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Abstract
In this paper, we consider both unconstrained and constrained uncertain vector opti-
mization problems involving free disposal sets, and study the qualitative properties
of their robust Benson efficient solutions. First, we discuss necessary and sufficient
optimality conditions for the robust Benson efficient solutions of these problems using
the linear scalarization method. Then, by utilizing this approach, we investigate the
semicontinuity properties of the solution maps when the problem data is perturbed by
parameters given in parameter spaces. Finally, we suggest concepts of approximate
robust Benson efficient solutions and investigate Hausdorff well-posedness conditions
for such problems with respect to these approximate solutions. Several examples are
provided to illustrate the applicability and novelty of the results obtained in this study.
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1 Introduction

Vector optimization problems play important role in many fields such as politics,
business, industrial systems, management science, networks,... When applying vector
optimization models to practical situations, depending on the desired outcomes, vari-
ous concepts of efficient solutions have been considered, such as weak/strong efficient
solutions [4, 33], Edgeworth/Pareto efficient solutions [17], Pareto efficient solutions
[45], Geoffrion efficient solutions [21], Borwein efficient solutions [10], Benson effi-
cient solutions [8], and Henig efficient solutions [16, 29] among others. Among these,
Geoffrion efficient solutions are regarded as having clear practical significance, mak-
ing [21] the foundational work that sparked subsequent studies on efficient solutions
in vector optimization models. Within this line of research, Borwein efficient solu-
tions have emphasized geometric properties and eliminated ineffective decisions in
decision-making, and thus establishing themselves as a standard concept in vector
optimization [30]. In 1979, Benson [7] introduced the concept of efficient solutions,
now known as Benson efficient solutions, which generalize Geoffrion and Borwein
efficient solutions and are regarded as a type of efficient solution that meets various
requirements in specific optimization models [6–8].

One of the key factors influencing the various types of efficient solutions men-
tioned above is the structure of the criterion sets used to evaluate solution efficiency.
As a result, studying optimization models by replacing or extending the structure of
ordering cones has recently become a fascinating and widely explored topic. In this
research stream, several sets have been proposed as replacements for the ordering
cone, including the improvement set [27, 28, 46, 59, 60], the free disposal set [26,
34, 38, 52, 56, 61], and the co-radiant set [20, 24]. Among these, the free disposal set
unifies the concepts of the improvement set and the ordering cone. Consequently, opti-
mization models involving free disposal sets have attracted significant interest from
mathematicians in recent years. Let us now provide a brief overview of notable works
on optimization problems involving the free disposal set. In 2015, Gutiérrez et al. [26]
proposed various concepts of quasi-minimality associated with free disposal sets and
described these solutions through scalarization techniques and Lagrange multiplier
principles. When specific convexity conditions are met, the findings are derived using
linear separation methods and the Fenchel subdifferential. In contrast, for nonconvex
problems, the results are formulated using the Gerstewitz nonlinear separation func-
tional and theMordukhovich subdifferential. Next, in [38], based on theHiriart-Urruty
oriented function, the authors considered a nonlinear scalarization function related to
free disposal sets. Then, by using this function, they established sufficient conditions
for various types of semicontinuity such as B-semicontinuity, H-semicontinuity, and
outer/inner continuity for solution maps of quasivariational inequalities involving free
disposal sets. Then, in 2022, Shao et al. [52] investigated the connectedness of solution
sets for generalized vector equilibrium problems involving free disposal sets within
a complete metric space. Utilizing the Gerstewitz scalarization function and the ori-
ented distance function, the researchers developed a novel scalarization approach and
analyzed its properties. Utilizing this function, the authors investigated the existence
of solutions for the scalarization problems thereby establishing a relationship between
the solution sets of the reference problems and the corresponding scalarization prob-
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lems. Additionally, Kiyani et al. [34] also used the oriented distance function and the
non-convex separation function to establish optimality conditions for efficient solution
of the unconstrained vector optimization problem. Recently, Tung and Duy [56] uti-
lized the sequential compactness of feasible sets and the uniform coerciveness of the
objective functions to examine the convergence in the sense of Painlevé-Kuratowski
for efficient and approximate solutions of vector optimization problems involving the
free disposal set. Very recently, in 2024, Zhou et al. [61] considered and investigated
the properties of a generalized nonlinear Gerstewitz function for free disposal sets.
They used these properties to study the stability in terms of lower and upper semicon-
tinuities for solution maps of parametric vector equilibrium problems involving free
disposal sets.

Uncertain optimization problems are an important branch of optimization theory
and have recently garnered significant research interest from mathematicians. These
problems arise from the reality that input data in practical scenarios are often impre-
cise, which may result from measurement errors, lack of information, or the inherent
randomness of systems. It is also noteworthy that in practical situations, data con-
taining imperfect information, as mentioned above, is almost unavoidable. Therefore,
optimization problems with uncertain data play a crucial role in addressing com-
plex challenges in the real world [19, 35, 50]. The literature highlights two primary
approaches to addressing optimization problems with uncertain data: stochastic opti-
mization and robust optimization. Stochastic optimization relies on prior knowledge
of a specific probability distribution associated with the uncertain data. Its objective
is to identify a solution that satisfies feasibility constraints with a given probability
while maximizing the expected value of a cost function [42]. In contrast, robust opti-
mization does not require any assumptions about probability distributions. Instead, it
defines an uncertainty set for the data and aims to determine a solution that remains
feasible under all possible scenarios within this set, a property referred to as robust
feasibility [2, 15, 32, 47, 57]. For more details insights into the role and significance
of robust optimization problems in meeting practical application demands, as well as
the tools and techniques used for these problems, we would like to prefer readers to
some important works on this topic [5, 36].

Motivated by the above observations, this paper aims to study robust uncertain opti-
mization problems and examine the qualitative properties of their Benson efficient
solutions. Specifically, in Sect. 2, we recall some fundamental concepts, including
the semicontinuity of set-valued maps, convex separation theorems, and generalized
convexlikeness properties of vector-valued maps. In Sect. 3, we derive the neces-
sary and sufficient optimality conditions for such solutions of both unconstrained
and constrained uncertain vector optimization problems through the use of the lin-
ear scalarization method. Subsequently, in Sect. 4, we investigate the semicontinuity
properties of the robust Benson efficient solution maps for such problems, utilizing the
scalarization representation of the solution sets. Following this, Sect. 5 introduces the
concept of Hausdorff well-posedness for these problems, and by applying the linear
scalarizationmethod, we derive well-posedness conditions for the reference problems.
Finally, some concluding remarks are presented in the last section, Sect. 6.
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2 Preliminaries

Let X, Y, W be normed spaces and Y
∗ be the topological dual space of Y, and K

be a closed convex pointed cone in Y with nonempty interior. The family of all the
nonempty subsets of X and Y are denoted by P(X) and P(Y), respectively. Let D be a
nonempty subset of Y, the topological interior and closure of D are denoted by int D
and cl D, respectively. The dual set and the strictly dual set of D are defined by

D∗ := {τ ∈ Y
∗ : τ(d) ≥ 0 for all d ∈ D},

and
D# := {τ ∈ Y

∗ : τ(d) > 0 for all d ∈ D \ {0Y}},
respectively. Obviously,

(−D)∗ = −(D)∗.

Lemma 2.1 [62, Lemma 2.2] If D ⊂ Y is a convex set with nonempty interior, then

D∗ = (int D)∗.

Definition 2.1 [40, Definition 1.5] Let B ∈ P(Y). Then, we say that

(a) B generates the cone K , written as K = cone(B), if

K = cone(B) = {tb : t ≥ 0, b ∈ B};

(b) B is a base of K if B does not contain zero and for each k ∈ K , k �= 0Y, there are
unique b ∈ B, t > 0 such that k = tb.

The closure of cone(D) is denoted by clcone(D). Based on [31, Lemma 3.21], one
has

int K = {y ∈ Y : τ(y) > 0 for all τ ∈ K ∗ \ {0Y∗}}. (1)

In the rest of this section, we consider Φ,Φi : X ⇒ Y being set-valued maps,
ζ : X → Y and η : X → W being vector-valued maps. We recall concepts of
(semi)continuity and their properties.

Definition 2.2 [22, Definition 2.5.1] The map Φ is said to be

(a) upper semicontinuous (usc) at x0 ∈ X if for any neighborhood Ξ of Φ(x0), there
exists a neighborhood Δ of x0 such that Φ(x) ⊆ Ξ for all x ∈ Δ;

(b) Hausdorff upper semicontinuous (Husc) at x0 ∈ X if for each neighborhood Ξ of
the origin in Y, there exists a neighborhood Δ of x0 such that Φ(x) ⊆ Φ(x0)+Ξ

for all x ∈ Δ;
(c) lower semicontinuous (lsc) at x0 ∈ X if for any open subset Ξ of Y with Φ(x0) ∩

Ξ �= ∅, there exists a neighborhood Δ of x0 such that Φ(x) ∩ Ξ �= ∅ for all
x ∈ Δ;

(d) Hausdorff lower semicontinuous (Hlsc) at x0 ∈ X if for each neighborhood Ξ of
the origin in Y, there exists a neighborhood Δ of x0 such that Φ(x0) ⊆ Φ(x)+Ξ

for all x ∈ Δ.
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It is said that Φ is usc, Husc, lsc, Hlsc on a nonempty subset Ω of X if Φ is usc,
Husc, lsc, Hlsc at every element x ∈ Ω, respectively.We also say thatΦ is continuous,
Hausdorff continuous onΩ if it is both usc and lsc, Husc and Hlsc onΩ , respectively.

Lemma 2.2 The following statements are true

(a) [44, Proposition 2.6]Φ is lower semicontinuous at x0 iff for any sequense {xn} ⊂ X

converging to x0 and y0 ∈ Φ(x0), then there exists a sequence {yn} with yn ∈
Φ(xn) such that {yn} converges to y0, or equivalently Φ(x0) ⊆ lim inf Φ(xn) :=
{y0 ∈ Y : ∃yn ∈ Φ(xn), yn → y0}.

(b) [44, Proposition 2.19] If Φ(x0) is compact, then Φ is upper semicontinuous at x0
iff for any sequence {xn} ⊂ X converging to x0 and yn ∈ Φ(xn), there exists a
subsequence {ynk } of {yn} such that {ynk } converges to y0 ∈ Φ(x0).

