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A B S T R A C T

We investigate the problem of 𝑘-submodular maximization under a knapsack constraint over the ground set
of size 𝑛. This problem finds many applications in various fields, such as multi-topic propagation, multi-sensor
placement, cooperative games, etc. However, existing algorithms for the studied problem face challenges in
practice as the size of instances increases in practical applications.

This paper introduces three deterministic and approximation algorithms for the problem that significantly
improve both the approximation ratio and query complexity of existing practical algorithms. Our first
algorithm, 𝖥𝖠, returns an approximation ratio of 1∕10 within 𝑂(𝑛𝑘) query complexity. The second one, 𝖨𝖥𝖠,
improves the approximation ratio to 1∕4−𝜖 in 𝑂(𝑛𝑘∕𝜖) queries. The last one 𝖨𝖥𝖠+ upgrades the approximation
ratio to 1∕3−𝜖 in 𝑂(𝑛𝑘 log(1∕𝜖)∕𝜖) query complexity, where 𝜖 is an accuracy parameter. Our algorithms are the
first ones that provide constant approximation ratios within only 𝑂(𝑛𝑘) query complexity, and the novel idea
to achieve results lies in two components. Firstly, we divide the ground set into two appropriate subsets to
find the near-optimal solution over these ones with 𝑂(𝑛𝑘) queries. Secondly, we devise algorithmic frameworks
that combine the solution of the first algorithm and the greedy threshold method to improve solution quality.
In addition to the theoretical analysis, we have evaluated our proposed ones with several experiments in some
instances: Influence Maximization, Information Coverage Maximization, and Sensor Placement for the problem.
The results confirm that our algorithms ensure theoretical quality as the cutting-edge techniques, including
streaming and non-streaming algorithms, and also significantly reduce the number of queries.
1. Introduction

The problems of constrained 𝑘-submodular function maximization
have played an important role in advancing the fields of operational re-
search, artificial intelligence and machine learning recently because of
their natural usages in various domains such as influence maximization
via social networks (Ohsaka and Yoshida, 2015; Rafiey and Yoshida,
2020a; Qian et al., 2018a; Nguyen and Thai, 2020; Zheng et al., 2021),
sensor placement (Ohsaka and Yoshida, 2015; Rafiey and Yoshida,
2020a; Qian et al., 2018a; Zheng et al., 2021), feature selection (Singh
et al., 2012) and information coverage maximization (Qian et al.,
2018a), etc. Given a finite ground set 𝑉 and an integer number 𝑘, we
define [𝑘] = {1, 2,… , 𝑘} and (𝑘 + 1)𝑉 = {(𝑉1, 𝑉2,… , 𝑉𝑘)|𝑉𝑖 ⊆ 𝑉 ,∀𝑖 ∈
[𝑘], 𝑉𝑖 ∩ 𝑉𝑗 = ∅,∀𝑖 ≠ 𝑗} as a family of 𝑘 disjoint sets, called the
𝑘-set. A function 𝑓 ∶ (𝑘 + 1)𝑉 ↦ R+ is 𝑘-submodular iff for any
𝐱 = (𝑋1, 𝑋2,… , 𝑋𝑘) and 𝐲 = (𝑌1, 𝑌2,… , 𝑌𝑘) ∈ (𝑘 + 1)𝑉 , we have:

𝑓 (𝐱) + 𝑓 (𝐲) ≥ 𝑓 (𝐱 ⊓ 𝐲) + 𝑓 (𝐱 ⊔ 𝐲) (1)
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where

𝐱 ⊓ 𝐲 = (𝑋1 ∩ 𝑌1,… , 𝑋𝑘 ∩ 𝑌𝑘)

and

𝐱 ⊔ 𝐲 = (𝑍1,… , 𝑍𝑘), where 𝑍𝑖 = 𝑋𝑖 ∪ 𝑌𝑖 ⧵ (
⋃

𝑗≠𝑖
𝑋𝑗 ∪ 𝑌𝑗 ).

In this paper, we investigate the 𝑘-Submodular Maximization under
a Knapsack constraint (𝗄𝖲𝖬𝖪) problem, which is one of the most
natural and general 𝑘-submodularity optimizations since it captures the
limitation of budget, time, or size when choosing elements. Under the
knapsack constraint, each element 𝑒 is assigned a positive cost 𝑐(𝑒).
Given a limited budget 𝐵 > 0, the problem 𝗄𝖲𝖬𝖪 asks to find a 𝑘-set
𝐬 = (𝑆1, 𝑆2,… , 𝑆𝑘) with total cost 𝑐(𝐬) = ∑

𝑒∈𝑆𝑖 ,𝑖∈[𝑘] 𝑐(𝑒) ≤ 𝐵 so that 𝑓 (𝐬)
is maximized. The problem is a general model for many important ap-
plications in social networks, sensor placement, information coverage,
feature selection, etc., listed below:
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𝑘-topic influence maximization. In some real situations, such
as viral marketing, product recommendation, etc., a company may
desire to broadly spread an advertisement campaign about 𝑘 different
products (or topics) to users via social networks or the Internet. The
campaign may hire influential users to share their hobbies or experi-
ments about the products with their followers, and then these followers
share the news with their relationships. Hence, the information about
the products gradually propagates over the network and influences
many users. The mathematical nature of the campaign is 𝑘-submodular
maximization under a diffusion model, which Kempe et al. (2003)
first proposed with a single type of influence. Authors in Ohsaka
and Yoshida (2015) generalized this model to allow 𝑘 ≥ 2 types of
influence, then other authors were also attracted by 𝑘-topic influence
maximization (Rafiey and Yoshida, 2020a; Qian et al., 2018a; Nguyen
and Thai, 2020). In the Experiment section, we describe more detail
about this instance.

𝑘-type sensor placement. Sensor placement originates from re-
search in practice when researchers desire to gain information about
water quality, temperature, earthquakes, and air pollution observed
from environments around a large area such as rivers, mountains or
air, etc., to support forecasting (Krause and Guestrin, 2007, 2009;
Du et al., 2014) or sensor networks provide real-time monitoring and
control of network systems (Huy and Viet, 2015). These applications
require multiple types of sensors to work. Suppose there are 𝑘 types
of sensors about temperature, wind speed, energy, etc., and a set 𝑉 of
𝑛 locations to place them. If only one sensor is allocated to one site,
each 𝑘-tuple of pairwise disjoint subsets of 𝑉 represents a 𝑘-type sen-
sor placement plan. The plan’s performance can usually be evaluated
using 𝑘-submodular functions such as the entropy functions. Therefore,
constrained 𝑘-submodular maximization can be used to describe a 𝑘-
type sensor placement issue. We also introduce more detail about this
problem in the Experiment.

𝑘-topic information coverage maximization. In the influence
maximization problem, an inactive node may be informed of informa-
tion by any of its active neighbor nodes. Hence, Wang et al. (2015)
proposed a new problem called information coverage maximization:
maximizing the expected number of active and informed nodes. An in-
active node is informed if at least one active neighbor node exists. Qian
et al. (2018b) introduced 𝑘-topic information coverage maximization,
which expands the 𝑘-topic information maximization.

𝑘-class feature selection. This problem has become interesting
recently (Bilbao, 2000; Singh et al., 2012; Saeys et al., 2007) in machine
learning. Feature selection enhances the analysis of a vast amount of
data by reducing its dimensionality. The resulting multi-class feature
selection issues consist of a pool of 𝑘 associated features and 𝑘 uncor-
related prediction variables. The issue asks to not only find the most
informative features but also classify the features with respect to the
prediction variables, leading to a 𝑘-submodular maximization problem.

In the above applications, the size of the problem often increases
rapidly, requiring efficient algorithms to provide suitable solutions in a
reasonable computational time. We refer to the query complexity as a
measure of computational time since it dominates the time running of
an algorithm.

1.1. Our contribution

In this work, we design novel algorithms for the problem that
respond to some requirements about maintaining performance and
reducing query complexity. In particular, our work is the first one
that provides a constant approximation ratio within only 𝑂(𝑘𝑛) query
complexity and can return an approximation ratio of 1∕3 − 𝜖 which
is better than the current best approximation ratio (1 − 1∕𝑒)∕2 of a
deterministic and polynomial time algorithm in Tang et al. (2022).
To our knowledge, our contribution is the lowest computational cost
of any constant ratio approximation algorithm and plays a significant
2

role in finding near-optimal solutions for applications, as the expense
of evaluating the function 𝑓 might be costly. A preliminary version
of this work appears in the proceedings of the 9th IEEE International
Conference on Data Science and Advanced Analytics (DSAA 2022)
(Pham et al., 2022a). This paper extends the conference version by
providing more material and experiment evaluation. In general, our
contributions are as per the following:

• We first propose the 𝖥𝖠 algorithm (Algorithm 1), a
1∕10-approximation one that needs only one pass over the ground
set and 𝑂(𝑘𝑛) query complexity. It is our work’s first simple but
necessary version since it bounds the optimal and provides a data
division strategy to reduce query complexity to 𝑂(𝑛𝑘).

• We next propose 𝖨𝖥𝖠 algorithm (Algorithm 2) that achieves an ap-
proximation ratio 1∕4− 𝜖, and requires 𝑂(𝑘𝑛∕𝜖) query complexity
where 𝜖 is an accuracy parameter.

• We enhance the quality of the algorithm 𝖨𝖥𝖠 by proposing 𝖨𝖥𝖠+
which takes 𝑂(𝑘𝑛 log(1∕𝜖)∕𝜖) query complexity but can provide
the approximation ratio at 1∕3− 𝜖. To the best of our knowledge,
this algorithm outperforms the Greedy algorithm in Tang et al.
(2022) with approximation ratio (1 − 1∕𝑒)∕2, the current best
approximation ratio for a deterministic algorithm.

• To illustrate the theoretical contributions, we conduct several
comprehensive experiments in three applications of 𝗄𝖲𝖬𝖪, includ-
ing 𝑘-topic Influence Maximization, 𝑘-topic Information Coverage
Maximization, and 𝑘-type Sensor Placement. Experimental results
have shown that our algorithms not only need a much more
modest number of queries than the cutting-edge non-streaming
ones (mentioned in Table 1) but also return comparable solutions
in terms of quality.

Table 1 compares our algorithms with some state-of-the-art algo-
rithms for 𝗄𝖲𝖬𝖪 on three aspects including approximation ratio, query
complexity, and whether the algorithm is deterministic or not. These
fields indicate that our algorithms have both a low number of queries
and valuable deterministic approximation ratios that are equivalent to
or even better than the others.

Organization. The rest of the paper is organized as follows: We provide
a literature review and discussions in Section 2. The notations and
properties of 𝑘-submodular functions are presented in Section 3. Sec-
tion 4 presents our algorithms and theoretical analysis. The extensive
experiments are shown in Section 5. Finally, we conclude this work in
Section 6.

2. Related works

In this section, we review related works and provide some discus-
sions on existing applications of 𝑘-submodular function and existing
algorithms

The submodular maximization problem is a type of combinatorial
optimization in which the objective generally is a set function. Because
of its high applicability, it has attracted in multiple domains such
as economics (Amir, 2005; Milgrom and Roberts, 1990), social wel-
fare (Vondrák, 2008), artificial intelligence (Khuller et al., 1999; Buch-
binder et al., 2015; Krause et al., 2008; Mirzasoleiman et al., 2016a),
data summarization (Mirzasoleiman et al., 2015, 2016b), recommen-
dation systems (Guillory and Bilmes, 2011), and a lot of applications
in operational research and management science such as sensor place-
ment (Krause and Guestrin, 2009; Du et al., 2014; Lopes and Ramos,
2023), multi-agent systems (Lee et al., 2021), social influence (Kempe
et al., 2003; Güney et al., 2021), bandwidth packing problem (Using
submodularity, 2023) and facility location (Ortiz-Astorquiza et al.,
2015; Dam et al., 2022), etc. However, submodularity might not be
enough to capture some practical scenarios. Studying 𝑘-submodular
functions arises when one desires to gather information from various
sources. First, Lovász (1982) took a question about a similar but deeper
theory than submodularity when working with partitioned matroid
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Table 1
Algorithms for 𝗄𝖲𝖬𝖪.

Reference Approximation ratio Query complexity Type

𝗙𝗔 (Alg. 1, this paper) 1∕10 𝑂(𝑘𝑛) Deterministic
𝗜𝗙𝗔 (Alg. 2, this paper) 1∕4 − 𝜖 𝑂(𝑘𝑛∕𝜖) Deterministic
𝗜𝗙𝗔+ (Alg. 3, this paper) 1∕3 − 𝜖 𝑂(𝑘𝑛 log(1∕𝜖)∕𝜖) Deterministic
Deterministic streaming (Pham et al., 2022b) 1∕4 − 𝜖 𝑂(𝑘𝑛 log(𝑛)∕𝜖) Deterministic
Random streaming (Pham et al., 2022b) 𝑘∕(4𝑘 − 1) − 𝜖 𝑂(𝑘𝑛 log(𝑛)∕𝜖) Randomized
Greedy (Tang et al., 2022) 1∕2 − 1∕(2𝑒) 𝑂(𝑛4𝑘3) Deterministic
Algorithm 3 in Wang and Zhou (2021) 1∕2 𝑝𝑜𝑙𝑦(𝑛) Randomized
s
∈

𝑓

w

𝐱

a

𝐱

examples. After that, people considered a bisubmodular function to
answer the above question, creating the foundation for 𝑘-submodularity
research. Singh et al. (2012) worked with bisubmodular maximization,
which meant 𝑘 = 2. After that, more works have focused on the issue
of general 𝑘.

