds,

4, if (PSC4) holds.

According to Theorem A.4, to prove Theorem 3.3, we need to prove the following condition

(3.2) lim sup
λ∈R, |λ|→∞

1

λℓ
∥(iλI −A)−1∥L(H) <∞.

The condition (3.2) is proved by a contradiction argument. For this purpose, suppose that (3.2) is false, then
there exists {(λn, Un := (un, vn, yn, zn, ηn)

⊤)}n≥1 ⊂ R∗ ×D(A) with

(3.3) |λn| → ∞ as n→ ∞, and ∥Un∥H =
∥∥(un, vn, yn, zn, ηn)⊤∥∥H = 1, ∀n ∈ N,

such that

(3.4) (λn)
ℓ(iλnI −A)Un = Fn := (f1,n, g1,n, f2,n, g2,n, hn)

⊤ → 0 in H as n→ ∞.

We aim to prove that ∥Un∥H = o(1) to get the desired contradiction. For this, we drop the index n for
simplicity, and detail the equation (3.4), so that the following system is obtained

iλu− v = λ−ℓf1 in H1(Ω1),(3.5)

iλv − a∆u = λ−ℓg1 in L2(Ω1),(3.6)

iλy − z = λ−ℓf2 in H1(Ω2),(3.7)

iλz − b∆y = λ−ℓg2 in L2(Ω2),(3.8)

iλη −Bη + Cγ(v) = λ−ℓh in
(
L2(Γ1)

)m
.(3.9)

For clarity, we divide the proof of Theorem 3.3 into several Lemmas.

Lemma 3.4. Under the same conditions of Theorem 3.3, the solution U = (u, v, y, z, η)⊤ ∈ D(A) of (3.5)-(3.9)
satisfies the following estimations

(3.10)

∫
Γ1

||η||2dΓ = o(λ−2),

∫
Γ1

|∂ν1u|2dΓ = o(λ−2), and

∫
Γ1

|u|2dΓ = o(λ−2).
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Proof. Taking the inner product of (3.4) with U in H, then using the fact that U is uniformly bounded in H,
we get

(3.11) ℜ ((iλI −A)U,U)H = −ℜ (AU,U)H = −
∫
Γ1

ℜ (B(x)η, η) dΓ = o
(
λ−ℓ

)
.

Case 1. If (PSC1) holds. Then, using (3.11) and the Definition 3.1, we get

(3.12)

∫
Γ1

|ηj |2dΓ = o
(
λ−ℓ

)
, ∀ j ∈ {1, 2, · · · ,m}.

It follows, from the continuity of M that

(3.13)

∫
Γ1

||η||2dΓ =

∫
Γ1

(η, η) dΓ =

∫
Γ1

ηTM(x)ηdΓ = o
(
λ−ℓ

)
.

Besides, using (3.5) in (3.9) will implies

(3.14) iληj1 −
m∑
j=1

bj1j(x)ηj + iλcj1(x)u = λ−ℓhj1 + λ−ℓcj1(x)f1.

Then, multiplying equation (3.14) by cj1(x)λu, integrating over Γ1 and taking the imaginary part, we get∫
Γ1

ℜ
{
c2j1(x)

}
|λu|2dΓ = −ℜ

{∫
Γ1

cj1(x)
1√
2ε
ληj1

√
2ελudΓ

}

+ ℑ


m∑
j=1

∫
Γ1

cj1(x)bj1j(x)ληjudΓ +

∫
Γ1

λ−ℓ+1cj1(x)hj1udΓ +

∫
Γ1

λ−ℓ+1c2j1(x)f1udΓ

 ,

(3.15)

where ε > 0. Then, using (3.12) and the fact that ∥u∥L2(Γ1) = O(1), ∥hj1∥L2(Γ1) = o(1), ∥f1∥L2(Γ1) = o(1),

and that ℜ
{
c2j1(x)

}
≥ cj1,0 > 0, we get

(3.16) (cj1,0 − ε)

∫
Γ1

|λu|2dΓ = o(λ−ℓ+2).

By letting ε =
cj1,0

2 , we obtain the resulting estimate. The second estimation in (3.10) directly follows from
the fact that a∂ν1u(x, t)− (η(x), C) = 0 on Γ1. Indeed,

(3.17) ||(η, C)|| ≲ ||η||L2(Γ1)||C||.

Thus we get the results in (3.10).

Case 2. If (PSC2) holds. Then, from (3.11) and the definition 3.2, we deduce that

(3.18)

∫
Γ1

|ηj |2dΓ = o
(
λ−ℓ

)
, ∀ j ∈ {1, 2, · · · ,m} \ {j0}.

Here we distinguish two cases:
Case 2.1. If cj0 = 0. Then, from the equation (3.9), we have

(3.19) (iλ− bj0j0(x))ηj0 −
m∑

j=1,j ̸=j0

bj0j(x)ηj = λ−ℓhj0 , on Γ1.

Now, multiplying equation (3.19) by ληj0 , integrating over Γ1, taking the imaginary part, using (3.18) and the
boundedness of the entry bjj0 , we get

(3.20)

∫
Γ1

|ληj0 |2dΓ = ℑ


∫
Γ1

bj0j0(x)λ|ηj0 |2dΓ +

m∑
j=1,j ̸=j0

∫
Γ1

bj0j(x)ληjηj0dΓ

+ o(λ−ℓ+1).

