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FIDELITIES ON POSITIVE SEMI-DEFINITE MATRICES

VU THE KHOI AND HO MINH TOAN

Abstract. Motivated by measuring the degree of similarity of a pair of quantum

states (density matrices), we consider the metric property of the modified Bures

angles and modified Bures distances of symmetric functions which are extensions of

some fidelity measures on the spaces P of nonzero positive semi-definite matrices.

We use the positive semi-definiteness of the Gram-type matrices to characterize

the metric property of the modified Bures angles. As a consequence, we can show

that the modified Bures angles induced by the geometric mean, harmonic mean,

minimum and maximum of two positive numbers are metrics on P. In addition,

we can also show that the metric property of the modified Bures angles is stronger

than that of the modified Bures distances.

1. Introduction

Fidelity is a useful concept in quantum information science. A fidelity measure

is widely used as a measure of the degree of similarity of a pair of quantum states

(density matrices). Recently, fidelity measure has been applied to study entangle-

ment quantification, etc. A nice survey of this topic can be found in [1, 2] and the

references therein.

If F is a fidelity measure, we may expect that a metric can be constructed via

some functionals of F . Moreover, we may also expect to study the metric property

not only on the quantum state space (the set of density matrices), but also on the

space of positive semi-definite matrices Bhatia et al. [6]. The metric property of

the modified Bures angle (denoted by arccos
√
F), of the modified Bures distance

(
√

1−
√
F) and of the modified Bures sine distance (

√
1−F) are studied and

summarized in [1, Table 6]. Motivated by studying metric properties for some

functionals which are considered but still undetermined in [1], we consider that
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problem for a class of real-valued symmetric functions defined on P × P , where

P is the space of nonzero positive semi-definite matrices. Such the functions may

be extensions of some fidelity measures on the quantum state spaces. This class

includes the well-known fidelity measures such as FII,FAM,FGM, etc. (see [1]).

Precisely, given a real-valued, symmetric and nonnegative function f on (R+)2, we

consider the function Ff defined on P × P as below:

Ff (A,B) =
Tr(AB)√

Tr(A2)Tr(B2)
f(Tr(A2),Tr(B2)),

for every pair of nonzero positive semi-definite matrices of the same size A,B. These

fidelities measures are called Hilbert-Schmidt fidelities, see [1, 2.6]

The first Jozsa’s axioms J1a) and J1b) state that the values of a fidelity func-

tional at a pair of positive semi-definite of the same size (A,B) must be real num-

bers in [0, 1] and equal to 1 if and only if A = B. The second Jozsa’s axiom J2) is

the symmetric property. Hence, these axioms ensure that the modified Bures angel

arccosF(A,B) is well-defined, symmetric, nonnegative and equal to zero if and only

if A = B. A real valued function d defined on X ×X is said to satisfy the triangle

inequality on X if d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z in X. The difficult step

which proves such a function d to be a metric on X is to check the triangle inequal-

ity. Therefore, we pay attention to the triangle inequality of the modified Bures

angles arccosF and of the modified Bures distance
√

1−F , where F is defined on

P .
In this work, we consider the metric property of the modified Bures angle arccosFf .

We will show that the modified Bures angle arccosF(A,B) satisfies the triangle in-

equality on P if and only if the Gram-type matrix of F is positive semi-definite on

P . As a consequence, if f is the ratio of the geometric mean and maximum mean

of two positive numbers then the modified Bures angle arccosFf is a metric on P .
Another application of the above equivalent conditions is to prove the triangle in-

equality of arccosFGM on P . Precisely, if f is the constant 1 then F1 = FGM and

the modified Bures angle arccosFGM is a metric on the quantum state space, not a

metric on P , even it satisfies the triangle inequality on P , since FGM(A,B) = 1 if

and only if {A,B} is linearly dependent. In other cases, if f = m
∇ , where ∇ is the

arithmetic mean of two positive numbers and m(x, y) is a mean which is a mem-

ber of {min{x, y},√xy, x!y} then we can show that arccosFf is a metric on P . In



METRICS INDUCED BY CERTAIN HILBERT-SCHMIDT FIDELITIES 3

addition, we also show that if the modified Bures angle arccosF is a metric, so is√
1−F .
The paper is organized as follow: In section 2, we recall some notations and

results obtained in Liang at el. [1]. Section 3 includes the characterization of metric

property of the modified Bures angle arccosFf and its applications to some nice

cases where f are ratios of means of two positive numbers.