The problem of maximizing 𝑘-submodular function was first investi-
gated without any constraint by Ward and Zivný (2014). In that work,
the authors devised a deterministic Greedy algorithm that gave an
approximation ratio of 1∕3. After that, the authors in Iwata et al. (2016)
presented a random Greedy approach which improved the approxima-
tion ratio to 𝑘∕(2𝑘−1) by introducing a probability distribution to select
which element has a larger marginal gain with higher probability. Later
on, Oshima (2017) eliminated the random told in Iwata et al. (2016);
however, the number of queries expanded to 𝑂(𝑛2𝑘2).

The constrained maximizing of the 𝑘-submodular function has been
researched further. Ohsaka and Yoshida (2015) first worked with
monotone 𝑘-submodular maximization with two kinds of size con-
straint: overall size constraint, i.e., given a total budget 𝐵 > 0 the goal is
to construct a solution 𝑆 = (𝑆1, 𝑆2,… , 𝑆𝑘) satisfying | ∪𝑘

𝑖=1 𝑆𝑖| ≤ 𝐵 and
singular size constraint, i.e., given singular budgets 𝐵𝑖 > 0, 𝑖 ∈ [𝑘], the
goal is to construct a solution 𝑆 = (𝑆1, 𝑆2,… , 𝑆𝑘) satisfying |𝑆𝑖| ≤ 𝐵𝑖.
In that work, the authors demonstrated that the Greedy algorithm
provided an approximation ratio of 1∕2 for the overall size constraint
and an approximation ratio of 1∕3 for the singular size constraint,
which was asymptotically tight given that an approximation ratio of
(𝑘+1)∕2𝑘+𝜖 for any 𝜖 > 0 needed exponential running time (Iwata et al.,
2016). A multi-objective evolutionary method with an approximation
ratio of 1∕2 was also proposed by Qian et al. (2018b) for the monotone
𝑘-submodular maximization problem with the overall size constraint.
However, this algorithm took a high query complexity of 𝑂(𝑘𝑛 log2 𝐵)
in expectation. Authors Soma (2019) then proposed an online algorithm
with the same approximation ratio of 1∕2 but runs in polynomial time
with regret bound.

Streaming fashion is an efficient approach for 𝑘-submodular max-
imization with large data when it requires only a small amount of
memory to store and scans one or a few times over the ground set
𝑉 . Nguyen and Thai (2020) first devised two streaming algorithms
for the 𝑘-submodular maximization with overall size constraint within
𝑂(𝑛𝑘 log(𝑘)) query complexity. Their first algorithm is deterministic
and returns an approximation ratio of 1∕3 − 𝜖, while the second one
is randomized and returns an approximation ratio of 𝑘∕(3𝑘 − 1) − 𝜖.
Recently, Ene and Nguyen (2022) developed a single-pass streaming
algorithm based on integer programming formulation for 𝑘-submodular
maximization with singular size constraint with an approximation ratio
of 0.5∕(1 + 𝐵(21∕𝐵 − 1)) within 𝑂(𝑛𝑘) queries, where 𝐵 = min𝑖∈[𝑘] 𝐵𝑖.

Besides, the 𝑘-submodular maximization has been further investi-
gated under other constraints. Authors in Sakaue (2017) adapt the
Greedy algorithm in Ohsaka and Yoshida (2015) to obtain an approxi-
mation ratio of 1∕2 for the problem under a matroid constraint. Another
algorithm having the same approximation ratio by using the differential
private continuous Greedy method was proposed by authors in Rafiey
and Yoshida (2020b).

The knapsack constraint is one of the most natural ones, which
requires maximizing 𝑓 (⋅) subject to a given budget that the total cost
of a solution cannot exceed. The knapsack constraints do not allow
for just enumerating elements like cardinality or matroid constraints.
3

Hence, there can be multiple solutions with maximal costs that are
not the same size. The authors Wang and Zhou (2021) proposed a
multi-linear extension method with an approximation ratio of 1∕2 − 2𝜖
in expectation for the 𝗄𝖲𝖬𝖪. They employed a 2-step method and
constructed a continuous extension of the discrete problem. After an
optimization algorithm located an optimum in the continuous space,
a rounding technique extracts a discrete solution from a fractional
one. This work provides the best approximation ratio in expectation;
however, this algorithm is impractical due to the high query complexity
of a continuous extension (Balkanski et al., 2021). In contrast, our con-
tributions propose competitive deterministic approximation algorithms
with nearly-linear query complexity for the problem. Besides, Tang
et al. (2022) proposed a (1∕2−1∕(2𝑒))-approximation algorithm for the
𝗄𝖲𝖬𝖪 inspired by the Greedy algorithm in Sviridenko (2004). This algo-
rithm, however, requires an expensive query complexity of 𝑂(𝑛4𝑘3), and
therefore it is difficult to apply to medium-sized instances even though
one can compute the objective function 𝑓 in 𝑂(1) time. Recently, Pham
et al. (2022b) have proposed two single-pass streaming algorithms for
the 𝑘-submodular maximization under the budget constraint, a general
of knapsack constraint within 𝑂(𝑛𝑘 log(𝑛)∕𝜖) queries. These algorithms
returned the ratios of 1∕4 − 𝜖 and 𝑘∕(4𝑘 − 1) − 𝜖 (in expectation). Our
best algorithm version, 𝖨𝖥𝖠+, even provides the approximation ratio of
1∕3 − 𝜖 within 𝑂(𝑘𝑛 log(1∕𝜖)∕𝜖) query complexity. The characteristic of
our algorithms is deterministic, challenging approximation ratio, and
nearly-linear query complexity.

3. Preliminaries

Notations. Given a ground set 𝑉 = {𝑒1, 𝑒2,… , 𝑒𝑛} and an integer
𝑘, we define [𝑘] = {1, 2,… , 𝑘} and let (𝑘 + 1)𝑉 = {(𝑉1, 𝑉2,… , 𝑉𝑛)|𝑉𝑖 ⊆
𝑉 ∀𝑖 ∈ [𝑘], 𝑉𝑖 ∩ 𝑉𝑗 = ∅ ∀𝑖 ≠ 𝑗} be a family of 𝑘 disjoint subsets of 𝑉 ,
called 𝑘-set.

For 𝐱 = (𝑋1, 𝑋2,… , 𝑋𝑘) ∈ (𝑘 + 1)𝑉 , we define 𝑠𝑢𝑝𝑝𝑖(𝐱) = 𝑋𝑖,
𝑠𝑢𝑝𝑝(𝐱) = ∪𝑖∈[𝑘]𝑋𝑖, 𝑋𝑖 as 𝑖th set of 𝐱 and an empty 𝑘-set 𝟎 = (∅,… , ∅).
We set if 𝑒 ∈ 𝑋𝑖 then 𝐱(𝑒) = 𝑖 and 𝑖 is called the position of 𝑒 in
𝐱, otherwise 𝐱(𝑒) = 0. Adding an element 𝑒 ∉ 𝑠𝑢𝑝𝑝(𝐱) into 𝑋𝑖 can be
represented by 𝐱⊔ (𝑒, 𝑖). We also write 𝐱 = {(𝑒1, 𝑖1), (𝑒2, 𝑖2),… , (𝑒𝑡, 𝑖𝑡)} for
𝑒𝑗 ∈ 𝑠𝑢𝑝𝑝(𝐱), 𝑖𝑗 = 𝐱(𝑒𝑗 ),∀1 ≤ 𝑗 ≤ 𝑡. When 𝑋𝑖 = {𝑒}, and 𝑋𝑗 = ∅,∀𝑗 ≠ 𝑖, 𝐱
is denoted by (𝑒, 𝑖).

For 𝐱 = (𝑋1, 𝑋2,… , 𝑋𝑘), 𝐲 = (𝑌1, 𝑌2,… , 𝑌𝑘) ∈ (𝑘 + 1)𝑉 , we denote
by 𝐱 ⊑ 𝐲 iff 𝑋𝑖 ⊆ 𝑌𝑖 ∀𝑖 ∈ [𝑘]. For simplicity, we assume that 𝑓
is non-negative, i.e., 𝑓 (𝐱) ≥ 0 for all 𝐱 ∈ (𝑘 + 1)𝑉 and normalized,
i.e., 𝑓 (𝟎) = 0.

The objective function. The function 𝑓 ∶ (𝑘 + 1)𝑉 ↦ R+ is 𝑘-
ubmodular iff for any 𝐱 = (𝑋1, 𝑋2,… , 𝑋𝑘) and 𝐲 = (𝑌1, 𝑌2,… , 𝑌𝑘)
(𝑘 + 1)𝑉 , we have:

(𝐱) + 𝑓 (𝐲) ≥ 𝑓 (𝐱 ⊓ 𝐲) + 𝑓 (𝐱 ⊔ 𝐲) (2)

here

⊓ 𝐲 = (𝑋1 ∩ 𝑌1,… , 𝑋𝑘 ∩ 𝑌𝑘)

nd

⊔ 𝐲 = (𝑍1,… , 𝑍𝑘), where 𝑍𝑖 = 𝑋𝑖 ∪ 𝑌𝑖 ⧵ (
⋃

𝑋𝑗 ∪ 𝑌𝑗 )

𝑗≠𝑖
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In this work, we consider 𝑓 is monotone, i.e., for any 𝐱 ∈ (𝑘 + 1)𝑉 , 𝑒 ∉
𝑠𝑢𝑝𝑝(𝐱) and 𝑖 ∈ [𝑘], we have the marginal gain when adding an element
𝑒 to the 𝑖-set 𝑋𝑖 of 𝐱 nonnegative:

(𝑒,𝑖)𝑓 (𝐱) =𝑓 (𝑋1,… , 𝑋𝑖−1, 𝑋𝑖 ∪ {𝑒}, 𝑋𝑖+1,… , 𝑋𝑘)

− 𝑓 (𝑋1,… , 𝑋𝑘) ≥ 0

We assume that there exists an oracle query, which, when queried
ith the 𝑘-set 𝐱 returns the value 𝑓 (𝐱). We recap some properties of the

𝑘-submodular function that will be used for designing our algorithms.
From Ward and Zivný (2014), the 𝑘-submodularity of 𝑓 implies the
orthant submodularity, i.e.,

𝛥(𝑒,𝑖)𝑓 (𝐱) ≥ 𝛥(𝑒,𝑖)𝑓 (𝐲) (3)

or any 𝐱, 𝐲 ∈ (𝑘 + 1)𝑉 , 𝑒 ∉ 𝑠𝑢𝑝𝑝(𝐲), 𝐱 ⊑ 𝐲 and 𝑖 ∈ [𝑘]; and the pairwise
onotonicity, i.e., for any 𝑖, 𝑗 ∈ [𝑘], 𝑖 ≠ 𝑗:

(𝑒,𝑖)𝑓 (𝐱) + 𝛥(𝑒,𝑗)𝑓 (𝐱) ≥ 0 (4)

The problem definition. Assuming that each element 𝑒 is assigned
positive cost 𝑐(𝑒) and the total cost of a 𝑘-set 𝐱 𝑐(𝐱) =

∑

𝑒∈𝑠𝑢𝑝𝑝(𝐱) 𝑐(𝑒).
iven a limited budget 𝐵 > 0, we assume that every item 𝑒 ∈ 𝑉 satisfies
(𝑒) ≤ 𝐵; otherwise, we can discard it. The 𝑘-Submodular Maximization
nder Knapsack constraint (𝗄𝖲𝖬𝖪) problem is to determine:

rg max
𝐱∈(𝑘+1)𝑉 ∶𝑐(𝐱)≤𝐵

𝑓 (𝐱). (5)

n this work, we only consider 𝑘 ≥ 2 because if 𝑘 = 1, the 𝑘-submodular
unction becomes the submodular function.

We denote by 𝐨 = {(𝑜1, 𝑖∗1),… , (𝑜𝑚, 𝑖∗𝑚)} an optimal solution of the
roblem, the optimal value 𝗈𝗉𝗍 = 𝑓 (𝐨) and 𝑚 = |𝑠𝑢𝑝𝑝(𝐨)|. Without loss
f generality, we assume that 𝑐(𝑜1) ≥ 𝑐(𝑜2) ≥ ⋯ ≥ 𝑐(𝑜𝑚).

