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Abstract.1 Let (R,m) be a Noetherian local ring and M a finitely generated R-module. In
this paper, we construct almost p-standard systems of parameters (a very strict subclass of d-
sequences) of the idealization RnM of M over R. As applications, we build Cohen-Macaulay
Rees algebras for idealizations, Cohen-Macaulay Rees modules for unmixed modules, then
give precise formulas computing all the Hilbert coefficients of the idealization with respect
to an almost p-standard system of parameters.

1 Introduction

Throughout this paper, (R,m) denotes a Noetherian local ring of dimension r. Let M be a
finitely generated R-module with dimR(M) = d. The notion of d-sequence introduced by C.
Huneke [15] makes a useful mean to study the powers of ideals [14, 15] and have important
applications in the theory of Buchsbaum modules and generalized Cohen-Macaulay modules.
In [6], N.T. Cuong introduced the notion of p-standard system of parameter (s.o.p for short).
Note that if x1, . . . , xd is a p-standard s.o.p of M then it is a d-sequence on M and there
exist non-negative integers λ0, . . . , λd such that

`(M/(xn1
1 , . . . , x

nd
d )M) =

d∑
i=0

λin1 . . . ni

1Key words and phrases: Almost p-standard system of parameters; idealization; Macaulayfication; Hilbert coefficient.
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for all n1, . . . , nd ≥ 1 (see [6, Theorem 2.6]). In generalized Cohen-Macaulay modules, every
p-standard s.o.p is a standard s.o.p in the sense of [22], and in general, the notion of p-
standard s.o.p plays a key role in the study of the singularity of Cohen-Macaulay type of
Noetherian rings and modules (see [16, 17, 10]).

Let x1, . . . , xd be a s.o.p of M . If there exists non-negative integers λ0, . . . , λd such that

`(M/(xn1
1 , . . . , x

nd
d )M) =

d∑
i=0

λin1 . . . ni

for all n1, . . . , nd ≥ 1, then xn1
1 , . . . , x

nd
d is a p-standard s.o.p for all ni ≥ i, for i = 1, . . . , d (see

[7, Corollary 3.9]), however x1, . . . , xd is not necessary a p-standard s.o.p (see [8, Example
3.11]). This fact leads to the following notion (see [4, Definition 2.1]).

Definition 1.1. A s.o.p x1, . . . , xd ofM is called almost p-standard if there exist non-negative
integers λ0, . . . , λd such that

`(M/(xn1
1 , . . . , x

nd
d )M) =

d∑
i=0

λin1 . . . ni

for all n1, . . . , nd ≥ 1.

Following [10, Theorem 1.2], R admits an almost p-standard s.o.p if and only if R is a
quotient of a Cohen-Macaulay local ring, if and only if every finitely generated R-module
admits an almost p-standard s.o.p. Note that every almost p-standard s.o.p is a d-sequence,
this fact helps to compute several numerical invariants, the Hilbert coefficients, the partial
Euler-Poincaré characteristics of the Koszul complex with respect to an almost p-standard
s.o.p of M , see [4]. The notion of almost p-standard s.o.p makes an important role in the
study of sequentially Cohen-Macaulay modules and sequentially generalized Cohen-Macaulay
modules [7, 9].

The notion of the idealization was introduced by M. Nagata [20]. We provide a multipli-
cation on the additive group R⊕M

(a, x).(b, y) = (ab, ay + bx)

for all (a, x), (b, y) ∈ R ⊕M , then R ⊕M forms a Noetherian local ring with the unique
maximal ideal m ×M. This local ring is called the idealization of M over R and denoted
by R nM . Note that dim(R nM) = dim(R). The structure of the idealization and its
applications have attracted the interest of mathematicians (see [2, 20, 13]).

The aim of this paper is to construct almost p-standard s.o.p of RnM . As applications,
we build Cohen-Macaulay Rees algebras for R n M , Cohen-Macaulay Rees modules for
unmixed module M , and find a tight relation between Macaulayfications of R and R nM
in several particular cases. Then we give precise formulas computing Hilbert coefficients of
RnM with respect to certain almost p-standard s.o.p.

The following theorem is the first main result of this paper.

Theorem 1.2. Let x1, . . . , xr be elements in m. Set ui = (xi, 0) for i = 1, . . . , r and
u = u1, . . . , ur. The following statements are equivalent:
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(i) u is an almost p-standard s.o.p of RnM .

(ii) x1, . . . , xd is an almost p-standard s.o.p of M and x1, . . . , xr is an almost p-standard
s.o.p of R and xd+1, . . . , xr ∈ AnnR(M).

As a consequence, we give a characterization for R nM being a quotient of a Cohen-
Macaulay local ring (Corollary 2.6).

Denote by R̂ and M̂ the m-adic completion of R and M , respectively. Following M.

Nagata [20], M is said to be unmixed if dim(R̂/P) = dimR̂(M̂) for any P ∈ AssR̂(M̂). Note
that R n M is unmixed if and only if dim(R) = dimR(M) = r and R,M are unmixed.
The first application of Theorem 1.2 is to construct Cohen-Macaulay Rees algebras for the
idealization in case where dim(R) = dimR(M) = r.

Theorem 1.3. Suppose that R is a quotient of a Cohen-Macaulay local ring, R and M are
unmixed, and dimR(M) = dim(R) = r > 1. Let x1, . . . , xr be an almost p-standard s.o.p of
both R and M (such a s.o.p exists). For i = 1, . . . , r, put ui = (xi, 0), Pi = (ui, . . . , ur) and
P = P1P2 . . . Pr−2. Then the Rees algebra R(RnM,P ) is Cohen-Macaulay.

From an almost p-standard s.o.p of M , we can construct subquotient modules U i,j
M , U

i,j

M

which are independent of the choice of almost p-standard s.o.p (see [4, Proposition 2.2]). The
second application of Theorem 1.2 is to clarify certain Hilbert coefficients of the idealization.