Lemma 2.3 [44, Theorem 2.68] The following statements hold true.

(a) If Φ is usc at x0, then Φ is Husc at x0. Conversely, if Φ is Husc at x0 and Φ(x0)
is compact, then Φ is usc at x0.

(b) If Φ is Hlsc at x0, then Φ is lsc at x0. Conversely, if Φ is lsc at x0 and Φ(x0) is
compact, then Φ is Hlsc at x0.

Lemma 2.4 [9, Theorem 2] The unionΦ = ⋃
i∈I Φi of a family of lsc set-valued maps

Φi is also a lsc set-valued map, where I is an index set.

Definition 2.3 [40, Definition 5.1 ] Let x0 ∈ X. The map η is said to be

(a) K -lower semicontinuous (K -lsc) at x0 if for any neighborhood Ξ of η(x0), there
exists a neighborhood Δ of x0 such that η(Δ) ⊆ Ξ + K ;

(b) K -upper semicontinuous (K -usc) at x0 if for any neighborhood Ξ of η(x0), there
exists a neighborhood Δ of x0 such that η(Δ) ⊆ Ξ − K ;

where η(Δ) = {η(x) : x ∈ Δ}.
Lemma 2.5 [27, Lemma 4.2] Let {ϕn} ⊂ Y

∗ with ϕn
w∗−→ ϕ0, that is, ϕn(z) → ϕ0(z)

for every z ∈ Y and {zn} ⊂ Y with zn → z0. Then, ϕn (zn) → ϕ0 (z0).

Now we recall results of the separation for convex sets, which are used in the next
sections in this page.

Lemma 2.6 Let C1,C2 ∈ P(Y).

(a) [39, Lemma 2.1] If C1, C2 are closed convex cones such that C1 ∩ (−C2) = {0Y},
C2 is pointed and has a compact base, then C#

2 ∩ C∗
1 �= ∅.

(b) [53, Lemma 1.4] If C1, C2 are cones in Y such that C1 ∩C2 = {0Y}, C1 is closed
and C2 has a compact base, then there exists a pointed convex cone S such that
C2\{0Y} ⊂ int S and C1 ∩ S = {0Y}.

(c) [31, Theorem 3.16] If C1, C2 are convex with intC1 �= ∅. Then, intC1 ∩ C2 = ∅
if and only if there exist τ ∈ Y

∗\ {0Y∗} and r ∈ R such that

τ(c1) ≤ r ≤ τ(c2) for all (c1, c2) ∈ C1 × C2,

and
τ(c) < r for all c ∈ intC1.
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Definition 2.4 Let D ∈ P(Y). Then, D is called

(a) [43, Definition 5] a free disposal set with respect to (w.r.t.) K if D + K = D;
(b) [12, Definition 2.5] an improvement set with respect to (w.r.t.) K if 0Y /∈ D and

D + K = D.

Remark 2.1 Based on the definitions, if D is an improvement set or a convex cone,
then it is a free disposal set.

Inspired by [1, 51], the concepts of generalized convexlikeness for a vector-valued
map are revisited through the following definition and lemma, which serve as key tools
for the main results in the subsequent sections.

Definition 2.5 Let Ω ∈ P(X) and D ∈ P(Y). Then, ζ is said to be

(a) D-convexlike on Ω if the set {ζ(x) : x ∈ Ω} + D is convex;
(b) D-subconvexlike on Ω if the set {ζ(x) : x ∈ Ω} + int D is convex;
(c) nearly D-subconvexlike on Ω if the set clcone({ζ(x) : x ∈ Ω} + D)) is convex.

Lemma 2.7 Let Ω ∈ P(X), D ∈ P(Y), E ∈ P(W) and the map (ζ, η) : Ω → Y × W

defined by
(ζ, η)(x) := ζ(x) × η(x) for all x ∈ Ω.

If ζ is nearly D-subconvexlike onΩ and η is nearly E-subconvexlike onΩ , then (ζ, η)

is nearly (D × E)-subconvexlike on Ω .

Proof Let (y1, w1), (y2, w2) ∈ clcone ({(ζ(x), η(x)) : x ∈ Ω} + (D × E)) and t ∈
[0, 1] be arbitrary. We have

y1, y2 ∈ clcone ({ζ(x) : x ∈ Ω} + D) and w1, w2 ∈ clcone ({η(x) : x ∈ Ω} + E) .

Then, there exist sequences {λin}, {αi
n} ⊂ R+, {uin} ⊂ {ζ(x) : x ∈ Ω}, {din} ⊂

D, {zin} ⊂ {η(x) : x ∈ Ω} and {vin} ⊂ E such that

λin(u
i
n + din) → yi and αi

n(z
i
n + vin) → wi ,

for all i ∈ {1, 2}. It leads to

tλ1n(u
1
n + d1n ) + (1 − t)λ2n(u

2
n + d2n ) → t y1 + (1 − t)y2,

and
tα1

n(z
1
n + v1n) + (1 − t)α2

n(z
2
n + v2n) → tw1 + (1 − t)w2.

Because ζ is nearly D-subconvexlike and η is nearly E-subconvexlike on Ω ,
clcone({ζ(x) : x ∈ Ω} +D) and clcone ({η(x) : x ∈ Ω} + E) are convex sets. Thus,

t y1 + (1 − t)y2 ∈ clcone({ζ(x) : x ∈ Ω} + D),

and
tw1 + (1 − t)w2 ∈ clcone ({η(x) : x ∈ Ω} + E) .
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Consequently,

(t y1 + (1 − t)y2, tw1 + (1 − t)w2) = t(y1, w1) + (1 − t)(y2, w2)

∈ clcone ({(ζ(x), η(x)) : x ∈ Ω} + (D × E)) ,

and hence the set clcone ({(ζ(x), η(x)) : x ∈ Ω} + (D × E)) is convex. Therefore,
the map (ζ, η) is nearly (D × E)-subconvexlike on Ω . �
Definition 2.6 [55, Definition 2.1] Let Ω ∈ P(X). The map η is said to be naturally
K -quasiconvex on Ω if for all x1, x2 ∈ Ω and λ ∈]0, 1[, there exists some μ ∈]0, 1[
such that

η(λx1 + (1 − λ)x2) ∈ μη(x1) + (1 − μ)η(x2) − K .

3 Optimality Conditions for Robust Benson Efficient Solutions

Let X, Y, W, K be defined as in Sect. 2, and U be a normed space. Let Ω ∈ P(X) and
ζ : Ω → Y be a vector-valued map, we consider the following problem

(VOP) min
x∈Ω

ζ(x).

Now, we consider a case of the objective map ζ also depends on parametric θ which
is unknown or uncertain. Let Θ ⊆ U be an uncertainty set reflecting the potential
scenarios that may occur, and ζ : Ω × Θ → Y be a map, we focus on the following
uncertain problem

(UVOP) min
x∈Ω
θ∈Θ

ζ(x, θ).

In what follows,Ω is called the feasible solution set and θ ∈ Θ is called a scenario.
Let D ∈ P(Y) be a free disposal set w.r.t. K . Motivated by [56, 57], we propose the

following concept of robust Benson efficient solution of (UVOP) involving the free
disposal set D as follows.

Definition 3.1 Let θ0 ∈ Θ be given. An element x0 ∈ Ω is called a robust
Benson efficient solution of (UVOP) corresponding to the scenario θ0, written as
x0 ∈ BEffK (UVOP)(ζ, D), if

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K ) = {0Y}.

Remark 3.1 (i) The study of solutions for uncertain optimization problems is a signif-
icant topic and has attracted considerable interest from researchers. One common
approach to these problems, used in many studies, is to address their solutions
through appropriate set-valued optimization problems. By this way, until now,
there are many interesting works on various solution properties for uncertain opti-
mization problems, such as existence conditions [47], optimality conditions [11,
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34, 37], and stability conditions [2, 14, 47]. Using this approach, researchers have
discoveredmanyvaluable solution properties for these problems.However, amajor
drawback of this approach is that, for each given efficient solution, the concept
of efficiency only indicates the existence of a scenario that illustrates efficiency
of the solution without identifying this specific scenario, see e.g., [2, 11, 14, 34,
37, 47] and the references therein, and consequently these efficient solutions have
limited applicability to practical situations. This is the key difference between the
concept of efficient solution in Definition 3.1 and the existing concepts in [2, 11,
14, 34, 37, 47]. Specifically, the efficient solution concept proposed in Definition
3.1 is devoted to a given specific scenario, for instance the current scenario of
the problem under consideration. The motivation of the idea behind this concept
comes from many practical situations such as when we want to make decisions
for some works related to the weather factors such as rain, sunshine, wind, or
storms. In this case, factors that related to weather are uncertain scenarios, mak-
ing decisions corresponds to a specific scenario deemed highly likely would be far
more practical and, of course, would gainmore support than considering a solution
tied to an as-yet-undefined weather phenomenon. Similarly, in the case of making
production decisions based on uncertain factors such as consumer trends or shop-
ping habits, the concept of an efficient solution in Definition 3.1 can be viewed
as a solution tied to a specific scenario, derived from surveys or data collected
at the current time. Unfortunately, due to the complex structure, Benson efficient
solutions have not yet been considered for set optimization problems based on
set ordering relations. As a result, there are no any works to allow us to compare
the Benson efficient solution defined in Definition 3.1 with solutions approached
involving set optimization problems as mentioned above.

(ii) In order to explore relationships between the efficient solution in Definition 3.1
and concepts from relatedworks, we examine two special cases of the free disposal
set D as follows:
− When D = K , the efficient solution considered in Definition 3.1 coincides
with the concept of solution in Definition 4.2 of [57], where the authors used
the higher-order weak radial epiderivative to investigate optimality conditions for
robust Benson efficient solutions with respect to the ordering cone K . More specif-
ically, when Θ = {θ0}, then Definition 3.1 corresponds to Definition 3.1 in [59].
− If D is a improvement set with respect to K and Θ = {θ0}, then Definition
3.1 reduces to Definition 3.6 in [59], Definition 2.6 in [28], and Definition 2.9
in [27]. To the best of our knowledge, there have not been any works on robust
Benson efficient solutions of uncertain vector optimization problems involving
improvement sets.

The following example is provided to illustrate the computations for the efficient
solution in Definition 3.1.