Using (3.18) and the fact that ∥bj0j0∥∞ ≤ λ/2 in (3.20), we get∫
Γ1

|ηj0 |2dΓ = o(λ−ℓ) and consequently

∫
Γ1

||η||2dΓ = o(λ−ℓ).
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On the other hand, using condition (PSC2) and equation (3.9), we get

(3.21) iληj2 −
m∑
j=1

bj2j(x)ηj + iλcj2(x)u = λ−ℓhj2 + λ−ℓcj1(x)f1.

That, by repeating the same procedure used in Case 1, gives∫
Γ1

|λu|2dΓ = o(λ−ℓ+2) and

∫
Γ1

|∂νu|2dΓ = o(λ−ℓ).

Case 2.2. If cj0 ̸= 0. We need distinguish two cases.

Case 2.2.1 If j0 ̸= j2 and j0 ̸= j3. Then, we consider the following equations

(3.22) iληj0 −
m∑
j=1

bj0j(x)ηj + iλcj0(x)u = λ−ℓhj0 + λ−ℓcj0(x)f1.

(3.23) iληj2 −
m∑
j=1

bj2j(x)ηj + iλcj2(x)u = λ−ℓhj2 + λ−ℓcj2(x)f1.

Multiplying equation (3.22) by c2j2(x) and equation (3.23) by cj0(x)cj2(x), we get

iλc2j2(x)ηj0 − iλcj0(x)cj2(x)ηj2 −
m∑
j=1

(
bj0j(x)c

2
j2(x) + bj2j(x)cj0(x)cj2(x)

)
ηj

= λ−ℓ
(
c2j2(x)hj0 − cj0(x)cj2(x)hj2

)
.

(3.24)

Now, multiplying equation (3.24) by ληj0 , integrating over Γ1, taking the imaginary part, using (3.18) and the
continuity of the entries of the matrix B, we get∫

Γ1

ℜ
{
c2j2(x)

}
|ληj0 |2dΓ =

∫
Γ1

ℜ
{
cj0(x)cj2(x)

1√
2ε
ληj2

√
2εληj0dΓ

}

+ ℑ


m∑
j=1

∫
Γ1

(
bj0j(x)c

2
j2(x) + bj2j(x)cj0(x)cj2(x)

)
ληjηj0dΓ

+ o(λ−ℓ+1).

(3.25)

Applying Cauchy Schwartz and Young inequalities, we get∫
Γ1

|ηj0 |2dΓ = o(λ−ℓ) and consequently

∫
Γ1

||η||2dΓ = o(λ−ℓ).

Return to equation (3.23), and repeat the same steps as in Case 1, we obtain∫
Γ1

|λu|2dΓ = o(λ−ℓ+2) and

∫
Γ1

|∂νu|2dΓ = o(λ−ℓ).

Case 2.2.2 If j0 = j2 or j0 = j3. Assume j0 ̸= j2, so we consider the following equations

(3.26) iληj0 −
m∑
j=1

bj0j(x)ηj + iλcj0(x)u = λ−ℓhj0 + λ−ℓcj0(x)f1.

(3.27) iληj2 −
m∑
j=1

bj2j(x)ηj + iλcj2(x)u = λ−ℓhj2 + λ−ℓcj2(x)f1.

Then following the steps used in Case 2.2.1, we get the same results. Note here that in case we assume j0 ̸= j3,
we will consider the following equations

(3.28) iληj0 −
m∑
j=1

bj0j(x)ηj + iλcj0(x)u = λ−ℓhj0 + λ−ℓcj0(x)f1,
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(3.29) iληj3 −
m∑
j=1

bj3j(x)ηj + iλcj3(x)u = λ−ℓhj3 + λ−ℓcj3(x)f1.

Then following the same technique, we get the desired results.
Case 3. If (PSC3) holds. It follows from (3.11) and the Definition 3.2 that

(3.30)

∫
Γ1

|ηj |2dΓ = o
(
λ−ℓ

)
, ∀ j ∈ {1, 2, · · · ,m} \ {j0}.

Now repeating the same procedure as in Case 2.1, we get the resulting estimates.

Finally, by letting ℓ = 2 in case 1, case 2, and case 3, we obtain the results in (3.10).

Case 4. If (PSC4) holds. It follows from (3.11) and the Definition 3.2 that

(3.31)

∫
Γ1

|ηj |2dΓ = o
(
λ−ℓ

)
, ∀ j ∈ {1, 2, · · · ,m} \ {j0}.

Then using (PSC4), we have

(3.32) iληj5 − bj5j0ηj0 −
m∑

j=1,j ̸=j0

bj5jηj = λ−ℓhj5 .

Multiplying equation (3.32) by bj5j0(x)ηj0 , integrating over Γ1 and taking the real part, we get∫
Γ1

ℜ
{
b2j5j0(x)

}
|ηj0 |2dΓ = ℑ

{∫
Γ1

bj5j0(x)ληj5ηj0dΓ

}
−ℜ


m∑

j=1,j ̸=j0

∫
Γ1

bj5j0(x)bj5j(x)ηjηj0dΓ

+ o(λ−ℓ).

We then obtain ∫
Γ1

|ηj0 |2dΓ = o(λ−ℓ+2).

Now, going back to the following equation

(3.33) iληj0 −
m∑
j=1

bj0j(x)ηj + iλcj0(x)u = λ−ℓhj0 + λ−ℓcj0(x)f1.