Theorem 1.4. Let x1, . . . , xr be an almost p-standard s.o.p of R such that x1, . . . , xd is an
almost p-standard s.o.p of M and xd+1, . . . , xr ∈ AnnR(M). Set Q = (u1, . . . , ur), where
ui = (xi, 0) for i = 1, . . . , r. Put I = (x1, . . . , xd) and J = (x1, . . . , xr). Then

`((RnM)/Qn+1) = e0(Q,RnM)

(
n+ r

r

)
+e1(Q,RnM)

(
n+ r − 1

r − 1

)
+ . . .+er(Q,RnM)

for all n ≥ 0, where for d = r,

er−i(Q,RnM) =


i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M ), if 0 ≤ i < r,

e0(J,R) + e0(J,M), if i = r;

and for d < r,

er−i(Q,RnM) =



e0(J ;R), if i = r,
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ), if d < i < r,

d∑
t=0

e(x1, . . . , xt;U
t,d+1

R ) + e0(I,M), if i = d,

i∑
t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M ), if 0 ≤ i < d.

We also describe the Hilbert coefficients of RnM in case where R and M are sequentially
generalized Cohen-Macaulay (Corollary 4.4).

In the next section, after giving some preliminaries on almost p-standard systems of
parameters, we prove Theorem 1.2. In Section 3 and Section 4, we present the proofs of
Theorem 1.3 and Theorem 1.4, respectively.
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2 Almost p-standard system of parameters and idealization

We first recall some properties of almost p-standard s.o.p that will be used in the sequel, see
[7, Corollaries 3.5, 3.6], [4, Lemma 2.9].

Lemma 2.1. Let x1, . . . , xd be an almost p-standard s.o.p of M . For i = 0, . . . , d, put
λi = e(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xd)M). Then

(i) `(M/(xn1
1 , . . . , x

nd
d )M) =

d∑
i=0

λin1 . . . ni for all n1, . . . , nd ≥ 1.

(ii) N ∩ (xi, . . . , xd)M = 0 for any submodule N of M and any integer i > dimR(N).

Let y = x1, . . . , xd be a s.o.p of M and n1, . . . , nd ≥ 1 be positive integers. We set
y(n) = xn1

1 , . . . , x
nd
d . The following function in n1, . . . , nd is very helpful in the study of

almost p-standard s.o.p

ĨM, y(n) := `(M/y(n)M)− e(y(n);M)

−
d−1∑
i=0

n1 . . . nie(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xd)M).

From Lemma 2.1 and [4, Proposition 2.6], we have the following properties of ĨM, y(n).

Lemma 2.2. Let y = x1, . . . , xd be a s.o.p of M . Then

(i) ĨM, y(n) is a non-decreasing function and ĨM, y(n) ≥ 0 for all n1, . . . , nd ≥ 1.

(ii) y is almost p-standard if and only if ĨM, y(n) = 0 for all n1, . . . , nd ≥ 1.

Lemma 2.3. Let x1, . . . , xr be elements in m. For i = 1, . . . , r, put ui = (xi, 0). Then

(0 : ui+1)(RnM)/(ui+2,...,uj)(RnM) ' (0 : xi+1)R/(xi+2,...,xj)R × (0 : xi+1)M/(xi+2,...,xj)M ,

for all 0 ≤ i < j ≤ r.

Proof. For all 0 ≤ i < j ≤ r, we have

(0 : ui+1)(RnM)/(ui+2,...,uj)(RnM) = [(ui+2, . . . , uj)(RnM) :RnM ui+1]/(ui+2, . . . , uj)(RnM);

(ui+2, . . . , uj)(RnM) = (xi+2, . . . , xj)R× (xi+2, . . . , xj)M.

We claim that

[(ui+2, . . . , uj)(RnM) :RnM ui+1] = [(xi+2, . . . , xj)R :R xi+1]× [(xi+2, . . . , xj)M :M xi+1].

Indeed, take an element (a,m) ∈ (ui+2, . . . , uj)(RnM) :RnM ui+1, then

(a,m)(xi+1, 0) = (axi+1, xi+1m) ∈ (ui+2, . . . , uj)(RnM).

Hence a ∈ (xi+2, . . . , xj)R :R xi+1 and m ∈ (xi+2, . . . , xj)M :M xi+1. Conversely, let

(a,m) ∈ (xi+2, . . . , xj)R :R xi+1 × (xi+2, . . . , xj)M :M xi+1.
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Then axi+1 ∈ (xi+2, . . . , xj)R and xi+1m ∈ (xi+2, . . . , xj)M. Hence

(a,m)(xi+1, 0) = (axi+1, xi+1m)

∈ (xi+2, . . . , xj)R× (xi+2, . . . , xj)M = (ui+2, . . . , uj)(RnM),

therefore, (a,m) ∈ (ui+2, . . . , uj)(R nM) :RnM ui+1, the claim is proved. Now, the result is
clear by the claim.

Lemma 2.4. Let x = x1, . . . , xr be a s.o.p of R. Set u = u1, . . . , ur, where ui = (xi, 0)
for i = 1, . . . , r. Then u is a s.o.p of R nM . Moreover, if x1, . . . , xd is a s.o.p of M and
(xd+1, . . . , xr)M = 0, then for any n1, . . . , nr ≥ 1 we have

ĨRnM, u(n) = ĨR, x(n) + ĨM, x1,...,xd
(n).

Proof. For a tuple of positive integers n = n1, . . . , nr, set u(n) = un1
1 , . . . , u

nr
r and x(n) =

xn1
1 , . . . , x

nr
r . We have

(un1
1 , . . . , u

nr
r )(RnM) ' (xn1

1 , . . . , x
nr
r )R× (xn1

1 , . . . , x
nr
r )M.

Thus u is a s.o.p of RnM and

`((RnM)/u(n)(RnM)) = `(R/x(n)R)) + `(M)/x(n)M)).

It is clear that e(u;RnM) = e(x;R) + e(x;M), where e(x;M) = 0 whenever d < r. So, by
Lemma 2.3 we obtain

ĨRnM, u(n) = `((RnM)/u(n)(RnM))− n1 . . . nre(u;RnM)

−
r−1∑
i=0

n1 . . . nie(u1, . . . , ui; (0 : ui+1)(RnM)/(ui+2,...,ur)(RnM))

= ĨR, x(n) + `(M/x(n)M)− n1 . . . nre(x;M)

−
r−1∑
i=0

n1 . . . nie(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xr)M).

