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Abstract In this paper, we propose a novel method to estimate the states of nonlinear systems. A recur-
rent neural network learning algorithm is first developed to predict the nonlinear systems. Then, an event-
triggered state observer is designed for the recurrent neural network. This state observer robustly estimates
state vTariables of the nonlinear systems. A sufficient condition in terms of a convex optimization problem
for the existence of the event-triggered state observer is established. In contrast with the abundance of
state estimation methods based on time-triggered state observers where the measurements are always con-
tinuously available, the ones in this paper are updated when an event-triggered condition holds. Therefore,
it lessens the stress on communication resources while still maintaining an estimation performance. The
obtained theoretical analysis is applied to estimate the electrical angular velocity, the electrical angle, and
the currents of the permanent magnet synchronous motor.

1 Introduction

The operation of many engineering systems such as state feedback control systems, system supervision, fault
diagnosis of dynamic systems, and general diagnosis issues are based on available information on state vectors
(see, for example, [1, 5, 9, 19, 22]). However, due to technical or economic reasons, people usually use information
state vector estimation instead of measuring the correct one. A typical example of this statement is the permanent
magnet synchronous motors (PMSMs) [2, 25], which are brushless drives with all the properties required for servo
applications [17]. In the PMSMs, the phase current must be a sinusoidal function of the rotor position. A high-
resolution sensor is needed to obtain position information with appropriate resolution. Speed information may be
derived from the position sensor or measured by a tachometer. These mechanical sensors increase the shaft inertia
and dynamic friction, adding to the cost of the drive. They also need extra wiring beyond the cables required for
supplying proper currents to the motor windings. These connections between the motor and the control system are
often the source of an overall decrease in reliability. In order to reduce their cost and increase their sobriety and
reliability, PMSMs are not always equipped with mechanical sensors (rotor position and velocity). Instead, state
observers are proposed to provide state variables of the PMSMs. This approach is very significant since electrical
sensors tend to be cheaper and easier to maintain than mechanical ones.

Many methods are proposed in the literature to solve the problem of estimating the state vector of the PMSMs
[2, 3, 6, 17, 23, 25]. In particular, nonlinear full-order observers are discussed in [13, 16, 20], while an extended
Kalman filter is implemented in [2, 6] to estimate speed and rotor position. However, the above methods [2, 6,
13, 16, 20] did not consider the issue of the unknown load torque, which may lead to large estimation errors. To
overcome this limitation, the authors of the work [23] proposed a nonlinear extended observer to estimate the state
vector of a PMSM subject to an unknown load torque. Recently, there have been some interesting methods solving
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the state estimation problem of the PMSMs, for example, improved square root UKF [25], a nonlinear Luenberger
approach for a non-observable system [3], sliding mode observer [27].

It is worth noting that all existing methods for estimating state vector of the PMSMs [2, 3, 6, 13, 16, 20,
23, 25, 27], were implemented with an assumption that the output vectors are continuous, which may not save
communication resources in practical applications. So far, the methods in [2, 3, 6, 13, 16, 20, 23, 25, 27], has
not been extended to event-triggered state estimation [8, 9, 11, 12, 15], which is useful in saving communication
resource.

Recurrent neural networks (RNNs) have been used as a power technique to solve several practical problems (see,
for example, [10, 14, 24, 26]). In particular, a RNN learning algorithm is proposed in [10] to estimate the states
of a PMSM, while the high-order neural network structures were studied in [14]. The design of model predictive
control systems by using a RNN was reported in [24]. In [26], the exponential stability problem was considered for
uncertain stochastic Hopfield neural networks. It is worth noting that the structure of RNNs is more advantageous
in designing event-triggered state observers than other nonlinear dynamical systems. Therefore, our main aim in
this paper is to develop the RNN learning algorithm in [10, 14, 24] to design event-triggered state observers for
the nonlinear systems. The main contributions of this paper are: (1) A RNN model is trained to estimate the
states of the nonlinear systems; (2) A new event-triggered state observer is designed to estimate the state vectors
of the obtained RNN model; (3) an existence condition of such observer in terms of LMIs is established; and (4)
numerical results of the PMSM are provided to demonstrate the applicability of the proposed method.

Notation: AT is the transpose of A. ||·|| denotes the Euclidean norm. Rn is the n− dimensional linear vector
space over R. P > 0 means that xT Px > 0, ∀x �= 0.