Example 3.1 Let X = Y = U = R, K = R+, D = 1 + R+, Ω = [0, 2] Θ = [0, 1],
θ0 ∈ Θ , and ζ : Ω × Θ → Y defined by

ζ(x, θ) := x2 + θ2 for all (x, θ) ∈ Ω × Θ.
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Then, x0 ∈ Ω is a robust Benson efficient solution if and only if

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K ) = {0Y},

or equivalently

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K \ {0Y}) = ∅. (2)

On the other hand, we have

ζ(x, θ) − ζ(x0, θ0) + D = x2 + θ2 − x20 − θ20 + 1 + R+.

Therefore,

{ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D = [−x20 − θ20 ,−x20 − θ20 + 5] + 1 + R+
= [−x20 − θ20 + 1,−x20 − θ20 + 6] + R+
= [−x20 − θ20 + 1,+∞[.

Hence, statement (2) is satisfied if and only if x20 ≤ 1 − θ20 , and consequently

BEffK (UVOP)(ζ, D) =
[

0,
√
1 − θ20

]

.

For convenience in presentation, we consider the following assumptions, which
will be employed in the subsequent discussions.

(A0) K has a compact base.
(A1) ζ is nearly D-subconvexlike on Ω × Θ.

The following result establishes sufficient optimality conditions for the robust Ben-
son efficient solution of the problem (UVOP) corresponding to the scenario θ0.

Theorem 3.1 Let τ ∈ K # and θ0 ∈ Θ be given. Assume that x0 ∈ Ω satisfying

sup
x∈Ω
θ∈Θ

(τ(ζ(x0, θ0)) − τ(ζ(x, θ))) ≤ inf
d∈Dτ(d). (3)

Then, x0 ∈ BEffK (UVOP)(ζ, D).

Proof It is clear that 0Y ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩
(−K ). Let a ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D)∩(−K ) be arbi-
trary, we will show that a = 0Y. Because D is a free disposal set w.r.t. K that

a ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D + K ) ∩ (−K ) .
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Since a ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D + K ), there are
{tn} ⊂ R+, {(xn, θn)} ⊂ Ω × Θ, {dn} ⊂ D and {vn} ⊂ K such that

tn(ζ(xn, θn) − ζ(x0, θ0) + dn + vn) → a.

In view of τ ∈ K #, we obtain

tn (τ (ζ(xn, θn)) − τ(ζ(x0, θ0)) + τ(dn) + τ(vn)) → τ(a). (4)

Since inequality (3) holds, we have

τ(ζ(x0, θ0)) − τ(ζ(xn, θn)) ≤ τ(dn),

which implies that

τ(ζ(xn, θn)) − τ(ζ(x0, θ0)) + τ(dn) ≥ 0. (5)

On the other hand, it follows from τ ∈ K # and vn ∈ K that

τ(vn) ≥ 0. (6)

By employing (4), (5) and (6), we obtain

τ(a) ≥ 0. (7)

Furthermore, since τ ∈ K # and a ∈ −K , we have τ(a) ≤ 0. This together with (7)
implies that τ(a) = 0. Consequently, a = 0Y as τ ∈ K #, and thus

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K ) = {0Y}.

Therefore, x0 ∈ BEffK (UVOP)(ζ, D). �

The following example is provided to illustrate the applicability of Theorem 3.1.

Example 3.2 Let X = R, Y = R
2, K = R

2+, D = (1, 1) + R
2+, Ω = [0, 2],

Θ = [−1, 1] and θ0 = 1
2 . The vector-valued map ζ : Ω × Θ → Y is defined by

ζ(x, θ) := (x + |θ |, x4 + θ4) for all x ∈ Ω.

Let x0 = 0 ∈ [0, 2]. We have

ζ

(

0,
1

2

)

=
(
1

2
,
1

16

)

.
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Taking τ = (1, 1), we obtain

sup
x∈Ω
θ∈Θ

{
9

16
− x − |θ | − x4 − θ4

}

= 9

16
≤ inf

(d1,d2)∈D
{d1 + d2} = 2,

which provides that

sup
x∈Ω
θ∈Θ

{

τ ◦ ζ

(

0,
1

2

)

− τ ◦ ζ(x, θ)

}

≤ inf
d∈Dτ(d).

By Theorem 3.1, we obtain x0 = 0 ∈ BEffK (UVOP)(ζ, D).

Now, we employ the compact base property of K together with the subconvex-
likeness of ζ to consider necessary optimality conditions for robust Benson efficient
solutions of (UVOP) corresponding to the scenario θ0.

Theorem 3.2 Let θ0 ∈ Θ be given. Assume that assumptions (A0) and (A1) are
satisfied and x0 ∈ BEffK (UVOP)(ζ, D), then there exists τ ∈ K # such that x0
satisfies inequality (3).

Proof It follows from x0 ∈ BEffK (UVOP)(ζ, D) that

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K ) = {0Y}. (8)

Because ζ is nearly D-subconvexlike on Ω × Θ , we obtain that

clcone ({ζ(x, θ) : (x, θ) ∈ Ω × Θ} + D)

is convex,which implies that the set clcone ({ζ(x, θ)−ζ(x0, θ0) : (x, θ)∈Ω×Θ}+D)

is also convex. Combining this with (8) and assumption (A0), Lemma 2.6(a) yields
that there exists τ̂ ∈ K # satisfying

τ̂ ∈ (clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D))∗ ,

and consequently

τ̂ (z) ≥ 0 for all z ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) .

Since {ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D is a subset of the set

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D) ,

we also have

τ̂ (z) ≥ 0 for all z ∈ {ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Ω × Θ} + D.
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Therefore,

τ̂ (ζ(x, θ) − ζ(x0, θ0) + d) ≥ 0 for all (x, θ, d) ∈ Ω × Θ × D,

which leads to

τ̂ (ζ(x0, θ0)) − τ̂ (ζ(x, θ)) ≤ τ̂ (d) for all (x, θ, d) ∈ Ω × Θ × D.

Consequently,
sup
x∈Ω
θ∈Θ

(τ(ζ(x0, θ0)) − τ(ζ(x, θ))) ≤ inf
d∈Dτ(d).

In other words, inequality (3) is satisfied. �
We now consider a very important case where Y = R

n , namely when the problem
(UVOP) becomes a multi-objective optimization problem. By Remark 1.6 in [40],
the closed pointed convex cone K has a compact base, and hence assumption (A0) is
satisfied. The following result is obtained from Theorem 3.2.

Corollary 3.1 Let θ0 ∈ Θ . Assume that assumption (A1) holds and x0 ∈
BEffK (UVOP)(ζ, D), then there exists τ ∈ K # such that x0 satisfies inequality (3).

Turning to the constrained uncertain vector optimization problems, let C ⊂ W

be a closed pointed convex cone with nonempty interior. We denote by η : Ω ×
Θ → W a vector-valued map and consider the following constrained uncertain vector
optimization problem:

(CUVOP) min
x∈Ω,θ∈Θ

η(x,θ)∈−C

ζ(x, θ).

We will define a concept of robust Benson efficient solution of the problem
(CUVOP) as follows.

Definition 3.2 Let θ0 ∈ Θ be given. The element x0 ∈ Ω is termed a robust
Benson efficient solution of (CUVOP) corresponding to θ0, written as x0 ∈
BEffK (CUVOP)(ζ, η, D), if

clcone ({ζ(x, θ) − ζ(x0, θ0) : η(x, θ) ∈ −C, (x, θ) ∈ Ω × Θ} + D)∩(−K ) = {0Y}.

Setting Σ := {(x, θ) ∈ Ω × Θ : η(x, θ) ∈ −C}, by the same techniques as in the
proof of Theorem 3.1, we also obtain sufficient conditions for robust Benson efficient
solutions of the problem (CUVOP) corresponding to the scenario θ0 presented in the
following theorem.

Theorem 3.3 Let θ0 ∈ Θ be given. If x0 ∈ Ω and there exists (τ, ι) ∈ K # × C∗ such
that

sup
x∈Ω
θ∈Θ

[τ(ζ(x0, θ0)) − (τ (ζ(x, θ)) + ι(η(x, θ)))] ≤ inf
d∈Dτ(d), (9)

then x0 ∈ BEffK (CUVOP)(ζ, η, D).
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An example is presented below to showcase the applicability of Theorem 3.3.

Example 3.3 Let X = U = R, Y = W = R
2, K = C = R

2+, Ω = [−2, 2],
Θ = [0, 2], θ0 = 0, and D = {

(x, y) ∈ R
2 : y ≥ 3 − x

} ∩ {
(x, y) ∈ R

2 : y ≥ 3
}
.

The vector-valued maps ζ : Ω × Θ → Y and η : Ω × Θ → W are, respectively,
defined by

ζ(x, θ) := 2−θ

(
1

3
x,

1

4
x2

)

for all (x, θ) ∈ Ω × Θ,

and
η(x, θ) := (x − θ,−θ) for all (x, θ) ∈ Ω × Θ.

It is obvious thatΣ := {(x, θ) ∈ Ω ×Θ : x ≤ θ, 0 ≤ θ ≤ 2}. Choosing x0 = 1 ∈ Ω ,
we have ζ(1, 0) = ( 1

3 ,
1
4

)
. For τ = (1, 1) and ι = (0, 1), by direct computations, we

get

sup
x∈Ω
θ∈Θ

{((1, 1)(ζ(1, 0))) − ((1, 1)(ζ(x, θ)) + (0, 1)(η(x, θ)))} =

= sup
x∈Ω
θ∈Θ

{
7

12
−

(

2−θ

(
1

3
x + 1

4
x2

)

− θ

)}

= 94

36
,

and
inf

(d1,d2)∈D
(1, 1)(d1, d2) = 3,

which will imply that

sup
x∈Ω
θ∈Θ

[(1, 1)(ζ(1, 0)) − ((1, 1)(ζ(x, θ)) + (0, 1)(η(x, θ)))] ≤ inf
d∈D(1, 1)(d).

Consequently, inequality (9) is satisfied. By applying Theorem 3.3, we conclude
that x0 ∈ BEffK (CUVOP)(ζ, η, D).

Motivated by [39, Definition 2.2], we consider the following assumption to discuss
necessary optimality conditions for robust Benson efficient solutions.

(A2) (A generalized Slater Constraint Qualification condition) there exist x ∈ Ω and
θ ∈ Θ such that

η(x, θ) ∈ − intC .