If d = r, then x is a s.o.p of M and the above equality gives

ĨRnM, u(n) = ĨR, x(n) + ĨM, x(n),

for all n1, . . . , nr ≥ 1. Let d < r. As xd+1, . . . , xr ∈ AnnR(M), we get e(x;M) = 0 and

e(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xr)M) = 0

for d < i < r. Moreover,

e(x1, . . . , xd; (0 : xd+1)M/(xd+2,...,xr)M) = e(x1, . . . , xd;M);

e(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xr)M) = e(x1, . . . , xi; (0 : xi+1)M/(xi+2,...,xd)M)

for i < d. From the above computations we have

ĨRnM, u(n) = ĨR, x(n) + ĨM, x1,...,xd
(n)

for all n1, . . . , nr ≥ 1.

5



Now we are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2. (i)⇒ (ii). Since u is a s.o.p of R nM , it follows that x is a s.o.p of
R and x is a multiplicity system of M (i.e. `(M/(x1, . . . , xr)M) <∞).

If d = r, then x is a s.o.p of M . Using the assumption (i) together with Lemma 2.2(ii)
and Lemma 2.4, we have

0 = ĨRnM, u(n) = ĨR, x(n) + ĨM, x(n)

for all n1, . . . , nr ≥ 1. By Lemma 2.2(i), each term on the right hand side is non-negative.
Therefore, ĨR, x(n) = ĨM, x(n) = 0 for all n1, . . . , nr ≥ 1. By Lemma 2.2(ii), x is an almost
p-standard s.o.p of both M and R.

Suppose d < r. Via the canonical inclusion ε : M → R nM defined by ε(x) = (0, x),
each R-submodule of M can be identified with an R nM -submodule of R nM. Consider
the submodule ε(M) = 0×M of R nM . We have dimRnM(0×M) = d < r. Since u is an
almost p-standard s.o.p of RnM , we get by Lemma 2.1(ii) that

0× (xd+1, . . . , xr)M ⊆ (0×M) ∩ (ud+1, . . . , ur)(RnM) = 0.

Hence xd+1, . . . , xr ∈ AnnR(M). Set y = x1, . . . , xd. So from the assumption (i) together
with Lemma 2.2(ii) and Lemma 2.4, we obtain

0 = ĨRnM, u(n) = ĨR, x(n) + ĨM, y(n)

for all n1, . . . , nr ≥ 1. By Lemma 2.2(i), ĨR, x(n) = ĨM, y(n) = 0 for all n1, . . . , nr ≥ 1. By

Lemma 2.2(ii), x is an almost p-standard s.o.p of R and x1, . . . , xd is an almost p-standard
s.o.p of M .

(ii) ⇒ (i). Since x is an almost p-standard s.o.p of R and y = x1, . . . , xd is an almost
p-standard s.o.p of M , we get by Lemma 2.2(ii) that

ĨR, x(n) = ĨM, y(n) = 0

for all n1, . . . , nr ≥ 1. Therefore, we have by assumption (ii) and Lemma 2.4 that

ĨRnM, u(n) = ĨR, x(n) + ĨM, y(n) = 0.

By Lemma 2.2(ii), u is an almost p-standard s.o.p of RnM .

Theorem 1.2 leads to the following consequence for the existence of almost p-standard
s.o.p of idealization.

Corollary 2.5. The following statements are equivalent:

(i) R admits an almost p-standard s.o.p;

(ii) RnM admits an almost p-standard s.o.p;

(iii) RnM admits an almost p-standard s.o.p of the form (x1, 0), . . . , (xr, 0), where x1, . . . , xr
is an almost p-standard s.o.p of R and x1, . . . , xd is an almost p-standard s.o.p of M .
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Proof. (iii)⇒ (ii) is clear.
(ii) ⇒ (i). By assumption (ii), we get by [10, Theorem 1.2] that R nM is a quotient of a
Cohen-Macaulay local ring. Note that R is a quotient of RnM . Therefore, R is a quotient
of a Cohen-Macaulay local ring. Now, the result follows by [10, Theorem 1.2].
(i) ⇒ (iii). By assumption (i), we get by [10, Theorem 1.2] that R is a quotient of a
Cohen-Macaulay local ring. Therefore, dim(R/a(N)) < dimR(N) for any finitely generated
R-module N , where a(N) = a0(N)a1(N) . . . adimR(N)−1(N) and ai(N) = AnnR(H i

m(N)) for
i = 0, . . . , dimR(N) − 1. Therefore, by Prime Avoidance, there exists a p-standard s.o.p
x1, . . . , xr of R such that xd+1, . . . , xr ∈ AnnR(M) and x1, . . . , xd is a p-standard s.o.p of M
(see the definition of p-standard s.o.p in [6]). Hence x1, . . . , xr is an almost p-standard s.o.p
of R and x1, . . . , xd is an almost p-standard s.o.p of M . By Theorem 1.2, u1, . . . , ur is an
almost p-standard s.o.p of RnM , where ui = (xi, 0) for all i = 1, . . . , r.

From Corollary 2.5 and [10, Theorem 1.2], we get immediately the following consequence.

Corollary 2.6. A Noetherian local ring is a quotient of a Cohen-Macaulay local ring if and
only if so is one of its idealization, if and only if so are all of its idealizations by finitely
generated modules.

3 Macaulayfication of idealization

In this section, we discuss an application of Theorem 1.2 to construct Cohen-Macaulay Rees
algebras of idealization and then to prove the existence of Cohen-Macaulay Rees modules of
unmixed modules.