2 Preliminaries and problem statement

Let us consider the following nonlinear systems:

ẋ(t) = f(x(t), u(t), d(t)), t ≥ 0, (1)

x(0) = φ(0), (2)

y(t) = Cx(t), (3)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input vector, y(t) ∈ R
p is the output vector, d(t) ∈ R

� is the
external disturbance vector, f (.) is a matrix function, C ∈ R

p×n is a constant matrix, φ(θ) is a continuous initial
function.

The following assumptions are used to obtained the main results of the paper:

(A1) The system states of the system (1) operate in a bounded region R;
(A2) There exists a positive constant d̄ such that: ||d(t)||≤ d̄, ∀t ≥ 0;
(A3) ||f(x, u, d)− f(z, u, 0)||≤ τ1||x− z||+τ2d̄, ∀x, z ∈ R, and u(t) is norm bounded, τ1, τ2 are positive scalars.

3 Main result

3.1 Approximating the nonlinear system by a recurrent neural networks

The nonlinear system (1) is predicted by the following RNN:

ż(t) = frnn(z(t), u(t)) = Az(t) +
[
Ωz Ωu

]
[

η(z(t))
u(t)

]
, t ≥ 0, (4)

z(0) =φ(0), (5)

ỹ(t) = Cz(t), (6)
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where z(t) ∈ R
n, η(z(t)) =

⎡

⎢
⎣

η(z1(t))
...

η(zn(t))

⎤

⎥
⎦, u(t) =

⎡

⎢
⎣

u1(t)
...

um(t)

⎤

⎥
⎦, η(·) is the activation function satisfying the following

inequality

|ηi(v1) − ηi(v2)|≤ η̄i|v1 − v2|, ∀v1, v2 ∈ R, (7)

where η̄i > 0 for i = 1, 2, . . . , n are positive scalars.

A = − diag {a1, a2, . . . , an},
[

Ωz

Ωu

]
= Ω, Ω =

⎡

⎢
⎣

θ1

...
θn

⎤

⎥
⎦ ∈ R

(n+m)×n (θi = bi

⎡

⎢
⎣

wi1

...
wi(n+m)

⎤

⎥
⎦

T

, ai > 0, bi are constants,

for i = 1, . . . , n, j = 1, . . . , n + m, matrices wij are the weight connecting from the jth input to the ith neuron,
which will be optimized during training. Optimal weighs a∗

i and θ∗
i for (4) are determined as below:

(a∗
i , θ∗

i ) = arg min
ai, θi

1
2

∥
∥
∥

⎡

⎢
⎢
⎢
⎣

[Θ1]i ȳ�
1

[Θ2]i ȳ�
2

...
[ΘN ]i ȳ�

N

⎤

⎥
⎥
⎥
⎦

[
ai

θi

]
−

⎡

⎢
⎢
⎢
⎣

fi(s1, u1)
fi(s2, u2)

...
fi(sN , uN )

⎤

⎥
⎥
⎥
⎦

∥
∥
∥

2

. (8)

Remark 1 Different from the RNN in [10], which is only used to predict a particular nonlinear model (namely,

the nonlinear function is f(x(t), u(t), d(t)) =

⎡

⎢
⎢
⎢
⎣

3n2
p(Ld−Lq)

2J x4x3 − np

J sL

0
Ld

Lq
x1x4

Lq

Ld
x1x3

⎤

⎥
⎥
⎥
⎦

), the one in this paper can be used to

predict a general nonlinear model. Therefore, the RNN reported in [10] can be regarded as a special case of the
RNN in this paper.

The following lemma indicates that the error between the state of the nonlinear system and the recurrent neural
networks is bounded.

Lemma 1 Let assumptions (A1), (A2), and (A3) be satisfied. If ||f(z(t), u(t), 0) − frnn(z(t), u(t))||≤ ω̄, then the
following inequality holds:

||e(t)||≤ τ2d̄ + ω̄

τ1
(eτ1t − 1), t > 0, (9)

where e(t) = x(t) − z(t) and ω̄ is a positive number.