We now discuss necessary optimality conditions for robust Benson efficient solu-
tions of the problem (CUVOP) corresponding to the scenario θ0 provided in the
following result.

Theorem 3.4 Let θ0 ∈ Θ be given. Assume that x0 ∈ BEffK (CUVOP)(ζ, η, D) and
assumptions (A0)-(A2) are satisfied. Then, there exists (τ, ι) ∈ K # × C∗ such that
inequality (9) holds true.
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Proof First, since the problem (CUVOP) satisfies assumption (A2), then it is clear
that the set clcone ({η(x, θ) : (x, θ) ∈ Ω × Θ} + C) is convex, and hence η is nearly
C-subconconvexlike on Ω × Θ . Then, by using assumption (A1) and Lemma
2.7, we imply that (ζ, η) is also nearly (D × C)-subconvexlike on Ω × Θ . Thus,
clcone({(ζ(x, θ), η(x, θ)) : (x, θ) ∈ Ω × Θ} +(D × C)) is convex, and so
clcone ({(ζ(x, θ) − ζ(x0, θ0), η(x, θ)) : (x, θ) ∈ Ω × Θ} + (D × C)) is also a con-
vex subset of Y × W.

Next, it follows from x0 ∈ BEffK (CUVOP)(ζ, η, D) that

− (clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D)) ∩ K = {0Y}. (10)

Setting C1 = − clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D) and C2 = K , we
have C1 ∩ C2 = {0Y}. Moreover, since C1,C2 are cones, C1 is closed, and C2 has a
compact base, Lemma 2.6(b) implies that there exists a pointed convex cone Ŝ such
that

(K \ {0Y}) ⊂ int Ŝ,

and
− clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D) ∩ Ŝ = {0Y}.

It leads to

clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D) ∩ (− int Ŝ) = ∅. (11)

We now show that
P ∩ (

(− int Ŝ) × (− intC)
) = ∅, (12)

where

P = clcone ({(ζ(x, θ) − ζ(x0, θ0), η(x, θ)) : (x, θ) ∈ Ω × Θ} + (D × C)) .

If (12) is not satisfied, we can find (ŷ, ŵ) ∈ Y × W such that

(ŷ, ŵ) ∈ P ∩ (
(− int Ŝ) × (− intC)

)
. (13)

Then, there are sequences {(dn, cn)} ⊂ D ×C , {λn} ⊂ R+, {xn} ⊂ Ω, and {θn} ⊂ Θ

such that

λn(ζ(xn, θn) − ζ(x0, θ0) + dn) → ŷ and λn(η(xn, θn) + cn) → ŵ. (14)

It is obvious that the sequence {λn(η(xn, θn) + cn)} converges to ŵ ∈ − intC, and so
there exists n̂ ∈ N such that

λn(η(xn, θn) + cn) ∈ − intC for all n ≥ n̂.

On the other hand, because C is a cone and λn �= 0, we have

η(xn, θn) + cn ∈ −C for all n ≥ n̂.
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Consequently, η(xn, θn) ∈ −C , which implies that (xn, θn) ∈ Σ for all n ≥ n̂. This
together with (14) provides that

ŷ ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D) .

Furthermore, in view of (13), we have ŷ ∈ − int Ŝ, and hence

ŷ ∈ clcone ({ζ(x, θ) − ζ(x0, θ0) : (x, θ) ∈ Σ} + D) ∩ (− int Ŝ),

which is impossible due to (11). Thus, (12) holds true.
By Lemma 2.6(c), there exists (τ, ι) ∈ (Y∗ × W

∗) \ {(0Y∗ , 0W∗)} such that

(τ, ι)(y, w) ≥ τ(k̂) + ι(c),

for all (y, w) ∈ clcone ({(ζ(x, θ) − ζ(x0, θ0), η(x, θ)) : (x, θ) ∈ Ω × Θ} + (D × C)) ,

and (k̂, c) ∈ (− int Ŝ) × (− intC). Therefore,

λ(τ(ζ(x, θ) − ζ(x0, θ0) + d) + ι(η(x, θ) + c1)) ≥ τ(−k̂1) + ι(−c2), (15)

for all λ ≥ 0, (x, θ) ∈ Ω × Θ, (d, c1) ∈ D × C, and (k̂1, c2) ∈ int Ŝ × intC . For
c1 = 0W and λ > 0, by (15), we obtain

τ(ζ(x, θ) − ζ(x0, θ0) + d) + ι(η(x, θ)) ≥ 1

λ

(
τ(−k̂1) + ι(−c2)

)
,

for all (x, θ) ∈ Ω × Θ, d ∈ D and (k̂1, c2) ∈ int Ŝ × intC . Let λ → ∞, we get that

τ(ζ(x0, θ0))−(τ (ζ(x, θ)) + ι(η(x, θ))) ≤ τ(d) for all (x, θ, d) ∈ Ω×Θ×D, (16)

which implies that

τ(ζ(x0, θ0)) − (τ (ζ(x, θ)) + ι(η(x, θ))) ≤ inf
d∈Dτ(d) for all (x, θ) ∈ Ω × Θ. (17)

Consequently,

sup
x∈Ω
θ∈Θ

[τ(ζ(x0, θ0)) − (τ (ζ(x, θ)) + ι(η(x, θ)))] ≤ inf
d∈Dτ(d).

By (15), and choosing λ = 0, we have

τ(k̂1) + ι(c2) ≥ 0 for all (k̂1, c2) ∈ int Ŝ × intC . (18)

Now, we prove that (τ, ι) ∈ K # × C∗. First, we suppose that there is c3 ∈ intC such
that ι(c3) < 0, then by (18), we have

τ(k̂) ≥ −ι(c3) > 0 for all k̂ ∈ int Ŝ.
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This implies that − τ(k̂)
ι(c3)

≥ 1, and hence

0 > ι(c3) = ι

((

− τ(k̂)

ι(c3)
+ 1

)

c3

)

+ τ(k̂),

which contradicts (18) as
(
− τ(k̂)

ι(c3)
+ 1

)
∈ intC . Therefore, we get that ι(c2) ≥ 0 for

all c2 ∈ intC .
Using the above techniques, we also obtain that τ(k̂1) ≥ 0 for all k̂1 ∈ int Ŝ. Due

to this and the fact that ι(c2) ≥ 0 for all c2 ∈ intC , Lemma 2.1 leads to

(τ, ι) ∈ (int Ŝ)∗ × (intC)∗ = (Ŝ)∗ × C∗.

If τ = 0(Ŝ)∗ , then by (16) and ι �= 0C∗ , one has

ι(η(x, θ)) ≥ 0 for all (x, θ) ∈ Ω × Θ. (19)

Moreover, it follows from assumption (A2) that there exist x1 ∈ Ω and θ1 ∈ Θ

such that η(x1, θ1) ∈ (− intC). Combining this with (1) and ι ∈ C∗\{0C∗}, we have
ι(η(x1, θ1)) < 0, which contradicts (19). Therefore, we conclude that τ �= 0(Ŝ)∗ .

Let d̂ ∈ K \ {0Y} ⊂ int Ŝ be arbitrary. Then, there exists a balanced neighborhood
Ξ of 0Y such that

d̂ + Ξ ⊂ Ŝ. (20)

Sine τ �= 0(Ŝ)∗ , there exists v̂ ∈ Ξ such that τ(v̂) > 0, if not we have τ(y) = 0 for
all y ∈ Y which is a contradiction. Furthermore, since Ξ is a balanced neighborhood,
we obtain −v̂ ∈ Ξ . It follows from (20) that d̂ − v̂ ∈ Ŝ, and thus

τ(d̂) − τ(v̂) = τ(d̂ − v̂) ≥ 0.

This together with τ(v̂) > 0 implies that τ(d̂) ≥ τ(v̂) > 0, and consequently τ ∈ K #

as d̂ ∈ K \ {0Y} is arbitrary. Therefore, (τ, ι) ∈ K # × C∗, and hence the proof is
completed. �

The next example is presented to demonstrate how Theorem 3.4 can be applied.

Example 3.4 Let X = U = R, Y = W = R
2, K = R

2+, C = R
2+, Ω = [−1, 2],

Θ = [0, 2], θ0 = 0 and D = (1, 1
2 ) + R

2+. The vector-valued maps ζ : Ω × Θ → Y

and η : Ω × Θ → W are, respectively, defined by

ζ(x, θ) := eθ (x, x2) for all (x, θ) ∈ Ω × Θ,

and
η(x, θ) := (−x, θ − x) for all (x, θ) ∈ Ω × Θ.

It is not hard to check that

Σ = {(x, θ) ∈ Ω × Θ : 0 ≤ x ≤ 2, x ≥ θ}.
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For x0 = 0, we have ζ(0, 0) = (0, 0), and hence

clcone ({ζ(x, θ) − (0, 0) : (x, θ) ∈ Σ} + D) ∩ (−K ) = {0R2}.

Therefore, x0 = 0 ∈ BEffK (CUVOP)(ζ, η, D).
Moreover, assumption (A0) of Theorem 3.4 holds true as K has a compact base

given by
B = {(b1, b2) ∈ R

2 : b1 + b2 = 1, 0 ≤ b1 ≤ 1}.
On the other hand, for x̂ = 2, θ̂ = 1, we have

η(2, 1) = (−2,−1) ∈ − intC,

and so assumption (A2) of Theorem 3.4 is satisfied.
It is also obvious that clcone ({ζ(x, θ) : (x, θ) ∈ Ω × Θ} + D) = R

2+ is convex,
and hence assumption (A1) of Theorem 3.4 holds.

By employing Theorem 3.4, there exists (τ, ι) ∈ K # × C∗ such that

sup
x∈Ω
θ∈Θ

[τ(ζ(x0, θ0)) − (τ (ζ(x, θ)) + ι(η(x, θ)))] ≤ inf
d∈Dτ(d). (21)

In fact, taking τ = (1, 1), ι = (1, 0), we have

sup
x∈Ω
θ∈Θ

[(1, 1)(0, 0)−((1, 1)(ζ(x, θ))+(1, 0)(η(x, θ)))]= sup
x∈Ω
θ∈Θ

[
−(eθ x + eθ x2−x)

]

= (e2 − 1)2

4e2
≈ 1.38.

Moreover,

inf
d∈D(1, 1)(d) = inf

(d1,d2)∈D
(d1 + d2) = 3

2
,

and hence (21) is satisfied.

