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A B S T R A C T

Stimulated by practical applications arising from economics, viral marketing, and elections, this paper studies
the problem of Groups Influence with Minimum cost (𝖦𝖨𝖬), which aims to find a seed set with the smallest
cost that can influence all target groups in a social network, where each user is assigned a cost and a score and
a group of users is influenced if the total score of influenced users in the group is at least a certain threshold.
As the group influence function, defined as the number of influenced groups or users, is neither submodular
nor supermodular, theoretical bounds on the quality of solutions returned by the well-known greedy approach
may not be guaranteed.

In this work, two efficient algorithms with theoretical guarantees for tackling the 𝖦𝖨𝖬 problem, named
Groups Influence Approximation (𝖦𝖨𝖠) and Exact Groups Influence (𝖤𝖦𝖨), are proposed. 𝖦𝖨𝖠 is a bi-criteria
polynomial-time approximation algorithm and 𝖤𝖦𝖨 is an (almost) exact algorithm; both can return good
approximate solutions with high probability. The novelty of our approach lies in two aspects. Firstly, a
novel group reachable reverse sample concept is proposed to estimate the group influence function within an
error bound. Secondly, a framework algorithmic is designed to find serial candidate solutions with checking
theoretical guarantees at the same time. Besides theoretical results, extensive experiments conducted on real
social networks show our algorithms’ performance. In particular, both 𝖤𝖦𝖨 and 𝖦𝖨𝖠 provide the solution quality
several times better, while 𝖦𝖨𝖠 is up to 800 times faster than the state-of-the-art algorithms.
1. Introduction

Information propagation and Influence Maximization (𝖨𝖬) in Online
Social Networks (OSNs) have been hot research topics recently due to
their wide range of applications in the commercial. Nowadays, organi-
zations and companies have used social media platforms as practical
tools to promote products, spread renovations and ideas, persuade
voters, etc.

In Kempe et al. [1], a paper published almost twenty years ago,
introduced the problem of 𝖨𝖬, which aimed at finding a set of some
key users (called seed set) in an online social network to start a process
that could possibly influence the largest number of users. Since then,
𝖨𝖬 problem has demonstrated its important role in various domains,
not only in product promotion and social influence [2,3], but also in
other applications such as social network monitoring [4–6], epidemic
presentation [7–10] and recommendation system [11].

In some realistic scenarios, the decision and behavior of a user
depend on one’s team, and a group of essential persons may affect many
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individuals making their important decisions. Therefore, exerting an
impact on groups or communities of users has more benefits than that
on each individual and deserves special consideration.

A typical example is the US Presidential election, where any candi-
date who gets an absolute majority of electoral votes (not the popular
votes) will be selected as the winner of the presidency. In reality, the
candidate often focuses on swing States to get the last win. Each State
is allocated a fixed number of electoral votes that a candidate can own
if one wins the most significant popular votes in the State. To do this,
the candidate’s election campaigns might leverage social networks in
order to persuade the most voters in the State. As the budget of the
campaign is limited, the candidate would not be able to convince all of
the voters in the State, and one should target the most influenced voters
(some key persons) in the State. Another example is about combating
misinformation or rumors in social networks. To protect some groups
of users in a social network against the attack of misinformation or
vailable online 22 September 2023
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rumor, one can select some seed users to initiate the good or official
information to influence groups before bad effects influence them.

Motivated by the aforementioned phenomena, recent studies have
been focused on the problem of group influence maximization, which
asks to find some critical users that influence the largest number
of groups or communities of users in an online social network (see,
e.g., [12–15]). It is obvious that the mentioned problem is a generalized
version of 𝖨𝖬, and thus it is computationally hard. In the two above
examples and some other contexts, some target groups in a social
network are required to be influenced, but the selection of seed sets
for influencing the group with limited cost or size constraints in the
previous studies seems inefficient because it may not influence all
groups or select too many unnecessary seed nodes. Consequently, in
this scenario, the campaign that ensures all groups are influenced with
minimal cost is more efficient than the previous strategies. Therefore,
one can consider a dual problem of this problem by asking for the
minimum number of users to influence a given set of groups. From this
point of view, this paper investigates a slightly general problem named
𝖦𝖨𝖬, which asks to find a set of key users with a minimum total cost
o influence all the given target groups in an online social network.

Different from existing works, in this paper, each user’s role in a
roup is first considered by a score, and each group has a threshold
epresenting how difficult it influences that group. Besides, in this
ontext, we also constrain a general rule for influencing a group: a
roup is influenced if the total score of affected members reaches at
east its threshold. It can be easily seen that 𝖦𝖨𝖬 is a dual version of
nfluence group maximization. Thus, it is 𝐍𝐏-hard to solve, not only by
he combinatorial structure of the problem but also by the #𝐏-hardness
f the calculation of the number of influence groups (denoted by 𝜎(⋅)
unction). Another challenge for solving the considered problem is that
(⋅) is neither a submodular nor supermodular, implying that 𝖦𝖨𝖬 does
ot admit the traditional greedy methods with any theoretical bound.
ur Contributions. Assuming that 𝐺 = (𝑉 ,𝐸) is modeled as a social
etwork and  = {𝐶1, 𝐶2,… , 𝐶𝐾} is a set of target groups, 𝐶𝑖 ⊆ 𝑉 ,∀𝑖 ∈
𝐾]. Each group 𝐶𝑖 ∈  has a certain threshold 𝑡𝑖 > 0, and each node 𝑢 ∈

is assigned a positive cost 𝑐(𝑢) and a positive score 𝑏(𝑢). In this work,
e address the aforementioned challenges for addressing the 𝖦𝖨𝖬

roblem. A preliminary version of this work appears in the proceedings
f the 10th International Conference on Computational Data and Social
etworks [16]). This work extends and revises the conference version
y providing all the proofs, more algorithm, experiment evaluation and
iscussions. Our contributions can be summarized as follows.

1. We first model the process of influencing groups and formulate
the group influence function in a more rational and general
way than existing studies. Based on that, we formulate the 𝖦𝖨𝖬

problem and show that the influence function 𝜎(⋅) is neither
submodular nor supermodular, and cannot apply the greedy
algorithms with any theoretical guarantee.

2. We show that calculating 𝜎(⋅) is #P-hard. To estimate 𝜎(⋅) within
an error bound, we propose a novel concept of sampling tech-
nique, named Group Reachable Reverse (GRR), that plays an
essential role in our proposed algorithmic framework.

3. We first devise a bi-criteria approximation algorithm 𝖦𝖨𝖠 for the
proposed algorithms. In particular, 𝖦𝖨𝖠 is a (𝑂(ln(𝐾)+ln ln(𝑛)), 1−
𝜖)-bicriteria approximation with a high probability (w.h.p), that
is, it provides in polynomial time a solution 𝑆 such that 𝑐(𝑆) ≤
𝑂(ln(𝐾) + ln ln(𝑛))𝖮𝖯𝖳 and 𝜎(𝑆) ≥ (1 − 𝜖)𝐾 w.h.p, where 𝖮𝖯𝖳

is the total cost of an optimal solution and 𝜖 > 0 is an accuracy
parameter. The key of our algorithm lines in a novel algorithmic
framework to operate in the multiple iterations in which each
generating candidate solution with checking solution quality.

4. We further propose an (almost) exact algorithm 𝖤𝖦𝖨, which
returns 𝑐(𝑆) ≤ 𝖮𝖯𝖳, and 𝜎(𝑆) ≥ (1 − 𝜖)𝐾 w.h.p via reusing
the 𝖦𝖨𝖠’s framework and formulating an integer programming
183

model.
5. This work illustrates some extensive experiments in real social
networks to investigate the proposed algorithms’ performance.
The results show that our algorithms provide a significantly
better solution than state-of-the-art algorithms in both solution
quality and computational time. Specifically, both 𝖤𝖦𝖨 and 𝖦𝖨𝖠
provide seed sets that have not only total costs several times
smaller but also larger values of the group influence function
than existing algorithms. Besides, our 𝖤𝖦𝖨 provides the best
solution quality. Furthermore, our 𝖦𝖨𝖠 algorithm is up to 800
times faster than state-of-the-art algorithms and can run in large
networks within a few seconds.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 gives a literature review for the studied problem, and Section 3
presents the information diffusion model and formally introduces prob-
lem formulation. Section 4 is devoted to presenting our novel sampling
technique and Section 5 presents our proposed algorithms. The ex-
periments and results are presented in Section 6. Finally, Section 7
concludes this work and discusses future studies.

2. Related works

This section will review some previous significant works related to
our studied problem 𝖦𝖨𝖬, including classical Influence Maximization,
Groups Influence Optimization, and Non-submodular Optimization.

Influence Maximization. Inspired by the discovery of the impact
among users in an OSN for the purpose of viral marketing, Kempe
et al. [1] first introduced the 𝖨𝖬 problem as a combinatorial optimiza-
tion problem under two information diffusion models: Independent
Cascade (𝖨𝖢) and Linear Threshold (𝖫𝖳). The challenges existed in
two points: (1) 𝖨𝖬 was 𝐍𝐏-hard and it could not be approximated
within a ratio of 1 − 1∕𝑒 + 𝜖 in polynomial time for any 𝜖 > 0; (2)
computing the influence spread (objective function) of a seed node was
#𝐏-hard [17,18]. The Kempe et al.’s work has inspired vast amount
of later studies on investigating efficient algorithms for 𝖨𝖬 [2,17–23]
as well as its variants such as influence threshold problem [24,25],
location/distance-aware influence maximization [26,27], cost-aware
influence maximization [2], group-aware influence maximization [12],
etc.

Since 𝖨𝖬 is NP-hard, two common methods are used to solve this
problem in a reasonable duration: heuristic and approximation with
theoretical bounds. By utilizing the monotonicity and submodularity
of the influence spread function, the authors in [1] first proposed
a classical greedy algorithm that returned an approximation ratio of
1 − 1∕𝑒. However, due to the expensive cost to compute the influence
function [28], the greedy algorithm took a long time, even for a small
network. Later on, Leskovec et al. [19] devised a cost-effective lazy-
forward (CELF) algorithm, which was approximately 700 times faster
than the greedy algorithm. Several fast heuristic algorithms, which
converted the graph 𝐺 to a directed acyclic graph in order to obtain
a linear-time complexity of the influence spread computation, were
proposed for the medium and large networks [17,18,29], without any
theoretical bounds. In 2014, Borgs et al. [30] introduced a sampling
method called Reverse Influence Sampling (RIS), which paved the
way for the development of a (1 − 1∕𝑒 − 𝜖)-approximation algorithm
within near-linear time complexity. Recently, several works have been
proposed for reducing both sampling complexity and running time by
modifying the RIS model [20–23]. According to the heuristic approach,
several fast heuristic algorithms, which converted the original graph
to a directed acyclic graph, were proposed for finding the solution on
large-scale networks. Although these algorithms significantly reduced
the running time on both theoretical and practical sides, they did not
provide any theoretical guarantees for obtained solutions [17,18]. The
authors in [31] proposed the SIMPATH, an efficient algorithm based on
estimating the influence function via a simple path over the social net-

work. Their algorithm provided a competitive solution quality but ran
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faster than algorithms in [17,18]. Several algorithms used for the divide
and conquer strategy were proposed by [32,33]. They first divided
the network into communities and then found and combined the seed
sets over these communities. Although these algorithms significantly
improved with respect to running time compared with the previous
heuristic one, the quality of those solutions was not better than that
of the traditional greedy algorithm. Recently, several authors have
proposed meta-heuristic techniques such as swarm optimization [34],
simulated annealing [35], and genetic algorithm [36]. A main draw-
back of these algorithms was that they may require many influence
function calls, rendering them not applicable to large networks.