Multiplying it by cj0(x)λu, integrating over Γ1 and taking the imaginary part, as done in (3.15), we get∫
Γ1

|λu|2dΓ = o(λ−ℓ+4).

Thus, ∫
Γ1

|∂νu|2dΓ = o(λ−ℓ+2).

Here, letting ℓ = 4 in Case 4, we get the results in (3.10). The proof of the Lemma is thus completed. □
Now, substituting v from (3.5) into (3.6) and z from (3.7) into (3.8) gives the following system

λ2u+ a∆u = −λ−ℓg1 − iλ−ℓ+1f1,(3.34)

λ2y + b∆y = −λ−ℓg2 − iλ−ℓ+1f2.(3.35)

Lemma 3.5. Under the same assumptions of Theorem 3.3, the solutions (u, v, y, z, η) ∈ D(A) of (3.5)-(3.9)
satisfies the following estimation

(3.36) d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ d

∫
Ω2

|λy|2dx+ b(2− d)

∫
Ω2

|∇y|2dx = o(1).
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Proof. Multiplying equation (3.34) by 2(r · ∇u), integrating over Ω1, then taking the real part, we obtain

(3.37) ℜ
{
2λ2

∫
Ω1

u(r · ∇ū)dx+ 2a

∫
Ω1

∆u(r · ∇ū)dx
}

= o(λ−ℓ).

Noting that, since ∥λu∥L2(Ω1), ∥∇u∥L2(Ω1) are uniformly bounded, then using (3.10) and the fact that f1 → 0

in H1(Ω1) and g1 → 0 in L2(Ω1), we deduce

− 2ℜ
{∫

Ω1

(λ−ℓg1 + iλ−ℓ+1f1)(r · ∇ū)dx
}

= ℜ
{
−2λ−ℓ

∫
Ω1

g1(r · ∇ū)dx
}

+ ℜ
{
2idλ−ℓ

∫
Ω1

f1(λu)dx+ 2iλ−ℓ
∫
Ω1

(r · ∇f1)(λu)dx− 2iλ−ℓ
∫
∂Ω1

(r · ν1)f1(λu)dΓ
}

= o(λ−ℓ).

(3.38)

Making use of Green’s formula and using the fact r(x) = x− x0, we get

(3.39) ℜ
{
2λ2

∫
Ω1

u(r · ∇ū)dx
}

= −d
∫
Ω1

|λu|2dx+

∫
Γ1

(r · ν1)|λu|2dΓ +

∫
I
(r · ν1)|λu|2dΓ,

ℜ
{
2a

∫
Ω1

∆u(r · ∇ū)dx
}

= a(d− 2)

∫
Ω1

|∇ū|2dx− a

∫
Γ1

(r · ν1)|∇u|2dΓ− a

∫
I
(r · ν1)|∇u|2dΓ

+ ℜ
{
2a

∫
Γ1

∂ν1u(r · ∇u)dΓ + 2a

∫
I
∂ν1u(r · ∇u)dΓ

}
.

(3.40)

Inserting (3.39) and (3.40) in (3.37), we obtain

d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ a

∫
Γ1

(r · ν1)|∇u|2dΓ

=

∫
Γ1

(r · ν1)|λu|2dΓ + ℜ
{
2a

∫
Γ1

∂ν1u(r · ∇u)dΓ + 2a

∫
I
∂ν1u(r · ∇u)dΓ

}
+

∫
I
(r · ν1)|λu|2dΓ− a

∫
I
(r · ν1)|∇u|2dΓ + o(λ−ℓ).

(3.41)

It follows, by using Young’s inequality, the first geometric condition in (BMGC) and equation (3.10), that

d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ a(δ−1 − εR2)

∫
Γ1

|∇u|2dΓ

≤
∫
Γ1

(r · ν1)|λu|2dΓ +

∫
I
(r · ν1)|λu|2dΓ + ℜ

{
2a

∫
I
∂ν1u(r · ∇u)dΓ

}
− a

∫
I
(r · ν1)|∇u|2dΓ + o(λ−ℓ).

(3.42)

where, R = ∥r∥L∞(Ω), and ε is an arbitrary positive constant to be fixed. Then, by taking ε =
δ−1

2R2
, we get

the following estimate

d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx ≤
∫
Γ1

(r · ν1)|λu|2dΓ +

∫
I
(r · ν1)|λu|2dΓ

+ ℜ
{
2a

∫
I
∂ν1u(r · ∇u)dΓ

}
− a

∫
I
(r · ν1)|∇u|2dΓ + o(λ−ℓ).

(3.43)

Multiplying (3.35) by 2r · ∇ȳ, using Green’s formula, and the boundary conditions of y on Γ2 we obtain

d

∫
Ω2

|λy|2dx+ b(2− d)

∫
Ω2

|∇y|2dx =

∫
I
(r · ν2)|λy|2dΓ− b

∫
Γ2

(r · ν2)|∇y|2dΓ− b

∫
I
(r · ν2)|∇y|2dΓ

+ ℜ
{
2b

∫
Γ2

∂ν2y(r · ∇y)dΓ + 2b

∫
I
∂ν2y(r · ∇y)dΓ

}
+ o(λ−ℓ).