Let I be an ideal of R and T be a variable over R. The Rees algebra of R with respect to
I is the subring of R[T ] defined by

R(R, I) = R[IT ] = {
n∑

i=0

aiT
i | n ∈ N, ai ∈ I i} =

⊕
n≥0

InT n,

where I0 = R. Similarly, the Rees module of M with respect to I is defined by

R(M, I) = {
n∑

i=0

aixiT
i | n ∈ N, ai ∈ I i, xi ∈M} =

⊕
n≥0

InMT n,

where I0M = M. A Rees algebra R(R, I) is called an arithmetic Macaulayfication of R if it is
Cohen-Macaulay and I is of positive height. If R(R, I) is an arithmetic Macaulayfication of
R, then the canonical algebra homomorphism R→ R(R, I) induces a morphism of Noethe-
rian schemes Proj(R(R, I)) → Spec(R) which is called a projective Macaulayfication. More
generally, a Macaulayfication of Spec(R) is a birational and proper morphism X → Spec(R)
where X is a Cohen-Macaulay locally Noetherian scheme.

The existence of arithmetic Macaulayfication and of Macaulayfication have been estab-
lished by several authors. Kawasaki [17, Theorem 1.1] showed that a Noetherian local ring
has an arithmetic Macaulayfication if and only if it is unmixed and all its formal fibers are
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Cohen-Macaulay. Česnavičius [3] has introduced a notion of CM-quasi-excellent schemes as
following.

Definition 3.1. A Noetherian scheme X is CM-quasi-excellent if

(a) Every formal fiber of local rings of X is Cohen-Macaulay, and

(b) Any integral subscheme of X has an open Cohen-Macaulay locus.

A Noetherian ring is CM-quasi-excellent if its prime spectrum is a CM-quasi-excellent
affine scheme. In [3, Theorem 1.6], Česnavičius showed that if R is CM-quasi-excellent then
Spec(R) admits a Macaulayfication.

Arithmetic Macaulayfication has been studied from other perspective by Kurano [19],
Aberbach-Huneke-Smith [1], Cutkosky-Tai [12], Tai-Trung [21]. In [10], N.T. Cuong and
D.T. Cuong extended Kawasaki’s theorem for modules. They showed that there is an ideal
I such that the Rees module R(M, I) is Cohen-Macaulay if and only if M is unmixed and
R/AnnR(M) is a quotient of a Cohen-Macaulay ring.

Note that the idealization R nM is a finite R-algebra (see, for example, [2, Proposition
2.2]). By Corollary 2.6, if R is a quotient of a Cohen-Macaulay ring, then so is R nM ,
therefore we get by [17, Theorem 1.1] that if R admits an arithmetic Macaulayfication and
the idealization RnM is unmixed then RnM also admits an arithmetic Macaulayfication.
Similarly, if R is CM-quasi-excellent then so is R nM (see [3, Remark 1.5]). Česnavičius’s
theorem implies that in that case both Spec(R) and Spec(RnM) admit Macaulayfications.

We now investigate further relations between arithmetic Macaulayfications and Macaulay-
fications respectively on R and RnM . We first prove Theorem 1.3.

Proof of Theorem 1.3. Since R,M are unmixed of the same dimension r, we get by [2, The-
orem 4.11, 3.2] that the idealization RnM is unmixed of dimension r. Since R is a quotient
of a Cohen-Macaulay, R-module R ⊕M admits an almost p-standard s.o.p x = x1, . . . , xr.
By Lemma 2.2(ii),

0 = ĨR⊕M, x(n) = ĨR, x(n) + ĨM, x(n).

By Lemma 2.2(i), we get ĨR, x(n) = ĨM, x(n) = 0. Hence x1, . . . , xr is an almost p-standard
s.o.p of both R and M by Lemma 2.2(ii). By Theorem 1.2, (x1, 0), . . . , (xr, 0) is an almost
p-standard s.o.p of R nM . Therefore, Theorem 1.3 is then implied from [18, Proposition
8.2].

Theorem 1.3 has an interesting application in constructing Cohen-Macaulay Rees module.

Let x1, . . . , xn, y1, . . . , ym ∈ m and put ui = (xi, 0), vj = (yj, 0) ∈ R n M , for i =
1, . . . , n, j = 1, . . . ,m. Denote I = (x1, . . . , xn), J = (y1, . . . , ym), and P = (u1, . . . , un),
Q = (v1, . . . , vm). The following properties are obvious

P +Q = (I + J)× (I + J)M,

PQ = ((xiyj, 0))i,j = IJ × IJM,

P t = I t × I tM,

for all t > 0. They lead to the following lemma.
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Lemma 3.2. We have an algebra isomorphism

R(RnM,P ) ' R(R, I) nR(M, I).

Consequently, the Rees algebra R(RnM,P ) is Cohen-Macaulay if and only if R(R, I) and
R(M, I) are Cohen-Macaulay of the same dimension.

Using Theorem 1.3 and Kawasaki’s theorem on arithmetic Macaulayfication, we obtain
another proof for the construction of Cohen-Macaulay Rees module in [10, Theorem 4.4].

Corollary 3.3. Let R be a quotient of a Cohen-Macaulay local ring. Suppose that M is
unmixed and of dimension d > 1. Then there is an ideal I such that the Rees module
R(M, I) is Cohen-Macaulay.

Proof. Replace R by R/AnnR(M), we may assume that R is unmixed of the same dimension
with M . Since R is a quotient of a Cohen-Macaulay local ring, R admits an almost p-
standard s.o.p. By Corollary 2.5 and Theorem 1.2, R nM admits an almost p-standard
s.o.p u1, . . . , ud, where ui = (xi, 0) for i = 1, . . . , d such that x1, . . . , xd is an almost p-
standard s.o.p of both R and M . Put Ii = (xi, . . . , xd) for i = 1, . . . , d, and I = I1 . . . Id−2.
Also we denote ui = (xi, 0), Pi = (ui, . . . , ud) for i = 1, . . . , d, and P = P1 . . . Pd−2. Then
R(R, I) and R(R nM,P ) are Cohen-Macaulay. The Rees module R(M, I) has the same
dimension with R(R, I) and R(RnM,P ). So the short exact sequence

0→ R(M, I)→ R(RnM,P )→ R(R, I)→ 0,

implies that R(M, I) is Cohen-Macaulay.