Proof We have

d

dt
||e(t)|| ≤ ||ė(t)||= ||ẋ(t) − ż(t)||= ||f(x(t), u(t), d(t)) − frnn(z(t), u(t))||

= ||f(x(t), u(t), d(t)) − f(z(t), u(t), 0)
+ f(z(t), u(t), 0) − frnn(z(t), u(t))||. (10)

On the other hand, for all x, z ∈ R, the following inequality is satisfied:

||f(x(t), u(t), d(t)) − f(z(t), u(t), 0)||≤ τ1||x − z||+τ2d̄. (11)

By using (36), (11) and inequality ||f(z(t), u(t), 0) − frnn(z(t), u(t))||≤ ω̄, we obtain

d

dt
||e(t)||≤τ1||e(t)||+τ2d̄ + ω̄. (12)

Since τ1 and τ2d̄ + ω̄ are positive numbers, under the zero initial condition, the inequality (9) is obtained. The
proof is completed. �
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3.2 State estimation for the recurrent neural networks by using an event-triggered state observer

In the following, we extend the results reported in [10] to estimate the states of the RNN (4). For this, the following
event-triggered state observer is proposed

˙̂z(t) = Aẑ(t) + Ωzη(ẑ(t)) + Ωuu(t) + K(y(sk) − Cẑ(sk)), t ∈ [sk, sk+1), (13)

where the observer gain matrix will be designed, and the triggering instants {sk}k∈N is determined by the following
ETM:

s0 = 0, sk+1 = sk + h min
{
ξ ∈ N

+ | H(eε(t), ε(sk)) > γ(sk), h > 0
}

, (14)

where H(eε(t), ε(sk)) = α[eε(t)T (t)Ξeε(t) − μεT (sk)Γε(sk)], ε(t) = z(t) − ẑ(t), eε(t) = ε(sk) − ε(sk + ξh), ξ ∈ N,
α, μ ∈ (0, ∞), Ξ > 0, and

γ̇(t) = −ζγ(t) + μεT (sk)Γε(sk) − eT
ε (t)Γeε(t), ζ ∈ (0, ∞), γ(0) = 0. (15)

By denoting ηzẑ(t) = η(z(t)) − η(ẑ(t)) and τ(t) = t − sk − rh, t ∈ Ir, the following error dynamic system is
obtained:

ε̇(t) = Aε(t) + Ωzηzẑ(t) − KCε(t − τ(t)) − KCeε(t), t ∈ [sk + σk, sk+1 + σk+1), (16)

ε(s) = ε(0), s ∈ [−h, 0]. (17)

The following theorem can be considered as the general case of Theorem 3.1 in [10]. It allows us to determine the
gain matrix K such that the error dynamic system (16) is asymptotically stable (Figs. 1, 2).

Fig. 1 Schematic of the
event-triggered state
observer (13)
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Theorem 1 Given θ > 0, system (16) is asymptotically stable if there exist P > 0, Q > 0, R > 0, Γ > 0, Z , X ,
non-singular S , δ ∈ (0, ∞), such that for β ∈ {0, 1}:

Φ�(β) =
[

Φ(β) ∇
∗ −δIn

]
< 0, (18)

Φ =
[

diag (R, R) Z
∗ diag (R, R)

]
> 0, (19)

where
Φ(β) = Φ1(β) + Φ2(β) + δη̄2

maxν
T
1 ν1, η̄max

= max{η̄1, . . . , η̄n},

Φ1(β) = sym {ΨT
β PΓ} + νT

1 Qν1 − νT
3 Qν3 + h2νT

4 R2ν4 − ΔT ΦΔ

+ μνT
2 Γν2 + μνT

7 Γν7 − sym
{[

νT
1 νT

4

]

[
θS
S

]
ν4

}
, Φ2(β) = sym

{[
νT
1 νT

4

]
[

θS
S

]
Aν1 − [

νT
1 νT

4

]

[
θX
X

]
Cν2 − [

νT
1 νT

4

]
[

θX
X

]
Cν7

}
,

Ψβ =
[
νT
1 βhνT

5 + (1 − β)hνT
6

]T , Γ =
[
νT
4 (νT

1 − νT
3 )

]T ,

Δ =
[
Δ1 Δ2 Δ3 Δ4

]T , Δ1 =
[
(ν1 − ν2)T

]
,

Δ2 =
[√

3(ν1 + ν2 − 2ν5)T
]
, Δ3 =

[
(ν2 − ν3)T

]
,

Δ4 =
[√

3(ν2 + ν3 − 2ν6)T
]
,

∇ =
[
νT
1 νT

4

]

[
θS
S

]
× Ωz

[
In 0n×n

]
,

νi =
[
0n×(i−1)n In 0n×(6−i)n 0n×n

] ∈ R
n×(7n+n), i = 1, . . . , 6,

ν7 =
[
0n×6n In

] ∈ R
n×(6n+n).