(3.44)

Adding (3.43) and (3.44), we get
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d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ d

∫
Ω2

|λy|2dx+ b(2− d)

∫
Ω2

|∇y|2dx

≤
∫
Γ1

(r · ν1)|λu|2dΓ +

∫
I
(r · ν1)|λu|2dΓ− a

∫
I
(r · ν1)|∇u|2dΓ

+

∫
I
(r · ν2)|λy|2dΓ− b

∫
Γ2

(r · ν2)|∇y|2dΓ− b

∫
I
(r · ν2)|∇y|2dΓ

+ ℜ
{
2a

∫
I
∂ν1u(r · ∇u)dΓ + 2b

∫
Γ2

∂ν2y(r · ∇y)dΓ + 2b

∫
I
∂ν2y(r · ∇y)dΓ

}
+ o(λ−ℓ).

(3.45)

Besides, using the conditions at the interface

ℜ
{
2a

∫
I
∂ν1u(r · ∇u)dΓ + 2b

∫
I
∂ν2y(r · ∇y)dΓ

}
= 2a

∫
I
(r · ν1)|∂ν1u|2dΓ

+ ℜ
{
2a

∫
I
(r · τ)∂τu∂ν1udΓ

}
+ 2b

∫
I
(r · ν2)|∂ν2y|2dΓ + ℜ

{
2b

∫
I
(r · τ)∂τy∂ν2ydΓ

}
= 2a

∫
I
(r · ν1)|∂ν1u|2dΓ + 2b

∫
I
(r · ν2)|∂ν2y|2dΓ,

(3.46)

and

−a
∫
I
(r · ν1)|∇u|2dΓ− b

∫
I
(r · ν2)|∇y|2dΓ =− a

∫
I
(r · ν1)|∂τu|2dΓ− a

∫
I
(r · ν1)|∂ν1u|2dΓ

− b

∫
I
(r · ν2)|∂τy|2dΓ− b

∫
I
(r · ν2)|∂ν2y|2dΓ,

(3.47)

Adding (3.46) and (3.47) we get

ℜ
{
2a

∫
I
∂ν1u(r · ∇u)dΓ + 2b

∫
I
∂ν2y(r · ∇y)dΓ

}
− a

∫
I
(r · ν1)|∇u|2dΓ− b

∫
I
(r · ν2)|∇y|2dΓ

= −a
∫
I
(r · ν1)|∂τu|2dΓ + a

∫
I
(r · ν1)|∂ν1u|2dΓ− b

∫
I
(r · ν2)|∂τy|2dΓ + b

∫
I
(r · ν2)|∂ν2y|2dΓ.

(3.48)

Moreover, when applying the conditions of y on Γ2

2b

∫
Γ2

∂ν2y(r · ∇y)dΓ− b

∫
Γ2

(r · ν2)|∇y|2dΓ = 2b

∫
Γ2

(r · ν2)|∂ν2y|2dΓ + ℜ
{
2b

∫
Γ2

(r · τ)∂τy∂ν2ydΓ
}

− b

∫
Γ2

(r · ν2)|∂τy|2dΓ− b

∫
Γ2

(r · ν2)|∂ν2y|2dΓ = b

∫
Γ2

(r · ν2)|∂ν2y|2dΓ.
(3.49)

Thus, using the third estimation of (3.10) and (BMGC) we have

d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ d

∫
Ω2

|λy|2dx+ b(2− d)

∫
Ω2

|∇y|2dx

≤ −a
∫
I
(r · ν1)|∂τu|2dΓ + a

∫
I
(r · ν1)|∂ν1u|2dΓ− b

∫
I
(r · ν2)|∂τy|2dΓ + b

∫
I
(r · ν2)|∂ν2y|2dΓ + o(1)

≤ (b− a)

∫
I
(r · ν1)|∂τu|2dΓ +

a

b
(b− a)

∫
I
(r · ν1)|∂ν1u|2dΓ + o(1).

(3.50)

Finally, using the multiplier geometric condition on I in (BMGC) and from the fact that b ≥ a, we can deduce
that

d

∫
Ω1

|λu|2dx+ a(2− d)

∫
Ω1

|∇u|2dx+ d

∫
Ω2

|λy|2dx+ b(2− d)

∫
Ω2

|∇y|2dx = o(1).

The proof is thus completed. □

Lemma 3.6. Under the same assumptions of Theorem 3.3. The solutions (u, v, y, z, η) ∈ D(A) of (3.5)-(3.9)
satisfies the following
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(3.51)

∫
Ω1

|λu|2dx− a

∫
Ω1

|∇u|2dx+

∫
Ω2

|λy|2dx− b

∫
Ω2

|∇y|2dx = o(λ−2).

Proof. Multiplying (3.34) and (3.35) by ū and ȳ respectively, integrating, then using integration by parts we
get

(3.52)

∫
Ω1

|λu|2dx+ a

∫
∂Ω1

∂n1u udΓ− a

∫
Ω1

|∇u|2dx = −λ−ℓ
∫
Ω1

g1ūdx− iλ−ℓ+1

∫
Ω1

f1ūdx,

and

(3.53)

∫
Ω2

|λy|2dx+ b

∫
∂Ω2

∂n2
y ydΓ− b

∫
Ω2

|∇y|2dx = −λ−ℓ
∫
Ω2

g2ȳdx− iλ−ℓ+1

∫
Ω2

f2ȳdx.

Adding the equations (3.52) and (3.53), and by (3.10) and the fact that Fn → 0, we have

(3.54)

∫
Ω1

|λu|2dx− a

∫
Ω1

|∇u|2dx+

∫
Ω2

|λy|2dx− b

∫
Ω2

|∇y|2dx = o(λ−ℓ)−
∫
Γ1

∂ν1uudΓ = o(λ−2).