Conversely, using [10, Theorem 4.4] we are able to give the second proof for Theorem 1.3
as following: Denote Ii = (xi, . . . , xr) and

I := I1 . . . Ir−3Ir−2.

Following [18, Proposition 8.2] and [10, Theorem 4.4], R(R, I) and R(M, I) are Cohen-
Macaulay. By Lemma 3.2, R(RnM,P ) ' R(R, I)nR(M, I) which is thus Cohen-Macaulay,
hence Theorem 1.3 is proved.

Another consequence of Theorem 1.3 is the following characterization for the existence of
arithmetic Macaulayfication for idealizations.

Corollary 3.4. The idealization R nM has an arithmetic Macaulayfication if and only if
R has an arithmetic Macaulayfication and M is unmixed with dim(R) = dimR(M).

Proof. Suppose R nM has an arithmetic Macaulayfication. By [10, Corollary 5.4], R nM
is unmixed and is a quotient of a Cohen-Macaulay ring. Then R and M are unmixed of
the same dimension and R is also a quotient of a Cohen-Macaulay ring. Using again [10,
Corollary 5.4], R admits an arithmetic Macaulayfication.

Conversely, suppose that R has an arithmetic Macaulayfication and M is unmixed with
dimR(M) = dim(R). Then R is a quotient of a Cohen-Macaulay local ring. Theorem 1.3
then implies that the idealization RnM admits an arithmetic Macaulayfication.
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For Macaulayfication, we find a tight relation between certain Macaulayfications of R and
RnM in several particular cases.

First, suppose R and M are unmixed of the same dimension. If R is a quotient of a
Cohen-Macaulay ring then by Theorem 1.3, there are arithmetic Macaulayfications of R, M
and RnM with relation

R(RnM,P ) ' R(R, I) nR(M, I).

On the other hand, the canonical morphism R(R, I) → R(R nM,P ) induces a morphism
of R-schemes Proj(R(RnM,P ))→ Proj(R(R, I)) which is actually an isomorphism. Note
that Proj(R(RnM,P )) and Proj(R(R, I)) are Cohen-Macaulay which are Macaulayfications
of Spec(RnM) and Spec(R) respectively. Therefore in this case, the Macaulayfication of R
and the idealization are isomorphic.

Now suppose that R is quasi-CM-excellent. The canonical map R nM → R induces a
bijective morphism of affine schemes ρ : Spec(R)→ Spec(RnM) (see [2, Theorem 3.2(b)]).
Let p be a minimal prime ideal of R, then ρ(p) = pnM is the corresponding prime ideal of
the idealization. By [2, Theorem 4.1], we have

(RnM)pnM ' Rp nMp.

In particular, if p does not belong to in the support of M then

(RnM)pnM ' Rp.

This proves the following proposition.

Proposition 3.5. Assume that no associated prime ideals of M are minimal prime ideals
of R. Then the morphism ρ : Spec(R) → Spec(R nM) is a birational morphism. Conse-
quently, if ϕ : X → Spec(R) is a Macaulayfication then ϕ ◦ ρ : X → Spec(R nM) is a
Macaulayfication.

Proof. Let p be a minimal prime ideal of R. Then (R nM)pnM ' Rp. Since the morphism
ρ is bijective, then it is clearly birational. Furthermore, ρ is obviously proper. So ϕ ◦ ρ is
proper and birational, which is therefore a Macaulayfication of Spec(RnM).

4 Hilbert function of idealization

Firstly, we recall the following property (see [4, Proposition 3.2, Corollary 3.5]).

Lemma 4.1. Let x = x1, . . . , xd be an almost p-standard s.o.p of M . Let i, j be integers
such that 0 ≤ i < j ≤ d. The following statements are true.

(i) The subquotient module U i,j
M := (0 :

M/(x
ni+2
i+2 ,...,x

nj
j )M

xi+1) is independent of the choice of

the s.o.p x and of the exponents ni+2, . . . , nj ≥ 2.

(ii) If j > i + 1, then there is an injective homomorphism ϕi,j : U i,j−1
M → U i,j

M such that

Im(ϕi,j) is a direct summand of U i,j
M . In particular, set U

i,j

M = Coker(ϕi,j), then

U i,j
M ' U

i,j

M ⊕ U
i,j−1

M ⊕ · · · ⊕ U i,i+2

M ⊕ U i,i+1
M .

10



For an integer 0 ≤ i < d, set U
i,i+1

M := U i,i+1
M . Note that Ud−1,d

M is the largest submodule

of M of dimension less than d, and U0,1
M = H0

m(M). The subquotient modules U i,j
M , U

i,j

M give
a lot of information on structure of M . For example, M is Cohen-Macaulay if and only if

U i,j
M = 0 for all i < j, if and only if U

i,j

M = 0 for all i < j. Moreover, M is generalized

Cohen-Macaulay if and only if `(U i,j
M ) < ∞ for all i < j, if and only if `(U

i,j

M ) < ∞ for all
i < j, see [4, Proposition 3.9].

From now on, we assume that R is a quotient of a Cohen-Macaulay local ring. Before

proving Theorem 1.4, we compute the subquotient modules U i,j
RnM and U

i,j

RnM of the ideal-
ization.

Lemma 4.2. The following statements are true.

(i) If d = r, then U i,j
RnM ' U i,j

R × U
i,j
M for all 0 ≤ i < j ≤ r.

(ii) If d < r, then

U i,j
RnM '


U i,j
R × U

i,j
M if 0 ≤ i < j < d,

U i,j
R × U id

M if 0 ≤ i < d ≤ j ≤ r,

U i,j
R ×M if d ≤ i < j ≤ r.

Proof. Since R is a quotient of a Cohen-Macaulay local ring, R admits an almost p-standard
s.o.p. By Corollary 2.5 and Theorem 1.2, RnM admits an almost p-standard s.o.p u1, . . . , ur,
where ui = (xi, 0) for i = 1, . . . , r such that x1, . . . , xr is an almost p-standard s.o.p of R,
x1, . . . , xd is an almost p-standard of M and xd+1, . . . , xr ∈ AnnR(M).