The observer gain matrix K is obtained as
K = S−1X. (20)

Proof We denote ẽ(t) =
[
εT (t)

∫ t

t−h
εT (s)ds

]T

and consider the following Lyapunov function:

V (t) = γ(t) + ẽT (t)Pẽ(t) +
∫ t

t−h

εT (s)Qε(s)ds

+ h

∫ 0

−h

∫ t

t+ξ

ε̇T (s)Rε̇(s)ds. (21)

In light of the proof of Lemma 4 in [9], it is proved that γ(t) ≥ 0 and thus V (t) ≥ 0, ∀t > 0. We have the following
estimate:

V̇ (t) = − λγ(t) + μ(ε(t − τ(t)) + νε(t))T Γ(ε(t − τ(t)) + νε(t))+

+ 2ζT (t)ΨT
β PΓζ(t) + ζT (t)[νT

1 Qν1 − νT
3 Qν3]ζ(t)+

+ h2ζT (t)(νT
4 Rν4)ζ(t) − h

∫ t

t−τ(t)

ε̇T (s)Rε̇(s)ds

− h

∫ t−τ(t)

t−h

ε̇T (s)Rε̇(s)ds, (22)

123



Eur. Phys. J. Spec. Top.

where

ζ(t) =
[
ζ1(t) ζ2(t) ζ3(t) ζ4(t)

]T ,

ζ1(t) =
[
εT (t) εT (t − τ(t))

]
,

ζ2(t) =
[
εT (t − h) ε̇T (t)

]
,

ζ3(t) =
[

1
τ(t)

∫ t

t−τ(t)
εT (s)ds

]
,

ζ4(t) =
[

1
h−τ(t)

∫ t−τ(t)

t−h
εT (s)ds eT

ε (t)
]
. (23)

Now, by employing the Wirtinger-based integral inequality [21], the reciprocally convex combination inequality
[18], the Cauchy matrix inequality and the Schur Complement Lemma [4], one gets

V̇ (t) ≤ ζT (t)Φ�(β)ζ(t), (24)

where β ∈ (0, 1).
Thus,

V̇ (t) < 0 (25)

holds if Φ > 0 and Φ(β) < 0, ∀β ∈ (0, 1). Since Φ�(β) is convex with respective to β, Φ�(β) < 0 ∀β ∈ {0, 1}
implies Φ�(β) < 0 ∀β ∈ (0, 1). Therefore, (16) is asymptotically stable. The proof is completed. �

Remark 2 Provided that eσξh < ασ + 1 holds, where μ, σ, α are positive scalars and ξ is the smallest integer
number satisfying h ≤ sk+1 − sk ≤ ξh. For γ(t) defined in (15), we have γ(t) ≥ 0 for all t > 0. Indeed, for all
t ∈ [sk, sk+1), (14) indicates that

−eε(t)T (t)Ξeε(t) ≥ − 1
α

γ(sk). (26)

It follows from (15) and (26) that

γ(t) ≥
(
e−σ(t−sk)(1 +

1
ασ

) − 1
ασ

)
γ(sk) ≥

(
e−σξh(1 +

1
ασ

) − 1
ασ

)
γ(sk). (27)

From inequalities (15), (26), (27) and the assumption eσξh < ασ + 1, the following inequalities satisfied:

d

dt
γ(t) ≥ −σγ(t) − 1

α
γ(sk)

≥ −
(
σ +

1
α(e−σξh(1 + 1

ασ ) − 1
ασ )

)
γ(t), (28)

which indicates that γ(t) ≥ 0, ∀t ≥ 0.

Remark 3 For ETM (14), when the inequality in (14) holds, an event is triggered, and sk+1 is obtained. Since
α > 0 and γ(t) ≥ 0, the inequality in (14) is evaluated and thus sk+1 is determined.