. The proposed algorithms

In this section, we introduce three deterministic algorithms for
𝖲𝖬𝖪. The first algorithm, named Fast Approximation (𝖥𝖠), has an ap-
roximation ratio of 1∕10 and takes 𝑂(𝑛𝑘) query complexity. Although
his approximation ratio is small, it is the first one that gives a constant
pproximation ratio within only 𝑂(𝑘𝑛) queries. The approximation ratio
s improved by our second algorithm, named Improved Fast Approx-
mation (𝖨𝖥𝖠), from 1∕10 to 1∕4 − 𝜖 by recalling the first algorithm’s
olution to provide a suitable range for bounding the optimal value 𝗈𝗉𝗍.
dditionally, it scans the ground set 𝑂(1∕𝜖) times and integrates the
ecreasing threshold strategy to get the near-optimal solution. Save the
est for last, we finally introduce the Improved Approximation Plus
𝖨𝖥𝖠+) algorithm, which makes upward our contributions to (1∕3 − 𝜖)

approximation ratio within 𝑂(𝑘𝑛 log(1∕𝜖)∕𝜖) query complexity.

4.1. Fast Approximation algorithm

Our 𝖥𝖠 algorithm’s main idea is that (1) divides the ground set 𝑉
into two subsets: The elements with costs greater than 𝐵∕2 are included
in the first subset, while the remaining is included in the second,
and (2) near-optimal solutions are sought and combined for the two
aforementioned subsets.

In particular, the algorithm first receives an instance (𝑉 , 𝑓 , 𝑘, 𝐵) of
𝗄𝖲𝖬𝖪 and initiates a candidate solution 𝐬 as 𝟎 and a tuple (𝑒𝑚, 𝑖𝑚) as
(∅, 1). The objective of the tuple (𝑒𝑚, 𝑖𝑚) is to update the optimal solution
for the first subset, while the objective of the candidate solution 𝑠 is
to locate a solution that is close to optimal for the second. For each
incoming element 𝑒, the algorithm finds ‘‘the best’’ position 𝑖𝑒 in terms
of the set 𝑖 in 𝑘 sets that return the highest value 𝑓 ((𝑒, 𝑖𝑒)). If its cost is
greater than 𝐵∕2, the role of (𝑒𝑚, 𝑖𝑚) is the best solution on the current
first subset (line 5).

Otherwise, the algorithm finds the position 𝑖′𝑒 = argmax𝑖∈[𝑘] 𝛥(𝑒,𝑖)𝑓 (𝐬)
(line 6, Algorithm 1), and adds the tuple (𝑒, 𝑖′𝑒) into 𝐬 if the condition
𝛥 ′ 𝑓 (𝐬) ≥ 𝑐(𝑒)𝑓 (𝐬)∕𝐵 is maintained. After the main loop completes,
4

(𝑒,𝑖𝑒)
Algorithm 1: Fast Approximation (𝖥𝖠) Algorithm
Input: 𝑉 , 𝑓 , 𝑘, 𝐵 > 0.
Output: A solution 𝐬

1: 𝐬 ← 0; (𝑒𝑚, 𝑖𝑚) ← (∅, 1)
2: foreach 𝑒 ∈ 𝑉 do
3: 𝑖𝑒 ← argmax𝑖∈[𝑘] 𝑓 ((𝑒, 𝑖))
4: (𝑒𝑚, 𝑖𝑚) ← argmax(𝑒′ ,𝑖′)∈{(𝑒𝑚 ,𝑖𝑚),(𝑒,𝑖𝑒)} 𝑓 ((𝑒

′, 𝑖′))
5: if 𝑐(𝑒) ≤ 𝐵∕2 then
6: 𝑖′𝑒 ← argmax𝑖∈[𝑘] 𝛥(𝑒,𝑖)𝑓 (𝐬)
7: if 𝛥(𝑒,𝑖′𝑒)𝑓 (𝐬) ≥ 𝑐(𝑒)𝑓 (𝐬)∕𝐵 then
8: 𝐬 ← 𝐬 ⊔ (𝑒, 𝑖′𝑒)
9: end
0: end
1: end
2: 𝐬′ ← argmax𝐬𝑗∶𝑗≤𝑡,𝑐(𝐬𝑗 )≤𝐵 𝑐(𝐬𝑗 ), where 𝑡 = |𝑠𝑢𝑝𝑝(𝐬)| and

𝐬𝑗 = {(𝑒𝑡−𝑗+1, 𝑖𝑡−𝑗+1), (𝑒𝑡−𝑗+2, 𝑖𝑡−𝑗+2),… , (𝑒𝑡, 𝑖𝑡)} is the last 𝑗
tuples added into 𝐬.

3: 𝐬𝑓𝑖𝑛𝑎𝑙 ← argmax𝐬∈{(𝑒𝑚 ,𝑖𝑚),𝐬′} 𝑓 (𝐬)
4: return 𝐬𝑓𝑖𝑛𝑎𝑙

the algorithm selects a 𝑘-set 𝐬′ as the set of last 𝑗 tuples added into
𝐬 with the maximum total cost nearest to 𝐵 (line 11). Finally, the
algorithm returns the final solution 𝐬𝑓𝑖𝑛𝑎𝑙 as the best one between
(𝑒𝑚, 𝑖𝑚) and 𝐬′. The details of the algorithm are fully presented in
Algorithm 1.

At a high level, our algorithm resembles the ‘‘divide and conquer’’
strategy, which uses an appropriate subset division based on the costs
of elements. The division of the ground set is productive because,
during the linear time, the algorithm both finds the optimal solution
on the first subset since feasible solutions have at most one element
and finds the approximation solution on the second one. For the second
subset, we were inspired by the suggestion from the idea of Kuhnle
(2021) in which every element will be kept if its density gain, i.e., the
ratio between the marginal gain respect to the current solution and the
cost of the element, is greater or equal to the value of current solution
over the limited budget, and the remaining is released. Their idea is
powerful in diminishing the number of queries of a constant factor
approximation algorithm. However, to deal with the cost and the 𝑘-
submodular function, we need to make a non-trivial analysis to give an
approximation ratio.

In the following, we analyze the theoretical guarantee of Algorithm
1. We first define the notations as follows:

∙ 𝑉1 = {𝑒 ∈ 𝑉 ∶ 𝑐(𝑒) > 𝐵∕2}, 𝑉2 = {𝑒 ∈ 𝑉 ∶ 𝑐(𝑒) ≤ 𝐵∕2}.
∙ 𝐨 is an optimal solution of the problem over 𝑉 and the optimal

value 𝗈𝗉𝗍 = 𝑓 (𝐨).
∙ 𝐨′1 = {(𝑒, 𝐨(𝑒)) ∶ 𝑒 ∈ 𝑉1}, 𝐨′2 = {(𝑒, 𝐨(𝑒)) ∶ 𝑒 ∈ 𝑉2}.
∙ 𝐨1 is an optimal solution of the problem over 𝑉1.
∙ 𝐨2 is an optimal solution of the problem over 𝑉2.
∙ (𝑒𝑗 , 𝑖𝑗 ) as the 𝑗th element added of the main loop of Algorithm 1.
∙ 𝐬 = {(𝑒1, 𝑖1),… , (𝑒𝑡, 𝑖𝑡)}: the 𝑘-set 𝐬 after ending the main loop,
𝑡 = |𝑠𝑢𝑝𝑝(𝐬)|.

∙ 𝐬𝑗 = {(𝑒1, 𝑖1),… , (𝑒𝑗 , 𝑖𝑗 )}: the 𝑘-set 𝐬 (in the main loop) after adding
𝑗 elements 1 ≤ 𝑗 ≤ 𝑡, 𝐬0 = 𝟎, 𝐬𝑡 = 𝐬.

∙ 𝐬𝑗 = {(𝑒𝑡−𝑗+1, 𝑖𝑡−𝑗+1), (𝑒𝑡−𝑗+2, 𝑖𝑡−𝑗+2),… , (𝑒𝑡, 𝑖𝑡)} is the set of last 𝑗
elements added into 𝐬.

∙ 𝐨𝑗2 = (𝐨2 ⊔ 𝐬𝑗 ) ⊔ 𝐬𝑗 .
∙ 𝐨𝑗−1∕22 = (𝐨2 ⊔ 𝐬𝑗 ) ⊔ 𝐬𝑗−1.
∙ 𝐬𝑗−1∕2: If 𝑒𝑗 ∈ 𝑠𝑢𝑝𝑝(𝐨2), then 𝐬𝑗−1∕2 = 𝐬𝑗−1 ⊔ (𝑒𝑗 , 𝐨2(𝑒𝑗 )). If 𝑒𝑗 ∉
𝑠𝑢𝑝𝑝(𝐨2), 𝐬𝑗−1∕2 = 𝐬𝑗−1.

∙ 𝐮𝑡 = {(𝑢1, 𝑖1), (𝑢2, 𝑖2),… , (𝑢𝑟, 𝑖𝑟)} is a set of elements that are in 𝐨𝑡2
but not in 𝐬𝑡, 𝑟 = |𝑠𝑢𝑝𝑝(𝐮𝑡)|.
𝑡 𝑡 𝑡 𝑡
∙ 𝐮𝑙 = 𝐬 ⊔ {(𝑢1, 𝑖1), (𝑢2, 𝑖2),… , (𝑢𝑙 , 𝑖𝑙)}, 1 ≤ 𝑙 ≤ 𝑟 and 𝐮0 = 𝐬 .
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Supposing that 𝐬′ gets 𝑇 last tuples in 𝐬, i.e., 𝐬′ = 𝐬𝑇 . Denote 𝑄 = 𝑡−𝑇 , we
have 𝐬 = 𝐬𝑄 ⊔ 𝐬′. The following Lemmas connect the candidate solution
𝐬 with 𝐨2.

Lemma 1. 𝑓 (𝐨2) − 𝑓 (𝐨𝑗2) ≤ 𝑓 (𝐬𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑡.

Proof. For all 0 ≤ 𝑗 ≤ 𝑡, we have:

𝑓 (𝐨2) − 𝑓 (𝐨𝑗2) =
𝑗
∑

𝑖=1
(𝑓 (𝐨𝑖−12 ) − 𝑓 (𝐨𝑖2)) (6)

≤
𝑗
∑

𝑖=1
(𝑓 (𝐨𝑖−12 ) − 𝑓 (𝐨𝑖−1∕22 )) (7)

≤
𝑗
∑

𝑖=1
(𝑓 (𝐬𝑖−1∕2) − 𝑓 (𝐬𝑖−1)) (8)

≤
𝑗
∑

𝑖=1
(𝑓 (𝐬𝑖) − 𝑓 (𝐬𝑖−1)) (9)

≤ 𝑓 (𝐬𝑗 ) (10)

where the inequality (7) is due to the monotonicity of 𝑓 , the inequality
(8) is due to the 𝑘-submodularity of 𝑓 , and the inequality (9) is due to
the selection rule of the algorithm. The proof is completed. □

Lemma 2. 𝑓 (𝐬′) ≥ 𝑓 (𝐬)∕3.

Proof. If 𝑐(𝐬) ≤ 𝐵, 𝐬′ = 𝐬 and the Lemma holds. Therefore, we must
consider the case 𝑐(𝐬) > 𝐵. We get:

𝑓 (𝐬) − 𝑓 (𝐬𝑄) =
𝑡

∑

𝑗=𝑄+1
𝛥(𝑒𝑗 ,𝑖𝑗 )𝑓 (𝐬

𝑗−1) (11)

≥
𝑡

∑

𝑗=𝑄+1
𝑐(𝑒𝑗 )

𝑓 (𝐬𝑗−1)
𝐵

(12)

≥
𝑡

∑

𝑗=𝑄+1
𝑐(𝑒𝑗 )

𝑓 (𝐬𝑄)
𝐵

(13)

≥ 𝑐(𝐬′)𝑓 (𝐬
𝑄)

𝐵
(14)

where the inequality (12) is due to the selection rule of a tuple (𝑒, 𝑖′𝑒)
into 𝐬 in Line 7 of Algorithm 1 and the inequality (13) is due to the
monotonicity of 𝑓 .