Thus the proof is complete.
□

Lemma 3.7. Under the same assumptions of Theorem 3.3, the solution (u, v, y, z, η) ∈ D(A) of (3.5)-(3.9)
achieves the following estimation

(3.55)

∫
Ω1

|λu|2dx+

∫
Ω2

|λy|2dx+ a

∫
Ω1

|∇u|2dx+ b

∫
Ω1

|∇y|2dx = o(1).

Proof. Multiplying (3.51) by (1− d), then adding it to (3.36), we obtain

(3.56)

∫
Ω1

|λu|2dx+

∫
Ω2

|λy|2dx+ a

∫
Ω1

|∇u|2dx+ b

∫
Ω1

|∇y|2dx = o(1).

□

Lemma 3.8. Under the same assumptions of Theorem 3.3, the solution (u, v, y, z, η) ∈ D(A) satisfies the
following estimation

(3.57)

∫
Ω1

|v|2dx = o(1) and

∫
Ω2

|z|2dx = o(1).

Proof. Referring to (3.5) and (3.7), then using the fact that f1, f3 → 0, and the results obtained in (3.55) we
have

(3.58)

∫
Ω1

|v|2dx = o(1) and

∫
Ω2

|z|2dx = o(1).

□
Now, going back to find out ∥U∥H by using (3.10),(3.55), and (3.57) we get

∥U∥H =

∫
Ω1

|v|2dx+

∫
Ω1

|∇u|2dx+

∫
Ω2

|z|2dx+

∫
Ω2

|∇y|2dx+

∫
Γ1

η2dΓ = o(1).

Hence, we obtain ∥U∥H = o(1), which contradicts (3.3). Therefore the polynomial estimation of our system is
proved.

4. Examples

In this section, we illustrate our general framework, by checking the assumptions for some particular exam-
ples.
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4.1. Example 1. Let Ω be a domain in Rd, organized in the same way as the domain in the introduction, and
satisfying the BMGC conditions. Consider the following system

(4.1)



utt(x, t)− a∆u(x, t) = 0, in Ω1 × (0,∞),

ytt(x, t)− b∆y(x, t) = 0, in Ω2 × (0,∞),

u(x, t)− y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t) + b∂ν2y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t) + η(x, t) = 0, on Γ1 × (0,∞),

ηt(x, t)− ut(x, t) + η(x, t) = 0, on Γ1 × (0,∞),

y(x, t) = 0, on Γ2 × (0,∞).

The system above is nothing but the system (1.1), with

B = −1, M = 1, C = −1.

It is easy to check that σ(A) ∩ iR = ϕ. Moreover, the matrix B satisfy

(4.2) ℜ(−Bv, v) = v2.

Thus, −B is Totally M -coercive. As ℜ{c21} ≥ 1 > 0, then the condition (PSC1) holds. That implies the
following energy decay estimation is satisfied

(4.3) E(t) ≤ C
t
∥U0∥2D(A), ∀ t > 0.

4.2. Example 2. Let Ω in R3, be a domain as the one considered in the introduction, satisfying the BMGC
conditions. Consider the following system

(4.4)



utt(x, t)− a∆u(x, t) = 0, in Ω1 × (0,∞),

ytt(x, t)− b∆y(x, t) = 0, in Ω2 × (0,∞),

u(x, t)− y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t) + b∂ν2y(x, t) = 0, on I × (0,∞),

a∂ν1u(x, t)− δt(x, t) = 0, on Γ1 × (0,∞),

mδtt(x, t) + dδt(x, t) + kδ(x, t) + ρut(x, t) = 0, on Γ1 × (0,∞),

y(x, t) = 0, on Γ2 × (0,∞),

where ρ is a positive constant and m, d, k are positive and sufficiently smooth functions on Γ1.
We readily check that this system can be rewritten in the form of system (1.1) with η = (δ, δt)

⊤

and

B(x) =

(
0 1

− k
m − d

m

)
, M(x) =

(k
ρ 0

0 m
ρ

)
, C(x) =

(
0

ρ
m

)
, ∀ x ∈ Γ1.

For all x ∈ Γ1, the matrix B(x) is Hurwitz and thus Σm∩ iR = ϕ. Hence the assumptions (SSC2) to (SSC4)
hold. Moreover, we can easily check (SSC1). Then we deduce by proposition (2.4) that the C0− semi group of
contraction (etA)t≥0 is strongly stable. Following Theorem 2.7, (etA)t≥0 is not uniformly stable. In addition,
we have

(4.5) (−Bv, v) = d

ρ
v22 ,

which implies that −B is 1-partiallyM -coercive. In the vector C, we have c1 = 0, and c2 = ρ
m , thus ℜ{c22} ≥ ρ2/

∥m∥2L∞(Γ1)
> 0. It follows that the condition (PSC3) holds. Thus the energy of the system (4.4) satisfies the

following estimation

(4.6) E(t) ≤ C
t
∥U0∥2D(A), ∀ t > 0.
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4.3. Example 3. Consider the following system defined on a domain satisfying the BMGC conditions

