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Abstract. We apply an idea of Levin to obtain a non-truncated second main
theorem for non-Archimedean analytic maps approximating algebraic hyper-
surfaces in subgeneral position. In some cases, for example when all the hyper-
surfaces are non-linear and all the intersections are transverse, this improves
an inequality of Quang [Thang Long J. Sci. Math. Math. Sci. 2 (2023), pp.
129–143], whose inequality is sharp for the case of hyperplanes in subgeneral

position.

Ru [R] observed that in non-Archimedean value distribution theory, the second
main theorem without truncation or ramification for non-Archimedean analytic
curves approximating algebraic hypersurfaces in projective space follows from the
first main theorem. An [A] generalized Ru’s approach to projective hypersurfaces
in general position with a projective variety. Recently, Quang [Q] applied this ap-
proach to hypersurfaces in subgeneral position. Although conjecturally the degree
of the hypersurfaces should come into these inequalities, in the works cited above,
as with most contemporary work in value distribution theory, only the number
of hypersurfaces and their intersection combinatorics enters into the inequalities.
Prior work of Levin [L] is one of the few cases where the degrees of the hypersurfaces
come into the inequality, although not in what is conjecturally believed to be the
optimal way. Levin considered only hypersurfaces in general position. The purpose
of this note is to record what Levin’s approach yields when the hypersurfaces are
allowed to be in subgeneral position. Levin’s approach is most useful when the
hypersurfaces meet transversely. Although hypersurfaces in subgeneral position do
not often meet transversely, when they do, the approach here sometimes gives an
improvement on Quang’s inequality.

We’ll take terminology and notation as in [L, §2].
As in [L], we consider a projective variety X ⊆ PN of dimension n over a

complete algebraically closed non-Archimedean field K of arbitrary characteristic.
We consider q projective hypersurfaces D1, . . . , Dq defined over K in PN . We do
not necessarily assume that the Dj are distinct. We assume that X is not entirely
contained in any of the hypersurfaces Dj . For convenience, we define the dimension
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of the empty set to be −1. Then, for each integer m from −1 to n−1, we define tm
to be the smallest integer such that for every subset I ⊆ {1, . . . , q} of cardinality
tm + 1, we have

dim

(⋂
i∈I

Di ∩X

)
≤ m.

Note that if dim (X ∩D1 ∩ · · · ∩Dq) > m, we take tm = q. Most important for us
will be the two numbers t−1 and t0. As each hypersurface can lower the dimension
by at most one, we have tm ≥ min{n−m, q} for each m. When equality holds for
all m, the hypersurfaces are said to be in general position with X. More generally,
the hypersurfaces are said to be in t−1-subgeneral position with X, and this has
meaning when q > t−1.

Then, with this notation, Quang’s subgeneral position without truncation result
is:

Theorem 1 ([Q, Th. 2]). Let f : K → X be a non-constant non-Archimedean
analytic map not entirely contained in any of the hypersurfaces Dj. For r > 0,

q∑
j=1

mf (r,Dj)

degDj
≤ t−1Tf (r) +O(1).

When X = PN and the Dj are all hyperplanes Hj , then one can easily see that
Quang’s result is best possible in that the coefficient t−1 cannot be reduced.

Example 2. Let H1, . . . , Hq be any collection of not necessarily distinct hyper-
planes in PN . Let t−1 be defined as above, namely the smallest integer such that
the intersection of any t−1 + 1 of the hyperplanes is empty (or q if no intersection
of the hyperplanes is empty). Assume that the absolute value on K is non-trivial,
meaning that there is at least one element of K with positive absolute value less
than one. Then, there is an algebraically non-degenerate non-Archimedean analytic
map f : K → PN such that for all r > 0,

q∑
j=1

mf (r,Hj) ≥ t−1Tf (r)− o(Tf (r)),

and so the coefficient t−1 in Quang’s inequality cannot be reduced.

Proof. By the definition of t−1, we assume, without loss of generality, that H1, . . . ,
Ht−1

each pass through the point in projective space with coordinates (0, 0, . . . , 0, 1).
Let f1, . . . , fN be any transcendental entire functions on K such that Tfi(r) =
o(Tfj (r)) for all 1 ≤ i < j ≤ N . For example, since we assumed that the absolute
value on K is non-trivial, let a be an element of K such that 0 < |a| < 1. Then,

g(z) =
∞∑

n=0

(anz)n

has infinite radius of convergence and hence is a transcendental entire function onK.
Now let f0 = 1, f1 = g, f2 = g◦g, f3 = g◦g◦g, and so on. Then, Tfi(r) = o(Tfj (r))
for all 1 ≤ i < j ≤ N by [HY, Th. 2.44]. Now, let f = (f0, f1, , f2, . . . , fN−1, fN ),
and observe that Tf (r) = TfN (r) + o(TfN (r)). Let P (X0, . . . , XN ) be any non-
trivial homogeneous polynomial. Let k be the largest integer such that Xk appears
in a monomial in P with non-zero coefficient. If k = 0, then trivially, P ◦ f �≡ 0. If
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k > 0, then let d be the Xk-degree of P . Then, TP◦f (r) = dTfk(r) + o(Tfk(r)) by
[HY, Th. 2.11], and so P ◦ f �≡ 0, and thus f is algebraically non-degenerate.