For integers 0 ≤ i < j ≤ r, by Lemma 2.3 we have

U i,j
RnM : = (0 : ui+1)(RnM)/(u2

i+2,...,u
2
j )(RnM)

' (0 : xi+1)R/(x2
i+2,...,x

2
j ) × (0 : xi+1)M/(x2

i+2,...,x
2
j )M

' U i,j
R × (0 : xi+1)M/(x2

i+2,...,x
2
j )M .

(i) If d = r, then (0 : xi+1)M/(x2
i+2,...,x

2
j )M ' U i,j

M for 0 ≤ i < j ≤ r, so U i,j
RnM ' U i,j

R × U
i,j
M .

(ii) Suppose that d < r. If 0 ≤ i < j < d then (0 : xi+1)M/(x2
i+2,...,x

2
j )M ' U i,j

M . Let

0 ≤ i < d ≤ j ≤ r. Since xd+1, . . . , xr ∈ AnnR(M), we have

(0 : xi+1)M/(x2
i+2,...,x

2
j )M = (0 : xi+1)M/(x2

i+2,...,x
2
d)M ' U i,d

M .

It is clear that (0 : xi+1)M/(x2
i+2,...,x

2
j )M 'M for all d ≤ i < j ≤ r, the statement follows.

For the subquotients U
i,j

RnM we have the following lemma.

Lemma 4.3. The following statements are true.

(i) If d = r, then U
i,j

RnM ' U
i,j

R × U
i,j

M for all 0 ≤ i < j ≤ r.
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(ii) If d < r, then

U
i,j

RnM '


U

i,j

R × U
i,j

M if 0 ≤ i < j ≤ d,

U
i,j

R if 0 ≤ i < d < j ≤ r, or d < i+ 1 < j ≤ r,

U
i,i+1

R ×M if d < i+ 1 = j ≤ r.

Proof. (i) Suppose that d = r and 0 ≤ i < j ≤ r. If j = i+ 1, then we get by Lemma 4.2(i)

U
i,i+1

RnM = U i,i+1
RnM ' U i,i+1

R × U i,i+1
M = U

i,i+1

R × U i,i+1

M .

Let j > i+ 1. Then U i,j−1
RnM ' U i,j−1

R × U i,j−1
M by Lemma 4.2(i), and hence

U i,j
RnM/U

i,j−1
RnM ' U i,j

R /U i,j−1
R × U i,j

M /U i,j−1
M .

We get by Proposition 4.1(ii) that

U i,j
RnM ' U

i,j

RnM ⊕ U
i,j−1
RnM , U

i,j
R ' U

i,j

R ⊕ U
i,j−1
R , U i,j

M ' U
i,j

M ⊕ U
i,j−1
M .

Therefore

U
i,j

RnM ' U i,j
RnM/U

i,j−1
RnM ' U i,j

R /U i,j−1
R × U i,j

M /U i,j−1
M ' U

i,j

R × U
i,j

M .

(ii) Suppose that d < r and 0 ≤ i < j ≤ r. If j ≤ d, then by the same arguments as in the

proof of (i), we have U
i,j

RnM ' U
i,j

R × U
i,j

M .

Let j > d. As in the proof of Lemma 4.2, there exists an almost p-standard s.o.p x1, . . . , xr
of R such that x1, . . . , xd is an almost p-standard s.o.p of M , xd+1, . . . , xr ∈ AnnR(M) and

U i,j
RnM ' U i,j

R × (0 : xi+1)M/(x2
i+2,...,x

2
j )M .

Note that (0 : xi+1)M/(x2
i+2,...,x

2
j )M = U i,d

M for all i < d and (0 : xi+1)M/(x2
i+2,...,x

2
j )M = M for all

i ≥ d. Therefore, if i < d then

U
i,j

RnM ' U i,j
RnM/U

i,j−1
RnM ' U i,j

R /U i,j−1
R × U i,d

M /U i,d
M ' U

i,j

R .

If j > i+ 1 > d then

U
i,j

RnM ' U i,j
RnM/U

i,j−1
RnM ' U i,j

R /U i,j−1
R ×M/M ' U

i,j

R .

If j = i+ 1 > d then

U
i,i+1

RnM = U i,i+1
RnM ' U i,i+1

R ×M = U
i,i+1

R ×M.

Proof of Theorem 1.4. Theorem 1.2 tells us that u = u1, . . . , ur is an almost p-standard s.o.p
of RnM . By [4, Theorem 4.7], we have

`((RnM)/Qn+1) = e0(Q,RnM)

(
n+ r

r

)
+e1(Q,RnM)

(
n+ r − 1

r − 1

)
+ . . .+er(Q,RnM)
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for all n ≥ 0, where er−i(Q,RnM) =
i∑

t=0

e(u1, . . . , ut;U
t,i+1

RnM) for all 0 ≤ i ≤ r − 1.

• Let d = r. Then J is a parameter ideal of M , therefore

e0(Q,RnM) = e0(J,R) + e0(J,M).

Since U
t,i+1

RnM ' U
t,i+1

R × U t,i+1

M by Lemma 4.3, we get

e(u1, . . . , ut;U
t,i+1

RnM) = e(x1, . . . , xt;U
t,i+1

R ) + e(x1, . . . , xt;U
t,i+1

M )

for all 0 ≤ t ≤ i < r. Therefore, for all 0 ≤ i < r we have

er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M ).

• Let d < r. Then e0(Q,R nM) = e0(J,R). If 0 ≤ i < d, then U
t,i+1

RnM ' U
t,i+1

R × U t,i+1

M by
Lemma 4.3 for all t ≤ i, therefore,

er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M ).

If d ≤ i < r then we get by Lemma 4.3 that

U
t,i+1

RnM '

{
U

t,i+1

R if 0 ≤ t < i,

U
i,i+1

R ×M if t = i,

therefore,

er−d(Q,RnM) =
d∑

t=0

e(x1, . . . , xt;U
t,d+1

R ) + e0(I,M)

and er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) for all i > d.