Since 𝐬′ is chosen from 𝐬 so that its total cost is closest to 𝐵 and each
element 𝑒 ∈ 𝑠𝑢𝑝𝑝(𝐬) has the cost at most 𝐵∕2, thus,

(𝐬′) > 𝐵 − 𝐵
2

≥ 𝐵
2
.

t implies that 𝑓 (𝐬) − 𝑓 (𝐬𝑄) ≥ 𝑓 (𝐬𝑄)∕2. Hence 𝑓 (𝐬𝑄) ≤ 2𝑓 (𝐬𝑡)∕3. In
he other hand, due to the 𝑘-submodularity of 𝑓 we have 𝑓 (𝐬𝑡) ≤
𝑓 (𝐬𝑄) + 𝑓 (𝐬′). Thus,

(𝐬′) ≥ 𝑓 (𝐬𝑡) − 𝑓 (𝐬𝑄) ≥ 𝑓 (𝐬𝑡)
3

(15)

The proof is completed. □

Lemma 3. 𝑓 (𝐨𝑡2) ≤ 2𝑓 (𝐬).

roof. By the definition of 𝐮𝑡, the elements in 𝑠𝑢𝑝𝑝(𝐮𝑡) do not pass the
condition in Line 7 of Algorithm 1 and 𝑐(𝐮𝑡) ≤ 𝑐(𝐨2) ≤ 𝐵. Denote by
𝐬<𝑢𝑗 as 𝐬 right before 𝑢𝑗 arrives (𝑗 ≤ 𝑟), we have:

𝑓 (𝐨𝑡2) − 𝑓 (𝐬𝑡) = 𝑓 (𝐮𝑡 ⊔ 𝐬𝑡) − 𝑓 (𝐬𝑡) =
𝑟
∑

𝑗=1
(𝑓 (𝐮𝑡𝑗 ) − 𝑓 (𝐮𝑡𝑗−1))

≤
𝑟
∑

𝑗=1
[𝑓 (𝐬<𝑢𝑗 ⊔ (𝑢𝑗 , 𝑖𝑗 )) − 𝑓 (𝐬<𝑢𝑗 )] (16)

≤
𝑟
∑

𝛥(𝑢𝑗 ,𝑖𝑗 )𝑓 (𝐬
<𝑢𝑗 ) (17)
5

𝑗=1
<
𝑟
∑

𝑗=1
𝑐(𝑢𝑗 )

𝑓 (𝐬<𝑢𝑗 )
𝐵

(18)

≤
𝑟
∑

𝑗=1
𝑐(𝑢𝑗 )

𝑓 (𝐬𝑡)
𝐵

(19)

≤ 𝑐(𝐮𝑡)𝑓 (𝐬
𝑡)

𝐵
≤ 𝑓 (𝐬𝑡) (20)

where the inequality (16) is due to the 𝑘-submodularity of 𝑓 , the
nequality (17) is due to the definition of 𝐬<𝑢𝑗 , the inequality (18) is

due to the selection of the algorithm and the inequality (19) is due to
the monotonicity of 𝑓 . Thus, we have: 𝑓 (𝐨𝑡2) ≤ 2𝑓 (𝐬𝑡). □

Lemma 4. 𝑓 (𝐬′) ≥ 𝑓 (𝐨2)∕9.

Proof. Applying the Lemmas 1, 3, with 𝑗 = 𝑡, we have

𝑓 (𝐨2) − 𝑓 (𝐬) = 𝑓 (𝐨2) − 𝑓 (𝐨𝑡2) + 𝑓 (𝐨𝑡2) − 𝑓 (𝐬)
≤ 𝑓 (𝐬) + 𝑓 (𝐨𝑡2) − 𝑓 (𝐬) = 𝑓 (𝐨𝑡2)
≤ 2𝑓 (𝐬)

hus 𝑓 (𝐬) ≥ 𝑓 (𝐨2)∕3. Combine with Lemma 2, we have 𝑓 (𝐬′) ≥
(𝐨2)∕9. □

heorem 1. Algorithm 1 is a single-pass algorithm that returns an approx-
mation ratio of 1∕10 and takes 𝑂(𝑛𝑘) queries.

roof. The algorithm scans only once over the ground set, and each
lement 𝑒 has 𝑘 queries to find the position 𝑖𝑒. Therefore, the number of
ueries is 𝑛𝑘. We now prove the approximation ratio of the algorithm.
y the selection of (𝑒𝑚, 𝑖𝑚) and the 𝐨1 contains at most one element so
(𝐨1) ≤ 𝑓 ((𝑒𝑚, 𝑖𝑚)). By the definition of 𝐨′1, 𝐨

′
2 and the 𝑘-submodularity

f 𝑓 , we obtain:

(𝐨) ≤ 𝑓 (𝐨′1) + 𝑓 (𝐨′2) (21)

≤ 𝑓 (𝐨1) + 𝑓 (𝐨2) (22)

≤ 𝑓 ((𝑒𝑚, 𝑖𝑚)) + 9𝑓 (𝐬′) ≤ 10𝑓 (𝐬𝑓𝑖𝑛𝑎𝑙) (23)

he proof was completed. □

.2. Improved Fast Approximation algorithm

We next introduce the 𝖨𝖥𝖠 algorithm, which improves the approx-
mation ratio to 1∕4 − 𝜖 and takes 𝑂(𝑘𝑛∕𝜖) query complexity. The key
dea of 𝖨𝖥𝖠 is to use the 𝖥𝖠’s solution to give an interval bound of 𝗈𝗉𝗍
nd adapt a greedy threshold to improve the approximation ratio by
onducting 𝑂(1∕𝜖) times scanning over the ground set. The details of

the algorithm are fully presented in Algorithm 2.
Algorithm 2: Improved Fast Approximation (𝖨𝖥𝖠) Algorithm

Input: 𝑉 , 𝑓 , 𝑘, 𝐵 > 0, 𝜖 > 0.
Output: A solution 𝐬

1: 𝐬𝑚𝑎𝑥 ← Result of Algorithm 1, 𝛤 ← 𝑓 (𝐬𝑚𝑎𝑥)
2: 𝑆 ← {(1 + 𝜖)𝑖 ∶ 𝑖 ∈ N, 𝛤 ≤ (1 + 𝜖)𝑖 ≤ 10𝛤 }, 𝐬𝑣 ← 𝟎 ∀𝑣 ∈ 𝑆
3: for 𝑒 ∈ 𝑉 do
4: foreach 𝑣 ∈ 𝑆 do
5: 𝑖𝑣 ← argmax𝑖∈[𝑘] 𝛥(𝑒,𝑖)𝑓 (𝐬𝑣)
6: 𝜃𝑣 = 𝑣∕(2𝐵)
7: if 𝑐(𝐬𝑣) + 𝑐(𝑒) ≤ 𝐵 and 𝛥(𝑒,𝑖𝑣)𝑓 (𝐬𝑣)∕𝑐(𝑒) ≥ 𝜃𝑣 then
8: 𝐬𝑣 ← 𝐬𝑣 ⊔ (𝑒, 𝑖𝑣)
9: end
0: end
1: end
2: 𝐬𝑓𝑖𝑛𝑎𝑙 ← argmax𝐬′∈{𝐬𝑚𝑎𝑥 ,𝐬1 ,𝐬2 ,…,𝐬

|𝑆|} 𝑓 (𝐬
′)

3: return 𝐬𝑓𝑖𝑛𝑎𝑙
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Specifically, 𝖨𝖥𝖠 takes an instance (𝑉 , 𝑓 , 𝑘, 𝐵) of 𝗄𝖲𝖬𝖪 and an
accuracy parameter 𝜖 > 0 as inputs. 𝖨𝖥𝖠 first calls 𝖥𝖠 as a subroutine
and uses 𝖥𝖠’s solution, 𝐬𝑚𝑎𝑥, to obtain a bound range of the optimal
olution (line 1). From Theorem 1, we have 𝛤 ≤ 𝗈𝗉𝗍 ≤ 10𝛤 .

The algorithm consists of two loops: the outer to scan each element
𝑒 in the ground set 𝑉 and the inner to consider each candidate solution
𝐬𝑣 for each 𝑣 filtered out from the set 𝑆. On the basis of Theorem 1,
we construct the set 𝑆 to bound the number of candidate solutions 𝐬𝑣.
We define (𝑒, 𝑖𝑣) as the tuple that gives the largest marginal gain when
added into 𝐬𝑣. When an element 𝑒 arrives, the algorithm handles these
works: (1) chooses the position 𝑖𝑣 with maximal marginal gain with
respect to 𝐬𝑣 and 𝑒 (line (5)); (2) uses threshold 𝜃𝑣 = 𝑣∕(2𝐵) to add the
element 𝑒 into 𝐬𝑣 if it has the high ratio of marginal gain over its cost
(i.e. ‘‘density gain’’) without violating the budget constraint (line (7)).
We define the notations regarding to Algorithm 2 as follows:

∙ 𝐬𝑣 = {(𝑒1, 𝑖1), (𝑒2, 𝑖2),… , (𝑒𝑞 , 𝑖𝑞)} is the candidate solution with
respect to some elements 𝑣 ∈ 𝑆 after ending the outer loop.

∙ 𝐬𝑗𝑣 = {(𝑒1, 𝑖1), (𝑒2, 𝑖2),… , (𝑒𝑗 , 𝑖𝑗 )}, 1 ≤ 𝑗 ≤ 𝑞 and 𝐬0𝑣 = 𝟎.
∙ 𝐬<𝑒𝑣 as 𝐬𝑣 immediately before 𝑒 is processed.
∙ 𝐮 = {(𝑢1, 𝑖1), (𝑢2, 𝑖2),… , (𝑢𝑟, 𝑖𝑟)} as a set of elements that are in 𝐨

but not in 𝐬𝑣, 𝑟 = |𝑠𝑢𝑝𝑝(𝐮)|.
∙ 𝐮𝑙 = 𝐬𝑣 ⊔ {(𝑢1, 𝑖1), (𝑢2, 𝑖2),… , (𝑢𝑙 , 𝑖𝑙)},∀1 ≤ 𝑙 ≤ 𝑟 and 𝐮0 = 𝐬𝑣.
∙ 𝐨𝑗 = (𝐨 ⊔ 𝐬𝑗 ) ⊔ 𝐬𝑗 .
∙ 𝐨𝑗−1∕2 = (𝐨 ⊔ 𝐬𝑗 ) ⊔ 𝐬𝑗−1.
∙ 𝐬𝑗−1∕2: If 𝑒𝑗 ∈ 𝑠𝑢𝑝𝑝(𝐨), then 𝐬𝑗−1∕2 = 𝐬𝑗−1⊔ (𝑒𝑗 , 𝐨(𝑒𝑗 )). If 𝑒𝑗 ∉ 𝑠𝑢𝑝𝑝(𝐨),
𝐬𝑗−1∕2 = 𝐬𝑗−1.

Lemma 5. For any 𝑣 ∈ 𝑆, if there is no element 𝑜 ∈ 𝑠𝑢𝑝𝑝(𝐨) ⧵ 𝑠𝑢𝑝𝑝(𝐬𝑣)
so that 𝛥(𝑜,𝐨(𝑜))𝑓 (𝐬<𝑜𝑣 )∕𝑐(𝑜) ≥ 𝜃𝑣 and 𝑐(𝐬<𝑜𝑣 ) + 𝑐(𝑜) > 𝐵, we have: 𝑓 (𝐨) ≤
2𝑓 (𝐬𝑣) + 𝑐(𝐨)𝜃𝑣.

Proof. Due to the same selection rule between (𝑒, 𝑖𝑣) of Algorithm
2 and (𝑒, 𝑖′𝑒) of Algorithm 1, we have the same result with Lemma 1,
i.e., 𝑓 (𝐨) − 𝑓 (𝐨𝑞) ≤ 𝑓 (𝐬𝑣) and thus:

𝑓 (𝐨) − 𝑓 (𝐬𝑣) = 𝑓 (𝐨) − 𝑓 (𝐨𝑞) + 𝑓 (𝐨𝑞) − 𝑓 (𝐬𝑣) (24)

≤ 𝑓 (𝐬𝑣) +
𝑟
∑

𝑗=1
(𝑓 (𝐮𝑗 ) − 𝑓 (𝐮𝑗−1)) (25)

≤ 𝑓 (𝐬𝑣) +
𝑟
∑

𝑗=1
𝛥(𝑢𝑗 ,𝑖𝑗 )𝑓 (𝐬

<𝑢𝑗
𝑣 ) (26)

≤ 𝑓 (𝐬𝑣) +
𝑟
∑

𝑗=1
𝑐(𝑢𝑗 )𝜃𝑣 (27)

≤ 𝑓 (𝐬𝑣) + 𝑐(𝐨)𝜃𝑣 (28)

where the inequality (26) is due to the 𝑘-submodularity, the inequal-
ity (27) is due to the definition of 𝐬<𝑜𝑣 , and the inequality (28) is due to
the definition of 𝐮 and 𝐨. Thus, the proof is completed. □

Theorem 2. For 𝜖 ∈ (0, 1∕4), Algorithm 2 returns an approximation ratio
of 1∕4 − 𝜖, within 𝑂(𝑛𝑘∕𝜖) queries.

