PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 153, Number 8, August 2025, Pages 3395–3402 https://doi.org/10.1090/proc/17226 Article electronically published on June 13, 2025

A NON-ARCHIMEDEAN SECOND MAIN THEOREM FOR HYPERSURFACES IN SUBGENERAL POSITION

TA THI HOAI AN, WILLIAM CHERRY, AND NGUYEN VIET PHUONG

(Communicated by David Savitt)

ABSTRACT. We apply an idea of Levin to obtain a non-truncated second main theorem for non-Archimedean analytic maps approximating algebraic hypersurfaces in subgeneral position. In some cases, for example when all the hypersurfaces are non-linear and all the intersections are transverse, this improves an inequality of Quang [Thang Long J. Sci. Math. Math. Sci. 2 (2023), pp. 129–143], whose inequality is sharp for the case of hyperplanes in subgeneral position.

Ru [R] observed that in non-Archimedean value distribution theory, the second main theorem without truncation or ramification for non-Archimedean analytic curves approximating algebraic hypersurfaces in projective space follows from the first main theorem. An [A] generalized Ru's approach to projective hypersurfaces in general position with a projective variety. Recently, Quang [Q] applied this approach to hypersurfaces in subgeneral position. Although conjecturally the degree of the hypersurfaces should come into these inequalities, in the works cited above, as with most contemporary work in value distribution theory, only the number of hypersurfaces and their intersection combinatorics enters into the inequalities. Prior work of Levin [L] is one of the few cases where the degrees of the hypersurfaces come into the inequality, although not in what is conjecturally believed to be the optimal way. Levin considered only hypersurfaces in general position. The purpose of this note is to record what Levin's approach yields when the hypersurfaces are allowed to be in subgeneral position. Levin's approach is most useful when the hypersurfaces meet transversely. Although hypersurfaces in subgeneral position do not often meet transversely, when they do, the approach here sometimes gives an improvement on Quang's inequality.

We'll take terminology and notation as in [L, §2].

As in [L], we consider a projective variety $X \subseteq \mathbf{P}^N$ of dimension n over a complete algebraically closed non-Archimedean field K of arbitrary characteristic. We consider q projective hypersurfaces D_1, \ldots, D_q defined over K in \mathbf{P}^N . We do not necessarily assume that the D_j are distinct. We assume that X is not entirely contained in any of the hypersurfaces D_j . For convenience, we define the dimension

©2025 American Mathematical Society

Received by the editors July 23, 2024, and, in revised form, October 27, 2024, and January 15, 2025.

²⁰²⁰ Mathematics Subject Classification. Primary 30G06.

Key words and phrases. Non-Archimedean analytic curve, subgeneral position.

The first and third authors were supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2021.41. The first author was supported by NVCC01.05/24-25.

of the empty set to be -1. Then, for each integer m from -1 to n-1, we define t_m to be the smallest integer such that for every subset $I \subseteq \{1, \ldots, q\}$ of cardinality $t_m + 1$, we have

$$\dim\left(\bigcap_{i\in I}D_i\cap X\right)\leq m.$$

Note that if $\dim (X \cap D_1 \cap \cdots \cap D_q) > m$, we take $t_m = q$. Most important for us will be the two numbers t_{-1} and t_0 . As each hypersurface can lower the dimension by at most one, we have $t_m \ge \min\{n-m,q\}$ for each m. When equality holds for all m, the hypersurfaces are said to be in general position with X. More generally, the hypersurfaces are said to be in t_{-1} -subgeneral position with X, and this has meaning when $q > t_{-1}$.

Then, with this notation, Quang's subgeneral position without truncation result is:

Theorem 1 ([Q, Th. 2]). Let $f: K \to X$ be a non-constant non-Archimedean analytic map not entirely contained in any of the hypersurfaces D_j . For r > 0,

$$\sum_{j=1}^{q} \frac{m_f(r, D_j)}{\deg D_j} \le t_{-1} T_f(r) + O(1).$$

When $X = \mathbf{P}^N$ and the D_j are all hyperplanes H_j , then one can easily see that Quang's result is best possible in that the coefficient t_{-1} cannot be reduced.