In other directions, several works have expanded 𝖨𝖬 for the other
ontexts of viral marketing and devised efficient approximation algo-
ithms based on extending greedy method and sampling algorithms
n [37]. Nguyen et al. [38] considered 𝖨𝖬 under the budget constraint
called 𝖡𝖨𝖬) and proposed several fast heuristic algorithms. 𝖨𝖬 with
he topic query was also studied in [3,39,40]. In this problem, the
nformation diffusion model with many topics has been introduced.
he authors in [2] studied a generalization problem of both 𝖨𝖬 and
𝖨𝖬 named Cost-aware Targeted Viral Marketing (CTVM) in which
ach node 𝑢 had an arbitrary cost 𝑐(𝑢) and a benefit 𝑏(𝑢). The goal

of CTVM was to select a set of nodes within a given budget so that
the total benefit of influenced nodes was maximized. In the same
paper, the authors proposed an approximation algorithm with a ratio
of (1−1∕

√

𝑒− 𝜖). The advance of geo-position allows OSNs to integrate
user’s location, which can be leveraged in product promotion. Au-

hors in [41] investigated the location-aware influence maximization
roblem, which selected some nodes that could influence the largest
odes in a given region; authors in [26] considered the role of distance
mong users and the promoted location in a seed selection. In addition,
everal other variations of 𝖨𝖬 such as competitive-aware [28,42],
ime-aware [29,43] have been introduced and studied. The common
pproach of these algorithms is based on extending the sampling model
n [37] to design approximation algorithms with the ratio of 1 − 1∕𝑒.

Groups Influence Optimization. The maximizing number of influ-
enced groups (or communities) problem is one of 𝖨𝖬’s variations; thus,
t is also 𝐍𝐏-hard. Due to its wide range of applications, such as
iral marketing, election campaigns, etc., it has gained much attention
ecently. In the setting of that problem, each user on social media
sually belongs to a particular group, and their group influences the
ser’s behavior. Therefore, influencing a group of users gains more
enefits than individuals. Many algorithms are proposed for these
roblems based on approximation algorithmic approaches, such as pro-
ramming mathematical and approximation algorithms via exploiting
roup influence function.

Nguyen et al. [12] studied the problem of Influence Maximization
t the Community level (IMC), which found 𝑘 users such that could
nfluence the largest number of groups. In the seminal works, they
roposed several efficient algorithms with theoretical bounds proposed
nder the 𝖨𝖢 model. However, the approximation ratios in their algo-
ithms were quite small or depended on the input data. This problem
s fundamentally different from our studied problem (it considers the
onstraint that the size seed set is at most 𝑘). Therefore, their algorithms
annot be applied directly to our studied 𝖦𝖨𝖬 problem. We have
ried to adapt their algorithms with some reasonable modifications (in
ombination with the binary search method) to find a solution to the
𝖨𝖬 problem (see details in Section 6). However, their algorithms did
ot provide any approximation guarantees for the 𝖦𝖨𝖬 problem.

The authors in [14,44] investigated the problem of Group Influence
aximization, which also asked to find 𝑘 users that could influence

he largest number of groups. They devised a sandwich approximation
lgorithm that had an approximation ratio depending on the value of
he group function with respect to some seed sets. They considered the
roblem in a simpler model than [12], i.e., each group became active
f 𝛽 percent of nodes in this group were influenced. Therefore, their
184

lgorithm cannot be generally applied to IMC and 𝖦𝖨𝖬.
Table 1
Table of notations.

Notional Description

𝑛, 𝑚 The number of vertices and the number of edges in 𝐺, respectively
  = {𝐶1 , 𝐶2 ,… , 𝐶𝐾} is the set of target groups
𝑁𝑜𝑢𝑡(𝑣), 𝑁𝑖𝑛(𝑣) The sets of outgoing and incoming neighbor nodes of 𝑣
𝐶 𝐶 =

⋃𝐾
𝑖=1 𝐶𝑖

𝑆 A seed set of our algorithms
𝑆∗ An optimal solution of 𝖦𝖨𝖬 problem
𝐶(𝑢) The group that contains node 𝑢
𝖮𝖯𝖳 𝖮𝖯𝖳 = 𝑐(𝑆∗)
𝑆0 An optimal solution of 𝖲𝖨𝖬 problem
𝗈𝗉𝗍 𝗈𝗉𝗍 = 𝑐(𝑆0)
𝑘𝑚𝑎𝑥 𝑘𝑚𝑎𝑥 = argmax𝑘=1…𝑛

(𝑘
𝑛

)

𝑁(𝜖, 𝛿) (2 + 2
3
𝜖) 𝑛

𝜖2
ln 1

𝛿
𝑁𝑚𝑎𝑥 𝑁𝑚𝑎𝑥 = 𝑁(𝜖, 𝛿∕2

( 𝐾
𝑘𝑚𝑎𝑥

)

)
𝑏𝑚𝑖𝑛 , 𝑏𝑚𝑎𝑥 𝑏𝑚𝑖𝑛 = min𝑣∈𝑉 𝑏(𝑣), 𝑏𝑚𝑎𝑥 = max𝑣∈𝑉 𝑏(𝑣)

More recently, Tsang et al. [13] have considered 𝖨𝖬 under several
fairness constraints on groups. In seminal work, they proposed an
approximation algorithmic framework with constant approximation
ratios that utilized monotonic and submodular multi-objective function
techniques. However, it may not work well in case the objective func-
tion is non-submodular. These problems were then solved via mixed
integer programming formulation [15]. However, this approach only
was applied to a set of sample graphs with fixed size (the size of sample
sets was typically 500 in that paper) due to its high complexity.

In general, these studies focused on the problem of maximizing the
influence of groups with a limited budget setting, which was different
from the context of minimizing the costs to influence groups in the 𝖦𝖨𝖬

problem. Therefore, the existing algorithms cannot be directly adapted
to the proposed problem. In fact, the most related algorithms in [12]
were applied to our work with some minor modifications.

Non-submodular optimization. This work considers the non-
submodular utility (influence group) function, so this part will provide
a brief review of this topic. There are many 𝐍𝐏-hard combinatorial
optimization problems arising from information diffusion applications
that consider maximizing non-submodular function problems [45–48].
One common algorithmic approach for this type is to use the sandwich
approximation algorithm, which takes advantage of the lower and
upper bounds of the submodular function to give a data-dependent
approximate ratio [48] data-dependent. However, this ratio is not
tight and might become very small. On the other hand, several works
focused on devising the approximation algorithms for non-submodular
maximization by exploiting a submodularity ratio [49], a generalized
curvature [50], or a diminishing-return ratio [51,52]. However, most
of those works focus on non-submodular maximization problems with
some constraints, which cannot be applied to the problem in this paper.
For the problem, a lower bound function of a non-submodular function
is designed. It is useful to exploit the group influence’s properties to
analyze the approximation ratios of the proposed algorithms.

3. Propagation model and problem definition

This section presents the social network model and a well-known In-
dependent Cascade (𝖨𝖢) diffusion model [1]. Then the studied problem
and some of its properties are provided. The frequently used notations
are summarized in Table 1.

3.1. Independent cascade model

In this model, an OSN is represented by a directed graph 𝐺 =
(𝑉 ,𝐸) where 𝑉 is the set of nodes/vertices and 𝐸 is the set of edges
with |𝑉 | = 𝑛 and |𝐸| = 𝑚. Let 𝑁𝑜𝑢𝑡(𝑣)(𝑁𝑖𝑛(𝑣)) be the set of out-
eighbors (in-neighbors) of node 𝑣, respectively. Given a seed set 𝑆,
he process of influence propagation happens in the network in discrete
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steps, and more nodes can be influenced. Independent Cascade (𝖨𝖢)
and Linear Threshold (𝖫𝖳) [1] are two of the most popular models in
OSNs [2,20,28,37,47]. This work only focuses on the 𝖨𝖢 model, but the
model process and algorithms can be adapted for the 𝖫𝖳 model as well.

Under the 𝖨𝖢 model, each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 has a propagation
probability 𝑝(𝑒) ∈ [0, 1] representing the information transmission from

node 𝑢 to another node 𝑣. The diffusion process happens from a seed
set from 𝑆 as follows.

• At the first round 𝑡 = 1, all nodes in 𝑆 are active and other nodes
in 𝑉 are inactive.

• At step 𝑡 > 1, each node 𝑢 activated at step 𝑡 − 1 has a single
chance to activate each currently inactive node 𝑣 ∈ 𝑁𝑜𝑢𝑡(𝑢) with
a successful probability 𝑝(𝑒).

• If a node is activated, it remains active till the end of the diffusion
process. The propagation process terminates at step 𝑡 if there is no
new node activated in this step.

The 𝖨𝖢 model is a stochastic information propagation model. To es-
timate the number of influenced nodes efficiently, Kempe et al. [1]
showed that the 𝖨𝖢 model is equivalent to a live-edge model defined
as follows. From the graph 𝐺 = (𝑉 ,𝐸), a random sample graph 𝑔 is
generated from 𝐺 by selecting an edge 𝑒 ∈ 𝐸 with probability 𝑝(𝑒) and
non selecting 𝑒 with probability 1−𝑝(𝑒). We refer to 𝑔 as a sample of 𝐺
and write 𝑔 ∼ 𝐺. The probability of generation a sample graph 𝑔 from
𝐺 is calculated by:

Pr[𝑔 ∼ 𝐺] =
∏

𝑒∈𝐸(𝑔)
𝑝(𝑒)

∏

𝑒∉𝐸(𝑔)
(1 − 𝑝(𝑒)) (1)

where 𝐸(𝑔) is the set of edges in the graph 𝑔. The influence spread from
a set node 𝑆 to a node 𝑢 is:

I(𝑆, 𝑢) =
∑

𝑔∼𝐺
Pr[𝑔 ∼ 𝐺] ⋅ 𝑅𝑔(𝑆, 𝑢) (2)

where 𝑅𝑔(𝑆, 𝑢) = 1 if 𝑢 is reachable from 𝑆 in 𝑔 and 𝑅𝑔(𝑆, 𝑢) =
0 otherwise. The influence spread of 𝑆 in network 𝐺 (number of
influenced nodes) is:

I(𝑆) =
∑

𝑢∈𝑉
I(𝑆, 𝑢). (3)

3.2. Groups influence process

Given a social network 𝐺 = (𝑉 ,𝐸) under the 𝖨𝖢 model and a
collection of 𝐾 > 0 disjoint groups  = {𝐶1, 𝐶2,… , 𝐶𝐾} (called target
groups), where 𝐶𝑖 ⊆ 𝑉 ,𝐶𝑖 ∩ 𝐶𝑗 = ∅, for every pair (𝑖, 𝑗) with 𝑖 ≠ 𝑗.
Denote 𝐶(𝑢) the group that contains node 𝑢.