We will finalize this section with applying obtained results to a very important special
case of (CUVOP), namely whenY is a finite dimensional space. By applying Theorem
3.4, we obtain the following result.

Corollary 3.2 Let Y be a finite dimensional space and θ0 ∈ Θ be given. Assume that
x0 ∈ BEffK (CUVOP)(ζ, η, D) and assumptions (A1), (A2) are satisfied. Then, there
exists (τ, ι) ∈ K # × C∗ such that inequality (9) holds.

Remark 3.2 Studying optimality conditions for efficient solutions of uncertain vector
optimization problems is challenging due to the computational rules for generalized
differentiation and subdifferentials of objective functions and constraint sets [13, 18,
48]. These rules become even more complex when we use to examine the optimal-
ity conditions for robust Benson efficient solutions of uncertain vector optimization
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problems. For this reason, up to now, we have not found any other works investi-
gating optimality conditions for Benson efficient solutions of such problems, aside
from Wang et al. [57], in which the authors studied optimality conditions for robust
Benson efficient solutions involving ordering cones by using the higher-order weak
radial epiderivative. Motivated by the above observations, this study does not pursue
the research direction of using tools such as generalized differentiation and subdiffer-
entials tailored to robust Benson efficient solutions in uncertain vector optimization
problems. Instead, we approach the problem using scalarization methods. With this
approach, we not only establish the optimality conditions presented in this section but
also derive stability conditions which will be discussed in the following sections.

4 Semicontinuities Conditions for Robust Benson Efficient Solution
Maps

Let X, Y, W, U, K ,C,Ω,Θ, D be defined as in Sect. 3, P be a normed space and
Γ ∈ P(P) and let ζ : Ω × Θ × Γ → Y be a map. For each γ ∈ Γ , we aim to discuss
qualitative properties of solutions of the following problem

(PUVOP) min
x∈Ω
θ∈Θ

ζ(x, θ, γ ).

Let θ0 ∈ Θ be given. Motivated by Definition 3.1, we propose the concept of robust
Benson efficient solution of (PUVOP) involving the free disposal set D as follows.

Definition 4.1 For each γ ∈ Γ , an element x0 ∈ Ω is called a robust Ben-
son efficient solution of (PUVOP) corresponding to the scenario θ0, written as
x0 ∈ BEffK (PUVOP)(ζ, D)(γ ), if

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + D) ∩ (−K ) = {0Y}.

We consider the map E : K ∗ × Γ ⇒ X defined by

(τ, γ ) �→E(τ, γ ) :=

⎧
⎪⎨

⎪⎩
x0 ∈ Ω : sup

x∈Ω
θ∈Θ

(τ(ζ(x0, θ0, γ ))−τ(ζ(x, θ, γ )))≤ inf
d∈Dτ(d)

⎫
⎪⎬

⎪⎭
,

for all (τ, γ ) ∈ K ∗×Γ , and we use it to study the scalar representation for the solution
sets. Similar to the previous section, we also impose some assumptions to simplify
the presentation.

(A′1) For each γ ∈ Γ , ζ(·, ·, γ ) is nearly D-subconvexlike on Ω × Θ .
(A3) Ω is compact.
(A′3) Ω is compact and convex, Θ is compact.
(A4) ζ is continuous on Ω × Θ × Γ .

(A5) For each γ ∈ Γ , ζ(·, θ0, γ ) is naturally K -quasiconvex on Ω.
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(A6) η is C-lower semicontinuous and naturally C-quasiconvex on Ω × Θ.

In view of Theorems 3.1 and 3.2, we have the following scalar representation of
robust Benson efficient solution set of (PUVOP) corresponding to the scenario θ0.

Lemma 4.1 For each γ ∈ Γ , we have

E(τ, γ ) ⊆ BEffK (PUVOP)(ζ, D)(γ ),

for all τ ∈ K #. Moreover, if assumptions (A0) and (A′1) are true, then

BEffK (PUVOP)(ζ, D)(γ ) =
⋃

τ∈K #

E(τ, γ ).

Now, we turn to studying the properties of the map E , and then we will use these prop-
erties, along with the results on the scalar representation obtained above, to examine
the stability for the robust Benson efficient solutions of (PUVOP).

Theorem 4.1 Assume that assumptions (A3) and (A4) are fulfilled. Then, E is com-
pact valued and upper semicontinuous on K ∗ × Γ .

Proof Assumption (A3) ensures the compact-valuedness of E by establishing its
closed-valuedness. For every (τ0, γ0) ∈ K ∗ × Γ and {xn} ⊂ E(τ0, γ0) converg-
ing to x0, we will show that x0 ∈ E(τ0, γ0). Because xn ∈ Ω and Ω is closed, we
conclude that x0 ∈ Ω . Since xn ∈ E(τ0, γ0), we have

sup
x∈Ω
θ∈Θ

(τ0(ζ(xn, θ0, γ0)) − τ0(ζ(x, θ, γ0))) ≤ inf
d∈Dτ0(d),

which implies that

τ0(ζ(xn, θ0, γ0)) − τ0(ζ(x, θ, γ0)) ≤ inf
d∈Dτ0(d) for all (x, θ) ∈ Ω × Θ.

Combining this with the continuity of τ0 and ζ , we obtain

τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0)) ≤ inf
d∈Dτ0(d) for all (x, θ) ∈ Ω × Θ.

Consequently,

sup
x∈Ω
θ∈Θ

(τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0))) ≤ inf
d∈Dτ0(d),

namely x0 ∈ E(τ0, γ0). Therefore, E(τ0, γ0) is a closed set, and hence it is a compact
set.
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Let {(τn, γn)} ⊂ K ∗ × Γ converging to (τ0, γ0), and xn ∈ E(τn, γn). It follows
from xn ∈ E(τn, γn) that

sup
x∈Ω
θ∈Θ

(τn(ζ(xn, θ0, γn)) − τn(ζ(x, θ, γn))) ≤ inf
d∈Dτn(d),

which implies that

τn(ζ(xn, θ0, γn)) − τn(ζ(x, θ, γn)) ≤ τn(d) for all (x, θ, d) ∈ Ω × Θ × D. (22)

Because xn ∈ Ω and Ω is compact, we can assume that {xn} converges to x0 ∈ Ω .
Moreover, by the continuity ζ and Lemma 2.5, inequality (22) implies that

τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0)) ≤ τ0(d) for all (x, θ, d) ∈ Ω × Θ × D.

It leads to
sup
x∈Ω
θ∈Θ

(τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0))) ≤ inf
d∈Dτ0(d),

and hence x0 ∈ E(τ0, γ0). Therefore, by Lemma 2.2(b), E is usc at (τ0, γ0). �
Next, in what follows, we consider a case of D = d0 + K , where d0 ∈ int K , we
establish sufficient conditions of the continuity of the map E as follows.

Theorem 4.2 Assume that assumptions (A′3), (A4) and (A5) are satisfied. Then, E
is continuous and compact valued on K ∗ \ {0Y∗} × Γ .

Proof Due to Theorem 4.1, we only need to prove that E is lsc at every element (τ0, γ0)
in K ∗ \ {0Y∗} × Γ .
� We first consider the map Ê : K ∗ \ {0Y∗} × Γ ⇒ Ω defined by

(τ, γ ) �→ Ê(τ, γ )

:=

⎧
⎪⎨

⎪⎩
x0 ∈ Ω : sup

x∈Ω
θ∈Θ

(τ(ζ(x0, θ0, γ )) − τ(ζ(x, θ, γ ))) < inf
d∈Dτ(d)

⎫
⎪⎬

⎪⎭
,

for all (τ, γ ) ∈ K ∗ \ {0Y∗}×Γ . We will show that Ê is lower semicontinuous at every
element (τ0, γ0) in K ∗ \ {0Y∗} × Γ .

If Ê is not lower semicontinuous at some (τ0, γ0) ∈ K ∗ \ {0Y∗} × Γ , then we can
find x0 ∈ Ê(τ0, γ0) and {(τn, γn)} converging to (τ0, γ0) such that for any sequence
{xn} with xn ∈ Ê(τn, γn), {xn} cannot converge to x0. Consequently, there exists
a subsequence {(τnk , γnk )} of {(τn, γn)} such that x0 /∈ Ê(τnk , γnk ) for all nk , or
equivalently

sup
x∈Ω
θ∈Θ

(τnk (ζ(x0, θ0, γnk )) − τnk (ζ(x, θ, γnk ))) ≥ inf
d∈Dτnk (d).
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Then, there exist (x̂nk , θ̂nk ) ∈ Ω × Θ and d̂nk ∈ D such that

τnk (ζ(x0, θ0, γnk )) − τnk (ζ(x̂nk , θ̂nk , γnk )) ≥ τnk (d̂nk ). (23)

SinceΩ×Θ is compact, we can assume that {(x̂nk , θ̂nk )} converges to (x̂, θ̂ ) ∈ Ω×Θ .
On the other hand, due to d̂nk ∈ D, we have d̂nk = d0 + knk as knk ∈ K . This together
with (23) helps us to conclude that

τnk (ζ(x0, θ0, γnk )) − τnk (ζ(x̂nk , θ̂nk , γnk )) ≥ τnk (d0) + τnk (knk ).

By knk ∈ K and τnk ∈ K ∗\{0Y∗}, we have τnk (knk ) ≥ 0, and hence

τnk (ζ(x0, θ0, γnk )) − τnk (ζ(x̂nk , θ̂nk , γnk )) ≥ τnk (d0). (24)

By the continuity of ζ and τnk , and Lemma 2.5, inequality (24) provides that

τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x̂, θ̂ , γ0)) ≥ τ0(d0). (25)

Moreover, because x0 ∈ Ê(τ0, γ0), we have

sup
x∈Ω
θ∈Θ

(τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0))) < inf
d∈Dτ0(d),

which implies that

τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0)) < inf
d∈Dτ0(d) for all (x, θ) ∈ Ω × Θ.

This is impossible due to (25). Therefore, Ê is lower semicontinuous at (τ0, γ0).
� Next, for any x̃ ∈ E(τ0, γ0) and x̂ ∈ Ê(τ0, γ0), by the natural K -quasiconvexity of
ζ(·, θ0, γ0) on Ω , we conclude that for each λ ∈]0, 1[, there is μ ∈]0, 1[ satisfying

ζ (xλ, θ0, γ0) ∈ μζ(x̃, θ0, γ0) + (1 − μ)ζ(x̂, θ0, γ0) − K ,

where xλ = (1 − λ)x̃ + λx̂ . Then, we can find some k ∈ K such that

ζ (xλ, θ0, γ0) = μζ(x̃, θ0, γ0) + (1 − μ)ζ(x̂, θ0, γ0) − k.