Example 2. Let H_1, \ldots, H_q be any collection of not necessarily distinct hyperplanes in \mathbf{P}^N . Let t_{-1} be defined as above, namely the smallest integer such that the intersection of any $t_{-1}+1$ of the hyperplanes is empty (or q if no intersection of the hyperplanes is empty). Assume that the absolute value on K is non-trivial, meaning that there is at least one element of K with positive absolute value less than one. Then, there is an algebraically non-degenerate non-Archimedean analytic map $f: K \to \mathbf{P}^N$ such that for all r > 0,

$$\sum_{i=1}^{q} m_f(r, H_j) \ge t_{-1} T_f(r) - o(T_f(r)),$$

and so the coefficient t_{-1} in Quang's inequality cannot be reduced.

Proof. By the definition of t_{-1} , we assume, without loss of generality, that $H_1, \ldots, H_{t_{-1}}$ each pass through the point in projective space with coordinates $(0, 0, \ldots, 0, 1)$. Let f_1, \ldots, f_N be any transcendental entire functions on K such that $T_{f_i}(r) = o(T_{f_j}(r))$ for all $1 \le i < j \le N$. For example, since we assumed that the absolute value on K is non-trivial, let a be an element of K such that 0 < |a| < 1. Then,

$$g(z) = \sum_{n=0}^{\infty} (a^n z)^n$$

has infinite radius of convergence and hence is a transcendental entire function on K. Now let $f_0 = 1$, $f_1 = g$, $f_2 = g \circ g$, $f_3 = g \circ g \circ g$, and so on. Then, $T_{f_i}(r) = o(T_{f_j}(r))$ for all $1 \leq i < j \leq N$ by [HY, Th. 2.44]. Now, let $f = (f_0, f_1, f_2, \ldots, f_{N-1}, f_N)$, and observe that $T_f(r) = T_{f_N}(r) + o(T_{f_N}(r))$. Let $P(X_0, \ldots, X_N)$ be any nontrivial homogeneous polynomial. Let k be the largest integer such that X_k appears in a monomial in P with non-zero coefficient. If k = 0, then trivially, $P \circ f \not\equiv 0$. If

k > 0, then let d be the X_k -degree of P. Then, $T_{P \circ f}(r) = dT_{f_k}(r) + o(T_{f_k}(r))$ by [HY, Th. 2.11], and so $P \circ f \not\equiv 0$, and thus f is algebraically non-degenerate.

Because H_1, \ldots, H_{t-1} contain the point $(0, 0, \ldots, 0, 1)$, we have that

$$m_f(r, H_j) \ge T_{f_N}(r) - o(T_{f_N}(r))$$
 for all j from 1 to t_{-1} .

Remark. If instead, the absolute value on K is trivial, then the only entire functions on K are the polynomials, and all analytic maps from K to \mathbf{P}^N are algebraic. Still, with hyperplanes as in Example 2 and given $\varepsilon > 0$, one easily sees that for all large enough integers d, depending on ε ,

$$f(z) = (1, z, z^2, \dots, z^{N-1}, z^d)$$

is a linearly non-degenerate map $f: K \to \mathbf{P}^N$ such that for all r sufficiently large,

$$\sum_{i=1}^{q} m_f(r, H_j) \ge (t_{-1} - \varepsilon) T_f(r).$$

One expects to be able to do better when the D_j are non-linear hypersurfaces, but to date, there are few ideas about how to take advantage of higher degree D_j to improve this type of inequality. Levin showed one way to sometimes be able to take advantage of higher degree, particularly when the D_j intersect transversely:

Theorem 3 ([L, Th. 10]). Let $X \subseteq \mathbf{P}^N$ be a projective variety over K of dimension $n \geq 1$. Let D_1, \ldots, D_q be hypersurfaces in \mathbf{P}^N over K that are in general position with X. Let M be the smallest positive integer such that for any subset $I \subseteq \{1, \ldots, q\}$ of cardinality n,

$$\bigcap_{i\in I} D_i \cap X \subseteq M \operatorname{Supp} \left(\bigcap_{i\in I} D_i \cap X\right),\,$$

where we view D_1, \ldots, D_q and X as closed subschemes of \mathbf{P}^N . Let $f: K \to X$ be a non-constant non-Archimedean analytic map whose image is not completely contained in any of the hypersurfaces D_j . Then, for all $r \ge 1$,

$$\sum_{j=1}^{q} \frac{m_f(r, D_j)}{\deg D_j} \le \left(n - 1 + \max_{1 \le j \le q} \frac{M}{\deg D_j}\right) T_f(r) + O(1).$$

Note that if all the intersections amongst X and D_1, \ldots, D_q are transverse, then M = 1.