2. Preliminaries and Notations

Notations. Let R+ denote the set of positive real number, M the algebra of

n × n matrices with complex coefficients, P the space of nonzero positive semi-

definite matrices.

The function arccos(F) (
√

1−F) is called the modified Bures angle of
√
F (the

modified Bures distance of
√
F , respectively), see Liang at el. [1].

We recall the notations of some well-known fidelities as follows Liang at el. [1].

FII(A,B) =
Tr(AB)

max{TrA2,TrB2}
(2.1)

FAM(A,B) =
2Tr(AB)

Tr(A2) + Tr(B2)
(2.2)

FGM(A,B) =
Tr(AB)√

Tr(A2)
√

Tr(B2)
(2.3)

where A,B are nonzero positive semi-definite matrices of the same size. In [1], the

fidelity defined by (2.1) is denoted by F2. To avoid confusion, in this paper, we use

the notation FII instead.

A large class of functions which are generalizations of the fidelity measures above

can be defined as follows. Let f be an arbitrary symmetric, non-vanishing function

on R+ × R+. One can define a function on P × P :

Ff (A,B) = Tr(
A√

Tr(A2)

B√
Tr(B2)

)f(Tr(A2),Tr(B2))(2.4)

= FGM(A,B)f(Tr(A2),Tr(B2)).

Note that the notation Ff in [1] means the function F ]
f

in the sense (2.4), where

x]y =
√
xy.

Remark. Let Ff be a function defined by (2.4).
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• If f(x, y) = 2
√
xy

x+y
, then

Ff (A,B) =
2Tr(AB)

Tr(A2) + Tr(B2)
= FAM(A,B).

• If f(x, y) = 1, a constant function then

Ff (A,B) =
Tr(AB)√

Tr(A2)
√

Tr(B2)
= FGM(A,B).

• If f(x, y) =
√
xy

max {x,y} , then

Ff (A,B) =
Tr(AB)

max {Tr(A2),Tr(B2)}
= FII(A,B).

We can recall here the results about metric property on the quantum state space

for the functionals of the fidelity as in [1, Table 6]:

• Neither arccos
√
F nor

√
1−
√
F are metrics on the quantum state space if

F is a member in {FII,FAM,FGM}.
• The function

√
1−F is a metric if F is a member of {FII,FGM} and is still

undetermined if F = FAM.

In this paper, we consider metric properties of the functions Ff on the space of

nonzero positive semi-definite matrices P and similarly we can also obtain such the

results on any subspace of P .

3. Results

Fidelity were introduced in Jozsa [3] and is a mathematical prescription for the

quantification of the degree of similarity of a pair of quantum states. The metric

property of fidelity measures is an important problem in the study of fidelity. Moti-

vated by this problem in quantum theory, in this note, we study the metric property

of the functions F defined on P × P which should satisfy the Jozsa’s axioms.

Definition 3.1. Let X be a nonempty set. A real-valued non-vanishing function F

defined on X ×X is said to satisfy the Jozsa’s axioms on X if for every x, y in X,

the following conditions hold:

J1a) 0 ≤ F (x, y) ≤ 1.

J1b) F (x, y) = 1 if and only if x = y.

J2) F (x, y) = F (y, x).
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Note that the list of Jozsa’s axioms in [1] includes some more axioms. However, in

this work, we only pay attention to the ones which are useful to the metric property.