Proof. The algorithm needs 𝑛𝑘 queries to call 𝖥𝖠 and uses only 1-pass
over the ground set for completing the outer loop (Line 3–11). For each
incoming element, it takes at most 𝑘 ⋅⌈log(1+𝜖)(10)⌉ queries for updating
𝐬𝑣, 𝑣 ∈ 𝑆. Combine all tasks, the required number of queries is at most:

𝑛𝑘 + 𝑛𝑘⌈log(1+𝜖)(10)⌉ ≤ 𝑛𝑘 + 𝑛𝑘(1 + log(1+𝜖)(10)) = 2𝑛𝑘 + 𝑛𝑘
ln(10)

ln(1 + 𝜖)

≤ 2𝑛𝑘 + 𝑛𝑘
ln(10)
ln 1

1− 𝜖
2

= 2𝑛𝑘 − 𝑛𝑘
ln(10)

ln(1 − 𝜖
2 )

≤ 2𝑛𝑘 + 2
𝜖
𝑛𝑘 ln(10) = 𝑂( 𝑛𝑘

𝜖
)

6

where the second inequality is due to 1 + 𝜖 ≥ 1
1− 𝜖

2
, for 𝜖 ∈ (0, 1) and

he third inequality is due to ln(𝑥 + 1) ≥ 𝑥, for all 𝑥 ∈ (−1, 0). We now
how the approximation ratio of the algorithm. By Theorem 1, we have
≤ 𝗈𝗉𝗍 ≤ 10𝛤 . Therefore, there exists an integer number 𝑣 ∈ 𝑆 so that

𝗉𝗍∕(1 + 𝜖) ≤ 𝑣 < 𝗈𝗉𝗍. We have:

(𝐬𝑗𝑣) =
𝑗
∑

𝑖=1
(𝑓 (𝐬𝑖𝑣) − 𝑓 (𝐬𝑖−1𝑣 )) ≥

𝑗
∑

𝑖=1
𝑐(𝑒𝑖)𝜃𝑣 = 𝑐(𝐬𝑗𝑣)𝜃𝑣. (29)

e consider the following cases:

ase 1. There exists an element 𝑜 ∈ 𝑠𝑢𝑝𝑝(𝐨) ⧵ 𝑠𝑢𝑝𝑝(𝐬𝑣) so that
(𝑜,𝐨(𝑜))𝑓 (𝐬<𝑜𝑣 ) ≥ 𝑐(𝑜) ⋅ 𝜃𝑣 and 𝑐(𝐬<𝑜𝑣 ) + 𝑐(𝑜) > 𝐵. Recall (𝑒𝑚, 𝑖𝑚) =
rgmax𝑒∈𝑉 ,𝑖∈[𝑘] 𝑓 ((𝑒, 𝑖)), we have:

(𝐬𝑓𝑖𝑛𝑎𝑙) ≥ max{𝑓 (𝐬𝑣), 𝑓 ((𝑒𝑚, 𝑖𝑚))} (30)

≥ max{𝑓 (𝐬<𝑜𝑣 ), 𝑓 ((𝑜, 𝐨(𝑜)))} (31)

≥
𝑓 (𝐬<𝑜𝑣 ) + 𝑓 ((𝑜, 𝐨(𝑜)))

2
(32)

≥
𝑓 (𝐬<𝑜𝑣 ) ⊔ (𝑜, 𝐨(𝑜))

2
(33)

=
𝛥(𝑜,𝐨(𝑜))𝑓 (𝐬<𝑜𝑣 ) + 𝑓 (𝐬<𝑜𝑣 )

2
(34)

≥
𝜃𝑣𝑐(𝑜) + 𝜃𝑣𝑐(𝐬<𝑜𝑣 )

2
≥

𝐵𝜃𝑣
2

≥
𝗈𝗉𝗍

4(1 + 𝜖)
(35)

≥ ( 1
4
− 𝜖)𝗈𝗉𝗍. (36)

Case 2. There is no such an element 𝑜 like Case 1. By Lemma 5, we

ave

(𝐨) ≤ 2𝑓 (𝐬𝑣) + 𝐵𝜃𝑣 ≤ 2𝑓 (𝐬𝑣) +
𝗈𝗉𝗍

2
. (37)

Hence 𝑓 (𝐬𝑓𝑖𝑛𝑎𝑙) ≥ 𝑓 (𝐬𝑣) ≥ 𝗈𝗉𝗍∕4. By combining the two above cases, we
obtain the proof. □

4.3. Improved Fast Approximation Plus algorithm

To increase the approximation ratio of 𝖨𝖥𝖠, we expand Algorithm 2
to Algorithm 3, called Improved Fast Approximation Plus (𝖨𝖥𝖠+). 𝖨𝖥𝖠+
provides a deterministic 1∕3 − 𝜖 approximation ratio.

The 𝖨𝖥𝖠+ algorithm consists of two phases. The first phase (lines 1–
11) re-uses the algorithmic framework of 𝖨𝖥𝖠 with some modifications.
In this phase, the algorithm calls 𝖥𝖠 as a subroutine to get an approx-
imate range of the optimal value [𝛤 , 10𝛤 ] (line 1). It then adapts the
greedy threshold to add elements with high density gain (i.e., the value
of marginal gain over its cost of an element) into the candidate solution
𝐬. Specifically, this phase consists of multiple iterations; each scans one
time over the ground set (lines 3–9). For an element 𝑒, the algorithm
finds the best position 𝑖𝑒 = argmax𝑖∈[𝑘] 𝛥(𝑒,𝑖)𝑓 (𝐬) and 𝑒 is added to the
set 𝐬 if its density gain 𝛥(𝑒,𝑖)𝑓 (𝐬)∕𝑐(𝑒) is at least 𝜃 without violating the
budget constraint. The threshold 𝜃 initiates to 10𝛤∕(3𝜖𝐵) and decreases
by a factor of (1−𝜖) after each iteration until less than to 𝛤 (1−𝜖)∕(3𝐵).

The second phase (lines 13–21) is to improve the approximation
ratio of 𝐬. The core idea of this phase is based on the exploiting
that the quality of 𝐬 can be raised by improving 𝐬𝑇 , where 𝐬𝑗 =
{(𝑒1, 𝑖1),… , (𝑒𝑗 , 𝑖𝑗 )} is the 𝑘-set 𝐬 after adding 𝑗 elements 1 ≤ 𝑗 ≤ 𝑡,
𝐬0 = 𝟎 and 𝑇 = max{𝑗 ∈ N ∶ 𝐬𝑗 + 𝑐(𝑜1) ≤ 𝐵}.

To find 𝐬𝑇 , we find multiple guests 𝐬𝑞 with the total budget at most 𝑙
(line (14)) which gradually increases from 𝜖𝐵 to (1+𝜖)𝐵. It then re-scans
the ground set 𝑉 to add a new best element 𝑒𝑙 from 𝑉 to 𝐬′𝑙 without
violating the budget constraint (line (18)).

Finally, the final solution will choose the best among 𝐬𝑚𝑎𝑥, 𝐬, and the
list of 𝐬(𝑗) with 𝑗 ∈ [𝑙] (line 22). The details of the algorithm are fully
presented in Algorithm 3.

We define the notations regarding to Algorithm 3 as follows:

∙ 𝐬 = {(𝑒1, 𝑖1),… , (𝑒𝑡, 𝑖𝑡)} the 𝑘-set 𝐬 after ending the first loop,
𝑡 = |𝑠𝑢𝑝𝑝(𝐬)|.
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Algorithm 3: Improved Fast Approximation Plus (𝖨𝖥𝖠+)
lgorithm
Input: 𝑉 , 𝑓 , 𝑘, 𝐵 > 0, 𝜖 > 0.
Output: A solution 𝐬
// Phase 1: Finding candidate solutions

1: 𝐬𝑚𝑎𝑥 ← Result of Algorithm 1. , 𝐬 ← 𝟎
2: 𝛤 ← 𝑓 (𝐬𝑚𝑎𝑥), 𝜃 ← 10𝛤∕(3𝜖𝐵)
3: while 𝜃 ≥ (1 − 𝜖)𝛤∕(3𝐵) do
4: for 𝑒 ∈ 𝑉 ⧵ 𝑠𝑢𝑝𝑝(𝐬) do
5: 𝑖𝑒 ← argmax𝑖∈[𝑘] 𝛥(𝑒,𝑖)𝑓 (𝐬)
6: if 𝑐(𝐬) + 𝑐(𝑒) ≤ 𝐵 and 𝛥(𝑒,𝑖𝑒)𝑓 (𝐬)∕𝑐(𝑒) ≥ 𝜃 then
7: 𝐬 ← 𝐬 ⊔ (𝑒, 𝑖𝑒)
8: end
9: end
0: 𝜃 ← (1 − 𝜖)𝜃
1: end
// Phase 2: Boosting quality of solutions

2: 𝑙 ← 𝜖𝐵
3: while 𝑙 ≤ 𝐵 do
4: Find 𝑞 ← max{𝑖 ∶ 𝑖 ≤ |𝑠𝑢𝑝𝑝(𝐬)|, 𝑐(𝐬𝑖) ≤ 𝑙}
5: 𝐬′𝑙 ← 𝐬𝑞

6: if 𝐬′𝑙 ≠ 𝐬(𝑙∕(1+𝜖)) then
7: (𝑒𝑙 , 𝑖𝑙) ← argmax𝑖∈[𝑘],𝑒∈𝑉 ⧵𝑠𝑢𝑝𝑝(𝐬′𝑙 )∶𝑐(𝐬

′
𝑙 )+𝑐(𝑒)≤𝐵

𝛥(𝑒,𝑖)𝑓 (𝐬′𝑙)
8: 𝐬(𝑙) ← 𝐬′𝑙 ⊔ (𝑒𝑙 , 𝑖𝑙)
9: end
0: 𝑙 ← (1 + 𝜖)𝑙
1: end
2: 𝐬 ← argmax𝐬′′∈{𝐬𝑚𝑎𝑥 ,𝐬,𝐬(𝜖𝐵) ,𝐬(𝜖𝐵(1+𝜖)) ,…,𝐬(𝑙) 𝑓 (𝐬

′′)
3: return 𝐬

∙ 𝐬𝑗 = {(𝑒1, 𝑖1),… , (𝑒𝑗 , 𝑖𝑗 )}: the 𝑘-set 𝐬 after adding 𝑗 elements 1 ≤
𝑗 ≤ 𝑡, 𝐬0 = 𝟎, 𝐬𝑡 = 𝐬.

∙ 𝐬𝑗 : the 𝑘-set 𝐬 after ending the iteration 𝑗 of the first loop.
∙ 𝐬𝑖𝑗 : the 𝑘-set contains first 𝑖 elements in 𝐬𝑗 .
∙ 𝑇 = max{𝑗 ∈ N ∶ 𝐬𝑗 + 𝑐(𝑜1) ≤ 𝐵}, where 𝑜1 = max𝑜∈𝑠𝑢𝑝𝑝(𝐨) 𝑐(𝑜).
∙ 𝐨𝑗 = (𝐨 ⊔ 𝐬𝑗 ) ⊔ 𝐬𝑗 .
∙ 𝐨′ = {(𝑜2, 𝑖∗2),… , (𝑜𝑚, 𝑖∗𝑚)}, i.e., the optimal solution after picking
(𝑜1, 𝑖∗1).

∙ 𝜃𝑗 : the threshold 𝜃 at the 𝑗th-iteration of the first loop.
∙ 𝜃(𝑗): the threshold 𝜃 when the tuple (𝑒𝑗 , 𝑖𝑗 ) is added into 𝐬 in the

first loop.

e first introduce the following simple but vital Lemma that plays an
mportant role in analyzing the approximation ratio.

emma 6. For any 𝑘-set 𝐱 we have:

𝑓 (𝐱) ≤ 2𝑓 (𝐬𝑗 ) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐱)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 )
𝛥(𝑒,𝐱(𝑒))𝑓 (𝐬𝑗 ).

If max𝑒∈𝑠𝑢𝑝𝑝(𝐱)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 ) 𝑐(𝑒) + 𝑐(𝐬𝑗 ) ≤ 𝐵, we further have:

𝑓 (𝐱) < 2𝑓 (𝐬𝑗 ) + 𝑐(𝐱)𝜃𝑗 .

Proof. By the similar reasoning with Lemma 5, we also get:

𝑓 (𝐱) − 𝑓 (𝐬𝑗 ) = 𝑓 (𝐱) − 𝑓 (𝐱𝑖) + 𝑓 (𝐱𝑖) − 𝑓 (𝐬𝑗 ) (38)

≤ 𝑓 (𝐬𝑗 ) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐱)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 )
𝛥(𝑒,𝐱(𝑒))𝑓 (𝐬𝑗 ) (39)

where 𝐱𝑖 = (𝐱 ⊔ 𝐬𝑖𝑗 ) ⊔ 𝐬𝑖𝑗 . For any element 𝑒 ∉ 𝑠𝑢𝑝𝑝(𝐬𝑗 ) without violating
7

the total budget constraint, i.e., 𝑐(𝑒) + 𝑐(𝐬𝑗 ) ≤ 𝐵, it did not pass the
condition in line 6 of Algorithm 3 at the iteration 𝑗 of the first loop,
where 𝐬<𝑒 as 𝐬 immediately before 𝑒 is processed. This implies
𝛥(𝑒,𝐱(𝑒))𝑓 (𝐬𝑗 )

𝑐(𝑒)
≤

𝛥(𝑒,𝐱(𝑒))𝑓 (𝐬<𝑒)
𝑐(𝑒)

< 𝜃𝑗 .

Therefore if max𝑒∈𝑠𝑢𝑝𝑝(𝐱)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 ) 𝑐(𝑒) + 𝑐(𝐬𝑗 ) ≤ 𝐵, then 𝛥(𝑒,𝐱(𝑒))𝑓 (𝐬𝑗 ) <
(𝑒)𝜃𝑗 ,∀𝑒 ∈ 𝑠𝑢𝑝𝑝(𝐱) ⧵ 𝑠𝑢𝑝𝑝(𝐬𝑗 ). Thus

(𝐱) − 𝑓 (𝐬𝑗 ) < 𝑓 (𝐬𝑗 ) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐱)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 )
𝑐(𝑒)𝜃𝑗 ≤ 𝑓 (𝐬𝑗 ) + 𝑐(𝐱)𝜃𝑗 (40)

hich implies the proof. □

emma 7. If 𝑐(𝑜1) > (1 − 𝜖)𝐵, 𝑓 (𝐬) ≥ ( 13 − 𝜖)𝗈𝗉𝗍.