If we relax the general position hypothesis, then Levin's idea gives

Theorem 4. Let $X \subseteq \mathbf{P}^N$ be a projective variety over K of dimension $n \ge 1$. Let D_1, \ldots, D_q be not necessarily distinct hypersurfaces in \mathbf{P}^N over K. Let t_0 and t_{-1} be defined as above. Let M be the smallest positive integer such that for any subset $I \subseteq \{1, \ldots, q\}$ of cardinality $t_0 + 1$,

$$\bigcap_{i\in I} D_i \cap X \subseteq M \operatorname{Supp}\left(\bigcap_{i\in I} D_i \cap X\right),\,$$

where we view D_1, \ldots, D_q and X as closed subschemes of \mathbf{P}^N . Let $f: K \to X$ be a non-constant non-Archimedean analytic map whose image is not completely

contained in any of the hypersurfaces D_j . Let

$$\alpha = \max_{\substack{I \subseteq \{1, \dots, q\} \\ |I| = t_{-1} - t_0}} \sum_{i \in I} \min \left\{ \frac{M}{\deg D_i}, 1 \right\}.$$

Then, for all $r \geq 1$,

$$\sum_{j=1}^{q} \frac{m_f(r, D_j)}{\deg D_j} \le (t_0 + \alpha) T_f(r) + O(1).$$

Note that if all the intersections amongst X and D_1, \ldots, D_q are transverse, then M = 1.

Remark. In case that the D_j are in general position and q > n, then $t_0 = n - 1$, $t_{-1} = n$, $t_{-1} - t_0 = 1$, and

$$\alpha = \max_{1 \leq j \leq q} \min \left\{ \frac{M}{\deg D_j}, 1 \right\},$$

and so we recover Theorem 3. Moreover, $t_0 + \alpha \leq t_{-1}$, and so we also recover Theorem 1.

Remark. Here we, as was Levin in [L], are mainly only interested in the case that none of the hypersurfaces D_i are hyperplanes. In Levin's formulation, if any of the D_i are hyperplanes, then Levin's inequality does not improve upon [A]. In a recent extension of Levin's work in a different direction, Huynh [H] shows that Levin's inequality can sometimes be improved in the case where $X = \mathbf{P}^N$, when q = N, and when the degeneracy of f is further restricted by not allowing the image of f to be contained in certain hyperplanes tangent to the hypersurfaces D_i , which then can give a better result when some of the hypersurfaces are hyperplanes, for example in the case of a non-singular conic and a line meeting transversally in \mathbf{P}^2 . Combining Huynh's idea with ours might result in some improvement to our inequality under the additional assumption that the image of f is not contained in certain tangent hyperplanes to the hypersurfaces D_j , but we do not now see a nice formulation of such a result in a case more general than what Huynh already treats.

Although not typical for hypersurface arrangements not in general position, it is possible for hypersurfaces not in general position to intersect transversely when all the extra intersections happen in dimension zero, for example three conics in \mathbf{P}^2 all intersecting transversely in a common set of points. This is precisely the case where Levin's idea gives the best improvement. In the case of three conics intersecting in \mathbf{P}^2 transversely in a common set of points, we have $t_0 = 1$ and $t_{-1} = q = 3$, and $\alpha = 1$. In this case, Theorem 1 gives

$$\sum_{i=1}^{3} \frac{m_f(r, D_j)}{2} \le 3T_f(r) + O(1),$$

which is just the First Main Theorem, but Theorem 4 gives the better

$$\sum_{j=1}^{3} \frac{m_f(r, D_j)}{2} \le 2T_f(r) + O(1).$$

For some collections of non-linear hypersurfaces, Theorem 4 is a sharp improvement of Theorem 1.