Combining this with τ0(k) ≥ 0, we obtain

τ0(ζ(xλ, θ0, γ0)) ≤ μτ0(ζ(x̃, θ0, γ0)) + (1 − μ)τ0(ζ(x̂, θ0, γ0)).

This together with x̃ ∈ E(τ0, γ0) and x̂ ∈ Ê(τ0, γ0) implies that

τ0(ζ(xλ, θ0, γ0)) < μ
[
τ0(ζ(x, θ, γ0)) + τ0(d)

] + (1 − μ)
[
τ0(ζ(x, θ, γ0)) + τ0(d)

]

< τ0(ζ(x, θ, γ0)) + τ0(d),
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for all (x, θ) ∈ Ω × Θ and d ∈ D. Therefore,

τ0(ζ(xλ, θ0, γ0)) − τ0(ζ(x, θ, γ0)) < τ0(d) for all (x, θ, d) ∈ Ω × Θ × D. (26)

On the other hand, due to the compactness of Ω and Θ , the continuity of ζ and τ0 will
imply that there exists (x̄, θ̄ ) ∈ Ω × Θ such that

τ0(ζ(xλ, θ0, γ0))−τ0(ζ(x̄, θ̄ , γ0)) = sup
x∈Ω
θ∈Θ

(τ0(ζ(xλ, θ0, γ0))−τ0(ζ(x, θ, γ0))). (27)

Moreover, because τ0 ∈ K ∗ \ {0Y∗}, we have

τ0(d0) = inf
d∈Dτ0(d). (28)

It follows from (26), (27) and (28) that

sup
x∈Ω
θ∈Θ

(τ0(ζ(λx̃ + (1 − λ)x̂, θ0, γ0)) − τ0(ζ(x, θ, γ0))) < inf
d∈Dτ0(d),

and hence xλ ∈ Ê(τ0, γ0) for allλ ∈]0, 1[. Combining thiswith xλ = (1−λ)x̃+λx̂ →
x̃ when λ → 0, we get that x̃ ∈ cl Ê(τ0, γ0), and hence E(τ0, γ0) ⊆ cl Ê(τ0, γ0).

Since Ê is lower semicontinuous at (τ0, γ0), we obtain

E(τ0, γ0) ⊆ cl Ê(τ0, γ0) ⊆ lim inf Ê(τn, γn) ⊆ lim inf E(τn, γn),

for any sequence {(τn, γn)} converging to (τ0, γ0). Consequently, E is lower semicon-
tinuous at (τ0, γ0), and hence the proof is finished. �

The following result dedicates sufficient conditions for the semicontinuities of
robust Benson efficient solution map of (PUVOP) corresponding to the scenario θ0.

Theorem 4.3 Assume that assumptions (A0), (A′1), (A′3), (A4) and (A5) are ful-
filled. Then, BEffK (PUVOP)(ζ, D) is lower semicontinuous and Hausdorff upper
semicontinuous with nonempty values on Γ .

Proof By Lemma 4.1, we obtain

BEffK (PUVOP)(ζ, D)(γ ) =
⋃

τ∈K #

E(τ, γ ) for all γ ∈ Γ . (29)

Due to the continuity of ζ and τ , the map τ ◦ ζ is continuous. Combining this
with the compactness of Ω , we deduce that E(τ, γ ) is nonempty, and hence
BEffK (PUVOP)(ζ, D)(γ ) is also nonempty. Moreover, for any τ ∈ K #, Theorem
4.2 implies that E(τ, ·) is lower semicontinuous on Γ . This together with Lemma 2.4
yields that BEffK (PUVOP)(ζ, D) is lower semicontinuous on Γ .
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To prove that BEffK (PUVOP)(ζ, D) is Hausdorff upper semicontinuous on Γ , we
consider the map W : Γ ⇒ Ω defined by

W (γ ) :=
⋃

τ∈K ∗\{0Y∗ }
E(τ, γ ) for all γ ∈ Γ .

Building on this map, the desired conclusion will be derived via the following steps.
Step 1: We claim that

BEffK (PUVOP)(ζ, D)(γ ) ⊆ W (γ ) ⊆ cl BEffK (PUVOP)(ζ, D)(γ ) for all γ ∈ Γ .

(30)
By (29) and the inclusion

⋃

τ∈K #
E(τ, γ ) ⊆ ⋃

τ∈K ∗\{0Y∗ }
E(τ, γ ) for all γ ∈ Γ , the first

inclusion of (30) is true.
Moreover, for any τ̂ ∈ K ∗ \ {0Y∗} and τ̄ ∈ K #, we have

τ̂ (k) ≥ 0 and τ̄ (k) > 0 for all k ∈ K .

For n ∈ N, we set

τn(k) = τ̂ (k) + 1

n
τ̄ (k) for all k ∈ K .

Then, τn(k) > 0 for all k ∈ K \ {0Y}, and so τn ∈ K #. Furthermore, τn → τ̂ when
n → +∞. It means that τ̂ ∈ cl K #, and hence

K ∗ \ {0Y∗} ⊂ cl K #. (31)

Now, we are in a position to present the proof of the second inclusion in (30). For
each γ ∈ Γ , taking an arbitrary element x0 ∈ W (γ ), we can find τ̂0 ∈ K ∗\{0Y∗}
such that x0 ∈ E(τ̂0, γ ). Due to (31), there exists {τ̂n} ⊂ K # converging to τ̂0. By
applying Theorem 4.2, E is lower semicontinuous on K ∗\{0Y∗}×Γ , and so E(·, γ ) is
also lower semicontinuous on K ∗ \ {0Y∗}. Consequently, there exist xn ∈ E(τ̂n, γ ) ⊆⋃

τ∈K #
E(τ, γ ) such that the sequence {xn} converges to x0, which implies that

x0 ∈ cl
⋃

τ∈K #

E(τ, γ ) = cl BEffK (PUVOP)(ζ, D)(γ ).

Therefore, W (γ ) ⊆ cl BEffK (PUVOP)(ζ, D)(γ ) for all γ ∈ Γ .

Step 2: W is upper semicontinuous on Γ .

Let γ0 ∈ Γ be arbitrary. Suppose that this is not the case, there exist an open set
Δ with W (γ0) ⊆ Δ and a sequence {γn} ⊂ Γ with γn → γ0 such that there exists
xn ∈ W (γn) \ Δ for any n ∈ N. By the definition of W , we can get τn ∈ K ∗\{0Y∗}
such that xn ∈ E(τn, γn). In view of the definition of the map E , we have

sup
x∈Ω
θ∈Θ

(τn(ζ(xn, θ0, γn)) − τn(ζ(x, θ, γn))) ≤ inf
d∈Dτn(d),
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which implies that

τn(ζ(xn, θ0, γn)) − τn(ζ(x, θ, γn)) ≤ τn(d) for all (x, θ, d) ∈ Ω × Θ × D.

It leads to

τn (d − ζ(xn, θ0, γn) + ζ(x, θ, γn)) ≥ 0 for all (x, θ, d) ∈ Ω × Θ × D.

Combining this with τn ∈ K ∗ \ {0Y∗}, we get

d − ζ(xn, θ0, γn) + ζ(x, θ, γn) /∈ − int K for all (x, θ, d) ∈ Ω × Θ × D. (32)

Since {xn} is a sequence within the compact set Ω , it can be assumed that {xn} con-
verges to some x0. By the continuity of ζ on Ω × Θ × Γ and the closeness of
Y \ (− int K ), statement (32) yields that

d − ζ(x0, θ0, γ0) + ζ(x, θ, γ0) /∈ − int K for all (x, θ, d) ∈ Ω × Θ × D.

This together with equality (1) and (A′1) implies that there exists τ0 ∈ K ∗ \ {0Y∗}
such that

τ0 (d − ζ(x0, θ0, γ0) + ζ(x, θ, γ0)) ≥ 0 for all (x, θ, d) ∈ Ω × Θ × D,

or equivalently

τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0)) ≤ τ0(d) for all (x, θ, d) ∈ Ω × Θ × D.

Therefore,
sup
x∈Ω
θ∈Θ

(τ0(ζ(x0, θ0, γ0)) − τ0(ζ(x, θ, γ0))) ≤ inf
d∈Dτ0(d),

and hence x0 ∈ E(τ0, γ0) ⊆ W (γ0) ⊆ Δ. This is impossible as xn /∈ Δ for all n.
Thus, W is upper semicontinuous on Γ .
Step 3: BEffK (PUVOP)(ζ, D) is Hausdorff upper semicontinuous on Γ .

Let γ0 ∈ Γ be arbitrary. For any neighborhood Ξ of the origin in Y, there exists a
balance neighborhood Ξ1 of the origin in Y such that

Ξ1 + Ξ1 ⊆ Ξ.

Since W is upper semicontinuous at γ0, W is also Hausdorff upper semicontinuous at
γ0. Hence, we can pick up a neighborhood Δ of γ0 such that

W (γ ) ⊆ W (γ0) + Ξ1 for all γ ∈ Δ. (33)
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Since W (γ0) ⊆ cl BEffK (PUVOP)(ζ, D)(γ0) and Ξ1 + Ξ1 ⊆ Ξ , the inclusion (33)
implies that

W (γ ) ⊆ W (γ0) + Ξ1 ⊆ cl BEffK (PUVOP)(ζ, D)(γ0) + Ξ1

⊆ BEffK (PUVOP)(ζ, D)(γ0) + Ξ1 + Ξ1

⊆ BEffK (PUVOP)(ζ, D)(γ0) + Ξ,

for all γ ∈ Δ. This together with (30) helps us to get that

BEffK (PUVOP)(ζ, D)(γ ) ⊆ W (γ ) ⊆ BEffK (PUVOP)(ζ, D)(γ0)+Ξ for all γ ∈ Δ.

Therefore, BEffK (PUVOP)(ζ, D) is Husc at every element γ0 in Γ . �

WhenY is a finite dimensional space, by applying Theorem4.3, we obtain sufficient
conditions of the semicontinuities for the map BEffK (PUVOP)(ζ, D) as follows.