Remark 4 The method in this paper can be extended to estimate the state vectors of the following nonlinear
time-delay system:

ẋ(t) = f(x(t), x(t − τx), u(t), d(t)), t ≥ 0, (29)

x(θ) = φ(θ), θ ∈ [−τx, 0], (30)

y(t) = Cx(t), (31)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input vector, y(t) ∈ R
p is the output vector, d(t) ∈ R

� is the
external disturbance vector, f (.) is a matrix function, C ∈ R

p×n is a constant matrix, τx > 0 is a known constant
time delay, φ(θ) is a continuous initial function.
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For the first step, system (29)–(31) is predicted by the following RNN:

ż(t) = frnn(z(t), z(t − τx), u(t)) = Az(t) + Θzσ(z(t))
+Θτxzσ(z(t − τx)) + Θuu(t), t ≥ 0, (32)

z(θ) =φ(θ), θ ∈ [−τx, 0], (33)

y(t) = Cz(t), (34)

where z(t) ∈ R
n, u(t) ∈ R

m, y(t) =
[
y1(t) y2(t) y3(t)

]T ∈ R
2n+m, y1(t) =

⎡

⎢
⎣

y1(t)
...

yn(t)

⎤

⎥
⎦ =

⎡

⎢
⎣

σ(z1(t))
...

σ(zn(t))

⎤

⎥
⎦,

y2(t) =

⎡

⎢
⎣

yn+1(t)
...

y2n(t)

⎤

⎥
⎦ =

⎡

⎢
⎣

σ(z1(t − τx))
...

σ(zn(t − τx))

⎤

⎥
⎦, y3(t) =

⎡

⎢
⎣

y2n+1(t)
...

y2n+m(t)

⎤

⎥
⎦ =

⎡

⎢
⎣

u1(t)
...

um(t)

⎤

⎥
⎦, where σ(·) is the activation function

satisfying the following inequality

|σi(v1) − σi(v2)|≤ σ̄i|v1 − v2|, ∀v1, v2 ∈ R, (35)

where σ̄i > 0 for i = 1, 2, . . . , n are positive scalars.

A = − diag {a1, a2, . . . , an},

⎡

⎣
Θz

Θτxz

Θu

⎤

⎦ = Θ, Θ =

⎡

⎢
⎣

θ1

...
θn

⎤

⎥
⎦ ∈ R

(2n+m)×n (θi = bi

⎡

⎢
⎣

wi1

...
wi(2n+m)

⎤

⎥
⎦

T

, ai > 0, bi are

constants, for i = 1, . . . , n, j = 1, . . . , n + m, matrices wij are the weight connecting from the jth input to the ith
neuron, which will be optimized during training.

We can determine optimal weighs a∗
i and θ∗

i for the RNN model (32) by solving the following ordinary least
squares linear regression

(a∗
i , θ∗

i ) = Λ∗
i = arg min

Λi

1
2
‖SiΛi − zi‖2, (36)

where

Si =

⎡

⎢
⎢
⎢
⎣

[S1]i ȳ�
1

[S2]i ȳ�
2

...
[SN ]i ȳ�

N

⎤

⎥
⎥
⎥
⎦

, zi =

⎡

⎢
⎢
⎢
⎣

fi(s1, s1τx , u1)
fi(s2, s2τx , u2)

...
fi(sN , sNτx , uN )

⎤

⎥
⎥
⎥
⎦

, Λi =
[
ai

θi

]
.

For the second step, the following event-triggered state observer is proposed to estimate the state vector of the
RNN model (32):

˙̂z(t) =Aẑ(t) + Θzσ(ẑ(t))+Θτzσ(ẑ(t − τx))
+ Θuu(t) + K(y(sk) − Cẑ(sk)), t ∈ [sk, sk+1), (37)

where ẑ(t) ∈ R
n is the estimate of z (t), K is the gain matrix to be designed.

By following the proof of Theorem 1, we obtain the following theorem, which guarantees that the error dynamic
system (37) is asymptotically stable:

Theorem 2 Given ϑ > 0, system (37) is asymptotically stable if there exist P > 0, Q > 0, R > 0, Γ > 0, Z , X ,
non-singular S , δ1, δ2 ∈ (0, ∞), such that for θ ∈ {0, 1}:

Δ�(θ) =
[

Δ(θ) ∇
∗ − diag (δ1In, δ2In)

]
< 0, (38)

Φ =
[

diag (R, R) Z
∗ diag (R, R)

]
> 0, (39)
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Fig. 2 Schematic of the
event-triggered state
observer (37)

where

Δ(θ) = Δ1(θ) + Δ2(θ) + δ1σ̄
2
maxε

T
1 ε1 + δ2σ̄

2
maxε

T
8 ε8, σ̄max

= max{σ̄1, . . . , σ̄n},

Δ1(θ) = sym {ΨT
θ PΓ} + εT

1 Qε1 − εT
3 Qε3 + h2εT

4 R2ε4 − ΛT ΦΛ

+ μεT
2 Γε2 + μεT

7 Γε7 − sym
{[

εT
1 εT

4

]