For an arbitrary positive number α, if F satisfies the Jozsa’s axioms, then the

function Fα given by

Fα(x, y) := (F (x, y))α x, y ∈ X

also satisfies the Jozsa’s axioms.

3.1. Modified Bures angle and modified Bures distance. The notations of the

modified Bures angle and distance were written in [1]. Let F be a function defined

on P×P which satisfies the Jozsa’s axioms J1a), J1b), J2). In this subsection, we

will show that the metric property of the modified Bures angle arccosF is stronger

than that of the modified Bures distance
√

1−F .

Lemma 3.2. Let d be a metric on X and f be a nonnegative, increasing and sub-

additive function on an interval I = [0,m] ⊃ Im(d), where

Im(d) = {d(x, y) | x, y ∈ X}.

Then ρ := f ◦ d is a metric on X provided that f(t) = 0 holds only at t = 0.

A sub-additive function f on I we means that f satisfies f(a + b) ≤ f(a) + f(b)

for a, b ∈ I.

Proof. The proof the the lemma above is straightforward. �

Remark. If f is a concave function on I = [0,m] and f(0) = 0 then f must be

sub-additive.

Corollary 3.3. Let F be a function defined on P × P . which satisfies the Jozsa’s

axioms J1a), J1b) J2). If the modified Bures angle arccosF is a metric on P , so

is
√

1−F .

Proof. Let’s consider the function f(t) :=
√

1− cos t on [0, π/2]. It is straightforward

to show that f(t) is nonnegative, increasing and concave on [0, π/2]. By the above

remark and Lemma 3.2, σF = f ◦ dF is a metric. �
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3.2. Metric property of the modified Bures angle.

Remark. Let F be a real valued function which satisfies the Jozsa’s axioms on X.

Then the modified Bures angle arccosF satisfies the first two axioms of a metric,

i.e.,

(i) arccosF (x, y) ≥ 0 for every x, y ∈ X and arccosF (x, y) = 0 if and only if

x = y.

(ii) arccosF (x, y) = arccosF (x, y) for every x, y ∈ X.

Thanks to this remark, to study the metric property of arccosF (x, y) on X, we

only consider the triangle inequality of arccosF (x, y), i.e.,

arccosF (x, y) ≤ arccosF (x, z) + arccosF (z, y), ∀x, y, z ∈ X.

Let F and f be a real valued function on P×P and R+×R+, respectively. G(F) =

G(F)(A,B,C) and Gf = Gf (x, y, z) denote the so called Gram-type matrices of F
and f, respectively and are defined as follows.

G(F) =

 F(A,A) F(A,B) F(A,C)

F(B,A) F(B,B) F(B,C)

F(C,A) F(C,B) F(C,C)

 , Gf =

 f(x, x) f(x, y) f(x, z)

f(y, x) f(y, y) f(y, z)

f(z, x) f(z, y) f(z, z)


for matrices A,B,C in P and for real numbers x, y, z in R+. Set

r(F) := {(F(A,B),F(B,C),F(C,A)) | A,B,C ∈ P} ⊂ R3.

Proposition 3.4. Let F be a function which satisfies the Jozsa’s axioms J1a),

J1b), J2) on P . Then the following statements are equivalent.

(i) dF = arccos(F) is a metric on P .
(ii) The Gram-type matrix G(F) of F is positive semi-definite for every positive

semidefinite matrices A,B,C P .
(iii)

S(x, y, z) := x2 + y2 + z2 − 2xyz − 1 ≤ 0, ∀(x, y, z) ∈ r(F).

Proof. The equivalence of (ii) and (iii) follows from the fact that S(x, y, z) = detG(F)

and the hypothesis that F satisfies the axiom J1a).

(i) ⇔ (ii). For every positive semi-definite matrices A,B,C, in P , let x =

F(A,B), y = F(B,C) and z = F(A,C). We have

S(x, y, z) ≤ 0 ⇔ z2 − 2xyz + (y2 + x2 − 1) ≤ 0.
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Consider S(x, y, z) as a polynomial of degree 2 in z, the last inequality above is

equivalent to

(3.1) xy − (1− x)(1− y) ≤ z ≤ xy + (1− x)(1− y).