(4.7)



utt(x, t)− a∆u(x, t) = 0, x ∈ Ω1, t > 0,

ytt(x, t)− b∆y(x, t) = 0, x ∈ Ω2, t > 0,

u(x, t)− y(x, t) = 0, x ∈ I, t > 0,

a∂ν1u(x, t) + b∂ν2y(x, t) = 0, x ∈ I, t > 0,

a∂ν1u(x, t)− b1δ(x, t)− δt(x, t) + κ(t) = 0, x ∈ Γ1, t > 0,

κt(t) + b2κ(t)− ut(x, t) = 0, x ∈ Γ1, t > 0,

δtt(x, t) + b1δt(x, t) + b0δ(x, t) + b0ut(x, t) = 0, x ∈ Γ1, t > 0,

y(x, t) = 0, x ∈ Γ2, t > 0,

with b0, b1, and b2 are positive constants. Letting

η = (
δt + b1δ

b0
,−δ,−κ)⊤,

then our system is nothing but (1.1) with

M =


b0 0 0

0 1 0

0 0 1

 , B =


0 1 0

−b0 −b1 0

0 0 −b2

 , C =


1

0

1

 .

As in the preceding example, it is easy to check that σ(A) ∩ iR = ϕ ((SSC1) holds and Σm ∩ iR = ϕ), as
well as

(4.8) (−Bv, v) = b1v
2
2 + b2v

2
3 ,

that implies that −B is 1-partially M -coercive. Besides, in the vector C exists c1, c3, with ℜ{c21} ≥ 1 > 0,
and ℜ{c23} ≥ 1 > 0. Thus (PSC2) holds. Hence, the energy of the system (4.7) decays polynomially satisfying
the following estimation

(4.9) E(t) ≤ C
t
∥U0∥2D(A), ∀ t > 0.

4.4. Example 4. On a domain satisfying the BMGC conditions, we consider the following system

(4.10)



utt(x, t)− a∆u(x, t) = 0, x ∈ Ω1, t > 0,

ytt(x, t)− b∆y(x, t) = 0, x ∈ Ω2, t > 0,

u(x, t)− y(x, t) = 0, x ∈ I, t > 0,

a∂ν1u(x, t) + b∂ν2y(x, t) = 0, x ∈ I, t > 0,

a∂ν1u(x, t)− b1δ(x, t)− δt(x, t) = 0, x ∈ Γ1, t > 0,

δtt(t) + b1δt(t) + b0δ(t) + b0ut(x, t) = 0, x ∈ Γ1, t > 0,

y(x, t) = 0, x ∈ Γ2, t > 0.

Set η = ( b1δ+δtb0
,−δ)⊤, we get a system of the form (1.1) with

M =

(
b0 0

0 1

)
, B =

(
0 1

−b0 −b1

)
, C =

(
1

0

)
.

In this example, we have σ(A) ∩ iR = ϕ, and

(4.11) (−Bv, v) = b1v
2
2 .
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Thus, −B is 1-partially M -coercive. On the other hand, in the vector C, we have ℜ{c21} ≥ 1 > 0 and c2 = 0.
Then as ℜ{b212} ≥ 1 > 0, the condition (PSC4) holds, and the energy decay estimate of the system (4.10) is

(4.12) E(t) ≤ C
t1/2

∥U0∥2D(A), ∀ t > 0.

5. Optimal Polynomial Decay Rate

The aim of this section is to prove that the energy decay rate obtained in Theorem 3.3 is optimal in the first
dimension, for the case when M = 1, B = −1, and C = −1. Precisely, we will prove the following result:

Theorem 5.1. Assume that d = 1. The energy decay rate (3.1) is optimal in the sense that for any ε > 0, we
cannot expect the decay rate 1

t1+ε for all initial data U0 ∈ D(A) and for all t > 0.

For the optimality, we search the asymptotic behavior of the eigenvalues of the operator A. Let λ be an
eigenvalue of A and U = (u, v, y, z, η) ∈ D(A) be an associated eigenfunction, then AU = λU . Equivalently,
we have the following system:

(5.1)



λ2u− uxx = 0, x ∈ (−1, 0),

λ2y − yxx = 0, x ∈ (0, 1),

ux(−1)− η = 0,

y(1) = 0,

λη − λu(−1) + η = 0,

u(0) = y(0),

ux(0) = yx(0).

It is easy to see that λ = 0 and λ = −1 are not eigenvalues of the operator A. Then, from now on we will
assume that λ ̸= 0 and λ ̸= −1. It follows, from (5.1)5, that

(5.2) η =
λ

1 + λ
u(−1).

A general solution of equation (5.1)1 with boundary conditions (5.1)6 − (5.1)7 is given by:

(5.3) u(x) = Aeλx +Be−λx, x ∈ (−1, 0),

where

(5.4) A =
λy(0) + yx(0)

2λ
and B =

λy(0)− yx(0)

2λ
.

A general solution of equation (5.1)2 with boundary condition (5.1)4 is given by:

(5.5) y(x) = Ceλx − Ce2λ−λx, x ∈ (0, 1),

where C ∈ C is a constant. So, combining (5.3), (5.4) and (5.5), we get

(5.6) u(x) = Ceλx − Ce2λ−λx, x ∈ (−1, 0).

Hence, a non trivial solution u exists if and only if C ̸= 0. Finally, putting together (5.1)3, (5.2) and (5.6), we
get

(5.7) λ+ (λ+ 2)e4λ = 0.

Conversely, suppose that λ satisfies (5.7), and let η, y, u be defined by (5.2), (5.5) and (5.6) with C ̸= 0. A
simple calculus shows that (u, y, η) satisfies (5.1). Consequently, we have proved

(5.8) λ is an eigenvalue of the operator A ⇐⇒ f(λ) := λ+ (λ+ 2)e4λ = 0.