To model the process of group influence in general, the new pro-
posed model extends the model in [12] by considering the following
aspects:

• Each node 𝑢 in the group 𝐶𝑖 is assigned a positive integral score
𝑏(𝑢) ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] where 𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 are constants. This is based on
the fact that each user has a different role in their group. The node
score 𝑏(𝑢) > 0 measures the role of a node 𝑢 in its group 𝐶(𝑢).

• Each node 𝑢 has a cost 𝑐(𝑢) > 0, which measures the cost or the
price of a node 𝑢 one has to pay to start influencing this node at
the beginning of an influence process.

• Each group 𝐶𝑖 is assigned an integer threshold 𝑡𝑖 > 0, which
reflects the minimum total score that the propagation must reach
if it wants to influence a group 𝐶𝑖. The group 𝐶𝑖 is said to be
influenced if the total score of influenced nodes in 𝐶𝑖 is at least
𝑡𝑖.

We define a cost function 𝑐 ∶ 2𝑉 → R+ with an additive property,
i.e. 𝑐(𝑆) =

∑

𝑢∈𝑆 𝑐(𝑢) is the total cost of 𝑆. A group influence function
𝑉
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𝜎 ∶ 2 → R+ is defined as follows: 𝜎(𝑆) is (expected) the number of
groups in  influenced by the seed set 𝑆 when the diffusion process
ends, that is,

𝜎(𝑆) =
∑

𝑔∼𝐺
Pr[𝑔 ∼ 𝐺]

∑

𝐶𝑖∈𝐶
𝐼𝑔(𝑆,𝐶𝑖) (4)

where 𝐼𝑔(𝑆,𝐶𝑖) is an indicator variable that measures the influence of
𝑆 to the group 𝐶𝑖 in sample graph 𝑔, i.e,

𝐼𝑔(𝑆,𝐶𝑖) =

{

1, if∑𝑢∈𝐶𝑖
𝑅𝑔(𝑆, 𝑢)𝑏(𝑢) ≥ 𝑡𝑖

0, Otherwise.
(5)

In the special case where each group 𝐶𝑖 has only one node, the
above group influence function 𝜎(⋅) becomes the influence spread func-
tion I(⋅) of the 𝖨𝖬 problem. As a consequence, computing 𝜎(⋅) is
#𝐏-hard. On the other hand, one can easily verify that the function 𝜎(⋅)
is neither submodular nor supermodular. The function 𝜎(⋅) is submod-
ular if for every pair of subsets 𝐴,𝐵 ⊆ 𝑉 it holds that 𝜎(𝐴) + 𝜎(𝐵) ≥
𝜎(𝐴 ∪ 𝐵) + 𝜎(𝐴 ∩ 𝐵). If the inequality holds in the reversed direction,
𝜎(⋅) is a supermodular function. For completeness, a counter-example
is provided in Example 1 below.

Example 1. Given a directed graph 𝐺 = (𝑉 ,𝐸) under 𝖨𝖢 model with
𝑉 = {𝑎, 𝑏, 𝑐} and 𝐸 = {(𝑎, 𝑐), (𝑏, 𝑐)} and all edges have the same trans-
mission probability 1. Consider a group 𝐶 = {𝑎, 𝑏} with the threshold
𝑡𝐶 = 2, we have 𝜎({𝑎}) − 𝜎(∅) = 0 < 𝜎({𝑎, 𝑏}) − 𝜎({𝑎}) = 1, which means
𝜎({𝑎}) is non-submodular. Also, we also have 𝜎({𝑎, 𝑏, 𝑐}) − 𝜎({𝑎, 𝑏}) =
0 < 𝜎({𝑎, 𝑏}) − 𝜎({𝑎}) = 1, which means 𝜎(⋅) is non-supermodular.

3.3. Problem definition

This part formally defines the problem Groups Influence with minimal
Cost, which will be studied in this paper.

Definition 1 (𝖦𝖨𝖬 Problem). An instance of 𝖦𝖨𝖬 is given by (𝐺,),
where 𝐺 = (𝑉 ,𝐸) is a social network under 𝖨𝖢 model, and  is a
collection of 𝐾 disjoint target groups {𝐶1, 𝐶2,… , 𝐶𝐾}, 𝐶𝑖 ∩𝐶𝑗 = ∅. The
objective is to find a seed set 𝑆 ⊆ 𝑉 with minimum total cost that
influences all the groups in , i.e, the problem asks to find

𝑆 = arg min
𝑆′⊆𝑉 ,𝜎(𝑆)=𝐾

𝑐(𝑆′).

The inapproximability of 𝖦𝖨𝖬 problem states in Theorem 1, is easily
obtained by reducing from the classical Set Cover problem [53].

Theorem 1. 𝖦𝖨𝖬 has no polynomial-time algorithm attaining an approxi-
mation ratio of (1− 𝜖) ln 𝑛 for any 𝜖 > 0, unless 𝐍𝐏 ⊂ 𝐃𝐓𝐈𝐌𝐄(𝑛𝑂(log log 𝑛)).

We call an algorithm a (𝛾, 𝜎)-bicriteria approximation for 𝖦𝖨𝖬

problem if it returns a solution 𝑆 such that 𝜎(𝑆) ≥ 𝛾 ⋅ 𝐾 and 𝑐(𝑆) ≤
𝜎 ⋅ 𝖮𝖯𝖳, for 𝛾, 𝜎 > 0.

4. An estimator of group influence function

This section first introduces the concept of Group Reverse Reachable
(GRR) sample, based on the existing Reverse Reachable (RR) set [37]
and Reverse Influence Community (RIC) [12] samples were captured
to visualize the process of influencing a group more effectively than
existing sample techniques. It then introduced the method to efficiently
estimate the influence group function 𝜎(⋅) on both theoretical and
practical perspectives.

Definition 2 (GRR Sample). Given a tuple (𝐺,) as an instance of 𝖦𝖨𝖬
problem. We generate a GRR sample via the following steps:

1. Randomly choose a group 𝐶𝑖 with the probability 1
𝐾 (call 𝐶𝑖 a

source group).
2. Generate a sample graph 𝑔 by live-edge model under 𝖨𝖢 model
in [1].
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3. For each vertex 𝑢 ∈ 𝐶𝑖, return a set of nodes 𝑅𝑔(𝑢) which is
reachable from 𝑢 in the sample graph 𝑔 (𝑢 is a source node).

4. Return a set 𝑅𝑔 = {𝑅𝑔(𝑢)|∀𝑢 ∈ 𝐶𝑖} as a GRR sample, we denote
𝐶(𝑅𝑔) as the source group of 𝑅𝑔 and 𝑡(𝑅𝑔) as the threshold of
𝐶(𝑅𝑔).

The concept of the GRR sample is an extended version of the RR
set [1] by generating multiple RR sets with all source nodes in a source
group. In addition, the GRR sample is also an extension of an RIC
sample in [12]. The RIC sample is used to estimate the group influence
with the score of each node equal to 1 in our model. The critical
difference between ours and RIC lines in determining whether or not a
group is influenced via the total score of influenced nodes, which was
not well-defined in the RIC, even when the score is equal to 1. Storing
the RR set for each node in the GRR sample is useful to exploit some
helpful properties for analyzing theoretical bounds.

Given a set 𝑆 ⊆ 𝑉 and a GRR sample 𝑅𝑔 , and for 𝑅𝑔(𝑢) ∈ 𝑅𝑔 , if
𝑅𝑔(𝑢) ∩ 𝑆 ≠ ∅, it is said that 𝑆 covers node 𝑢, and is defined by:

𝖲𝖼𝗈𝗋𝖾𝖢𝗈𝗏𝖾𝗋(𝑆,𝑅𝑔(𝑢)) = 𝑏(𝑢) ⋅min{|𝑆 ∩ 𝑅𝑔(𝑢)|, 1} (6)

as the score of source node 𝑢 covered by 𝑆 in 𝑅𝑔 . We also denote the
following random variable:

𝑋𝑔(𝑆) =

{

1, if ∑

𝑅𝑔 (𝑢)∈𝑅𝑔
𝖲𝖼𝗈𝗋𝖾𝖢𝗈𝗏𝖾𝗋(𝑆,𝑅𝑔) ≥ 𝑡𝑖

0, otherwise
(7)

The variable 𝑋𝑔(𝑆) indicates whether the total score of nodes cov-
ered by 𝑆 is greater than the threshold 𝑡𝑖 or not. When 𝑋𝑔(𝑆) = 1, 𝐶𝑖
is influenced by 𝑆 in the sample graph 𝑔. It is also said that a sample
𝑅𝑔 is influenced by 𝑆. The probability of generating a sample 𝑅𝑔 is:

Pr[𝑅𝑔] =
1
𝐾

∑

𝑔∼𝐺∶𝑟𝑒𝑎𝑐ℎ(𝑢,𝑔)=𝑅𝑔 (𝑢),∀𝑢∈𝐶(𝑅𝑔 )
Pr[𝑔 ∼ 𝐺] (8)

here 𝑟𝑒𝑎𝑐ℎ(𝑢, 𝑔) is the set of nodes that can reach to 𝑢 in 𝑔. We now
how that the value of 𝜎(𝑆) can be estimated by the expectation of
𝑔(𝑆), which is a key property of the GRR sample to keep the new
lgorithms with theoretical bounds.

emma 1. For any set 𝑆 ⊆ 𝑉 , we have 𝜎(𝑆,𝐶) = 𝐾 ⋅E[𝑋𝑔(𝑆)] where the
expectation is taken over the randomness of 𝑔.

To generate a GRR sample in practice, we now introduce the Algo-
rithm 1. Firstly, a source group 𝐶𝑖 in  is randomly selected (line 1). It
then generates a RR set 𝑅𝑔(𝑢) for each source node 𝑢 in 𝐶𝑖 by using the
RIS model [20–23].

In particular, for a source node 𝑢, the algorithm uses a queue 𝑄 that
consists of nodes reachable from 𝑢 on the sample graph 𝑔. It updates
the queue 𝑄 (line 5) and then randomly visits and adds its incoming
neighbor 𝑣 into 𝑄 and 𝑅𝑔(𝑢) with the probability 𝑝(𝑢, 𝑣). If an incoming
neighbor is visited, it is added into 𝑅𝑔(𝑢). This process repeats until 𝑄
becomes empty.