It turns out that this inequality is equivalent to

(3.2) | arccosx− arccos y| ≤ arccos z ≤ arccosx+ arccos y.

This inequality is equivalent to the triangle inequality of dF . �

Corollary 3.5. Given a function F satisfying the Jozsa’s axioms J1a), J1b), J2)

on P . If the modified Bures angle arccosF is a metric on P , so is arccos (Fm) for

every positive integer m.

Proof. By Corollary 3.3, it is enough to show that arccos (Fm) is a metric. The

Gram-type matrix G(Fm) of Fm can be decompsed as Schur product of G(F) :

G(F2) = G(F) ◦G(F), G(F3) = G(F2) ◦G(F) ◦G(F), . . . .

Hence, by Schur product Theorem, G(Fm) is positive semi-definite. Then the state-

ment follows Proposition 3.4. �

By the Cauchy Schwarz inequality (with the Frobenius inner product), we have

|Tr(AB)| ≤
√

Tr(A2)
√

Tr(B2)

for everyA,B in P .Hence, 0 ≤ FGM(A,B) ≤ 1. Therefore, the function arccosFGM(A,B)

is well-defined. The equality of the Cauchy Schwarz inequality above holds if and

only if A = λB for some positive number λ. If we assume further that A,B are

density matrices, then FGM(A,B) = 1 if and only if A = B.

Lemma 3.6. Let FGM be the function defined by the formula (2.3). Then the Gram-

type matrix of FGM is positive semi-definite on P . As a consequence, the modified

Bures angle arccosFGM satisfies the triangle inequality on P .

The fidelity FGM satisfies the axiom J1b) on the space of density matrices but not

on P . Hence, according to the above lemma, arccosFGM is a metric on the quantum

state space, but not on P . Note also that the modified Bures angle arccos
√
FGM

is not a metric (it does not satisfy the triangle inequality) on the quantum state

space, see [1, Table 6].
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Proof. For any nonzero positive semi-definite matrices of the same size A,B,C and

let v(A) = A√
Tr(A2)

, v(B) = B√
Tr(B2)

and v(C) = C√
Tr(C2)

be the unit vectors in the

space Mn with the Frobenius inner product 〈A,B〉 = Tr(B∗A). Then the Gram-type

matrix of FGM is

G(FGM) =

 〈v(A), v(A)〉 〈v(A), v(B)〉 〈v(A), v(C)〉
〈v(B), v(A)〉 〈v(B), v(B)〉 〈v(B), v(C)〉
〈v(C), v(A)〉 〈v(C), v(B)〉 〈v(C), v(C)〉

 .

Hence, G(FGM) is positive semi-definite. As in the proof of Proposition 3.4, arccosFGM

satisfies the triangle inequality on P . �

Theorem 3.7. Let f be a continuous function which satisfies the Jozsa’s axioms

J1a), I1b) and J2) on R+. Then the following statements hold.

(i) The function Ff (A,B) defined by 2.4 satisfies the Jozsas axioms J1a), J1b),

J2) on P .
(ii) The modified Bures angle arccosFf is a unitarily invariant metric on P

provided that the Gram-type matrix

Gf =

 1 f(x, y) f(x, z)

f(x, y) 1 f(y, z)

f(x, z) f(y, z) 1


is positive semi-definite for every x, y, z ∈ (0, 1].

Proof. (i).

J1a) Combine (2.4), FGM(A,B) ∈ [0, 1] and f(x, y) ∈ [0, 1], we get Ff (A,B) ∈
[0, 1].

J1b) Since FGM(A,B) ≤ 1, f(x, y) ≤ 1 and the equality (2.4), we have

Ff (A,B) = 1⇔ FGM(A,B) = 1 and f(Tr(A2),Tr(B2)) = 1.