Proof. By the definition of 𝐨′, we have 𝑐(𝐨′) ≤ 𝐵 − 𝑐(𝑜1) ≤ 𝜖𝐵. The
hreshold 𝜃 is decreasing from 10𝛤

3𝜖𝐵 to (1−𝜖)𝛤
3𝐵 by a factor of 1 − 𝜖 after

each iteration of the first loop. Therefore, the number of iterations of
the first loop is at most

⌈log(1−𝜖)(
𝜖(1 − 𝜖)

10
)⌉ ≤ 2 +

ln(𝜖∕10)
ln(1 − 𝜖)

= 2 −
ln(10∕𝜖)
ln(1 − 𝜖)

≤ 2 +
ln(10∕𝜖)

𝜖
(41)

where the first inequality is due to 𝑥 ≥ ln(1 + 𝑥), for all 𝑥 ∈ (−1, 0).
onsider the iteration 𝑗 = ⌈log(1−𝜖)(

𝜖𝗈𝗉𝗍
10𝛤 )⌉ we have:

(1 − 𝜖)𝗈𝗉𝗍
3𝐵

< 𝜃𝑗 =
10(1 − 𝜖)𝑗𝛤

3𝜖𝐵
≤

𝗈𝗉𝗍

3𝐵
e consider the moment after ending the iteration 𝑗 and divide the

roof into the following cases:

ase 1: If 𝑠𝑢𝑝𝑝(𝐬𝑇 ) ⊆ 𝑠𝑢𝑝𝑝(𝐬𝑗 ), i.e., the algorithm obtains 𝐬𝑇 before
nding iteration 𝑗.

If 𝑐(𝐬𝑗 ) < (1−𝜖)𝐵. By the 𝑘-submodularity of 𝑓 , 𝑓 (𝐨′) ≥ 𝑓 (𝐨)−𝑓 ((𝑜1, 𝑖∗1)).
or any element 𝑒 ∈ 𝑠𝑢𝑝𝑝(𝐨′)⧵𝑠𝑢𝑝𝑝(𝐬𝑗 ), we have 𝑐(𝐬𝑗 )+max𝑒∈𝑠𝑢𝑝𝑝(𝐨′) 𝑐(𝑒) ≤
(𝐬𝑗 )+𝑐(𝐨′) < 𝐵. By applying Lemma 6, we have 𝑓 (𝐨′) ≤ 2𝑓 (𝐬𝑗 )+𝑐(𝐨′)𝜃𝑗 =
𝑓 (𝐬𝑗 ) + 𝜖𝗈𝗉𝗍∕3. Therefore,

(𝐨) − 𝑓 (𝐬) ≤ 𝑓 (𝐨) − 𝑓 ((𝑜1, 𝑖∗1)) (42)

≤ 𝑓 (𝐨′) (43)

≤ 2𝑓 (𝐬𝑗 ) +
𝜖
3
𝗈𝗉𝗍 (44)

≤ 2𝑓 (𝐬) + 𝜖
3
𝗈𝗉𝗍 (45)

where the inequalities (42), (45) are due to the selection rule of the
final solution, and the inequality (43) is due to the 𝑘-submodularity of
𝑓 . Hence 𝑓 (𝐬) ≥ ( 13 − 𝜖

9 )𝗈𝗉𝗍.

If 𝑐(𝐬𝑗 ) ≥ (1 − 𝜖)𝐵, we have:

𝑓 (𝐬𝑗 ) ≥ 𝑐(𝐬𝑗 )𝜃𝑗 =
(1 − 𝜖)2𝗈𝗉𝗍

3
> ( 1

3
− 𝜖)𝗈𝗉𝗍

ase 2: If 𝑠𝑢𝑝𝑝(𝐬𝑗 ) ⊂ 𝑠𝑢𝑝𝑝(𝐬𝑇 ). From the definition of 𝑇 , we apply
emma 6 with notice that 𝜃(𝑇 ) ≤ 𝜃𝑗 , we get:

(𝐨) − 𝑓 (𝐬𝑇 ) ≤ 𝑓 (𝐬𝑇 ) + 𝑐(𝐨)𝜃(𝑇 ) (46)

≤ 𝑓 (𝐬𝑇 ) + 𝑐(𝐨)𝜃𝑗 (47)

≤ 𝑓 (𝐬𝑇 ) +
𝗈𝗉𝗍

3
(48)

which implies that 𝑓 (𝐬) ≥ 𝑓 (𝐬𝑇 ) ≥ 𝗈𝗉𝗍∕3. This completes the proof. □

Lemma 8. If 𝑐(𝑜1) ≤ (1 − 𝜖)𝐵, 𝑓 (𝐬) ≥ ( 13 − 𝜖)𝗈𝗉𝗍.

Proof. If 𝐬𝑇 = 𝐬 after ending the main loop, by Lemma 6 we easily
prove that

𝑓 (𝐨) − 𝑓 (𝐬𝑇 ) ≤ 𝑓 (𝐬𝑇 ) + 𝑐(𝐨)𝛤 (1 − 𝜖)
3𝐵

(49)

≤ 𝑓 (𝐬𝑇 ) + (1 − 𝜖)
𝗈𝗉𝗍. (50)
3
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Thus 𝑓 (𝐬𝑇 ) > ( 13 + 𝜖
6 )𝗈𝗉𝗍. We consider the remaining case when 𝐬𝑇 ≠ 𝐬

after ending the main loop. In this case 𝐬 contains at least 𝑇 +1 elements
and 𝑐(𝐬𝑇+1) + 𝑐(𝑜1) ≥ 𝐵, implying 𝑐(𝐬𝑇+1) ≥ 𝜖𝐵. Consider the iteration
𝑗 = ⌈log1−𝜖(

𝗈𝗉𝗍

10𝛤 )⌉ of the first loop, we have:

(1 − 𝜖)𝗈𝗉𝗍
3𝜖𝐵

< 𝜃𝑗 =
10(1 − 𝜖)𝑗𝛤

3𝜖𝐵
≤

𝗈𝗉𝗍

3𝜖𝐵
.

e now consider the second loop of the algorithm. Since 𝑙 increases
rom 𝜖𝐵 to 𝐵 by a factor of (1 + 𝜖) after each iteration, at the iteration
≥ 1, we have 𝑙 = 𝜖𝐵(1 + 𝜖)ℎ−1. Since 𝐵 − 𝑐(𝑜1) ≥ 𝜖𝐵, there exists an

teration ℎ that

= 𝜖𝐵(1 + 𝜖)ℎ−1 ≤ 𝐵 − 𝑐(𝑜1) < 𝜖𝐵(1 + 𝜖)ℎ = 𝑙(1 + 𝜖) (51)

After that iteration, by the selection rule of 𝐬𝑞 of the algorithm we have
(𝐬𝑞) ≤ 𝑙 < 𝑐(𝐬𝑞+1).

We consider two following cases:

ase 1. If the algorithm obtains 𝐬𝑞+1 after the first iteration of the first
oop, we have:

(𝐬) ≥ 𝑓 (𝐬𝑞+1) ≥ 𝑐(𝐬𝑞+1)𝜃1 >
𝐵 − 𝑐(𝑜1)
1 + 𝜖

𝗈𝗉𝗍

3𝜖𝐵
≥

𝗈𝗉𝗍

3(1 + 𝜖)
≥ 1

3
(1 − 𝜖)𝗈𝗉𝗍.

(52)

Case 2. If the algorithm obtains 𝐬𝑞+1 after the iteration 𝑗 > 1 of the
first loop. We also define 𝐬<𝑒 as 𝐬 immediately before 𝑒 is processed.
The density of any element 𝑒 ∈ 𝑠𝑢𝑝𝑝(𝐨) ⧵ 𝑠𝑢𝑝𝑝(𝐬𝑞) with respect to 𝐬𝑞
is less than the threshold at the previous iteration when (𝑒𝑞+1, 𝑖𝑞+1) is
added to 𝐬𝑞 , i.e.,
𝛥(𝑒,𝑖𝑒)𝑓 (𝐬

𝑞)
𝑐(𝑒)

≤
𝜃(𝑞+1)
1 − 𝜖

. (53)

If 𝑜1 ∉ 𝑠𝑢𝑝𝑝(𝐬𝑞), by the selection rule of 𝐬(𝑙) we have 𝐬(𝑙) = 𝐬′𝑙 ⊔ (𝑒𝑙 , 𝑖𝑙) =
𝐬𝑞 ⊔ (𝑒𝑙 , 𝑖𝑙). Recap that 𝐨𝑞 = (𝐨⊔ 𝐬𝑞)⊔ 𝐬𝑞 with a note that 𝑜1 ∈ 𝑠𝑢𝑝𝑝(𝐨𝑞). By
similar the reasoning of Lemma 1, we also have 𝑓 (𝐨) − 𝑓 (𝐨𝑞) ≤ 𝑓 (𝐬𝑞).
Therefore:

𝑓 (𝐨) − 𝑓 (𝐬𝑞 ⊔ (𝑜1, 𝑖∗1)) ≤ 𝑓 (𝐨) − 𝑓 (𝐨𝑞) + 𝑓 (𝐨𝑞) − 𝑓 (𝐬𝑞 ⊔ (𝑜1, 𝑖∗1)) (54)

≤ 𝑓 (𝐬𝑞) + 𝑓 (𝐨𝑞) − 𝑓 (𝐬𝑞 ⊔ (𝑜1, 𝑖∗1)) (55)
≤ 𝑓 (𝐬𝑞) +

∑

𝑒∈𝑠𝑢𝑝𝑝(𝐨)⧵𝑠𝑢𝑝𝑝(𝐬𝑞⊔(𝑜1 ,𝑖∗1 ))
𝛥(𝑒,𝐨(𝑒))𝑓 (𝐬𝑞 ⊔ (𝑜1, 𝑖∗1))

(56)

≤ 𝑓 (𝐬𝑞) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐨)⧵𝑠𝑢𝑝𝑝(𝐬𝑞⊔(𝑜1 ,𝑖∗1 ))
𝛥(𝑒,𝐨(𝑒))𝑓 (𝐬𝑞) (57)

≤ 𝑓 (𝐬𝑞) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐨)⧵𝑠𝑢𝑝𝑝(𝐬𝑞⊔(𝑜1 ,𝑖∗1 ))
𝑐(𝑒)

𝜃(𝑞+1)
1 − 𝜖

(58)

≤ 𝑓 (𝐬𝑞) +
(𝐵 − 𝑐(𝑜1))𝜃(𝑞+1)

1 − 𝜖
(59)

where inequality (57) is due to the 𝑘-submodularity of 𝑓 and inequality
(58) is due to applying (53). By applying the inequality (59) and the
selection rule of the final solution (𝑓 (𝐬) ≥ 𝑓 (𝐬(𝑙)) ≥ 𝑓 (𝐬𝑞)), we have:

𝑓 (𝐨) − 𝑓 (𝐬(𝑙)) = 𝑓 (𝐨) − 𝑓 (𝐬𝑞 ⊔ (𝑒𝑙 , 𝑖𝑙)) (60)
≤ 𝑓 (𝐨) − 𝑓 (𝐬𝑞 ⊔ (𝑜1, 𝑖∗1)) (Due to the selection rule of 𝐬(𝑙))

(61)

≤ 𝑓 (𝐬𝑞) +
(𝐵 − 𝑐(𝑜1))𝜃(𝑞+1)

1 − 𝜖
(62)

≤ 𝑓 (𝐬) +
(𝐵 − 𝑐(𝑜1))𝜃(𝑞+1)

1 − 𝜖
. (63)

By re-arrange inequality (63), we obtain:

𝜃(𝑞+1) ≥ (1 − 𝜖)
𝑓 (𝐨) − 𝑓 (𝐬(𝑙)) − 𝑓 (𝐬)

𝐵 − 𝑐(𝑜1)
(64)

≥ (1 − 𝜖)
𝑓 (𝐨) − 2𝑓 (𝐬)

. (65)
8

𝐵 − 𝑐(𝑜1)
n the other hand, at the first loop, the density gain of each additional
lement is at least the threshold, i.e., 𝛥(𝑒𝑗 ,𝑖𝑗 )𝑓 (𝐬

𝑗−1)∕𝑐(𝑒𝑗 ) ≥ 𝜃(𝑗) for all
𝑗 = 1,… , 𝑞 + 1. Thus,

𝑓 (𝐬) ≥ 𝑓 (𝐬𝑞+1) − 𝑓 (𝐬0) =
𝑞+1
∑

𝑗=1
𝛥(𝑒𝑗 ,𝑖𝑗 )𝑓 (𝐬

𝑗−1) (66)

≥
𝑞+1
∑

𝑗=1
𝑐(𝑒𝑗 )𝜃(𝑗) ≥ 𝑐(𝐬𝑞+1)𝜃(𝑞+1) (67)

≥
𝐵 − 𝑐(𝑜1)
1 + 𝜖

𝜃(𝑞+1) (Due to (53)) (68)

≥ 1 − 𝜖
1 + 𝜖

(𝑓 (𝐨) − 2𝑓 (𝐬)). (69)

ence 𝑓 (𝐬) ≥ ( 13 − 2𝜖
3(3−𝜖) )𝑓 (𝐨) > ( 13 − 𝜖)𝗈𝗉𝗍.