From Lemma 1, we have an estimation of group influence function
over a collection of GRR sets :

�̂�(𝑆) = 𝐾
||

⋅
∑

𝑅𝑔∈
𝑋𝑔(𝑆). (9)

It is observed that 𝑋𝑔(𝑆) ∈ [0, 1]. Let a random variable 𝑀𝑖 =
∑𝑖

𝑗=1(𝑋𝑔(𝑆) − 𝜇𝑋 ),∀𝑖 ≥ 1, where 𝜇 = E[𝑋𝑔(𝑆)]. For a sequence of
random variables 𝑀1,𝑀2,… we have:

E[𝑀𝑖|𝑀1,… ,𝑀𝑗−1] = E[𝑀𝑖−1] + E[𝑋𝑖(𝐴) − 𝜇] (10)

= E[𝑀𝑖−1]. (11)

Therefore, 𝑀1,𝑀2,… is a form of the martingale [54]. We utilize
the following Lemma, which is trivially derived from the martingale
186

theory in [54]:
Algorithm 1: Generating a GRR sample
Input: Social network 𝐺 = (𝑉 ,𝐸), set of groups

 = {𝐶1, 𝐶2,… , 𝐶𝐾}
Output: A GRR sample 𝑅𝑔

1: Randomly pick a source group 𝐶𝑖 among 
2: for each node 𝑢 ∈ 𝐶𝑖 do
3: Initialize a queue 𝑄 = {𝑢} and 𝑅𝑔(𝑢) = {𝑢}
4: while 𝑄 ≠ ∅ do
5: 𝑣 ← 𝑄.𝑝𝑜𝑝()
6: foreach 𝑢 ∈ 𝑁𝑖𝑛(𝑣) ⧵ (𝑅𝑗 ∪𝑄) do
7: if (𝑢, 𝑣) was visited then
8: 𝑄.𝑝𝑢𝑠ℎ(𝑢), 𝑅𝑗 ← 𝑅𝑗 ∪ {𝑢}
9: else
0: With probability 𝑝(𝑢, 𝑣):
1: mark (𝑢, 𝑣) is visited
2: 𝑄.𝑝𝑢𝑠ℎ(𝑢), 𝑅𝑗 ← 𝑅𝑗 ∪ {𝑢}
3: end
4: end
5: end
6: end
7: return 𝑅𝑔 = {𝑅𝑔(𝑢)|𝑢 ∈ 𝐶𝑖}

Lemma 2 ([54]). Given a set of MRR samples  with 𝑇 = || and 𝜆 > 0,
e have:

Pr
[

𝑇
∑

𝑗=1
𝑋𝑗 (𝑆) − 𝑇 ⋅ 𝜇 ≥ 𝜆

]

≤ 𝑒
− 𝜆2

𝜆 2
3 +2𝜇𝑇 (12)

Pr
[

𝑇
∑

𝑗=1
𝑍𝑗 (𝑆) − 𝑇 ⋅ 𝜇 ≤ −𝜆

]

≤ 𝑒−
𝜆2
2𝜇𝑇 . (13)

In Lemma 2, by replacing 𝜆 = 𝜖𝑇𝜇 with a note that 𝜎(𝑆) = 𝐾𝜇, we
have:

Pr[�̂�(𝑆) ≥ (1 + 𝜖)𝜎(𝑆)] ≤ 𝑒
− 𝜖2𝜇𝑇

2+ 2
3 𝜖 (14)

Pr[�̂�(𝑆) ≤ (1 − 𝜖)𝜎(𝑆)] ≤ 𝑒−
𝜖2𝜇𝑇
2 . (15)

Therefore, if the number of samples is at least 𝑇 ≥ (2 + 2
3 )

1
𝜇

1
𝜖2

ln( 1𝛿 ) for
𝛿 ∈ (0, 1), �̂�(𝑆) is an (𝜖, 𝛿)-approximation of 𝜎(𝑆), i.e,

r[(1 − 𝜖)𝜎(𝑆) ≤ �̂�(𝑆) ≤ (1 + 𝜖)𝜎(𝑆)] ≥ 1 − 𝛿. (16)

The next section is going to use this observation for devising an algo-
rithm that guarantees the estimation of the group influence function.

5. Proposed algorithms

This section proposes new algorithms for the 𝖦𝖨𝖬 problem. From
the analysis and dissolution in Section 4, one can use �̂�(𝑆) to effec-
tively estimate 𝜎(𝑆) if the number of samples || is sufficiently large.
Therefore, to overcome the computationally hard calculation of 𝜎(⋅), it
is an alternative to solve the following problem instead of solving 𝖦𝖨𝖬
directly.

Definition 3 (Samples Influence with Minimal Cost (𝖲𝖨𝖬) Problem). Given
a graph (𝐺,𝐶) as an instance of the 𝖦𝖨𝖬 problem and  as a set of GRR
samples, the problem aims at finding a set of nodes 𝑆 ⊆ 𝑉 with minimal
total cost so that �̂�(𝑆) = 𝐾, i.e. finding 𝑆 = argmin𝑆′⊆𝑉 ∶�̂�(𝑆)=𝐾 𝑐(𝑆′).

To solve the 𝖦𝖨𝖬 problem with theoretical bounds, we first generate
a set of GRR samples  and propose theModified Greedy (𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒), an
approximation algorithm for the 𝖲𝖨𝖬 problem. We then find solutions
of 𝖲𝖨𝖬 for multiple sets of samples and select a final solution. We prove

the approximation guarantees by utilizing the martingale theory [54].
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5.1. A bi-criteria approximation algorithm

We first propose the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒, a (1+ln(||𝑡𝑚𝑎𝑥))
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

-approximation
algorithm for 𝖲𝖨𝖬 and then use it as the core of the proposed bi-criteria
approximation algorithm.

5.1.1. An approximation algorithm for 𝖲𝖨𝖬
First of all, it is not hard to prove that 𝖲𝖨𝖬 problem also is 𝐍𝐏-hard

and �̂�(⋅) is non-submodular and non-supermodular. To develop an
approximation algorithm with a theoretical bound, we first introduce
a lower bound function 𝐹 of �̂�(⋅) and exploit its properties.

Define 𝑓 (𝑆,𝑅𝑔) as the total score of all source nodes in 𝑅𝑔 which
are influenced by the set 𝑆 in sample graph 𝑔:

𝑓 (𝑆,𝑅𝑔) =
∑

𝑢∈𝐶(𝑅𝑔 )
𝖲𝖼𝗈𝗋𝖾𝖢𝗈𝗏𝖾𝗋(𝑆,𝑅𝑔(𝑢)) (17)

It is easy to see that 𝑓 (𝑆,𝑅𝑔) is a non-negative and non-increasing
set function respect to 𝑆 ⊆ 𝑉 . Denote 𝛥𝑇 𝑓 (𝑆,𝑅𝑔) = 𝑓 (𝑆 ∪ 𝑇 ,𝑅𝑔) −
𝑓 (𝑆,𝑅𝑔) for any subset 𝑇 ⊆ 𝑉 and set function 𝑓 . If 𝑇 = {𝑢}, we
simplify 𝛥{𝑢}𝑓 (𝑆,𝑅𝑔) by 𝛥𝑢𝑓 (𝑆,𝑅𝑔). An essential property of 𝑓 (⋅, 𝑅𝑔)
is introduced below.

Lemma 3. For all 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑣 ∉ 𝑇 , we have:

𝛥𝑣𝑓 (𝑆,𝑅𝑔) ≥
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

⋅ 𝛥𝑣𝑓 (𝑇 ,𝑅𝑔). (18)

where 𝑏𝑚𝑖𝑛 = min𝑣∈𝑉 𝑏(𝑣), 𝑏𝑚𝑎𝑥 = max𝑣∈𝑉 𝑏(𝑣).

Define a set function 𝑔(𝑆,𝑅𝑔) = min
{

1, 𝑓 (𝑆,𝑅𝑔 )
𝑡(𝑅𝑔 )

}

, we also have the
following Lemma.

Lemma 4. For all 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑣 ∉ 𝑇 , we have:

𝑣𝑔(𝑆,𝑅𝑔) ≥
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

⋅ 𝛥𝑣𝑔(𝑇 ,𝑅𝑔) (19)

In order to influence all samples in , the algorithm must find 𝑆
such that 𝑔(𝑆,𝑅𝑔) = 1,∀𝑅𝑔 ∈ . Therefore, it needs to find 𝑆 with the
minimal total cost such that

𝐹 (𝑆,) = 𝐾
𝑇

∑

𝑅𝑔∈
𝑔(𝑆,𝑅𝑔) = �̂�(𝑆) = 𝐾. (20)

ince 𝐹 (𝑆,) is a linear combinatorial of 𝑔(𝑆,𝑅𝑔), it is easy to show
he following inequality.

𝑣𝐹 (𝑆,) ≥
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

⋅ 𝛥𝑣𝐹 (𝑇 ,) (21)

for all 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑣 ∉ 𝑉 ⧵ 𝑇 . 𝐹 (⋅) is a lower bound function of
�̂�(⋅) and they have the same value of the set 𝑆 which can influence
all samples in .

Description of 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒. Based on the above theoretical analysis, we
propose the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 algorithm (Algorithm 2), which utilizes the
above characteristic of 𝐹 (⋅,). The algorithm adapts the idea of naive
greedy [25], but it uses the value of 𝐹 instead of 𝑓 . In particular, 𝑆
is initiated as empty, and then the algorithm iteratively adds a node 𝑣
into the current solution 𝑆, which maximizes the marginal gain per its
cost, i.e.,
min{𝐾,𝐹 (𝑆 ∪ {𝑣},)} − 𝐹 (𝑆,)

𝑐(𝑣)

ntil the value of 𝐹 (𝑆) achieves 𝐾.
Denoted by 𝑆𝑖 = {𝑠1, 𝑠2,… , 𝑠𝑖} the solution after 𝑖 iterations in

lgorithm 2, 𝑆0 = {𝑠01, 𝑠
0
2,… , 𝑠0𝑘} is an optimal solution of the 𝖲𝖨𝖬

roblem and let 𝗈𝗉𝗍 = 𝑐(𝑆0). The following Lemma establishes a
onnection between the optimal and the candidate.
187
Algorithm 2: 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒(,)
Input: A set of GRR samples , set of groups

 = {𝐶1, 𝐶2,… , 𝐶𝐾}
Output: Seed set 𝑆

1: 𝑆 ← ∅
2: while 𝐹 (𝑆,) < 𝐾 do
3: 𝑣𝑚𝑎𝑥 ← argmax𝑣∈𝑉 ⧵𝑆

min{𝐾,𝐹 (𝑆∪{𝑣},)}−𝐹 (𝑆,)
𝑐(𝑣)

4: 𝑆 ← 𝑆 ∪ {𝑣𝑚𝑎𝑥}
5: end
6: return 𝑆;

Lemma 5. At the iteration 𝑖 in the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 algorithm, we have:

𝐾 − 𝐹 ′(𝑆𝑖) ≤ 𝗈𝗉𝗍 ⋅
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

⋅
𝐹 ′(𝑆𝑖+1) − 𝐹 ′(𝑆𝑖)

𝑐(𝑠𝑖+1)
(22)

where 𝐹 ′(𝑆) = min{𝐾,𝐹 (𝑆,)}

Theorem 2. Algorithm 2 provides a 𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

(1 + ln(||𝑡𝑚𝑎𝑥))-approximation
solution for the 𝖲𝖨𝖬 problem.