Since f(x, y) = 1 if and only if x = y, we get that Tr(A2) = Tr(B2). In

addition, FGM(A,B) = 1 if and only if A = cB for some constant c > 0.

Hence, A must be equal to B.

J2) The symmetry of FF follows from that of FGM and of f.
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(ii) By Proposition 3.4, the modified Bures angle arccosFf is a metric if and only

if the Gram-type matrix G(Ff ) is positive semi-definite. Since

Ff (A,B) = FGM(A,B)f(Tr(A2),Tr(B2)),

we can write G(Ff ) as the Schur product:

G(Ff ) = G(FGM) ◦Gf .

The matrix G(FGM) is positive semi-definite by Lemma 3.6, while Gf is positive

semi-definite by the hypothesis. These together with Schur’s product Theorem

imply that G(Ff ) is positive semi-definite. �

Note: In Theorem 3.7, arccosFf is a metric on the quantum state space even when

we remove the condition ′f(x, y) = 1⇒ x = y′ in the hypothesis of the theorem.

Example. If f(x, y) is a real-valued positive definite kernel, then the Gram-type

matrix Gf is positive semi-definite. In particular, if g(x) is an even nonnegative

function on R then f(x, y) = exp (−g(x− y)) is a positive definite kernel. Further-

more, f(x, y) satisfies the Jozsa’s axioms on R+ provided that 0 is the unique zero

point of g(x). By Theorem 3.7, arccosFf is a metric on P and so is
√

1−Ff . We

may find more interesting examples of positive definite functions/kernels in [7, 8].

Corollary 3.8. The modified Bures angle arccosFII is a metric on P , where FII is

defined by (2.1).

Note that neither arccos
√
FII nor

√
1−
√
FII are metrics, see [1, Table 6].

Proof. Let f(x, y) =
√
xy

max {x,y} then f satisfies the Jozsa’s axioms on R+ and by

Remark 2,

Ff (A,B) = FII(A,B).

Let’s consider the Gram-type matrix

Gf =

 1 f(x, y) f(x, z)

f(y, x) 1 f(y, z)

f(z, x) f(z, y) 1

 ,

Denote by a = f(x, y), b = f(y, z) and c = f(z, x). Without loss of generality, we

can assume that 0 ≤ x ≤ y ≤ z ≤ 1, we have

a = f(x, y) =

√
x
√
y
, b = f(y, z) =

√
y
√
z
, c = f(z, x) =

√
x√
z
.
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Then

detGf = 1 + 2abc− a2 − b2 − c2 = 1 +
x

z
− x

y
− y

z
≥ 0,

since x
y
≤ x+z−y

z
. Therefore, Gf is positive semi-definite. By Theorem 3.7, the

modified Bures angle arccosFII is a metric on P . �

3.3. Fidelity measures induced by means.

3.3.1. Means of positive numbers. A mean of positive numbers is a function m :

R+ × R+ → R+ which satisfies the following conditions:

(i) m(x, x) = x for every positive number x.

(ii) m(x, y) = m(y, x) for every positive numbers x, y.

(iii) If x < y then x < m(x, y) < y.

(iv) If x < x′ and y < y′ then m(x, y) < m(x′, y′).

(v) m(x, y) is continuous.

A mean is said to be homogeneous if

(vi) m(tx, ty) = tm(x, y) for every positive numbers x, y, t.

See [4, 5] for more details. Thanks to the homogeneity, a two variable function m

can be reduced to a single variable function m1 such that

m(x, y) = xm1(
y

x
) = ym1(

x

y
).

Furthermore, a homogeneous mean m above is uniquely described by such a function

m1 satisfying the following properties:

(i)’ m1(1) = 1.

(ii)’ tm1(t
−1) = m1(t).

(iii)’ m1(t) > 1 if t > 1 and m1(t) < 1 if 0 < t < 1.

(iv)’ m1 is monotone increasing.

(v)’ m1 is continuous.