By complex analysis arguments, we easily see that the equation f(z) = 0 has an infinite number of solutions
λn with |λn| → ∞. In fact, if f has finite numbers of roots, we conclude from Hadamard’s factorization theorem
that

f(z) = P (z)eaz, a ∈ C,
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for some polynomial P . Then, from the equality,

P (z)eaz = z + (z + 2)e4z, ∀z ∈ C,

we conclude that a = 4, hence that P (z) = z + 2 and finally that

z = 0,∀z ∈ C,

which is impossible. We can now state the following result

Lemma 5.2. The number of eigenvalues, λn for n ∈ Z, of A is infinite. Moreover, each eigenvalue is simple,
and |λn| goes to infinity as n goes to infinity.

Proof. We only need to show that λn is simple (i.e, the algebraic multiplicity is equal to one). Let λ be an
eigenvalue of A. Then we have

ker(A− λI) =

{
1

λ
ϕ(x), ϕ(x),

1

λ
ψ(x), ψ(x),

1

λ+ 1
ϕ(−1)

}
,

where

ϕ(x) = eλx − e2λ−λx, −1 ≤ x ≤ 0,

and

ψ(x) = eλx − e2λ−λx, 0 ≤ x ≤ 1.

Assume that there exist U = (u, v, y, z, η) ∈ ker(A− λI)2 \ ker(A− λI). In other word, we have

AU − λU = V ∈ ker(A− λI).

That is equivalent to

v − λu = ũ,(5.9)

uxx − λv = ṽ,(5.10)

z − λy = ỹ,(5.11)

yxx − λz = z̃,(5.12)

v(−1)− η − λη = η̃.(5.13)

We deduce that

uxx − λ2u = λũ+ ṽ = 2(eλx − e2λ−λx),(5.14)

yxx − λ2y = λỹ + z̃ = 2(eλx − e2λ−λx),(5.15)

besides to the following boundary conditions

u(0) = y(0),(5.16)

ux(0) = yx(0),(5.17)

y(1) = 0,(5.18)

η =
−η̃
λ+ 1

+
λ

λ+ 1
u(−1) +

1

λ+ 1
ũ(−1).(5.19)

Then we find that the general solution of u and y is given by

(5.20) u =
1

λ
(eλx − e2λ−λx) +

x

λ
(eλx + e2λ−λx),

and

(5.21) y =
1

λ
(eλx − e2λ−λx) +

x

λ
(eλx + e2λ−λx).

Now using boundary condition at x = −1 we have
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ux(−1) = η =
λ

λ+ 1
u(−1)− 1

(λ+ 1)2
(e−λ − e3λ)

=
−2

λ+ 1
e3λ +

1

(λ+ 1)2
e3λ − 1

(λ+ 1)2
e−λ.

(5.22)

On the other hand, from (5.20) we have

ux(−1) = 2e3λ +
1

λ
e3λ +

1

λ
e−λ.

Thus we get

e4λ =
λ2 + 3λ+ 1

−2λ3 − 7λ2 − 5λ− 1
.

Compared to (5.7) implies

λ4 + 3λ3 − 3λ− 1 = 0,

that in turn had the following solutions

λ = 1, λ = −1, λ = −3

2
−

√
5

2
, and λ =

√
5

2
− 3

2
.

Then

e4 = −1

3
,

which is impossible. This completes the proof. □

Lemma 5.3. (Asymptotic expansion) There exists k0 ∈ N∗ and a sequence (λk)k≥k0 of simple roots of f (that
are also simple eigenvalues of A) and satisfying the following asymptotic behavior:

(5.23) λk = i

(
kπ

2
+
π

4
+

4

kπ
− 2

k2π

)
− 8

k2π2
+ o

(
1

k2

)
,

for k large enough.

Proof. The complex λ is an eigenvalue of A if and only if f(λ) = 0. Then, we have

(5.24) e4λ = (−1)
λ

2 + λ
.

It follows that

(5.25) λk =
iπ

4
+
ikπ

2
+ ln

(
1− 2

2 + λk

)
.

As |λk| → ∞, we obtain the following

(5.26) λk =
iπ

4
+
ikπ

2
+ o

(
1

k

)
as |k| → ∞.

On the other hand, we have the following expansion

ln

(
1− 2

2 + λk

)
= − 2

λk
+

2

λ2k
+ o

(
1

λ3k

)
as |k| → ∞.(5.27)

Consequently, we get

(5.28) λk =
iπ

4
+
ikπ

2
− 2

λk
+

2

λ2k
+ o

(
1

λ3k

)
as |k| → ∞.

From (5.26), we get

−2

λk
=

4i

kπ
− 2i

k2π
+ o

(
1

k3

)
as |k| → ∞,(5.29)
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and

2

λ2k
=

−8

k2π2
+ o

(
1

k3

)
as |k| → ∞.(5.30)

Thus, inserting (5.29) and (5.30) into (5.28), we obtain the desired asymptotic expansion (5.23) and the proof
is thus complete. □

Proof of Theorem 5.1. Let ε > 0, and set l =
ε

1 + ε
. For k ∈ N∗, let λk be an eigenvalue of the operator A,

and Uk the associated normalized eigenfunction. Consider the following sequences

βk =
kπ

2
+
π

4
+

4

kπ
− 2

k2π
,

(Uk) ⊂ D(A).