Proof. Denote by 𝑆𝑖 = {𝑠1, 𝑠2,… , 𝑠𝑖} the solution of the algorithm after
iteration 𝑖 of the main loop. By using Lemma 5, we have:

𝐾 − 𝐹 ′(𝑆𝑖+1) ≤
(

1 −
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

𝑐(𝑠𝑖+1)
𝗈𝗉𝗍

)

(𝐾 − 𝐹 ′(𝑆𝑖))

≤ 𝑒−
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

𝑐(𝑠𝑖+1)
𝗈𝗉𝗍 ⋅ (𝐾 − 𝐹 ′(𝑆𝑖))

≤ 𝑒−
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

∑𝑖+1
𝑗=1 𝑐(𝑠𝑖+1)

𝗈𝗉𝗍 ⋅𝐾.

It follows that

𝐾 − 𝐹 ′(𝑆𝑙−1) ≤ 𝑒−
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

∑𝑙−1
𝑗=1 𝑐(𝑠𝑗 )

𝗈𝗉𝗍 ⋅𝐾 = 𝑒−
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

𝑐(𝑆𝑙−1)
𝗈𝗉𝗍 ⋅𝐾

⟹ 𝑐(𝑆𝑙−1) ≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅ ln 𝐾
𝐾 − 𝐹 ′(𝑆𝑙−1)

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅ ln(||𝑡𝑚𝑎𝑥).

he last inequality is due to:

− 𝐹 ′(𝑆𝑙−1) ≥ 𝐾 − 𝐹 (𝑆𝑙−1) ≥
𝐾
||

1
𝑡𝑚𝑎𝑥

.

Also, from Lemma 5 it implies that 𝑐(𝑠𝑙) ≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍. Therefore:

𝑐(𝑆) = 𝑐(𝑆𝑙−1) + 𝑐(𝑠𝑙) ≤ (1 + ln(||𝑡𝑚𝑎𝑥))
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍.

We complete the proof. □

Complexity. At each iteration, 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 scans at most 𝑛 nodes and
calculates the marginal gain value of 𝐹 ′. Therefore, it takes 𝑂(|𝑆|𝑛)
time complexity.

5.1.2. Bi-criteria approximation algorithm for 𝖦𝖨𝖬
We now present 𝖦𝖨𝖠, a randomized bi-criteria approximation. 𝖦𝖨𝖠

returns a (1−𝜖, 𝑂(ln𝐾+ln ln 𝑛))-bi criteria approximation solution w.h.p
for the 𝖦𝖨𝖬 problem. This algorithm is inspired by the idea of the
Stop-and-Stare algorithm for the 𝖨𝖬 problem [22], which introduces a
stopping condition to check the quality of several candidate solutions.

However, due to the difference between 𝖦𝖨𝖬 and 𝖨𝖬, we have to
give another stopping condition to check the candidate solutions and
establish the number of required samples that ensures the theoretical
bounds of the final solution. Thus, the proposed approach completely
differs from algorithms in [12], which inherits the Stop-and-Stare

framework with some minor modifications.
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Algorithm 3: 𝖦𝖨𝖠 Algorithm
Input: Graph 𝐺 = (𝑉 ,𝐸), set of groups  = {𝐶1, 𝐶2,… , 𝐶𝐾},

𝜖, 𝛿 ∈ (0, 1).
Output: A seed set 𝑆

1: 𝑁𝑚𝑎𝑥 = (2 + 2
3 𝜖)

𝐾
𝜖2

ln
(

2( 𝑛
𝑘𝑚𝑎𝑥

)
𝛿

)

, 𝑁1 ← (2 + 2
3 𝜖)

1
𝜖2

ln( 1𝛿 )

2: 𝑖𝑚𝑎𝑥 ← ⌈log2(𝑁𝑚𝑎𝑥∕𝑁1)⌉, 𝛿1 ←
𝛿

2𝑖𝑚𝑎𝑥
3: Generate set of 𝑁1 samples 1
4: for 𝑖 = 1 to 𝑖𝑚𝑎𝑥 do
5: 𝑆𝑖 ← 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒(𝑖,)
6: Calculate 𝐹𝑙(𝑆,𝑖, 𝜖, 𝛿1) by equation (23)
7: if 𝐹𝑙(𝑆,𝑖, 𝜖, 𝛿1) ≥ 𝐾 − 𝜖𝐾 or 𝑖 = 𝑖𝑚𝑎𝑥 then
8: break
9: else
0: Double size of 𝑖 by generating |𝑖| samples and

adding them into 𝑖
1: 𝑖+1 ← 𝑖
2: end
3: end
4: return 𝑆

Description of 𝖦𝖨𝖠. The 𝖦𝖨𝖠 algorithm receives an instance (𝐺,𝐶) and
ccuracy parameters 𝜖, 𝛿 as inputs. It consists of several iterations and
inds a candidate solution at each iteration by leveraging the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒

lgorithm and checks the quality of these solutions based on static
vidence via Lemmas 6. Denote 𝑘𝑚𝑎𝑥 = argmax𝑘=1…𝑛

(𝑛
𝑘

)

, the algorithm
needs at most:

𝑁𝑚𝑎𝑥 = (2 + 2
3
𝜖)𝐾
𝜖2

ln(2
(

𝑛
𝑘𝑚𝑎𝑥

)

∕𝛿).

samples and needs at most 𝑖𝑚𝑎𝑥 = ⌈log2(𝑁𝑚𝑎𝑥∕𝑁1)⌉ iterations, where
𝑁1 = (2+ 2

3 𝜖)
1
𝜖2

ln( 𝑛𝛿 ). 𝑁𝑚𝑎𝑥 is the number of samples required to ensure
he approximation ratio, which is shown by Theorem 3.

At iteration 𝑖, the algorithm creates a set of (2 + 2
3 𝜖)

1
𝜖2

ln( 1𝛿 )2
𝑖−1

samples 𝑖 and finds a candidate solution 𝑆𝑖 by adapting 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒

algorithm (line 5). We devise a stopping condition and check the
quality of 𝑆𝑖 in line 7. Note that this algorithm does not reuse the
stopping condition in [22], which is used in a recent work [12]. In
this algorithm, we introduce the function 𝐹𝑙(𝑆,, 𝜖, 𝛿) of 𝑓 , defined in
Lemma 6 as a lower bound of 𝐹 . This property is proved in Lemma 6.
The stopping condition is essential to obtain the approximation ratio
more succinct than the Stop-and-Stare in [22]. If the condition is
satisfied, the algorithm returns 𝑆𝑖 as a final solution. Otherwise, it
doubles the size of 𝑖 and moves to the next iteration. The details of
𝖦𝖨𝖠 are presented in Algorithm 3.

Theoretical analysis. The approximation analysis is based on the mar-
tingale theory [54]. By applying Lemma 2, 𝐹𝑙(𝑆,, 𝜖, 𝛿) is a lower
bound function of 𝜎(𝑆) with high probability.

Lemma 6. Given accuracy parameters 𝜖, 𝛿 ∈ (0, 1), a set 𝑆 ⊆ 𝑉 and a set
of GRR samples . Denote 𝑐 = ln(1∕𝛿), 𝑇 = || and

𝐹𝑙(𝑆,, 𝜖, 𝛿) = min{�̂�(𝑆) −
𝐾𝑐
3𝑇

, �̂�(𝑆) +
𝐾
𝑇
( 2𝑐
3

−
√

4𝑐2
9

+ 2𝑇 𝑐
�̂�(𝑆)
𝐾

)}.

(23)

We have Pr[𝜎(𝑆) ≥ 𝐹𝑙(𝑆,, 𝜖, 𝛿)] ≥ 1 − 𝛿.

Lemma 7 shows an interesting property of the optimal solution of
he 𝖦𝖨𝖬 problem, which is to find a connection between the final
olution and the optimal solution.

emma 7. For any set of GRR samples , we have: �̂� (𝑆∗) = 𝐾.
188

 s
The performance ratio of 𝖦𝖨𝖠 algorithm is formally claimed in
Theorem 3.

Theorem 3. For any input parameters 𝜖, 𝛿 ∈ (0, 1), 𝖦𝖨𝖠 algorithm returns
a solution 𝑆 such that Pr[𝜎(𝑆) ≥ 𝐾 − 𝜖𝐾] ≥ 1 − 𝛿 and 𝑐(𝑆) ≤ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛
(1 +

n
(

(2 + 2
3 𝜖)𝜖

−2
)

+ ln𝐾 + ln(𝑛𝑡𝑚𝑎𝑥 ln(𝑛∕𝛿)))𝖮𝖯𝖳.

Proof. Denote 𝜇 = 𝜎(𝑆)
𝐾 , �̂� = �̂�(𝑆)

𝐾 = 1 and 𝑐 = ln(
( 𝑛
𝑘𝑚𝑎𝑥

)

∕𝛿). In Algorithm
3, we consider following bad events 𝐵𝑖 ∶ 𝜎(𝑆𝑖) < 𝐾 − 𝜖𝐾, for each
teration 𝑖 = 1,… , 𝑖𝑚𝑎𝑥. Two following cases happen:

ase 1. If the algorithm terminates at some iterations 𝑖 = 1,… , 𝑖𝑚𝑎𝑥−1.
pplying Lemma 6, we have:

r(𝐵𝑖) = Pr[𝜎(𝑆𝑖) < 𝐾 −𝐾𝜖] ≤ Pr[𝜎(𝑆𝑖) < 𝐹𝑙(𝑆𝑖,𝑖, 𝜖, 𝛿1)] ≤ 𝛿1.

ase 2. If the algorithm stops at iteration 𝑖𝑚𝑎𝑥, applying Lemma 6 with

note that 𝑇 = || = (2 + 2
3 𝜖)

𝐾
𝜖2

ln
(

2
( 𝑛
𝑘𝑚𝑎𝑥

)
𝛿

)

≥ 2𝑐∕𝜖2 and �̂� = 1, the

following event happens with a probability of at least: 1 − 𝛿
2( 𝑛

𝑘𝑚𝑎𝑥
) :

≥ min

{

�̂� − 𝑐
3𝑇

, �̂� + 1
𝑇

(

2𝑐
3

−
√

4𝑐2
9

+ 2𝑇 𝑐�̂�

)}

= min
{

1 − 𝑐
3𝑇

, 1 + 1
𝑇

( 2𝑐
3

−
( 2𝑐
3

+
√

2𝑇 𝑐
))}

(Since 𝑎2 + 𝑏2 ≤ (𝑎 + 𝑏)2, 𝑎, 𝑏 > 0)

≥ min

{

1 − 𝜖2

6
, 1 −

√

2𝑐
𝑇

}

≥ min
{

1 − 𝜖2

6
, 1 − 𝜖

}

≥ 1 − 𝜖.