Corollary 4.1 Assume that assumptions (A′1), (A′3), (A4) and (A5) hold. Then,
BEffK (PUVOP) (ζ, D) is lower semicontinuous and Hausdorff upper semicontin-
uous with nonempty values on Γ .

Example 4.1 Let X = Y = R
2, P = R,Ω = {(x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 2, 0 ≤
x2 ≤ 2}, K = R

2+, D = (1, 1) + R
2+, Γ = [−1, 1], Θ = [−1, 1], θ0 = 1 and

ζ : Ω × [−1, 1] × [−1, 1] → R
2 be defined by

ζ(x, θ, γ ) := eγ
(
x1 + 2|θ |, x21 + 2x22 + 3θ2 − 1

)
for all x = (x1, x2) ∈ R

2.

It is easy to check that all the assumptions of Corollary 4.1 are satisfied. By applying
Corollary 4.1, we conclude that BEffK (PUVOP)(ζ, D) is lower semicontinuous and
Hausdorff upper semicontinuous on Γ .

Passing to the semicontinuity of robust Benson efficient solution map of the para-
metric constrained uncertain vector optimization problem, for each γ ∈ Γ , we focus
on the following problem.

(PCUVOP) min
x∈Ω,θ∈Θ

η(x,θ)∈−C

ζ(x, θ, γ ),

where ζ : Ω × Θ × Γ → Y and η : Ω × Θ → W be vector-valued maps. Similar to
the previous section, we also define

Σ := {(x, θ) ∈ Ω × Θ : η(x, θ) ∈ −C},

and propose the concept of robust Benson efficient solution of (PCUVOP) as follows.
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Definition 4.2 Let θ0 ∈ Θ be given. For each γ ∈ Γ , an element x0 ∈ Ω is called a
robust Benson efficient solution of (PCUVOP) corresponding to the scenario θ0 ∈ Θ ,
written as x0 ∈ BEffK (PCUVOP)(ζ, η, D)(γ ), if

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Σ} + D) ∩ (−K ) = {0Y}.

We are now discussing a critical result that plays an important role in studying the
stability of the problem (PCUVOP).

Lemma 4.2 Assume that assumptions (A′3) and (A6) are satisfied. Then, the set Σ

is convex and compact.

Proof Firstly, let (x1, θ1), (x2, θ2) ∈ Σ and λ ∈ [0, 1] be arbitrary. Because of the
natural C-quasiconvexity of η, there exists μ ∈]0, 1[ satisfying

η (λ(x1, θ1) + (1 − λ)(x2, θ2)) ∈ μη(x1, θ1) + (1 − μ)η(x2, θ2) − C . (34)

On the other hand, due to (x1, θ1), (x2, θ2) ∈ Σ , we have

η(x1, θ1) ∈ −C and η(x2, θ2) ∈ −C,

and consequently

μη(x1, θ1) ∈ −C and (1 − μ)η(x2, θ2) ∈ −C,

as C is a cone and μ ∈ [0, 1]. These together with (34) and the convexity of (−C)

imply that
η (λ(x1, θ1) + (1 − λ)(x2, θ2)) ∈ −C − C − C ⊆ −C .

It leads to λ(x1, θ1) + (1 − λ)(x2, θ2) ∈ Σ , and hence Σ is convex.
Next, due to assumption (A′3), we will obtain the compactness of Σ through its

closed property. Suppose that there exists {(xn, θn)} ⊂ Σ such that (xn, θn) → (x̂, θ̂ )

but η(x̂, θ̂ ) /∈ −C , namely η(x̂, θ̂ ) ∈ Y \ (−C). Since C is closed, Y \ (−C) is an
open neighborhood of η(x̂, θ̂ ). Combining this with the C-lower semicontinuity of η

at (x̂, θ̂ ), we conclude that

η(xn, θn) ∈ (Y \ (−C)) + C,

and hence there exist yn ∈ Y \ (−C), cn ∈ C such that

η(xn, θn) = yn + cn . (35)

Moreover, it follows from (xn, θn) ∈ Σ that η(xn, θn) ∈ −C , and so for each n ∈ N,
there exists ĉn ∈ C such that η(xn, θn) = −ĉn . This together with (35) implies that

yn = η(xn, θn) − cn = −ĉn − cn ∈ −C − C ⊆ −C,
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which is impossible as yn ∈ Y \ (−C). Consequently, η(x̂, θ̂ ) ∈ −C , and thus Σ is
compact. �

Thanks to Theorems 3.3, 3.4, 4.3 and Lemma 4.2, we establish stability conditions
for robust Benson efficient solutions of the parametric constrained uncertain vector
optimization problem given in the following result.

Theorem 4.4 Assume that assumptions (A0), (A′1), (A2), (A′3), (A4), (A5) and
(A6) are satisfied. Then, BEffK (PCUVOP)(ζ, η, D) is lower semicontinuous and
Hausdorff upper semicontinuous with nonempty values on Γ .

In the case where Y is a finite-dimensional space, the stability of the robust Benson
efficient solution for the parametric constrained uncertain vector optimization problem
can be deduced from the above theorem, as stated in the following result.

Corollary 4.2 Assume that assumptions (A′1), (A2), (A′3), (A4)-(A6) are fulfilled.
Then,BEffK (PCUVOP)(ζ, η, D) is lower semicontinuous andHausdorff upper semi-
continuous with nonempty values on Γ .

Example 4.2 Let M
n be a space of all the real n × n symmetric matrices, X ⊂ M

n

is a set of symmetric matrices with negative eigenvalues, and Ω ⊂ X is closed and
bounded, that is there exists q ∈ R+ satisfying

‖X‖ := sup
‖z‖=1

‖Xz‖ ≤ q for all X ∈ Ω,

where ‖w‖ := Max
i∈{1,··· ,n}|wi | for w = (w1, · · · , wn) ∈ R

n .

Then, Ω is compact as M
n is a finite dimensional space. We will show that Ω is

convex. Let X1, X2 ∈ Ω and t ∈ [0, 1] be arbitrary, we have then

‖t X1 + (1 − t)X2‖ ≤ t‖X1‖ + (1 − t)‖X2‖ ≤ q.

On the other hand, t X1 and (1 − t)X2 have the same eigenvalues as X1 and X2,
respectively. Therefore, t X1 + (1 − t)X2 will also have negative eigenvalues and
consequently t X1 + (1 − t)X2 ∈ Ω.

Let P = R, Y = W = R
2, K = C = R

2+, D = (1, 1) + R
2+, Θ = [−1, 1], θ0 = 0

and Γ = [0, 1]. We define ζ : X × Θ × Γ → R
2 by

ζ(X , θ, γ ) :=
{

(2γ | det X |, |θ |) if X ∈ Ω,

(0, 0) otherwise.

Now let η : Ω × Θ → R
2 be defined by

η(X , θ) :=
{

−((−θ)1/2, | det X |) if θ � 0,

(θ1/2,−| det X |) if θ > 0.
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Based on the same techniques in the proof of Theorem 1 in [54], we also obtain
that ζ is continuous on Ω × Θ × Γ , and ζ is naturally K -quasiconvex in the first
variable on Ω. Moreover, for each γ ∈ Γ , by direct computations, we obtain the near
D-subconvexlikeness of ζ(·, ·, γ ) on Ω × Θ.

Finally, Θ is compact and η is C-lower semicontinuous as well as naturally C-
quasiconvex on Ω × Θ. Furthermore, for any (X , θ) ∈ Ω × [−1, 0[, we have
η(X , θ) ∈ − intR2+, and hence all the assumptions of Corollary 4.2 are satisfied.
Therefore, by applying Corollary 4.2, we conclude that BEffK (PCUVOP)(ζ, η, D) is
lower semicontinuous and Hausdorff upper semicontinuous on Γ .

In fact, it is easy to see that Σ = {(X , θ) : X ∈ Ω,−1 ≤ θ ≤ 0} = Ω × [−1, 0].
For each γ ∈ Γ , X , X0 ∈ Ω , and θ ∈ Θ , we have

ζ(X , θ, γ ) − ζ(X0, θ0, γ ) + D = (
2γ (| det X | − | det X0|) + 1, |θ | + 1

) + R
2+.

Setting
A := {(

2γ (| det X | − | det X0|) + 1, |θ | + 1
) : (X , θ) ∈ Σ

}
.

Because 0 ≤ |θ | ≤ 1, we have 1 ≤ |θ | + 1 ≤ 2. Moreover, since ‖X‖ ≤ q, all the
entries of X are bounded. Due to the Leibniz formula for determinants and γ ∈ [0, 1],
we conclude that there exists m, M ∈ R satisfying

m ≤ 2γ (| det X | − | det X0|) + 1 ≤ M for all X ∈ Ω.

Thus, through direct computation, we get that

clcone(A + R
2+) ∩ (−K ) = {0Y} for all X0 ∈ Ω,

and hence BEffK (PCUVOP)(ζ, η, D)(γ ) = Ω for all γ ∈ Γ .

5 HausdorffWell-posedness for Parametric Uncertain Vector
Optimization Problems

In this section, we aim to study the Hausdorff well-posedness for (PUVOP). Let
X, Y, W, U, P, K , C,Ω,Θ, D, Γ , ζ, η,Σ be defined as in Sect. 4, and let k0 ∈ K \
{0Y} be given. Motivated by [20, 23, 58, 59], we consider approximate robust Benson
efficient solutions of (PUVOP) as follows.

Definition 5.1 For each (γ, ε) ∈ Γ × R+, an element x0 ∈ Ω is called an ε-robust
Benson efficient solution of (PUVOP) corresponding to θ0 ∈ Θ , written as x0 ∈
B̂EffK (PUVOP)(ζ, D)(γ, ε), if

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D) ∩ (−K ) = {0Y}.

Picking up the ideas of [20, 23, 25, 58], we also discuss the following properties of
the approximate solution sets.
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Lemma 5.1 The following statements are true.

(a) For every γ ∈ Γ ,

BEffK (PUVOP)(ζ, D)(γ ) = B̂EffK (PUVOP)(ζ, D)(γ, 0).

(b) For every γ ∈ Γ and 0 ≤ ε1 ≤ ε2,

B̂EffK (PUVOP)(ζ, D)(γ, ε1) ⊆ B̂EffK (PUVOP)(ζ, D)(γ, ε2).