Conversely, each function f satisfying the properties above gives a mean m(x, y) =

xm1(
y
x
).

The following means are the most well-known ones:

(1) The geometric mean x]y :=
√
xy whose corresponding function

√
t.

(2) The arithmetic mean x∇y := (x+y)/2 whose corresponding function (t+ 1)/2.
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(3) The harmonic mean x!y := 2(x−1 + y−1)−1 whose corresponding function

2t/(1 + t).

Proposition 3.9. Let m ≤ ] be a homogeneous mean (of two positive numbers).

Denote by Fm
∇

the function defined by the formula (2.4).

(i) The function Fm
∇

satisfies the Jozsa’s axioms on P .
(ii) The modified Bures distance Fm

∇
is a metric provided that

(3.3)
1

4
+ 4

m1(s)

1 + s

m1(t)

1 + t

m1(st)

1 + st
≥
(
m1(s)

1 + s

)2

+

(
m1(t)

1 + t

)2

+

(
m1(st)

1 + st

)2

holds true for all positive numbers s, t, where m1(x) = m(1, x).

Proof. Let f(x, y) = 2m(x,y)
x+y

be a real-valued function on R+ × R+. Then Fm
∇

= Ff
defined by (2.4).

(i) Since m(x, y) = m(y, x), f(x, y) is a nonnegative symmetric function on (R+)2.

As m(x, y) ≤ x∇y, we have 0 ≤ f(x, y) ≤ 1. Clearly f(x, x) = 1 because m(x, x) =

x = x∇x. Suppose that f(x, y) = 1. Equivalently, m(x, y) = x∇y. Since m ≤ ], we

have
√
xy = x∇y. Hence, x = y. Therefore, f satisfies the Jozsa’s axioms on R+.

Thus, by Theorem 3.7, Fm
∇

is a fidelity measure satisfying J1a), J1b), J2).

(ii) By Theorem 3.7, arccosFm
∇

is a metric if the Gram-type matrix of f = m
∇

Gf =

 1 f(x, y) f(x, z)

f(x, y) 1 f(y, z)

f(x, z) f(y, z) 1


is positive semi-definite. This is equivalent to detGf ≥ 0, i.e.,

(3.4) 1 + 2f(x, y)f(y, z)f(z, x) ≥ f 2(x, y) + f 2(y, z) + f 2(z, x), ∀x, y, z ∈ (0, 1].

We have

f(x, y) =
2m(x, y)

x+ y
=

2m1(s)

1 + s
, s =

x

y
.

Similarly, f(y, z) = 2m1(t)
1+t

with t = y
z

and f(x, z) = 2m1(st)
1+st

. Substituting these

identities into the inequality (3.4), we get (3.3). �

Corollary 3.10. The modified Bures angle arccosFAM is a metric on P , where FAM

is defined by (2.2).
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Proof. Let f(x, y) =
2
√
xy

x+y
be a function on (R+)2. By definition, we have

FAM(A,B) = FGM(A,B)
2
√
xy

x+ y
= Ff (A,B),

where x = Tr(A2), y = Tr(B2). By Proposition 3.9, it is sufficient to show that

(3.5)
1

4
+ 4

m1(s)

1 + s

m1(t)

1 + t

m1(st)

1 + st
≥
(
m1(s)

1 + s

)2

+

(
m1(t)

1 + t

)2

+

(
m1(st)

1 + st

)2

,

where m1(x) =
√
x. Substitute m1(x) =

√
x into the inequality (3.5), we get

1 + 2
2
√
s

s+ 1

2
√
t

t+ 1

2
√
st

st+ 1
− 4

[
s

(s+ 1)2
+

t

(t+ 1)2
+

st

(st+ 1)2

]
≥ 0.

This inequality is equivalent to

s4t4 + 2s4t3 + 2s3t4 + s4t2 + 22s3t3 + s2t4 + 22s3s2 + 22s2t3 + 2s3t+ 30s2t2

+2st3 + 14s2t+ 14st2 + s2 + t2 + 10st− 2s− 2t+ 1 ≥ 0.