Hence, Pr[𝐵𝑖𝑚𝑎𝑥 ] = Pr[𝜇 < 1 − 𝜖] ≤ 𝛿
2( 𝑛

𝑘𝑚𝑎𝑥
) . Assuming that |𝑆| = 𝑘, there

are at most
(𝑛
𝑘

)

possible solution, so we have:

r[∀𝑆𝑖𝑚𝑎𝑥 ∶ 𝐵𝑖𝑚𝑎𝑥 ] ≤
(

𝑛
𝑘

)

𝛿
2
( 𝑛
𝑘𝑚𝑎𝑥

) ≤ 𝛿
2
.

By the union bound of the probabilities, none of the events 𝐵𝑖, 𝑖 =
,… , 𝑖𝑚𝑎𝑥 happens with a probability at least 1 − (𝑖𝑚𝑎𝑥𝛿1 +

𝛿
2 ) ≥ 1 − 𝛿. It

mplies:

r[𝜎(𝑆) ≥ 𝐾 − 𝜖𝐾] ≥ 1 − 𝛿.

enote 𝑆0
𝑖 = argmin𝑆∶𝜎𝑖 (𝑆)=𝐾

𝑐(𝑆) and 𝗈𝗉𝗍𝑖 = 𝑐(𝑆0
𝑖 ), where 𝜎𝑖

(𝑆) is
n estimation of 𝜎(𝑆) over 𝑖. From Lemma 7, we have 𝜎𝑖

(𝑆∗) = 𝐾,
herefore 𝗈𝗉𝗍𝑖 ≤ 𝑐(𝑆∗). From Lemma 1, we have:

(𝑆𝑖) ≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

⋅
(

1 + ln(𝑁𝑖𝑡𝑚𝑎𝑥)
)

𝗈𝗉𝗍𝑖

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

⋅
(

1 + ln(𝑁𝑚𝑎𝑥𝑡𝑚𝑎𝑥)
)

𝗈𝗉𝗍𝑖

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

(1 + ln
(

(2 + 2
3
𝜖)𝜖−2

)

+ ln𝐾 + ln(𝑛𝑡𝑚𝑎𝑥 ln(𝑛∕𝛿)))𝖮𝖯𝖳

which completes the proof. □

Theorem 4 (Complexity). 𝖦𝖨𝖠 algorithm has

𝑂
(

(𝑛 ln 𝑛 + ln( 1
𝛿
)𝜖−2)|𝐶|𝜂 + 𝑛2) log 𝑛

)

ime complexity, where 𝜂 is the expectation of influence spread of a node.

roof. The complexity of the algorithm comes from generating GRR

amples and running the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 algorithm. Denoted by I(𝑆, 𝑣) the
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T

(

1

1

1

1

a
𝛿
p
t

probability that a node-set 𝑆 influences 𝑣, and denoted by I(𝑆) influ-
ence spread of node set 𝑆, we obtain:

E[|𝑅𝑔|] =
1
𝐾

(

∑

𝐶𝑖∈

∑

𝑣∈𝐶𝑖

∑

𝑢∈𝑉
I({𝑢}, 𝑣)

)

= 1
𝐾

(

∑

𝑣∈𝐶

∑

𝑢∈𝑉
I({𝑢}, 𝑣)

)

=
|𝐶|

𝐾
1
|𝐶|

(

∑

𝑢∈𝐶

∑

𝑣∈𝑉
I({𝑢}, 𝑣)

)

=
|𝐶|

𝐾
1
|𝐶|

∑

𝑢∈𝐶
I({𝑢})

=
|𝐶|

𝐾
𝜂.

his implies that generating samples takes at most 𝑂(𝑁𝑚𝑎𝑥
|𝐶|𝜂
𝐾 ) and the

running time at any iteration 𝑖 is at most:

𝑘𝑚𝑎𝑥 ln 𝑛 + ln( 1
𝛿
)𝜖−2)|𝐶|𝜂 + |𝑆𝑖|𝑛 = 𝑂

(

(𝑛 ln 𝑛 + ln( 1
𝛿
)𝜖−2)|𝐶|𝜂 + 𝑛2

)

.

On the other hand,

𝑖𝑚𝑎𝑥 = 𝑂(log
𝑁𝑚𝑎𝑥
𝑁1

) = 𝑂(log(𝐾𝑛 log 𝑛))

= 𝑂(log𝐾 + log 𝑛 + log log 𝑛)

= 𝑂(log 𝑛) (Since 𝐾 ≤ 𝑛).

Combining the above equalities, we obtain the time complexity of the
algorithm. □

5.2. Exact groups influence algorithm

We further propose the 𝖤𝖦𝖨 algorithm, an (almost) exact solution
with high probability for 𝖦𝖨𝖬 by using integer programming for solving
the 𝖲𝖨𝖬 problem instead of the 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 algorithm and reusing the
algorithmic framework of Algorithm 3.

Given a set of samples , we formulate the integer Linear Program-
ming (𝖨𝖯) for solving the 𝖲𝖨𝖬 problem for an instance (, ) of the 𝖲𝖨𝖬

problem, denoted by 𝖨𝖯(,), as follows:

min:
∑

𝑣∈𝑣
𝑥𝑣𝑐(𝑣) (24)

s.t:
∑

𝑢∈𝑅𝑔

min

⎧

⎪

⎨

⎪

⎩

∑

𝑣∈𝑅𝑔 (𝑢)
𝑥𝑣, 1

⎫

⎪

⎬

⎪

⎭

𝑏(𝑢) ≥ 𝑡(𝑅𝑔), ∀𝑅𝑔 ∈  (25)

𝑥𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 (26)

where

𝑥𝑖 =

{

1, if 𝑣 is selected in the solution S
0, otherwise.

(27)

The objective of the 𝖨𝖯 is to select a seed set with minimal total cost.
The constraints (25), (26) ensure all target groups be influenced by 𝑆.

The details of 𝖤𝖦𝖨 are presented in Algorithm 4. 𝖬𝗈𝖦𝗋𝖾𝖾𝖽𝗒 in 𝖦𝖨𝖠 is
replaced by solving 𝖨𝖯(𝑖,) (line 7). The rest of this algorithm is the
same as 𝖤𝖦𝖨. By the same reasoning as that in Theorem 3, we can also
prove the approximation ratio of 𝖤𝖦𝖨 as follows.

Theorem 5. For any 𝜖, 𝛿 ∈ (0, 1), the Algorithm 4 returns a solution 𝑆
such that 𝜎(𝑆) ≥ 𝐾 − 𝜖𝐾 and 𝑐(𝑆) ≤ 𝖮𝖯𝖳 with probability at least 1 − 𝛿.

Proof. Similar to the Proof of Theorem 3, we also have �̂�(𝑆) = 𝐾 and
Pr[𝜎(𝑆) ≥ 𝐾 − 𝜖𝐾] ≥ 1 − 𝛿. On the other hand, solving the 𝖨𝖯(𝑖,)
provides an optimal solution for the 𝖲𝖨𝖬 problem. From Lemma 7, we
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have 𝑐(𝑆𝑖) = 𝗈𝗉𝗍𝑖 ≤ 𝖮𝖯𝖳, ∀𝑖 = 1… 𝑖𝑚𝑎𝑥. Therefore 𝑐(𝑆) ≤ 𝖮𝖯𝖳. □
Algorithm 4: 𝖤𝖦𝖨 Algorithm
Input: Graph 𝐺 = (𝑉 ,𝐸), set of 𝐾 target groups

 = {𝐶1, 𝐶2,… , 𝐶𝐾}, 𝜖, 𝛿 ∈ (0, 1).
Output: A Seed set 𝑆

1. 𝑁𝑚𝑎𝑥 = (2 + 2
3 𝜖)

𝐾
𝜖2

ln
(

2( 𝑛
𝑘𝑚𝑎𝑥

)
𝛿

)

, 𝑁1 ←
1
𝜖2

ln( 1𝛿 )

2. 𝑖𝑚𝑎𝑥 ← ⌈log2(𝑁𝑚𝑎𝑥∕𝑁1)⌉, 𝛿1 ←
𝛿

2(𝑖𝑚𝑎𝑥−1)

3. Generate set of 𝑁1 samples 1
4. for 𝑖 = 1 to 𝑖𝑚𝑎𝑥 do
5. 𝑆𝑖 ← a solution by solving 𝖨𝖯(𝑖,).
6. Calculate 𝐹𝑙(𝑆𝑖,𝑖, 𝜖, 𝛿1) by Lemma 6
7. Double size of 𝑖 by generating |𝑖| samples and add them

into 𝑖
8. 𝑖+1 ← 𝑖
9. if 𝐹𝑙(𝑆𝑖,𝑖+1, 𝜖, 𝛿1) ≥ (1 − 𝜖)𝐾or 𝑖 = 𝑖𝑚𝑎𝑥 then
0. return 𝑆𝑖
1. end
2. end
3. return 𝑆𝑖

Table 2
Datasets

Dataset Nodes Edges Type Avg.degree

Facebook 747 60.05K Directed 81
Wiki 7.1K 103.6K Directed 15
Epinions 76K 508.8K Directed 7
DBLP 317K 1.05M Directed 4
Pokec 1.6M 30.6M Directed 20

6. Experiments

This section shows the proposed algorithms’ performance is illus-
trated by conducting comprehensive experiments. We compared ours
with the state-of-the-art algorithms on two major metrics: (1) solution
quality and (2) computing time on various network datasets.

6.1. Experimental settings

Dataset. We use some public OSN datasets in the experiments,
shown in Table 2. These data sets are widely used in the related
work [12,55].

Parameters setting. All experiments are under the 𝖨𝖢 model with
edge probabilities set to 𝑝(𝑢, 𝑣) = 1∕|𝑁𝑖𝑛(𝑣)|. This weight setting is
dopted from prior works [1,2,12,20–23]. We set parameters 𝜖 = 0.1,
= 1∕𝑛 and the limited time is 6 h. For the purpose of providing a com-
rehensive experiment, we divide the experiment into the following
wo cases.

• Case 1. Uniform Cost (UC). In this case, 𝑠(𝑢) = 1,∀𝑢 ∈ 𝑈 , and the
thresholds 𝑡𝑖 =

∑

𝑢∈𝐶𝑖
𝑠(𝑢)∕2 for 𝑖 = 1…𝐾 according to the setting

in [12] and the cost 𝑐(𝑢) = 1,∀𝑢 ∈ 𝑉 .
• Case 2. General Cost (GC). Each node has its cost calculated

under the Normalized Linear model with the support (0, 1] ac-
cording to recent works [38,56,57] and 𝑠(𝑢) = 1,∀𝑢 ∈ 𝑉 , and the
thresholds 𝑡𝑖 =

∑

𝑢∈𝐶𝑖
𝑠(𝑢)∕2 for 𝑖 = 1…𝐾 according to the setting

in [12].