Because H1, . . . , Ht−1
contain the point (0, 0, . . . , 0, 1), we have that

mf (r,Hj) ≥ TfN (r)− o(TfN (r)) for all j from 1 to t−1. �

Remark. If instead, the absolute value on K is trivial, then the only entire functions
on K are the polynomials, and all analytic maps from K to PN are algebraic. Still,
with hyperplanes as in Example 2 and given ε > 0, one easily sees that for all large
enough integers d, depending on ε,

f(z) = (1, z, z2, . . . , zN−1, zd)

is a linearly non-degenerate map f : K → PN such that for all r sufficiently large,

q∑
j=1

mf (r,Hj) ≥ (t−1 − ε)Tf (r).

One expects to be able to do better when the Dj are non-linear hypersurfaces,
but to date, there are few ideas about how to take advantage of higher degree Dj

to improve this type of inequality. Levin showed one way to sometimes be able to
take advantage of higher degree, particularly when the Dj intersect transversely:

Theorem 3 ([L, Th. 10]). Let X ⊆ PN be a projective variety over K of dimen-
sion n ≥ 1. Let D1, . . . , Dq be hypersurfaces in PN over K that are in general
position with X. Let M be the smallest positive integer such that for any subset
I ⊆ {1, . . . , q} of cardinality n,

⋂
i∈I

Di ∩X ⊆ MSupp

(⋂
i∈I

Di ∩X

)
,

where we view D1, . . . , Dq and X as closed subschemes of PN . Let f : K → X
be a non-constant non-Archimedean analytic map whose image is not completely
contained in any of the hypersurfaces Dj. Then, for all r ≥ 1,

q∑
j=1

mf (r,Dj)

degDj
≤

(
n− 1 + max

1≤j≤q

M

degDj

)
Tf (r) +O(1).

Note that if all the intersections amongst X and D1, . . . , Dq are transverse, then
M = 1.

If we relax the general position hypothesis, then Levin’s idea gives

Theorem 4. Let X ⊆ PN be a projective variety over K of dimension n ≥ 1. Let
D1, . . . , Dq be not necessarily distinct hypersurfaces in PN over K. Let t0 and t−1

be defined as above. Let M be the smallest positive integer such that for any subset
I ⊆ {1, . . . , q} of cardinality t0 + 1,

⋂
i∈I

Di ∩X ⊆ MSupp

(⋂
i∈I

Di ∩X

)
,

where we view D1, . . . , Dq and X as closed subschemes of PN . Let f : K → X
be a non-constant non-Archimedean analytic map whose image is not completely
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contained in any of the hypersurfaces Dj. Let

α = max
I ⊆ {1, . . . , q}
|I| = t−1 − t0

∑
i∈I

min

{
M

degDi
, 1

}
.

Then, for all r ≥ 1,
q∑

j=1

mf (r,Dj)

degDj
≤ (t0 + α)Tf (r) +O(1).

Note that if all the intersections amongst X and D1, . . . , Dq are transverse, then
M = 1.

Remark. In case that the Dj are in general position and q > n, then t0 = n − 1,
t−1 = n, t−1 − t0 = 1, and

α = max
1≤j≤q

min

{
M

degDj
, 1

}
,

and so we recover Theorem 3. Moreover, t0 + α ≤ t−1, and so we also recover
Theorem 1.

Remark. Here we, as was Levin in [L], are mainly only interested in the case that
none of the hypersurfaces Di are hyperplanes. In Levin’s formulation, if any of the
Di are hyperplanes, then Levin’s inequality does not improve upon [A]. In a recent
extension of Levin’s work in a different direction, Huynh [H] shows that Levin’s
inequality can sometimes be improved in the case where X = PN , when q = N ,
and when the degeneracy of f is further restricted by not allowing the image of
f to be contained in certain hyperplanes tangent to the hypersurfaces Di, which
then can give a better result when some of the hypersurfaces are hyperplanes, for
example in the case of a non-singular conic and a line meeting transversally in
P2. Combining Huynh’s idea with ours might result in some improvement to our
inequality under the additional assumption that the image of f is not contained
in certain tangent hyperplanes to the hypersurfaces Dj , but we do not now see a
nice formulation of such a result in a case more general than what Huynh already
treats.