- If 𝑜1 ∈ 𝑠𝑢𝑝𝑝(𝐬𝑞), 𝑐(𝐨) − 𝑐(𝐬𝑞+1) ≤ 𝐵 − 𝑐(𝑜1). We also obtain (63) by the
ollowing transforms:

(𝐨) − 𝑓 (𝐬(𝑙)) ≤ 𝑓 (𝐨) − 𝑓 (𝐬𝑞+1) (70)
≤ 𝑓 (𝐬𝑞+1) +

∑

𝑒∈𝑠𝑢𝑝𝑝(𝐨)⧵𝑠𝑢𝑝𝑝(𝐬𝑞+1)
𝛥(𝑒,𝐨(𝑒))

× 𝑓 (𝐬<𝑒) (By applying Lemma 6) (71)

≤ 𝑓 (𝐬𝑞+1) +
∑

𝑒∈𝑠𝑢𝑝𝑝(𝐨)⧵𝑠𝑢𝑝𝑝(𝐬𝑞+1)
𝑐(𝑒)

𝜃(𝑞+1)
1 − 𝜖

(72)

≤ 𝑓 (𝐬) +
𝜃(𝑞+1)(𝐵 − 𝑐(𝑜1))

1 − 𝜖
. (73)

From now on, by the similar arguments of the case 𝑜1 ∉ 𝑠𝑢𝑝𝑝(𝐬𝑞), we
lso get 𝑓 (𝐬) > (1∕3 − 𝜖)𝗈𝗉𝗍. Combining all the above cases, we get the
roof. □

heorem 3. For any 𝜖 ∈ (0, 1∕3), Algorithm 3 has 𝑂(𝑘𝑛 log(1∕𝜖)∕𝜖) query
omplexity and returns an approximation ratio 1∕3 − 𝜖.

roof. The Algorithm 3 requires 𝑂(𝑛𝑘) queries to run Algorithm 1, 𝖥𝖠.
hen, it consists of two loops. From (41), the first loop consists at most:
( 1𝜖 log(

1
𝜖 )) iterations. The number of iterations of the second loop is at

most:

⌈log(1+𝜖)(
1
𝜖
)⌉ ≤ 1 + log(1+𝜖)(

1
𝜖
) = 1 +

ln( 1𝜖 )

ln(1 + 𝜖)
≤ 1 +

ln( 1𝜖 )

ln 1
1− 𝜖

2

= 1 −
ln( 1𝜖 )

ln(1 − 𝜖
2 )

≤ 1 + 2
𝜖
ln( 1

𝜖
) = 𝑂( 1

𝜖
log( 1

𝜖
))

where the first inequality is due to 1 + 𝜖 ≥ 1
1− 𝜖

2
, for 𝜖 ∈ (0, 1) and the

econd inequality is due to applying ln(1 + 𝑥) ≤ 𝑥 for all 𝑥 ∈ (−1, 0).
ince each iteration of the above loops scans one time over the data
nd takes 𝑘𝑛 queries, we obtain the number of queries at most:

(𝑛𝑘) + 2 ⋅ 𝑂( 1
𝜖
log( 1

𝜖
)) ⋅ 𝑘𝑛 = 𝑂( 𝑛𝑘

𝜖
log( 1

𝜖
)). (74)

The approximation ratio of the algorithm comes from the Lemmas 7,
8 by combining two cases: 𝑐(𝑜1) ≤ (1 − 𝜖)𝐵 and 𝑐(𝑜1) > (1 − 𝜖)𝐵. We
omplete the proof. □

. Experiments

In this section, we compare the performance between our algo-
ithms and state-of-the-art algorithms for the 𝗄𝖲𝖬𝖪 problem listed
elow:

• Greedy: the (1∕2−1∕(2𝑒))-approximation algorithm within 𝑂(𝑛4𝑘3)
in Tang et al. (2022).
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Table 2
The dataset

Database #Nodes #Edges Types

Facebook (Leskovec and Krevl, 2014) 4039 88 234 Directed
Hept (Chen et al., 2009) 15 233 58 894 Directed
Enron (Klimt and Yang, 2004) 36 692 367 662 Directed
Intel Lab sensors (Bodik et al., 2004) 56 – –
DF-AMS WSN (Huy and Viet, 2015) 100 – –
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• Deterministic Streaming (DS)1: A streaming algorithm in Pham
et al. (2022b) which returns an approximation ratio of 1∕4 − 𝜖,
requires one pass and 𝑂(𝑘𝑛 log(𝑛)∕𝜖) queries.

• Random Streaming (RS): Another streaming algorithm in Pham
et al. (2022b) which returns an approximation ratio of 𝑘∕(4𝑘 −
1)−𝜖 in expectation, requires one pass and 𝑂(𝑘𝑛 log(𝑛)∕𝜖) queries.

We conduct experiments on specific applications, which are 𝑘-topic
Influence Maximization under knapsack constraint (𝗸𝗜𝗠𝗞), 𝑘-topic
information Coverage Maximization under Knapsack constraint
(𝗸𝗖𝗠𝗞), and 𝑘-type Sensor Placement under Knapsack constraint
(𝗸𝗦𝗣𝗞) on three important measurements: the oracle value of the
objective function, the number of queries, and running time. We further
show the trade-off between the solution quality and the number of
queries of algorithms with various settings of budget 𝐵.

We also use the dataset as mentioned in Chen et al. (2009), Nguyen
t al. (2017), Mitrovic et al. (2016), Pham et al. (2022b) and Huy
nd Viet (2015) to illustrate the performance of compared algorithms
Table 2). To demonstrate the performance of algorithms via the above
hree measurements, we show some figures numbered and captioned, in
hich the terms Fig, K, and M stand for Figure, thousands, and millions,

espectively.
All the implementations are on a Linux machine with configurations

f 2× Intel Xeon Silver 4216 Processor @2.10 GHz and 16 threads × 256
B DIMM ECC DDR4 @2666 MHz.

.1. 𝑘-topic Influence Maximization under Knapsack constraint (𝗄𝖨𝖬𝖪)

The information diffusion model, called 𝑘-Linear Threshold (𝑘-LT)
model (Kempe et al., 2003; Nguyen and Thai, 2020) was briefed, and
the 𝑘-topic Influence Maximization under Knapsack constraint (𝗄𝖨𝖬𝖪)
problem using this model was defined as follows:

𝑘-LT model. A social network is modeled by a directed graph 𝐺 =
(𝑉 ,𝐸), where 𝑉 ,𝐸 represent sets of users and links, respectively. Each
edge (𝑢, 𝑣) ∈ 𝐸 is assigned weights {𝑤𝑖(𝑢, 𝑣)}𝑖∈[𝑘], where each 𝑤𝑖(𝑢, 𝑣)
represents how powerful 𝑢 influences to 𝑣 on the 𝑖th topic. Each
node 𝑢 ∈ 𝑉 has a influence threshold with topic 𝑖, denoted by 𝜃𝑖(𝑢),
which is chosen uniformly at random in [0, 1]. Given a seed set 𝐬 =
(𝑆1, 𝑆2,… , 𝑆𝑘) ∈ (𝑘 + 1)𝑉 , the information propagation for topic 𝑖
happens in discrete steps 𝑡 = 0, 1,… as follows. At step 𝑡 = 0, all nodes
in 𝑆𝑖 become active by topic 𝑖. At step 𝑡 ≥ 1, a node 𝑢 becomes active
if ∑actived nodev𝑤𝑖(𝑣, 𝑢) ≥ 𝜃𝑖(𝑢).

The information diffusion process on topic 𝑖 ends at step 𝑡 if there is
no new active node and the diffusion process of a topic is independent
of the others. Denote by 𝜎(𝐬) the number of nodes that becomes active
in at least one of 𝑘 topics after the diffusion process of a seed 𝑘-set 𝐬,
i.e.,

𝜎(𝐬) = E[| ∪𝑖∈[𝑘] 𝜎𝑖(𝑆𝑖)|] (75)

where 𝜎𝑖(𝑆𝑖) is a random variable representing the set of active users
for topic 𝑖 with the seed 𝑆𝑖.

1 The 𝗄𝖲𝖬𝖪 problem is a special case of the 𝑘-submodular maximization
nder the budget constraint in Pham et al. (2022b) with 𝛽 = 1.
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he 𝗄𝖨𝖬𝖪 problem. The problem is formally defined as follows:

efinition 1 (𝗄𝖨𝖬𝖪 Problem). Assuming that each user 𝑒 has a cost
𝑐(𝑒) > 0 for every 𝑖th topic, which manifests how hard it is to influence
the respective person for that topic initially. Given a positive integer-
valued budget 𝐵, the problem asks to find a seed set 𝐬 with 𝑐(𝐬) =

𝑒∈𝑆𝑖 ,𝑖∈𝑘 𝑐(𝑒) ≤ 𝐵 so that 𝜎(𝐬) maximal.

.2. 𝑘-topic information Coverage Maximization under Knapsack constraint

The problem of 𝑘-topic information Coverage Maximization was
roposed by Wang et al. (2015) when considering that an inactive node
an be informed of information by at least one of its neighbors in the
ame diffusion model of the information influence problem. Information
overage maximization is to maximize the expected number of active and
nformed nodes. Hence, an inactive node is still informed if it has at
east one active neighbor.

Authors Qian et al. (2018b) showed that if 𝑣 ∈ 𝜎𝑖(𝑆𝑖) ∀𝑖 ∈ [𝑘], 𝑁(𝑣)
s denoted the set of inactive neighbors of 𝑣, the set of active nodes and
nformed nodes by propagating from 𝑆𝑖 could be:

𝑖(𝑆𝑖) = 𝜎𝑖(𝑆𝑖) ∪
(

∪𝑣∈𝜎𝑖(𝑆𝑖)𝑁(𝑣)
)

hen 𝜎𝑖(𝑆𝑖) was defined in Eq. (75). Hence, information coverage with
types of topics, as shown in Eq. (76), is the expected total number of
odes that get activated or informed in at least one propagation process:

(𝐬) = E[| ∪𝑖∈[𝑘] 𝛾𝑖(𝑆𝑖)|] (76)

t that time, the 𝑘-topic information Coverage Maximization under
napsack constraint (𝗄𝖢𝖬𝖪) problem is defined as follows:

efinition 2 (𝗄𝖢𝖬𝖪 Problem). Assuming that each user 𝑒 has a cost
(𝑒) > 0 for every 𝑖th topic, which manifests how hard it is to influence
he respective person for that topic initially. Given a positive integer-
alued budget 𝐵, and edge probabilities 𝑝𝑖𝑢,𝑣, (𝑢, 𝑣) ∈ 𝐸, 𝑖 ∈ [𝑘], the
roblem asks to find a seed set 𝐬 with 𝑐(𝐬) =

∑

𝑒∈𝑆𝑖 ,𝑖∈𝑘 𝑐(𝑒) ≤ 𝐵 so that
(𝐬) is maximal.

.3. 𝑘-type Sensor Placement under Knapsack constraint

We further study the performance of algorithms for 𝑘-type Sensor
lacement under Knapsack constraint (𝗄𝖲𝖯𝖪) problem which is formally
efined as follows:

efinition 3 (𝗄𝖲𝖯𝖪 Problem). Given 𝑘 types of sensors for different
easures and a set 𝑉 of 𝑛 locations, each of which is assigned with only

ne sensor. Assuming that each sensor 𝑒 has a cost 𝑐(𝑒) > 0 for every 𝑖th
ype. Given a positive integer-valued budget of 𝐵, the problem aims to
ocate these sensors to maximize the information gained with the total
ost at most 𝐵.

Denote by 𝑋𝑖
𝑒 a random variable representing the observation col-

ected from a 𝑖-type sensor and the information gained of a 𝑘-set 𝐬 is

𝑓 (𝐬) = 𝐻(∪𝑒∈𝑠𝑢𝑝𝑝(𝐬){𝑋𝑖
𝑒}) (77)

where 𝐻 is entropy function. The function 𝑓 is monotone and 𝑘-
submodular (Ohsaka and Yoshida, 2015).
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In three problems, the objective is either monotone and submod-
ular (Wang et al., 2015; Qian et al., 2018b; Nguyen and Thai, 2020;
Ohsaka and Yoshida, 2015).

5.4. Results and discussion

5.4.1. Experiment settings
For 𝗸𝗜𝗠𝗞 and 𝗸𝗖𝗠𝗞. We use three databases: Facebook, Hept, and

nron, which are popular in information propagation problems (Pham
t al., 2022b; Nguyen et al., 2017; Nguyen and Thai, 2020) and set up
he model as the recent work (Nguyen and Thai, 2020).