Example 5. Let K be any algebraically closed complete non-Archimedean field with characteristic different from three. Let

$$Q_1(X_0, X_1, X_2) = X_0 X_1 - X_2^2,$$

$$Q_2(X_0, X_1, X_2) = X_0 X_2 - X_1^2,$$
and
$$Q_3(X_0, X_1, X_2) = Q_1(X_0, X_1, X_2) + 3Q_2(X_0, X_1, X_2).$$

For j=1,2, and 3, let D_j be the hypersurface in \mathbf{P}^2 determined by the vanishing of Q_j . Then, the D_j are three conics in \mathbf{P}^2 intersecting transversely in the four points $(1,0,0), (1,1,1), (1,\omega,\omega^2),$ and $(1,\omega^2,\omega),$ where ω is any primitive third root of unity. Let $f:K\to\mathbf{P}^2$ be the non-constant linear map with coordinate functions (z,1,0). Then, for $r\geq 1$,

$$m_f(r, D_1) = \log \frac{|z|_r^2}{|z|_r} = \log r$$

$$m_f(r, D_2) = \log \frac{|z|_r^2}{|-1|_r} = 2\log r$$
and $m_f(r, D_3) = \log \frac{|z|_r^2}{|z-3|_r} = \log r$.

Hence, for $r \geq 1$,

$$\sum_{j=1}^{3} \frac{m_f(r, D_j)}{2} = 2 \log r = 2T_f(r),$$

showing that Theorem 4 is sharp in this case.

Proof of Theorem 4. We essentially follow [L, Th. 10] but allow that taking additional hypersurfaces when the intersection has dimension zero may not further reduce the dimension.

Let $f=(f_0,\ldots,f_N)$, where f_0,\ldots,f_N are entire without common zeros. Let D_1,\ldots,D_q be defined by homogeneous polynomials Q_1,\ldots,Q_q in $K[X_0,\ldots,X_N]$. If there are fewer than t_0 indices $j\in\{1,\ldots,q\}$ such that $m_f(r,D_j)\neq O(1)$ as $r\to\infty$, then the theorem follows from the First Main Theorem. We therefore assume from now on that there are at least t_0 indices j such that $m_f(r,D_j)\to\infty$ as $r\to\infty$.

Let $I, J \subseteq \{1, \ldots, q\}$ be such that $m_f(r, D_i) = O(1)$ for all $i \in I$, and such that $m_f(r, D_j) \to \infty$ as $r \to \infty$ for all $j \in J$. Let r_0 be large enough so that for all $i \in I$, all $j \in J$, and all $r \ge r_0$,

$$\frac{m_f(r, D_j)}{\deg D_j} \ge \frac{m_f(r, D_i)}{\deg D_i}.$$

Fix $r \ge \max\{1, r_0\}$. After reindexing, we may assume that

$$\frac{m_f(r, D_1)}{\deg D_1} \ge \frac{m_f(r, D_2)}{\deg D_2} \ge \dots \ge \frac{m_f(r, D_q)}{\deg D_q}.$$

If $t_{-1} < q$, then

$$D_1 \cap \dots \cap D_{t-1} \cap D_{t-1+1} = \emptyset.$$

Hilbert's Nullstellensatz then tells us that for each of the coordinate functions X_j , there is some power m_j and some homogeneous polynomials A_{ji} such that

$$X_j^{m_j} = \sum_{i=1}^{t_{-1}+1} A_{ji} Q_i.$$

Of course, $\deg A_{ji} = m_j - \deg D_i$. Thus, there exists a constant C_1 , depending only on the polynomials A_{ji} , such that for all $j = 0, \ldots, N$,

$$|f_j|_r^{m_j} \le C_1 \max_{1 \le j \le t_{-1}+1} |f|_r^{m_j - \deg D_i} |Q_i \circ f|_r.$$

Choosing j so that $|f_j|_r = |f|_r$ and canceling $|f|_r^{m_j}$ from both sides then gives

$$1 \le C_1 \max_{1 \le i \le t_{-1} + 1} \frac{|Q_i \circ f|_r}{|f|_r^{\deg D_i}} \le C_1 \frac{|Q_{t_{-1} + 1} \circ f|_r}{|f|_r^{\deg D_{t_{-1} + 1}}}.$$

Hence,

(1)
$$\frac{m_f(r, D_i)}{\deg D_i} \le \frac{\log C_1}{\deg D_i}, \text{ for all } i > t_{-1}.$$

Note that the constant C_1 was chosen depending on the A_{ji} , which depend on r in the sense that they depend on how we indexed Q_1, \ldots, Q_q . As there are only finitely many ways of reindexing, C_1 can be chosen independent of r.