This inequality holds true for all s ≥ 0, t ≥ 0, since

s2 + t2 + 10st− 2s− 2t+ 1 = (s+ t− 1)2 + 8st ≥ 0, ∀s, t ≥ 0.

�

Corollary 3.11. Let f(x, y) be a symmetric function defined on (R+)2 and F by

F(A,B) =
2Tr(AB)

Tr(A2) + Tr(B2)
f(TrA2,TrB2)

for every pair of the same size matrices A,B ∈ P . Suppose that 0 ≤ f(x, y) ≤
1, f(x, y) = 1 for every positive numbers x, y and the Gram-type matrix Gf is positive

definite on R+. Then arccosF is a metric on P .

Proof. Since F(A,B) = FAM(A,B)f(TrA2,TrB2), and FAM satisfies the Jozsa’s

axioms J1a), J1b and J2), arccosF(A,B) is nonnegative, symmetric and is equal to

zero if and only if A = B. Since arccosFAM is a metric on P and by Theorem 3.7, the

Gram-type matrix G(FAM) is positive semi-definite. Thus, G(F) = G(FAM) ◦Gf is

positive semi-definite by the hypothesis, Corollary 3.10 and Schur product Theorem.

Now, apply Theorem 3.7 again, we get the proof. �

Corollary 3.12. The modified Bures angle arccosF !
∇

is a metric on P , where
!
∇(x, y) = 2 x!y

x+y
is the ratio of the harmonic and arithmetic means.
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Proof. By definition, we have

F !
∇

(A,B) = FAM(A,B)
x!y
√
xy
,

where x = Tr(A2), y = Tr(B2). By Corollary 3.11, it suffices to show that the

Gram-type matrix Gf is positive semi-definite, where f(x, y) = x!y√
xy
. We can write

f(x, y) =
x!y
√
xy

=
2

√
xy(x−1 + y−1)

=
2
√
s

1 + s
, where s =

x

y
.

Similarly,

f(y, z) =
2
√
t

1 + t
, f(x, z) =

2
√
st

1 + st
, where t =

y

z
.

The fact is that 0 < min {x, y} ≤ x!y ≤ √xy ≤ max {x, y}, so 0 < f(x, y) ≤
1. Hence, the Gram-type matrix Gf of f is positive semi-definite (for all positive

numbers s, t) if and only if detGf ≥ 0. Equivalently,

(3.6)

1 + 2
2
√
s

s+ 1

2
√
t

t+ 1

2
√
st

st+ 1
− 4

[
s

(s+ 1)2
+

t

(t+ 1)2
+

st

(st+ 1)2

]
≥ 0 for s, t > 0.

As the same argument in the proof of Corollary 3.10, the inequality (3.6) holds true

for all positive numbers s, t. �

If we relax the condition (iii) in the definition of mean above by

(iii)” If x ≤ y then x ≤ m(x, y) ≤ y

then the function max,min are also means of two positive numbers. Actually, Propo-

sition 3.9 still holds true for such a relaxed mean m provided that m can be written

as m(x, y) = xm1(y/x) = ym1(x/y).

Corollary 3.13. Let F = Ff be a function defined by (2.4). If f(x, y) = 2min{x,y}
x+y

then arccosF is a metric on P .

Proof. We can write

F(A,B) = FAM(A,B)g(TrA2,TrB2),

where g(x, y) = min{x,y}√
xy

. Let x, y, z be arbitrary positive numbers, without loss of

generality, we can assume that x ≤ y ≤ z. Then

g(x, y) =

√
x
√
y
, g(x, z) =

√
x√
z

& g(y, z) =

√
y
√
z
.
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Hence the Gram-type matrix Gg is positive semi-definite (as the same argument in

the proof of Corollary 3.8). By Corollary 3.11, arccosF is a metric on P . �
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