Algorithms compared. To our knowledge, there are no existing al-
gorithms that can be adopted to solve the 𝖦𝖨𝖬 problem directly.
Therefore, we compare our 𝖦𝖨𝖠 and 𝖤𝖦𝖨 algorithms with the state-
of-the-art algorithms for the closest problem: IMC [12]. Besides, we
use High Degree, a common baseline algorithm for the related problem
on information diffusion [1,18,28]. These algorithms are described in

detail as follows.
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Fig. 1. Size of seed set returned by algorithms under the UC setting.
• Upper Bound Greedy (UBG) [12]. This is the best performance
algorithm for the IMC problem. This problem asks to find a set
seed of 𝑘 nodes such that the number of influenced groups is max-
imal, while the 𝖦𝖨𝖬 problem asks to find a set of seed nodes with
minimal cost that can influence all target groups. Therefore, we
adapt the UBG algorithm for solving 𝖦𝖨𝖬 with some modifications
as follows. We first initialize an empty candidate solution 𝑆. We
then sequentially use UBG with 𝑘 from 1 to 𝑛 to find the best
influence node and then add it into 𝑆 until the estimation �̂�(𝑆) is
at least (1 − 𝜖)𝐾.

• Most Appearance First (MAF) [12]. This is also an algorithm for
the IMC problem. We also adapt it as the workflow in UBG for the
𝖦𝖨𝖬 problem.

• High Degree (HD). We repetitively select a node with the highest
degree until the current solutions influence all target groups.

For all the above algorithms, we use the Monte-Carlo method
in [58] to obtain an (𝜖, 𝛿)-approximation for estimating the influence
group function. We implement 𝖦𝖨𝖠 in C++ using CPLEX to solve the
𝖨𝖯.

For each algorithm, we run five times to get the average results.
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6.2. Experiment results

In this section, we show the experimental results and compare
the algorithms based on two criteria: (1) solution quality, which
is measured by the cost and the group function value of obtained
solutions, and (2) computational time.

Solution quality. We first compare the solution quality of the
algorithms under the UC case (Figs. 1 and 2). In this case, the cost of
a solution is its size. 𝖦𝖨𝖠 and 𝖤𝖦𝖨 outperform others by a large gap.
Specifically, they are up to 2.5 times better than UBG and MAF. 𝖤𝖦𝖨
provides the smallest-cost solutions, which are up to approximately
1.2 times smaller than that of 𝖤𝖦𝖨 (on Wiki). These results conses
with the theoretical performance of 𝖤𝖦𝖨, that is, 𝖤𝖦𝖨 returns the best
approximation algorithm ratio for 𝖦𝖨𝖬 problem. Although UBG can
give better results than MAF and HD in general, it does not give any
approximation ratio for the 𝖦𝖨𝖬 problem. The selection of a fixed-size
seed set in each iteration of the binary search causes the selection of
many unnecessary seed nodes by UBG. The same issue confronts MAF.
HD returns poor results since it is a simple heuristic and only considers
the degree of nodes instead of having an influence on groups. The
solution quality of the algorithms under GC is shown in Figs. 4 and 5.
We first compare the total cost of seed sets. Similar to the previous case,
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Fig. 2. Ratio of number of influenced groups over 𝐾 of algorithms under the UC setting.
our algorithms outperform the others in terms of solution quality, and
𝖤𝖦𝖨 also provides the best solution. It can be explained that MAF and
UBG only consider the candidate seed sets with fixed sizes, and they
fail to consider the cost of nodes. Again, our algorithms give ratios that
are above (1 − 𝜖) in most cases.

We further show the group influence value of the algorithms. For
the convenience of comparison with the value of 𝐾, we report the ratio
of number of influenced groups over 𝐾 of the algorithms in Figs. 2 and 5.
It can be seen that 𝖦𝖨𝖠 and 𝖤𝖦𝖨 can output ratios that are above (1− 𝜖)
in most cases and outperform MAF and UBG. MAF and UBG give lower
and unstable ratios even though they use a large number of samples
(MAF and UBG use the RIC sample). This is due to two reasons: (1) our
algorithms always make sure all GRRs are influenced, and (2) stopping
conditions in our algorithms ensure that 𝜎(𝑆) ≥ (1 − 𝜖)𝐾 with high
certainty. These results confirm that the proposed algorithms provide
a better solution than the other ones in both theoretical bounds and
practice.

Computational time. We now compare the complexity of algo-
rithms in practice via their computational time shown in Figs. 3 and 6.
We do not report the running time of HD because it is a simple heuristic
algorithm with a poor-quality solution and can finish within a few
seconds. It is obvious that 𝖦𝖨𝖠 is the fastest algorithm and outperforms
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the others by a huge distance. Particularly, it is up to approximately
840 and 646 times faster than MAF and UBG, respectively.

Three possible explanations for this phenomenon are given: (1) the
operation of MAF and UBG consists of many iterations to find the seed
set that cannot reach the terminal condition timely. They use a binary
search method to find feasible solutions and choose the best solution;
(2) MAF and UBG use too many number of RIC samples to obtain
an estimation of group influence function; (3) Our 𝖦𝖨𝖠 follows the
mechanism of our framework, which can find the final solution after
a few iterations of the main loop. Our 𝖦𝖨𝖠 can also apply for the large-
scale network (Pocke with 1.6M nodes) within only a few seconds,
confirming that the algorithmic framework and sampling technique is
more efficient in the 𝖦𝖨𝖬 problem than MAF and UBG. Our 𝖤𝖦𝖨 has the
longest running time since it uses the 𝖨𝖯 solver to find the exact solution
for the sub-problem of 𝖲𝖨𝖬 instead of the Modified Greedy. 𝖤𝖦𝖨 gives
the best quality of the solution. However, 𝖤𝖦𝖨 takes some hours to solve
𝖦𝖨𝖬 for small or medium networks, and 𝖤𝖦𝖨 cannot be completed in
the Pocke network when 𝐾 is large within a limited time. Interestingly,
even when 𝐾 increases, the running time of our algorithms does not
decrease in some cases. Our explanation is: the larger the value of
𝐾, the smaller number of samples needed for satisfying the terminal

condition, enabling our algorithms to finish within fewer iterations. We



Computer Communications 212 (2023) 182–197P.N.H. Pham et al.
Fig. 3. Running time of algorithms under the UC setting.
also report the running time of the algorithms under GC case in Fig. 6.
The results are consistent with the UC case: 𝖦𝖨𝖠 is the fastest algorithm
and up to approximately 800 times faster than MAF and UBG, and 𝖤𝖦𝖨

has the longest running time.

7. Conclusions and discussions

In this paper, we investigated a novel 𝖦𝖨𝖬 problem as follows:
Given a social network and a set of target groups of users, the 𝖦𝖨𝖬 prob-
lem aims to find a seed set with the smallest cost that can influence all
groups. The studied problem arises from the goal of reaping the benefits
of influencing user groups on social networks under a more realistic
scenario with existing studies. This problem has a wide range applica-
tions including viral marketing, combating misinformation or fake news
and defensing with bad effects (virus, malicious) in a network, etc. The
challenges of solving lines in three points: (1) 𝖦𝖨𝖬 is computationally
hard, and it cannot be approximated with a log factor, (2) the group
influence function is neither submodular nor supermodular. Therefore
it does not admit existing greedy methods with a theoretical bound, and
(3) calculating the group influence function is #P-Hard, so it cannot be
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calculated exactly in polynomial time.
In order to overcome those challenges of the problem, we proposed
two efficient algorithms, 𝖦𝖨𝖠 and 𝖤𝖦𝖨, with theoretical bounds. The
key of these algorithms lies in two aspects: Firstly, a new concept
of sampling was developed to estimate the group influence function
effectively. The new sampling technique was a generalization of the RIC
sample concept in [12]. Secondly, we proposed an algorithm frame-
work that operated in multiple iterators in which each constructed
a candidate solution by checking the quality via the new sampling
technique. In general, our algorithms can be applied to minimization
cost problems with non-submodular utility functions. Several compre-
hensive experiments on real social network datasets were conducted to
compare our proposed with state-of-the-art. The results demonstrated
that our algorithms outperformed the state-of-the-art ones in terms
of total cost, and our 𝖦𝖨𝖠 algorithm was up to about 800 faster
than competitive algorithms. The results also showed the efficiency of
our sampling technique and algorithmic framework, which not only
provided theoretical bounds but also outperformed existing algorithms
in the theory in practice. Besides, our algorithms can be applied in any
network to deal with the attacking of bad effects (e.g., misinformation,
vulnerable networks of nodes, viruses, fake news, etc.) by finding a set
of nodes that has a strong influence on groups and monitor and protect

them under the attack.
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Fig. 4. Total cost of seed sets returned by algorithms under the GC setting.
There is still an open question for our algorithms, however: How
ill our algorithms work on other information diffusion models? In the

uture, we are going to investigate our algorithms under some other
nformation diffusion models on both the theory and practice sides.
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Appendix

This section provides missing proofs in Sections 4 and 5.

Proof of Lemma 1. We have

𝜎(𝑆) =
∑

𝐶𝑖∈𝐶

∑

𝑔∼𝐺
Pr[𝑔 ∼ 𝐺]𝑋𝑔(𝑆,𝐶𝑖) (28)

= 𝐾
∑

𝐶𝑖∈𝐶

(

1
𝐾

∑

𝑔∼𝐺
Pr[𝑔 ∼ 𝐺]𝑋𝑔(𝑆,𝐶𝑖)

)

(29)

=
∑

𝐶𝑖∈𝐶

∑

𝑔∼𝐺

(

Pr[𝐶𝑖 is a source group] Pr[𝑔 ∼ 𝐺]𝑋𝑔(𝑆,𝐶𝑖)
)

(30)

= 𝐾 ⋅ E[𝑋𝑔(𝑆)], (31)
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Fig. 5. Ratio of number of influenced groups over 𝐾 of algorithms under the GC setting.
I

𝛥

where 𝑋𝑔(𝑆,𝐶𝑖) is the variable 𝑋𝑔(𝑆) with source group 𝐶𝑖. The
Eq. (28) is due to the definition of 𝜎(𝑆), and the Eq. (30) is due to
the probability section of a source node. □

Proof of Lemma 3. If 𝑣 ∉ 𝑅𝑔(𝑢),∀𝑢 ∈ 𝐶(𝑅𝑔), the Lemma holds because
𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) = 𝑓 (𝑆,𝑅𝑔) = 0 and 𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) = 𝑓 (𝑇 ,𝑅𝑔) = 0.