If $t_0 = t_{-1} = q$, then the theorem follows from the First Main Theorem, or from Theorem 1, so we henceforth assume that $t_0 < q$. Levin's idea allows us to handle $m_f(r, D_j)$ for $j = t_0 + 1, \ldots, t_{-1}$. Fix one such index j. By the definition of t_0 ,

$$X \cap D_1 \cap \cdots \cap D_{t_0} \cap D_j$$

is a finite set of points $\{P_1, \ldots, P_s\}$. We now want to choose hyperplanes H_1, \ldots, H_s so that the following conditions are satisfied:

- $P_i \in H_i$ for $i = 1, \ldots, s$;
- $P_j \notin H_i$ for all $j \neq i \in \{1, \ldots, s\}$;
- If we define $E_i = D_i$ for $i = 1, ..., t_0$ and $E_i = H_{i-t_0}$ for $i = t_0 + 1, ..., t_0 + s$, then for any index set $I \subseteq \{1, ..., t_0 + s\}$ with cardinality $|I| \ge t_0 + 2$,

$$X \cap \bigcap_{i \in I} E_i = \emptyset;$$

• The image of f is not completely contained in any of the H_i .

We now re-order the E_i so that

$$\frac{m_f(r, E_1)}{\deg E_1} \ge \dots \ge \frac{m_f(r, E_{t_0+s})}{\deg E_{t_0+s}}.$$

By our choice of the hyperplanes, if $s \geq 2$, then

$$X \cap E_1 \cap \cdots \cap E_{t_0} \cap E_{t_0+1} \cap E_{t_0+2} = \emptyset$$

As before, we apply the Nullstellensatz, to find a constant C_2 such that for all $i > t_0 + 1$,

(2)
$$\frac{m_f(r, E_i)}{\deg E_i} \le \frac{\log C_2}{\deg E_i},$$

where C_2 appears to depend on r and our choice of the index j, as it depends on $\{P_1, \ldots, P_s\}$ and the choice of hyperplanes H_1, \ldots, H_s , and these depend on the index j and on our original re-indexing of D_1, \ldots, D_q . But again, there are only

finitely many ways to re-index D_1, \ldots, D_q , and for each reindexing, there are only finitely many choices of the index j, and so C_2 can be taken to be independent of r.

By enlarging r_0 if necessary and by our assumption that there were at least t_0 indices j such that $m_f(r, D_j) \to \infty$ as $r \to \infty$, we conclude that all the E_i in (2) are, in fact, hyperplanes. Hence,

(3)
$$\sum_{i=1}^{s} m_f(H_i, r) \le T_f(r) + O(1).$$

Now, choose linear defining forms L_i for each of the hyperplanes H_i . By our definition of M,

$$X \cap D_1 \cap \cdots \cap D_{t_0} \cap D_j \subseteq M \text{Supp} (X \cap D_1 \cap \cdots \cap D_{t_0} \cap D_j).$$

Thus, there exist homogeneous polynomials B_1, \ldots, B_{t_0} and B_j with

$$\deg B_i = Ms - \deg D_i$$

such that

$$(L_1 \cdots L_s)^M - B_j Q_j - \sum_{i=1}^{t_0} B_i Q_i$$

vanishes on X. Therefore, there is a constant C_3 , depending only on the polynomials B_i , and hence can be taken to be independent of r if we consider all possible reindexings of Q_1, \ldots, Q_q , such that

$$\prod_{i=1}^{s} |L_i \circ f|_r^M \leq C_3 \max_{k \in \{1, \dots, t_0\} \cup \{j\}} |f|_r^{Ms - \deg D_k} |Q_k \circ f|_r \leq C_3 |f|_r^{Ms} \frac{|Q_j \circ f|_r}{|f|_r^{\deg D_j}}.$$