Let the notations and assumptions be as in Theorem 1.4. Consider the case where R and
M are generalized Cohen-Macaulay. We use Theorem 1.4 and [5, Lemma 2.4] to compute
Hilbert coefficients of RnM . If d = 0 or d = r then RnM is generalized Cohen-Macaulay.
In this case, if d = r then

er−i(Q,RnM) =


i∑

t=1

(
i−1
t−1

)
`R(H t

m(R)) +
i∑

t=1

(
i−1
t−1

)
`R(H t

m(M)) if 0 ≤ i < r,

e0(J,R) + e0(J,M) if i = r.

and if d = 0 then

er−i(Q,RnM) =


`R(H0

m(R)) + `R(M) if i = 0,
i∑

t=1

(
i−1
t−1

)
`R(H t

m(R)) if 0 < i < r,

e0(J,R) if i = r.
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If 0 < d < r, then RnM is not generalized Cohen-Macaulay. In this case we have

er−i(Q,RnM) =



e0(J ;R) if i = r,
i∑

t=1

(
i−1
t−1

)
`R(H t

m(R)) if d < i < r,

d∑
t=1

(
d−1
t−1

)
`R(H t

m(R)) + e0(I;M) if i = d,

i∑
t=1

(
i−1
t−1

)
`R(H t

m(R)) +
i∑

t=1

(
i−1
t−1

)
`R(H t

m(M)) if 0 ≤ i < d.

Let M0 = H0
m(M) ( M1 ( · · · ( Mt = M be the dimension filtration of M , i.e. Mi

is the largest submodule of Mi+1 satisfying dimR(Mi) < dimR(Mi+1) for i < t. Following
[11], M is sequentially generalized Cohen-Macaulay if each quotient Mi+1/Mi is generalized
Cohen-Macaulay. Let R0 = H0

m(R) ( R1 ( . . . ( Rs = R be the dimension filtration of
R. For i = 0, . . . , s and j = 0, . . . , t, put di = dimR(Ri) and d′j = dimR(Mj). Denote
∆R = {d1, . . . , ds} and ∆M = {d′1, . . . , d′t} and set ∆ := ∆R ∩∆M .

Corollary 4.4. Let the notations and assumptions be as in Theorem 1.4. For 0 < i ≤ r,
set xi = x1, . . . , xi. Suppose that R and M are sequentially generalized Cohen-Macaulay.

(i) If d = r then for all 0 ≤ i < r we have

er−i(Q,RnM) =


`(U

0,dj+1

R ) + e(xdj ;Rj) + e(xdj ;Mj)+ `(U
0,dj+1

M ) if i = dj ∈ ∆,

`(U
0,i+1

R ) + `(U
0,i+1

M ) if i /∈ ∆R ∪∆M ,

`(U
0,dj+1

R ) + e(xdj ;Rj) + `(U
0,dj+1

M ) if i = dj ∈ ∆R \∆M ,

`(U
0,d′j+1

R ) + e(xd′j ;Mj) + `(U
0,d′j+1

M ) if i = d′j ∈ ∆M \∆R.

(ii) If d < r then for d < i < r, we have

er−i(Q,RnM) =

{
`(U

0,dj+1

R ) + e(xdj ;Rj) if i = dj ∈ ∆R,

`(U
0,i+1

R ) if i /∈ ∆R;

and for all 0 ≤ i < d < r we have

er−i(Q,RnM) =


`(U

0,dj+1

R ) + e(xdj ;Rj) + e(xdj ;Mj)+ `(U
0,dj+1

M ) if i = dj ∈ ∆,

`(U
0,i+1

R ) + `(U
0,i+1

M ) if i /∈ ∆R ∪∆M ,

`(U
0,dj+1

R ) + e(xdj ;Rj) + `(U
0,dj+1

M ) if i = dj ∈ ∆R \∆M ,

`(U
0,d′j+1

R ) + e(xd′j ;Mj) + `(U
0,d′j+1

M ) if i = d′j ∈ ∆M \∆R;

and finally for i = d we have

er−d(Q,RnM) =

{
`(U

0,d+1

R ) + e(xd;Rj) + e0(I,M) if d = dj ∈ ∆R,

`(U
0,d+1

R ) + e0(I,M) if d /∈ ∆R.
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Proof. We get by Lemma 4.1(ii) that

U i,n
R ' U

i,n

R ⊕ U
i,n−1

R ⊕ · · · ⊕ U i,i+2

R ⊕ U i,i+1
R for all 0 ≤ i < n ≤ r;

U j,m
M ' U

j,m

M ⊕ U j,m−1

M ⊕ · · · ⊕ U j,j+2

M ⊕ U j,j+1
M for all 0 ≤ j < m ≤ d.

It follows by [8, Lemma 3.5] that Mj = U i,i+1
M for any integers i, j such that d′j ≤ i < d′j+1,

and Rj = U i,i+1
R for any integers i, j such that dj ≤ i < dj+1. So, by [4, Proposition 2.9 (2)],

U
i,j

M ⊕ U
i,j−1

M ⊕ · · · ⊕ U i,i+2

M and U
i,j

R ⊕ U
i,j−1

R ⊕ · · · ⊕ U i,i+2

R are of finite length. Hence

e(x1, . . . , xi;U
i,n

R ) =

{
e(x1, . . . , xdj ;Rj) if n = i+ 1, i = dj,

0 otherwise.

e(x1, . . . , xj;U
j,m

M ) =

{
e(x1, . . . , xd′k ;Mk) if m = j + 1, j = d′k,

0 otherwise.

(i) Let d = r. By Theorem 1.4, we have

er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M )

for all 0 ≤ i < r. We divide into four cases.

• If i = dj ∈ ∆, then e(x1, . . . , xt;U
t,i+1

R ) = e(x1, . . . , xt;U
t,i+1

M ) = 0 for all t /∈ {0, dj}.
Hence

er−i(Q,A) = `(U
0,dj+1

R ) + e(x1, . . . , xdj ;Rj) + `(U
0,dj+1

M ) + e(x1, . . . , xdj ;Mj).

• If i /∈ ∆R ∪∆M , then e(x1, . . . , xt;U
t,i+1

R ) = e(x1, . . . , xt;U
t,i+1

M ) = 0 for all t 6= 0. Hence

er−i(Q,RnM) = `(U
0,dj+1

R ) + `(U
0,dj+1

M ).