If ∃𝑢 ∈ 𝐶(𝑅𝑔) ∶ 𝑣 ∈ 𝑅𝑔(𝑢), we consider the following two sub-cases:
Case 1. If ∀𝑢 ∈ 𝐶(𝑅𝑔) ∶ 𝑣 ∈ 𝑅𝑔(𝑢), 𝑇 ∩𝑅𝑔(𝑢) ≠ ∅, the Lemma holds since
𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) = 𝑓 (𝑇 ,𝑅𝑔).
Case 2. If ∃𝑢 ∈ 𝐶(𝑅𝑔) ∶ 𝑣 ∈ 𝑅𝑔(𝑢) and 𝑇 ∩ 𝑅𝑔(𝑢) = ∅, we also have
𝑆 ∩ 𝑅𝑔(𝑢) = ∅. It implies:

𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) − 𝑓 (𝑆,𝑅𝑔)

≥ 𝑏𝑚𝑖𝑛 =
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

𝑏𝑚𝑎𝑥

≥
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

(

𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑓 (𝑇 ,𝑅𝑔)
)

This completes the proof. □

Proof of Lemma 4. Since 𝑓 (⋅, 𝑅𝑔) is non-decreasing so 𝑓 (𝑆∪{𝑣}, 𝑅𝑔) ≥
𝑓 (𝑆,𝑅𝑔) for any subset 𝑆 ⊆ and 𝑣 ∈ 𝑉 . Therefore, we only consider
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three possible following cases:
Case 1. 𝑡(𝑅𝑔) ≥ 𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑓 (𝑆,𝑅𝑔), we have:

𝛥𝑣𝑔(𝑆,𝑅𝑔) = min
{

1,
𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔)

𝑡(𝑅𝑔)

}

− min
{

1,
𝑓 (𝑆,𝑅𝑔)
𝑡(𝑅𝑔)

}

=
𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) − 𝑓 (𝑆,𝑅𝑔)

𝑡(𝑅𝑔)

In this case, we further consider the following three sub-cases:

∙ If 𝑡(𝑅𝑔) ≥ 𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑓 (𝑇 ,𝑅𝑔) then 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) =
𝑓 (𝑇∪{𝑣},𝑅𝑔 )

𝑡(𝑅𝑔 )
, and 𝑔(𝑇 ,𝑅𝑔) =

𝑓 (𝑇 ,𝑅𝑔 )
𝑡(𝑅𝑔 )

.

∙ If 𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑡(𝑅𝑔) ≥ 𝑓 (𝑇 ,𝑅𝑔), then 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) = 1, and
𝑔(𝑇 ,𝑅𝑔) =

𝑓 (𝑇 ,𝑅𝑔 )
𝑡(𝑅𝑔 )

.

∙ If 𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑓 (𝑇 ,𝑅𝑔) ≥ 𝑡(𝑅𝑔), 𝑔(𝑇 ∪ {𝑢}, 𝑅𝑔) = 𝑔(𝑇 ,𝑅𝑔) = 1.

n the three cases above, we also have:

𝑣𝑔(𝑇 ,𝑅𝑔) = 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑔(𝑇 ,𝑅𝑔)

≤
𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑓 (𝑇 ,𝑅𝑔)

𝑡(𝑅𝑔)

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) − 𝑓 (𝑆,𝑅𝑔)
𝑡(𝑅𝑔)

(By Lemma 3)
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Fig. 6. Running time (second) of algorithms under the GC setting.
Case 2. 𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑡(𝑅𝑔) ≥ 𝑓 (𝑆,𝑅𝑔). In this case, we have
(𝑇 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑡(𝑅𝑔), and 𝑔(𝑆,𝑅𝑔) = 𝑓 (𝑆,𝑅𝑔 )

𝑡(𝑅𝑔 )
≤

𝑔(𝑇 ,𝑅𝑔) ≤ 1. Therefore 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) = 𝑔(𝑆 ∪ {𝑣}, 𝑅𝑔) = 1, and

𝑣𝑔(𝑆,𝑅𝑔) = 1 − 𝑔(𝑆,𝑅𝑔) = 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑔(𝑆,𝑅𝑔)

≥ 𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑔(𝑇 ,𝑅𝑔)

≥
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

⋅
(

𝑔(𝑇 ∪ {𝑣}, 𝑅𝑔) − 𝑔(𝑇 ,𝑅𝑔)
)

.

Case 3. 𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔) ≥ 𝑓 (𝑆,𝑅𝑔) ≥ 𝑡(𝑅𝑔). It obtains:

min
{

1,
𝑓 (𝑆 ∪ {𝑣}, 𝑅𝑔)

𝑡(𝑅𝑔)

}

= min
{

1,
𝑓 (𝑆,𝑅𝑔)
𝑡(𝑅𝑔)

}

= 1

min
{

1,
𝑓 (𝑇 ∪ {𝑣}, 𝑅𝑔)

𝑡(𝑅𝑔)

}

= min
{

1,
𝑓 (𝑇 ,𝑅𝑔)
𝑡(𝑅𝑔)

}

= 1.

herefore, 𝛥𝑣𝑔(𝑆,𝑅𝑔) =
𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

𝛥𝑣𝑔(𝑇 ,𝑅𝑔) = 0. The proof is proved. □

Proof of Lemma 5. It is easy to see that 𝛥𝑢𝐹 ′(𝑆) ≥ 𝑏𝑚𝑖𝑛
𝑏𝑚𝑎𝑥

⋅ 𝛥𝑢𝐹 ′(𝑇 ),
or 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑢 ∈ 𝑉 ⧵ 𝑇 . Let 𝑆′ = 𝑆0 ⧵ 𝑆 = {𝑠′ , 𝑠′ ,… , 𝑠′},
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𝑖 1 2 𝑡
𝑆′
𝑗 = {𝑠′1, 𝑠

′
2,… , 𝑠′𝑗}, 𝑗 ≤ 𝑡, and 𝑆′

0 = ∅, we have:

𝐾 − 𝐹 ′(𝑆𝑖) = 𝐹 (𝑆0) − 𝐹 ′(𝑆𝑖) ≤ 𝐹 ′(𝑆0 ∪ 𝑆𝑖) − 𝐹 ′(𝑆𝑖)

= 𝐹 ′(𝑆𝑖 ∪ 𝑆′) − 𝐹 ′(𝑆𝑖)

=
𝑡

∑

𝑗=1
(𝐹 ′(𝑆𝑖 ∪ 𝑆′

𝑗 ) − 𝐹 ′(𝑆𝑖 ∪ 𝑆′
𝑗−1))

≤
𝑡

∑

𝑗=1

𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

(𝐹 ′(𝑆𝑖 ∪ 𝑠′𝑗 ) − 𝐹 ′(𝑆𝑖))

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅
1

𝑐(𝑆′)

𝑡
∑

𝑗=1
(𝐹 ′(𝑆𝑖 ∪ 𝑠′𝑗 ) − 𝐹 ′(𝑆𝑖))

(due to 𝑐(𝑆′) ≤ 𝗈𝗉𝗍)

=
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅

∑𝑡
𝑗=1(𝐹

′(𝑆𝑖 ∪ 𝑠′𝑗 ) − 𝐹 ′(𝑆𝑖))
∑𝑡

𝑗=1 𝑐(𝑠
′
𝑗 )

.

For any positive numbers 𝑎1,… , 𝑎𝑙 and 𝑏1,… , 𝑏𝑙. According to [59], we
have:

min
𝑖=1…𝑙

𝑎𝑖 ≤
∑𝑙

𝑖=1 𝑎𝑖
∑𝑙 ≤ max

𝑖=1…𝑙

𝑎𝑖 . (32)

𝑏𝑖 𝑖=1 𝑏𝑖 𝑏𝑖
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Apply the above inequality, we obtain:

𝐾 − 𝐹 ′(𝑆𝑖) ≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅ max
𝑠′𝑗∈𝑆

′

𝐹 ′(𝑆𝑖 ∪ 𝑠′𝑗 ) − 𝐹 ′(𝑆𝑖)

𝑐(𝑠′𝑗 )

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅
𝐹 ′(𝑆𝑖 ∪ 𝑠𝑖+1) − 𝐹 ′(𝑆𝑖)

𝑐(𝑠′𝑗 )

≤
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

𝗈𝗉𝗍 ⋅
𝐹 ′(𝑆𝑖+1) − 𝐹 ′(𝑆𝑖)

𝑐(𝑠𝑖+1)
.

By rearranging the last inequality, the proof is completed. □

Proof of Lemma 6. Denote 𝜇 = 𝜎(𝑆)
𝐾 , �̂� = �̂�(𝑆)

𝐾 and 𝑐 = ln(1∕𝛿). Apply

(12) in Lemma 2 with 𝜆 = 𝑐
3 +

√

𝑐2
9 + 2𝑐𝜇𝑇 , we have:

Pr
[

𝑇
∑

𝑗=1
𝑋𝑗 (𝑆) − 𝑇 ⋅ 𝜇 ≥ 𝜆

]

≤ 𝛿 (33)

herefore, the following event happens with probability at least 1 − 𝛿:
𝑇
∑

𝑗=1
𝑋𝑗 (𝑆) − 𝑇 ⋅ 𝜇 ≤ 𝜆 (34)

⟺ 𝑇 �̂� − 𝑇𝜇 − 𝑐
3
≤
√

𝑐2
9

+ 2𝑐𝜇𝑇 . (35)

By solving the above inequality for finding 𝜇, we have:

𝜇 ≥ min

{

�̂� − 𝑐
3𝑇

, �̂� + 1
𝑇

(

2𝑐
3

−
√

4𝑐2
9

+ 2𝑇 𝑐�̂�

)

.

}

(36)

eplace �̂� = �̂�(𝑆)
𝐾 , 𝜇 = 𝜎(𝑆)

𝐾 into above inequality, we obtain the
roof. □

roof of Lemma Lemma 7. We prove this Lemma by the contradiction
ypothesis. Assuming that there exists a set of GRR samples  that

�̂�(𝑆∗) < 𝐾, i.e. there exists a set 1 ⊆  so that ∑𝑅𝑔∈1
𝑋𝑔(𝑆∗) = 0.

Denote by 𝛺 the space of GRR samples with a probability of generating
a sample defined in Eq. (8), we have:

𝜎(𝑆∗) = 𝐾 ⋅ E[𝑋𝑔(𝑆∗)] = 𝐾 ⋅
∑

𝑅𝑔∈𝛺
Pr[𝑅𝑔]𝑋𝑔(𝑆∗)

= 𝐾 ⋅
∑

𝑅𝑔∈1

Pr[𝑅𝑔]𝑋𝑔(𝑆∗) +𝐾
∑

𝑅𝑔∈𝛺⧵1

Pr[𝑅𝑔]𝑋𝑔(𝑆∗)

= 𝐾 ⋅
∑

𝑅𝑔∈𝛺⧵1

Pr[𝑅𝑔]𝑋𝑔(𝑆∗)

= 𝐾 ⋅
∑

𝑅𝑔∈𝛺⧵1

Pr[𝑅𝑔] < 𝐾.

The last inequality contracts with the fact that 𝑆∗ is an optimal solution
to the 𝖦𝖨𝖬 problem. Therefore, �̂�(𝑆∗) = 𝐾. □
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