Using (5.23) we get

lim
k→+∞

β2−2l
k ∥(iβk −A)Uk∥ = 0.

By applying of Borichev Theorem A.4, we deduce that the trajectory etAu0 decays slower than
1

t
1

2−2l

on the

time t→ ∞. Then we cannot expect the energy decay rate 1
t1+ε . This ends the proof of Theorem 5.1 .

6. Conclusion

We have studied the stabilization of transmission problem of two coupled waves, with general acoustic
conditions at the boundary of the first wave, while Dirichlet conditions set on the boundary of the second one.
We proved the strong stability of the system using general criteria Arendt-Batty. In addition, we proved the
lack of exponential stability. After that, we established two different polynomial energy decay rates, provided
with some illustrative examples. Then we proved that the decay rate is optimal for some particular case.

Appendix A. Some Notions and Stability Theorems

In order to make this paper more self-contained, we recall in this short appendix some notions and stability
results used in this work.

Definition A.1. Assume that A is the generator of C0−semigroup of contractions
(
etA
)
t≥0

on a Hilbert space

H. The C0−semigroup
(
etA
)
t≥0

is said to be

(1) Strongly stable if

lim
t→+∞

∥etAx0∥H = 0, ∀x0 ∈ H.

(2) Exponentially (or uniformly) stable if there exists two positive constants M and ε such that

∥etAx0∥H ≤Me−εt∥x0∥H , ∀ t > 0, ∀x0 ∈ H.

(3) Polynomially stable if there exists two positive constants C and α such that

∥etAx0∥H ≤ Ct−α∥Ax0∥H , ∀ t > 0, ∀x0 ∈ D(A).

□

To show the strong stability of a C0-semigroup we rely on the following result due to Arendt-Batty [3].

Theorem A.2. Assume that A is the generator of a C0−semigroup of contractions
(
etA
)
t≥0

on a Hilbert space

H. If A has no pure imaginary eigenvalues and σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of
A, then the C0-semigroup

(
etA
)
t≥0

is strongly stable. □

Concerning the characterisation of exponential stability of a C0−semigroup of contractions we rely on the
following result due to Huang [18] and Prüss [35].
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Theorem A.3. Let A : D(A) ⊂ H −→ H generates a C0−semigroup of contractions
(
etA
)
t≥0

on H. Then,

the C0−semigroup
(
etA
)
t≥0

is exponentially stable if and only if iR ⊂ ρ(A) and

lim sup
λ∈R, |λ|→∞

∥(iλI −A)−1∥L(H) <∞.

Finally for the polynomial stability of a C0−semigroup of contractions we use the following result due to
Borichev and Tomilov [9] (see also [5], [25], and the recent paper [42]).

Theorem A.4. Assume that A is the generator of a strongly continuous semigroup of contractions
(
etA
)
t≥0

on H. If iR ⊂ ρ(A), then for a fixed ℓ > 0 the following conditions are equivalent

(A.1) lim sup
λ∈R, |λ|→∞

1

|λ|ℓ
∥(iλI −A)−1∥L(H) <∞,

(A.2) ∥etAU0∥2H ≤ C

t
2
ℓ

∥U0∥2D(A), ∀t > 0, U0 ∈ D(A), for some C > 0.

□

Let us end up this appendix with the definition of our multiplier geometric control condition.

Definition A.5. We say that the partition (Γ0,Γ1) of the boundary Γ satisfies the multiplier geometric control
condition MGC (see Fig. 2 for an illustration) if there exists a point x0 ∈ R2 and a positive constant δ such
that

(A.3) h · ν ≥ δ−1 on Γ1 and h · ν ≤ 0 on Γ0,

where h(x) = x− x0.

x0

A

B

Γ1 Γ0

Ω

v0

v1

Figure 2. An example where the MGC boundary condition holds.

□
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Let
z1(x, ρ, t) = ut(x, t− ρτ1) on Γ1 × (0, 1)× (0,∞)

and

(A.4) z2(x, ρ, t) = ∂νut(x, t− ρτ2) on Γ1 × (0, 1)× (0,∞)

Thus, we get
τ1z

1
t + z1ρ = 0 on Γ1.

and
τ2z

2
t + z2ρ = 0 on Γ1.

Energy:

E(t) =
1

2

{
a(u, u) +

∫
Ω

|ut|2dx + τ1|β2|
∫
Γ1

∫ 1

0

∣∣z1(·, ρ, t)∣∣2 dρdΓ + τ2|γ2|
∫
Γ1

∫ 1

0

∣∣z2(·, ρ, t)∣∣2 dρdΓ} ,
and

E′(t) ≤ −(β1 − |β2|)
∫
Γ1

|∂νut|2dΓ− (γ1 − |γ2|)
∫
Γ1

|ut|2dΓ

we choose
H = H2(Ω)× L2(Ω)× (L2(Γ1 × (0, 1)))2

.

Appendix B. Conclusion

We have studied the stabilization of transmission problem of two coupled waves, with dynamical feedback
control at the boundary. On one part of the domain we consider a Dirichlet boundary condition, and on the
other part we consider the dynamical one. We proved the strong stability of the system using general criteria
Arendt-Batty. In addition, we proved the lack of exponential stability. After that, we established a polynomial
energy decay rate. Then we proved that this decay rate is optimal in the one dimensional system.
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