Since the computation of 𝜎(⋅) is #P-hard (Chen et al., 2010), we
dapt the sampling method in Nguyen and Thai (2020) and Borgs et al.
2014) to give an estimation 𝜎̂(⋅) with a (𝜆, 𝛿)-approximation that is:

Pr[(1 + 𝜆)𝜎(𝐬) ≥ 𝜎̂(𝐬) ≥ (1 − 𝜆)𝜎(𝐬)] ≥ 1 − 𝛿. (78)

In the experiment, we set parameters 𝜆 = 0.8, 𝛿 = 0.2, 𝑘 = 3 and
𝜖 = 0.1 as in Nguyen and Thai (2020) to show a trade-off between
solution quality and quantities of queries. The estimation 𝛾̂(⋅) of 𝛾(⋅)
was calculated by the Eqs. (76) and (78).

We also budget for 𝗄𝖨𝖬𝖪 and 𝗄𝖢𝖬𝖪 with several 𝐵 in {0.5𝐾, 1𝐾,
1.5𝐾, 2𝐾} to illustrate the expense to influence 𝑘 topics via large
networks such as social networks is not a small number. We set the
cost of each element according to the Normalized Linear model (Pham
et al., 2022b). Whereby, we set the cost from 1 to 10 with Facebook
and increase the cost range from 1 to 50 with Hept and Enron.

As mentioned in Wang et al. (2015) and Qian et al. (2018b), the
problem of Information Coverage Maximization is a variant of the
Influence Maximization problem. The edge probability of each edge
(𝑢, 𝑣) ∈ 𝐸 has a probability vector (1∕𝑘,… , 1∕𝑘) as setup in Qian
et al. (2018b). Besides, we keep the setting for both 𝗄𝖨𝖬𝖪 for 𝗄𝖢𝖬𝖪
by running two problems in the same experiment. In the experiment,
we collect results of 𝗄𝖨𝖬𝖪 and 𝗄𝖢𝖬𝖪 about objective values, and they
have the same running time and queries.

For 𝗸𝗦𝗣𝗞. We use 2 datasets including Intel Lab (Bodik et al., 2004)
and DF-AMS WSN (Huy and Viet, 2015) to illustrate the 𝗄𝖲𝖯𝖪 problem.
Intel Lab sensor data (Bodik et al., 2004) was collected from 2.3
million readings of a Mica2dot weather board sensor system, including
temperature, humidity, light, and voltage, while DF-AMS WSN (Huy
and Viet, 2015) was collected from the output of the NS2 simulation
software that includes temperature, humidity, wind speed, and energy
consumption. The data were all preprocessed to remove missing data
fields and be consistent and compatible with the data reading function
in the experiment. Moreover, we set 𝑘 = 3, 𝜖 = 0.1 as in the experiment
of 𝗄𝖨𝖬𝖪, and the cost range from 1 to 10 for the Intel Lab dataset and
from 1 to 50 for the DF-AMS WSN dataset, whereas the values of 𝐵
are fixed at several points from 10 to 50. This setting depends on the
number of sensors and the similarity among algorithms.

5.4.2. Experiment results
To provide a comprehensive experiment, we ran the above algo-

rithms several times and collected results about objective values, the
number of queries, and the running time according to the 𝐵 milestones.
For each milestone, the average values were calculated. Figs. 1–5
illustrate the result on the above databases for three instances 𝗄𝖨𝖬𝖪,
𝗄𝖢𝖬𝖪, and 𝗄𝖲𝖯𝖪.

Regarding 𝗸𝗜𝗠𝗞 and 𝗸𝗖𝗠𝗞. The graph lines of the Greedy Algo-
rithm in Tang et al. (2022) were not the final results because it took
too long to complete running this algorithm. To the experiment fit
within our system configuration, we had to limit the time to process the
Greedy according to the number of nodes in each database, in which
4𝐾-node Facebook ran within 12 h, 15𝐾-node Hept ran in 2 days, and
36𝐾-node Enron worked for 4 days.

First, Figs. 1 and 2 represent the quality of algorithms via values
of the objective functions 𝜎(⋅) and 𝛾(⋅). The Greedy lines just show
the estimations of 𝜎(⋅) and 𝛾(⋅) in a limited time because it wasted
10

a

extremely long to complete. In the remaining, 𝖨𝖥𝖠+ always provides
the best results, followed by 𝖨𝖥𝖠, DS, and RS. Values of 𝖥𝖠 fluctuate
because 𝖥𝖠’s lines mark the lowest points in some cases and better in
others. In Fig. 1, the gaps between 𝖥𝖠, 𝖨𝖥𝖠, 𝖨𝖥𝖠+, DS, and RS seem
bigger when 𝐵 ≥ 1.5𝐾. And when 𝐵 and 𝑛 (the size of 𝑉 ) increase, the
performance of 𝖨𝖥𝖠+ and 𝖨𝖥𝖠 seem better. For instance, at 𝐵 = 2𝐾,
with Hept (𝑛 ≈ 15𝐾 nodes) 𝖨𝖥𝖠+ and 𝖨𝖥𝖠 is about 1.5 times higher
than DS and RS, respectively, while with Enron (𝑛 ≈ 36𝐾 nodes), 𝖨𝖥𝖠+
and 𝖨𝖥𝖠 are about 1.25 times higher than both DS and RS. Especially,
𝖨𝖥𝖠+ and 𝖨𝖥𝖠 show outstanding results compared to the others in the
Enron network. Regarding 𝗄𝖢𝖬𝖪, the results in Fig. 2 look similar to
those in Fig. 1. We can see that the performance in terms of solution
quality of 𝖨𝖥𝖠+ is always higher than the others. 𝖥𝖠, 𝖨𝖥𝖠, and DS are
indifferent, while RS has a bit of fluctuation.

In general, the result clusters algorithms into three groups from
top to bottom: 𝖨𝖥𝖠+-DS, 𝖨𝖥𝖠-𝖥𝖠-RS, and Greedy. We can see the gap
between algorithms in each group when 𝐵 grows from 0.7𝐾 to 1.5𝐾,
which seems relatively small, and separate when 𝐵 increases more than
1.5𝐾. These lines also fluctuate according to each 𝐵 milestone, yet we
an realize the general trend of 𝖨𝖥𝖠+, 𝖨𝖥𝖠, DS, and RS going up while
𝖠 values seem unpredictable. These results reflect the theoretical
uarantees when the approximation ratio of 𝖨𝖥𝖠+ is better than the
thers, 𝖥𝖠 is the lowest, and the role of 𝖥𝖠 is just bounding the rage of
he optimal.

Second, Figs. 3 and 4 display the amounts of queries called and
he time needed to run these algorithms. As mentioned, we ran 𝗄𝖨𝖬𝖪
nd 𝗄𝖢𝖬𝖪 in the same experiment. Hence, the results of queries and
he running time belong to both 𝗄𝖨𝖬𝖪 and 𝗄𝖢𝖬𝖪. The Greedy takes
he most quantities of queries in this experiment. Although Greedy is
rocessed in a limited time, it still costs almost 1𝑀−5𝑀 queries, which
s typically higher than the others. We now focus on the results of
he remaining. 𝖥𝖠 shows an advantage over others in terms of query
omplexity. It is sharply from several to dozens of times lower than
he remaining. Specifically, RS is about 15–20 times and 4–5 times
igher, while DS is about 7–10 times and 1.5 times higher than 𝖥𝖠
nd 𝖨𝖥𝖠, respectively. Besides, the number of queries of 𝖨𝖥𝖠+ is always
igher than DS and lower than RS, respectively. Significantly, 𝖨𝖥𝖠 and
𝖠 explicitly determine and go straight over 𝐵 milestones. Overall, the
umber of queries of RS is the highest, followed by 𝖨𝖥𝖠+, and DS is
little higher than the others. Finally, the quantities of queries of our

lgorithms give better results than the others.
As the query complexity directly influences running time, the rep-

esentation of the time graph in Fig. 4 looks quite similar to the
epresentation on the query graph in Fig. 3 in which 𝖥𝖠 line was drawn
ypically lowest. It shows the running time of 𝖥𝖠 is several to dozens of
imes faster than the others. 𝖨𝖥𝖠 runs considerably faster than DS and
S, while Greedy runs the slowest. 𝖨𝖥𝖠+ is faster than RS but slower

han DS.
The above figures show the trade-off between our proposed algo-

ithms’ solution qualities and the query complexities. 𝖥𝖠 tries to target
the near-optimal value by dividing the ground into two subsets accord-
ing to the cost values of elements and reduces query complexity by
the filtering condition of the algorithm 1. Hence, the query complexity
decreases significantly. Nevertheless, the performance of 𝖥𝖠 regarding
olution quality is not high. 𝖨𝖥𝖠 and 𝖨𝖥𝖠+ enhance 𝖥𝖠 by using 𝖥𝖠 as an
nput and the decreasing constant threshold. As a result, the objective
f 𝖨𝖥𝖠 is better than 𝖥𝖠 while the number of queries is a little higher but
till deterministic. 𝖨𝖥𝖠+ reconstructs the solution in the second phase to
pgrade the performance. It leads to the objective value increasing, yet
he number of queries also increases. Moreover, when the ground set
nd 𝐵 value grow, the solution quality improves while running time
nd query complexity are linear. This is extremely important when
orking with big data.

Besides, the difference in quality between our algorithms and those
n Pham et al. (2022b) is due to the construction of algorithms. DS

nd RS focus on finding more candidate solutions than 𝖥𝖠 and 𝖨𝖥𝖠;
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Fig. 1. Performance of algorithms for 𝗄𝖨𝖬𝖪.

Fig. 2. Solution quality of algorithms for 𝗄𝖢𝖬𝖪.

Fig. 3. Number of queries of algorithms for 𝗄𝖨𝖬𝖪 and 𝗄𝖢𝖬𝖪.
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Fig. 4. Running time of algorithms for 𝗄𝖨𝖬𝖪 and 𝗄𝖢𝖬𝖪.
Fig. 5. Performance of algorithms for 𝗄𝖲𝖯𝖪: (a), (b) Information gain; (c), (d) number of queries; (e), (f) running time.
therefore, they have more opportunities to find a better solution. In
𝖨𝖥𝖠+, re-selecting a small portion of the elements in the solution and
replacing it with better elements in the set 𝑉 increases performance
with a bit more query overhead. Hence, when input data grows, our
algorithms overcome others, both solution quality and the number of
12

queries.
In addition, from the above figures, the experiment shows our
algorithms dozens of times outperform Greedy regarding the number
of queries and running time. This correctly reflects theory guarantees
that our query complexity is 𝑂(𝑘𝑛) while Greedy complexity is 𝑂(𝑛4𝑘3).

Regarding 𝗸𝗦𝗣𝗞. The result was shown in Fig. 5. First, the objective
function of 𝗄𝖲𝖯𝖪 is an oracle of the Entropy function. Besides, in this
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case, the number of sensor nodes is small. Hence, the discrimination
between objective values of experimented algorithms is not large.
Nevertheless, the result of 𝖨𝖥𝖠+, RS, and Greedy is generally better
han the others. Especially, 𝖨𝖥𝖠+’s line always lies on the others when
≤ 40. 𝖥𝖠 and 𝖨𝖥𝖠 overlap, while DS results fluctuate slightly. Overall,

he general trend is increasing.
Second, the gap between the Greedy line and the others in Fig. 5(c)–

f) is significantly large. While Greedy needs millions of queries to
utput the final solution, the remaining algorithms just use approx-
mately 150 queries. Similarly, the running time of Greedy is also
housands of times higher than the others. Moreover, query lines and
imelines of the above algorithms are almost horizontal over 𝐵’s mile-
tones. On the other hand, the number of queries and time of 𝖥𝖠 is
he smallest, and it is a little different among 𝖨𝖥𝖠, 𝖨𝖥𝖠+, DS, and RS.
his result illustrates the query complexity of our algorithms is more
ptimized than the others.

Overall, from three actual uses of 𝗄𝖨𝖬𝖪, 𝗄𝖢𝖬𝖪, and 𝗄𝖲𝖯𝖪, our
roposed algorithms are described to outperform or be comparable to
he state-of-the-art.

. Conclusion

This paper studies the problem of maximizing a 𝑘-submodular func-
ion under the knapsack constraint. We propose three deterministic
lgorithms that take just 𝑂(𝑘𝑛) query complexity. The key of our
lgorithms lines in a novel framework that contains two components.
irstly, it first divides the ground set into an appropriate subset to
ind a near-optimal solution with 𝑂(𝑛𝑘) queries. Secondly, it boosts

the solution quality without increasing query complexity by adapting
greedy threshold strategies.

To investigate the performance of our algorithms in practice, we
conduct some experiments on three applications: Influence Maximiza-
tion, Information Coverage Maximization, and Sensor Placement. Ex-
perimental results have shown that our algorithms not only return
reasonable solutions regarding quality requirements but also take a
sharply smaller number of queries than state-of-the-art algorithms. In
the future, we will further work with the problem whose objective
function is non-monotone.
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