• If i = dj ∈ ∆R \ ∆M , then e(x1, . . . , xt;U
t,i+1

R ) = 0 for all t /∈ {0, dj}. Moreover,

e(x1, . . . , xt;U
t,i+1

M ) = 0 for all t 6= 0. Therefore,

er−i(Q,RnM) = `(U
0,dj+1

R ) + e(x1, . . . , xdj ;Rj) + `(U
0,dj+1

M ).

• If i = d′j ∈ ∆M \∆R, then e(x1, . . . , xt;U
t,i+1

R ) = 0 for all t 6= 0; e(x1, . . . , xt;U
t,i+1

M ) = 0
for all t 6= {0, d′j}. Therefore

er−i(Q,A) = `(U
0,d′j+1

R ) + e(x1, . . . , xd′j ;Mj) + `(U
0,d′j+1

M ).

(ii) Let d < r. We divide into three cases.
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• Assume that d < i < r. By Theorem 1.4, er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ). Note

that if i = dj ∈ ∆R then e(x1, . . . , xt;U
t,i+1

R ) = 0 for all t /∈ {0, dj}. Moreover, if i /∈ ∆R then

e(x1, . . . , xt;U
t,i+1

R ) = 0 for all t 6= 0. Therefore,

er−i(Q,RnM) =

{
`(U

0,dj+1

R ) + e(x1, . . . , xdj ;Rj) if i = dj ∈ ∆R,

`(U
0,i+1

R ) if i /∈ ∆R.

• Assume that 0 ≤ i < d. Then by Theorem 1.4, we have

er−i(Q,RnM) =
i∑

t=0

e(x1, . . . , xt;U
t,i+1

R ) +
i∑

t=0

e(x1, . . . , xt;U
t,i+1

M ),

and the result follows by the same arguments as in the proof of (i).

• Assume that i = d. Then by Theorem 1.4, we have

er−d(Q,RnM) =
d∑

t=0

e(x1, . . . , xt;U
t,d+1

R ) + e0(I,M).

We note that if d /∈ ∆R then e(x1, . . . , xt;U
t,d+1

R ) = 0 for all t 6= 0. Moreover, if d ∈ ∆R then

e(x1, . . . , xt;U
t,d+1

R ) = 0 for all t /∈ {0, d}. Therefore, the result follows.

Remark 4.5. Suppose that R,M are sequentially Cohen-Macaulay. Then U
0,1

M = H0
m(M),

U
0,1

R = H0
m(R) and U

0,i

M = 0, U
0,i

R = 0 for all i ≥ 2. Now, applying Corollary 4.4, we obtain a
much better formula for Hilbert coefficients in this case.

We end this paper with an example of computing Hilbert coefficients of R nM in case
where R,M are sequentially generalized Cohen-Macaulay.

Example 4.6. Let S = k[[x1, x2, x3, x4, x5]] be the formal power series ring over a field k,
let a = (x1, x2)∩ (x3, x4, x5) and b = (x1, x2, x3)∩ (x3, x4, x5). Let R = S/a, M = S/b. Then
dim(R) = 3 and the filtration of R is (0) = R0 ( (x1, x2)R = R1 ( R2 = R; dimR(M) = 2
and the filtration of M is (0) = M0 ( M1 = M . Denote by Ki

R is the i-th defficiency of R.
Since K0

R = 0, K1
R is of length 1 and K2

R is Cohen-Macaulay of dimension 2, it follows by
[11] that R is sequentially generalized Cohen-Macaulay, not sequentially Cohen-Macaulay.
It is clear that M is generalized Cohen-Macaulay, not Cohen-Macaulay. Note that U0,1

R = 0

and U0,1
M = 0. We have ∆R = {2, 3} and ∆M = {2}. We choose a1, a2, a3 are respectively the

image of x1 + x4, (x2 + x5)2, x3 in R. Then a3 ∈ AnnR(M) and

`(R/(an1
1 , a

n2
2 , a

n3
3 )R) = 2n1n2n3 + 2n1n2 + 1,

`(M/(an1
1 , a

n2
2 )M) = 4n1n2 + 1,

for all n1, n2, n3 ≥ 1. Hence a1, a2, a3 (resp. a1, a2) is an almost p-standard s.o.p of R (resp.

M). Moreover `(U0,3
R ) = `(U

0,3

R ) + `(U
0,2

R ) = 1 and `(U0,2
M ) = `(U

0,2

M ) = 1, since U
0,1

M = 0 and
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U
0,1

R = 0. Put J = (a1, a2, a3) and I = (a1, a2). Then

`(R/Jn+1) = 2

(
n+ 3

3

)
+ 2

(
n+ 2

2

)
+

(
n+ 1

1

)
,

`(M/In+1M) = 4

(
n+ 2

2

)
+

(
n+ 1

1

)
,

for all n ≥ 0. Since a1, a2, a3 is an almost p-standard s.o.p of R and U2,3
R = R1, we get

e1(J,R) = `(U
0,3

R ) + e(a1;U
1,3

R ) + e(a1, a2;R1) = 2,

e2(J,R) = `(U
0,2

R ) + e(a1;U
1,2

R ) = 1.

Thus `(U
0,3

R ) = e(a1;U
1,3

R ) = 0 and so `(U
0,2

R ) = 1. We set Q = (u1, u2, u3), where ui = (xi, 0)
for i = 1, 2, 3. By applying Corollary 4.4, we get e0(Q,R n M) = e0(J,R) = 2. Since
2 = dimR(M) ∈ ∆R ∩∆M ,

e1(Q,RnM) = `(U
0,2+1

R ) + e(a1, a2;R1) + e0(I,M) = 6.

Since 1 /∈ ∆R ∪∆M , we have e2(Q,RnM) = `(U
0,1+1

R ) + `(U
0,1+1

M ) = 2. Since 0 /∈ ∆R ∪∆M ,

we get e3(Q,RnM) = `(U
0,0+1

R ) + `(U
0,0+1

M ) = 0.
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