[
ϑS
S

]
ε4

}
,

Δ2(θ) = sym
{[

εT
1 εT

4

]

[
ϑS
S

]
Aε1 − [

εT
1 εT

4

]
[

ϑX
X

]
Cε2 − [

εT
1 εT

4

]
[

ϑX
X

]
Cε7

}
,

Ψθ =
[
εT
1 θhεT

5 + (1 − θ)hεT
6

]T , Γ =
[
εT
4 (εT

1 − εT
3 )

]T ,

Λ =
[
Λ1 Λ2 Λ3 Λ4

]T , Λ1 =
[
(ε1 − ε2)T

]
,

Λ2 =
[√

3(ε1 + ε2 − 2ε5)T
]
, Λ3 =

[
(ε2 − ε3)T

]
,
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Λ4 =
[√

3(ε2 + ε3 − 2ε6)T
]
,

∇ =
[
εT
1 εT

4

]
[

ϑS
S

]
(Θzh1 + Θτzh2),

h1 =
[
In 0n×n

]
, h2 =

[
0n×n In

]
,

εi =
[
0n×(i−1)n In 0n×(7−i)n 0n×n

] ∈ R
n×(7n+n), i = 1, . . . , 7,

ε8 =
[
0n×7n In

] ∈ R
n×(7n+n).

The observer gain matrix K is obtained as

K = S−1X. (40)

4 Event-triggered state estimation for the PMSM

We now apply the obtained results in Sect. 3 to estimate the electrical angular velocity, the electrical angle, and
the currents of the following permanent magnet synchronous motor [7]:

ω̇r(t) =
3n2

p

2J

(
ψr + (Ld − Lq)id(t)

)
iq(t)

− np

J
sL − 1

J
Bωr(t), (41)

θ̇r(t) = ωr(t), (42)

i̇q(t) = −Rs

Lq
iq(t) − ωr(t)

Ld

Lq
id(t)

− ωr(t)
ψr

Lq
+

1
Lq

uq(t), (43)

i̇d(t) = − Rs

Ld
id(t) + ωr(t)

Lq

Ld
iq(t) +

1
Ld

ud(t), (44)

where Rs is the stator resistance (Ω), ud(t), uq(t), id(t), iq(t), Ld and Lq are the d − q axis stator voltages (V),
currents (A) and inductances (Wb), respectively, ψr is the amplitude of the permanent magnet flux linkage (Wb),
ωr(t) and θr(t) are the electrical angular velocity (rad/s) and the electrical angle (rad), np is the number of pole
pairs, sL is the load torque (N.m), J and Bb are the total moment of inertia (kg.m2) and the viscous friction
coefficient (Nm.s/rad).

Clearly, the PMSM (41)–(44) is in the form of system (1)–(3). It follows from [10] that assumptions (A1), (A2),
and (A3) hold and the error between the state of (1)–(3) and the recurrent neural networks (4)–(6) satisfies the
following inequality:

||e(t)||≤
np

J d̄ + ω̄

γ
(eγt − 1), t > 0, (45)

where e(t) = x(t) − z(t), ω̄ is a positive number, and

γ =

√

max{4M
L2

d

L2
q

, 2M(
9n4

p(Ld − Lq)
2

4J2
+

L2
d

L2
q

)}

M ∈ (0, ∞) such that the states of the permanent magnet synchronous motor operate in a bounded region
R = {z ∈ R

4||zi|≤ M}. By using the RNN (4)–(6) and the event-triggered state observer (13), the trajectory of
the PMSM is estimated.
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5 Conclusion

We have solved the problem of estimating the states of nonlinear systems. A RNN model which predicts the
nonlinear systems and a dynamic event-triggered state observer for this model have been derived. The obtained
theoretical analysis is applied to estimate the electrical angular velocity, the electrical angle, and the currents of
the permanent magnet synchronous motor. Numerical results have been provided to demonstrate the merit of the
proposed method. Further work is required to consider the event-triggered state estimation problem for time-delay
nonlinear systems with external disturbances in the outputs. Also, extending the method in this paper to solve the
problem of estimating the state vectors of nonlinear fractional-order systems and nonlinear interconnected systems
are interesting problems for future research.
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