Although not typical for hypersurface arrangements not in general position, it is
possible for hypersurfaces not in general position to intersect transversely when all
the extra intersections happen in dimension zero, for example three conics in P2 all
intersecting transversely in a common set of points. This is precisely the case where
Levin’s idea gives the best improvement. In the case of three conics intersecting in
P2 transversely in a common set of points, we have t0 = 1 and t−1 = q = 3, and
α = 1. In this case, Theorem 1 gives

3∑
j=1

mf (r,Dj)

2
≤ 3Tf (r) +O(1),

which is just the First Main Theorem, but Theorem 4 gives the better

3∑
j=1

mf (r,Dj)

2
≤ 2Tf (r) +O(1).
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For some collections of non-linear hypersurfaces, Theorem 4 is a sharp improve-
ment of Theorem 1.

Example 5. Let K be any algebraically closed complete non-Archimedean field
with characteristic different from three. Let

Q1(X0, X1, X2) = X0X1 −X2
2 ,

Q2(X0, X1, X2) = X0X2 −X2
1 ,

and Q3(X0, X1, X2) = Q1(X0, X1, X2) + 3Q2(X0, X1, X2).

For j = 1, 2, and 3, let Dj be the hypersurface in P2 determined by the vanishing of
Qj . Then, the Dj are three conics in P2 intersecting transversely in the four points
(1, 0, 0), (1, 1, 1), (1, ω, ω2), and (1, ω2, ω), where ω is any primitive third root of
unity. Let f : K → P2 be the non-constant linear map with coordinate functions
(z, 1, 0). Then, for r ≥ 1,

mf (r,D1) = log
|z|2r
|z|r

= log r

mf (r,D2) = log
|z|2r

| − 1|r
= 2 log r

and mf (r,D3) = log
|z|2r

|z − 3|r
= log r.

Hence, for r ≥ 1,
3∑

j=1

mf (r,Dj)

2
= 2 log r = 2Tf (r),

showing that Theorem 4 is sharp in this case.

Proof of Theorem 4. We essentially follow [L, Th. 10] but allow that taking ad-
ditional hypersurfaces when the intersection has dimension zero may not further
reduce the dimension.

Let f = (f0, . . . , fN ), where f0, . . . , fN are entire without common zeros. Let
D1, . . . , Dq be defined by homogeneous polynomials Q1, . . . , Qq in K[X0, . . . , XN ].

If there are fewer than t0 indices j ∈ {1, . . . , q} such that mf (r,Dj) �= O(1)
as r → ∞, then the theorem follows from the First Main Theorem. We therefore
assume from now on that there are at least t0 indices j such that mf (r,Dj) → ∞
as r → ∞.

Let I, J ⊆ {1, . . . , q} be such that mf (r,Di) = O(1) for all i ∈ I, and such that
mf (r,Dj) → ∞ as r → ∞ for all j ∈ J . Let r0 be large enough so that for all i ∈ I,
all j ∈ J , and all r ≥ r0,

mf (r,Dj)

degDj
≥ mf (r,Di)

degDi
.

Fix r ≥ max{1, r0}. After reindexing, we may assume that

mf (r,D1)

degD1
≥ mf (r,D2)

degD2
≥ · · · ≥ mf (r,Dq)

degDq
.

If t−1 < q, then

D1 ∩ · · · ∩Dt−1
∩Dt−1+1 = ∅.
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Hilbert’s Nullstellensatz then tells us that for each of the coordinate functions Xj ,
there is some power mj and some homogeneous polynomials Aji such that

X
mj

j =

t−1+1∑
i=1

AjiQi.

Of course, degAji = mj − degDi. Thus, there exists a constant C1, depending
only on the polynomials Aji, such that for all j = 0, . . . , N ,

|fj |mj
r ≤ C1 max

1≤j≤t−1+1
|f |mj−degDi

r |Qi ◦ f |r.

Choosing j so that |fj |r = |f |r and canceling |f |mj
r from both sides then gives

1 ≤ C1 max
1≤i≤t−1+1

|Qi ◦ f |r
|f |degDi

r

≤ C1
|Qt−1+1 ◦ f |r
|f |degDt−1+1

r

.

Hence,

(1)
mf (r,Di)

degDi
≤ logC1

degDi
, for all i > t−1.

Note that the constant C1 was chosen depending on the Aji, which depend on r
in the sense that they depend on how we indexed Q1, . . . , Qq. As there are only
finitely many ways of reindexing, C1 can be chosen independent of r.