Dividing both sides by $|f|_r^{Ms}$ and taking logarithms, we get

$$m_f(r, D_j) \le M \sum_{i=1}^{s} m_f(r, H_i) + C_4,$$

with C_4 independent of r, again by observing that there are only finitely many ways to reindex the D_j . Combining with (3), we conclude

$$\frac{m_f(r, D_j)}{\deg D_j} \le \frac{M}{\deg D_j} T_f(r) + O(1).$$

Note that, in any case,

$$\frac{m_f(r, D_j)}{\deg D_j} \le T_f(r) + O(1)$$

by the First Main Theorem, and so we in fact have

(4)
$$\frac{m_f(r, D_j)}{\deg D_j} \le \min\left\{\frac{M}{\deg D_j}, 1\right\} T_f(r) + O(1).$$

We now split the left-hand-side of the inequality we want to prove into three pieces:

$$\sum_{j=1}^{q} \frac{m_f(r, D_j)}{\deg D_j} \le \sum_{j=1}^{t_0} \frac{m_f(r, D_j)}{\deg D_j} + \sum_{j=t_0+1}^{t_{-1}} \frac{m_f(r, D_j)}{\deg D_j} + \sum_{j=t_{-1}+1}^{q} \frac{m_f(r, D_j)}{\deg D_j}.$$

Using (1), we can replace the last piece with O(1). Now, by our choice of ordering for the D_i and (4), we can reduce the middle piece to

$$\sum_{j=t_0+1}^{t-1} \frac{m_f(r, D_j)}{\deg D_j} \le \alpha T_f(r) + O(1),$$

where

$$\alpha = \max_{\begin{subarray}{c} I \subseteq \{1, \dots, q\} \\ |I| = t_{-1} - t_0 \end{subarray}} \sum_{i \in I} \min \left\{ \frac{M}{\deg D_i}, 1 \right\}.$$

Putting those together and applying the First Main Theorem one final time, we now have

$$\sum_{j=1}^{q} \frac{m_f(r, D_j)}{\deg D_j} \le \sum_{j=1}^{t_0} \frac{m_f(r, D_j)}{\deg D_j} + \alpha T_f(r) + O(1)$$

$$\le t_0 T_f(r) + \alpha T_f(r) + O(1)$$

$$\le (t_0 + \alpha) T_f(r) + O(1).$$

Acknowledgments

A part of this article was written while the first and second authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). They would like to thank the institute for warm hospitality and support. The authors greatly thank the referee for pointing out a problem with Example 2 in an earlier draft and for suggesting inequality (3) and the addition of the minimum in (4). These suggestions both significantly simplified and improved our original formulation of Theorem 4.

References

- [A] Ta Thi Hoai An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1255–1261, DOI 10.1090/S0002-9939-06-08591-1. MR2276632
- [HY] Pei-Chu Hu and Chung-Chun Yang, Meromorphic functions over non-Archimedean fields, Mathematics and its Applications, vol. 522, Kluwer Academic Publishers, Dordrecht, 2000, DOI 10.1007/978-94-015-9415-8. MR1794326
- [H] D. T. Huynh, A p-adic second main theorem, Preprint, 2024, arXiv:2405.14197.
- [L] Aaron Levin, On the p-adic second main theorem, Proc. Amer. Math. Soc. 143 (2015), no. 2, 633–640, DOI 10.1090/S0002-9939-2014-12530-5. MR3283650
- [Q] Si Duc Quang, Truncated second main theorem for non-Archimedean meromorphic maps, Thang Long J. Sci. Math. Math. Sci. 2 (2023), no. 8, 129–143. MR4858812
- [R] Min Ru, A note on p-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1263–1269, DOI 10.1090/S0002-9939-00-05680-X. MR1712881

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam

 $Email\ address: {\tt tthan@math.ac.vn}$

Department of Mathematics, University of North Texas, 1155 Union Circle #311430, Denton, Texas 76203

Email address: wcherry@unt.edu

FACULTY OF BASIC SCIENCE, THAI NGUYEN UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION, VIETNAM

Email address: nvphuongt@gmail.com