If t0 = t−1 = q, then the theorem follows from the First Main Theorem, or from
Theorem 1, so we henceforth assume that t0 < q. Levin’s idea allows us to handle
mf (r,Dj) for j = t0 + 1, . . . , t−1. Fix one such index j. By the definition of t0,

X ∩D1 ∩ · · · ∩Dt0 ∩Dj

is a finite set of points {P1, . . . , Ps}. We now want to choose hyperplanesH1, . . . , Hs

so that the following conditions are satisfied:

• Pi ∈ Hi for i = 1, . . . , s;
• Pj /∈ Hi for all j �= i ∈ {1, . . . , s};
• If we define Ei = Di for i = 1, . . . , t0 and Ei = Hi−t0 for i = t0+1, . . . , t0+s,
then for any index set I ⊆ {1, . . . , t0 + s} with cardinality |I| ≥ t0 + 2,

X ∩
⋂
i∈I

Ei = ∅;

• The image of f is not completely contained in any of the Hi.

We now re-order the Ei so that

mf (r, E1)

degE1
≥ · · · ≥ mf (r, Et0+s)

degEt0+s
.

By our choice of the hyperplanes, if s ≥ 2, then

X ∩E1 ∩ · · · ∩Et0 ∩Et0+1 ∩ Et0+2 = ∅.
As before, we apply the Nullstellensatz, to find a constant C2 such that for all
i > t0 + 1,

(2)
mf (r, Ei)

degEi
≤ logC2

degEi
,

where C2 appears to depend on r and our choice of the index j, as it depends on
{P1, . . . , Ps} and the choice of hyperplanes H1, . . . , Hs, and these depend on the
index j and on our original re-indexing of D1, . . . , Dq. But again, there are only
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finitely many ways to re-index D1, . . . , Dq, and for each reindexing, there are only
finitely many choices of the index j, and so C2 can be taken to be independent of
r.

By enlarging r0 if necessary and by our assumption that there were at least t0
indices j such that mf (r,Dj) → ∞ as r → ∞, we conclude that all the Ei in (2)
are, in fact, hyperplanes. Hence,

(3)
s∑

i=1

mf (Hi, r) ≤ Tf (r) +O(1).

Now, choose linear defining forms Li for each of the hyperplanes Hi. By our
definition of M ,

X ∩D1 ∩ · · · ∩Dt0 ∩Dj ⊆ MSupp (X ∩D1 ∩ · · · ∩Dt0 ∩Dj) .

Thus, there exist homogeneous polynomials B1, . . . , Bt0 and Bj with

degBi = Ms− degDi

such that

(L1 · · ·Ls)
M −BjQj −

t0∑
i=1

BiQi

vanishes onX. Therefore, there is a constant C3, depending only on the polynomials
Bi, and hence can be taken to be independent of r if we consider all possible
reindexings of Q1, . . . , Qq, such that

s∏
i=1

|Li ◦ f |Mr ≤ C3 max
k∈{1,...,t0}∪{j}

|f |Ms−degDk
r |Qk ◦ f |r ≤ C3|f |Ms

r

|Qj ◦ f |r
|f |degDj

r

.

Dividing both sides by |f |Ms
r and taking logarithms, we get

mf (r,Dj) ≤ M

s∑
i=1

mf (r,Hi) + C4,

with C4 independent of r, again by observing that there are only finitely many ways
to reindex the Dj . Combining with (3), we conclude

mf (r,Dj)

degDj
≤ M

degDj
Tf (r) +O(1).

Note that, in any case,
mf (r,Dj)

degDj
≤ Tf (r) +O(1)

by the First Main Theorem, and so we in fact have

(4)
mf (r,Dj)

degDj
≤ min

{
M

degDj
, 1

}
Tf (r) +O(1).

We now split the left-hand-side of the inequality we want to prove into three
pieces:

q∑
j=1

mf (r,Dj)

degDj
≤

t0∑
j=1

mf (r,Dj)

degDj
+

t−1∑
j=t0+1

mf (r,Dj)

degDj
+

q∑
j=t−1+1

mf (r,Dj)

degDj
.
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Using (1), we can replace the last piece with O(1). Now, by our choice of ordering
for the Dj and (4), we can reduce the middle piece to

t−1∑
j=t0+1

mf (r,Dj)

degDj
≤ αTf (r) +O(1),

where

α = max
I ⊆ {1, . . . , q}
|I| = t−1 − t0

∑
i∈I

min

{
M

degDi
, 1

}
.

Putting those together and applying the First Main Theorem one final time, we
now have

q∑
j=1

mf (r,Dj)

degDj
≤

t0∑
j=1

mf (r,Dj)

degDj
+ αTf (r) +O(1)

≤ t0Tf (r) + αTf (r) +O(1)

≤ (t0 + α)Tf (r) +O(1). �
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