Proof Statement (a) is implied directly from the definition of the approximate solution
set.

In order to prove statement (b), we first provide the following inclusion:

ε2k0 + D = ε1k0 + (ε2 − ε1)k0 + D ⊆ ε1k0 + D.

This inclusion is true because of (ε2 − ε1)k0 + D ⊆ K + D = D. Therefore, the set

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + ε2k0 + D)

is a subset of clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + ε1k0 + D) .

Consequently, if

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + ε1k0 + D) ∩ (−K ) = {0Y},

then

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + ε2k0 + D) ∩ (−K ) = {0Y},

or equivalently B̂EffK (PUVOP)(ζ, D)(γ, ε1) ⊆ B̂EffK (PUVOP)(ζ, D)(γ, ε2). �
Next, inspired by Definition 9.1.2 in [3] and [49], we define the Hausdorff well-

posedness for the problem (PUVOP) for robust Benson efficient solutions.

Definition 5.2 The problem (PUVOP) is said to be Hausdorff well-posed on Γ for
robust Benson efficient solutions (in short, Hausdorff well-posed on Γ ) if for any
γ ∈ Γ ,

(a) BEffK (PUVOP)(ζ, D)(γ ) �= ∅,

(b) the solution map B̂EffK (PUVOP)(ζ, D) is upper Hausdorff semicontinuous at
(γ, 0).

Similar to Sect. 3, we consider the map S : K ∗ × Γ × R+ ⇒ X defined by

(τ, γ, ε) �→ S(τ, γ, ε)

:=

⎧
⎪⎨

⎪⎩
x0 ∈ Ω : sup

x∈Ω
θ∈Θ

(τ(ζ(x0, θ0, γ )) − τ(ζ(x, θ, γ ))) ≤ ετ(k0) + inf
d∈Dτ(d)

⎫
⎪⎬

⎪⎭
,

for all (τ, γ, ε) ∈ K ∗ × Γ × R+.
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Lemma 5.2 For each (γ, ε) ∈ Γ × R+, if assumptions (A0) and (A′1) are satisfied,
then

B̂EffK (PUVOP)(ζ, D)(γ, ε) =
⋃

τ∈K #

S(τ, γ, ε). (36)

Proof (⊆) Let x0 ∈ B̂EffK (UVOP)(ζ, D)(γ, ε) be arbitrary. It follows from the defi-
nition of the ε-robust Benson efficient solution that

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D) ∩ (−K ) = {0Y}.
(37)

In view of assumption (A′1), we imply that

clcone ({ζ(x, θ, γ ) : (x, θ) ∈ Ω × Θ} + D)

is a convex set, and so the set clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ}+
εk0 + D) is convex. Together with (37) and assumption (A0), Lemma 2.6(a) implies
that there exists τ̂ ∈ K # satisfying

τ̂ ∈ (clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D))∗ ,

which leads to

τ̂ (z) ≥ 0 for all z∈clcone ({ζ(x, θ, γ )−ζ(x0, θ0, γ ) : (x, θ) ∈ Ω×Θ} + εk0 + D) .

Consequently, τ̂ (z) ≥ 0 for all z ∈ {ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} +
εk0 + D. Hence,

τ̂ (ζ(x, θ, γ ) − ζ(x0, θ0, γ ) + εk0 + d) ≥ 0 for all (x, θ, d) ∈ Ω × Θ × D,

this provides that

τ̂ (ζ(x0, θ0, γ )) − τ̂ (ζ(x, θ, γ )) ≤ ετ̂ (k0) + τ(d) for all (x, θ, d) ∈ Ω × Θ × D.

Therefore,

sup
x∈Ω
θ∈Θ

(τ̂ (ζ(x0, θ0, γ )) − τ̂ (ζ(x, θ, γ ))) ≤ ετ̂ (k0) + inf
d∈Dτ̂ (d) for all (x, θ) ∈ Ω × Θ.

Thus, x0 ∈ S(τ̂ , γ, ε) ⊆ ⋃

τ∈K #
S(τ, γ, ε).

(⊇) Taking an arbitrary element x0 ∈ ⋃

τ∈K #
S(τ, γ, ε), there exists τ̄ ∈ K # such that

x0 ∈ S(τ̄ , γ, ε), and so we have

τ̄ (ζ(x0, θ0, γ ))−τ̄ (ζ(x, θ, γ )) ≤ ετ̄ (k0)+τ̄ (d) for all (x, θ, d) ∈ Ω×Θ×D. (38)
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Moreover, we also have

0Y ∈ clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D) ∩ (−K ) .

Now we will show that for any element

a ∈ clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D) ∩ (−K ) ,

it follows that a = 0Y. Since D is a free disposal set w.r.t. K , we obtain

a ∈ clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D + K )∩ (−K ) .

It follows from a ∈ clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ}+
εk0+D+K ) that there exist sequences {tn} ⊂ R+, {(xn, θn)} ⊂ Ω × Θ, {dn} ⊂ D
and {vn} ⊂ K such that

tn(ζ(xn, θn, γ ) − ζ(x0, θ0, γ ) + εk0 + dn + vn) → a.

Because τ̂ ∈ K #, we derive that

tn (τ̄ (ζ(xn, θn, γ )) − τ̄ (ζ(x0, θ0, γ )) + ετ̄ (k0) + τ̄ (dn) + τ̄ (vn)) → τ̄ (a). (39)

Moreover, since τ ∈ K # and vn ∈ K , we get

τ̄ (vn) ≥ 0. (40)

By (38), we obtain τ̄ (ζ(x0, θ0, γ ))− τ̄ (ζ(xn, θn, γ )) ≤ ετ̄ (k0)+ τ̄ (dn),which implies
that

τ̄ (ζ(xn, θn, γ )) − τ̄ (ζ(x0, θ0, γ )) + ετ̄ (k0) + τ̄ (dn) ≥ 0. (41)

Due to (39), (40) and (41), we conclude that

τ̄ (a) ≥ 0. (42)

Furthermore, because τ̄ ∈ K # and a ∈ −K , we have τ̄ (a) ≤ 0. Combining this with
(42), we obtain that τ̄ (a) = 0. Since τ̄ ∈ K #, we get that a = 0Y, and thus

clcone ({ζ(x, θ, γ ) − ζ(x0, θ0, γ ) : (x, θ) ∈ Ω × Θ} + εk0 + D) ∩ (−K ) = {0Y}.

Therefore, x0 ∈ B̂EffK (UVOP)(ζ, D)(γ, ε). �
The result on the scalar representation obtained inLemma5.2 plays a very important

role in studying the qualitative properties of the solutions for the original problem.
Naturally, to achieve this, the auxiliary solution sets S(τ, γ, ε) must also possess the
corresponding solution properties that we need to examine for the original problem.
Below are the results regarding the properties of the auxiliary solution sets in the
research direction just mentioned.
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Lemma 5.3 Assume that assumptions (A′3), (A4) and (A5) are true. Then, S(·, γ, 0)
is lower semicontinuous on K ∗ \ {0Y∗} for each (γ, 0) ∈ Γ × R+.

Proof We first consider the map Ŝ : K ∗ \ {0Y∗} × Γ × R+ ⇒ Ω defined by

(τ, γ, ε) �→ Ŝ(τ, γ, ε) :=

⎧
⎪⎨

⎪⎩
x0 ∈ Ω : sup

x∈Ω
θ∈Θ

(τ(ζ(x0, θ0, γ )) − τ(ζ(x, θ, γ ))) < ετ(k0) + inf
d∈Dτ(d)

⎫
⎪⎬

⎪⎭
,

for all (τ, γ, ε) ∈ K ∗ \ {0Y∗} × Γ × R+. Then, by using the techniques given in the
proof of Theorem 4.2, we also conclude that Ŝ is lower semicontinuous in the first
variable.

Furthermore, together with assumption (A5) and the techniques used in the proof
of Theorem 4.2, applied again with suitable adjustments, we achieve that for any
x̃ ∈ S(τ0, γ, 0), x̂ ∈ Ŝ(τ0, γ, 0), and λ ∈ [0, 1], we get that xλ := (1 − λ)x̃ + λx̂ ∈
Ŝ(τ0, γ, 0). Combining this with the lower semicontinuity of Ŝ at (τ0, γ, 0), we obtain

S(τ0, γ, 0) ⊆ cl Ŝ(τ0, γ, 0) ⊆ lim inf Ŝ(τn, γ, 0) ⊆ lim inf S(τn, γ, 0),

for any sequence {τn} satisfying τn → τ0. Therefore, S(·, γ, 0) is lower semicontinu-
ous at τ0. �

Also, building on the ideas from the previous section, we consider the map Υ :
Γ × R+ ⇒ Ω defined by

Υ (γ, ε) :=
⋃

τ∈K ∗\{0Y∗ }
S(τ, γ, ε) for all (γ, ε) ∈ Γ × R+. (43)

We then use this map to study the Hausdorff well-posedness of the problem (PUVOP).
In doing so, we first examine the following property of the map Υ .

By employing the techniques from Steps 1 and 2 of the proof of Theorem 4.3, with
appropriate adjustments, we obtain the following result.

Lemma 5.4 The following statements are true.

(a) If (A3) and (A4) are fulfilled, then Υ (·, 0) is upper semicontinuous on Γ .

(b) If assumptions (A′3), (A4) and (A5) are satisfied, then

B̂EffK (PUVOP)(ζ, D)(γ, 0) ⊆ Υ (γ, 0) ⊆ cl B̂EffK (PUVOP)(ζ, D)(γ, 0) for all γ ∈ Γ .

We are now in a position to present the main result of this section, namely sufficient
conditions of the Hausdorff well-posedness for (PUVOP).

Theorem 5.1 Assume that assumptions (A0), (A′1), (A′3), (A4) and (A5) are satis-
fied. Then, the problem (PUVOP) is Hausdorff well-posed on Γ .

Proof By applying Theorem 4.3, we derive that BEffK (PUVOP)(ζ, D)(γ ) is also
nonempty.
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Moreover, by using similar techniques as in the proof of Step 3 of Theorem 4.3,
with suitable adjustments, and within the framework of the established results from
Lemmas 5.3, and 5.4, we also conclude that B̂EffK (PUVOP)(ζ, D) is Hausdorff upper
semicontinuous at (γ, 0). The proof follows. �

To illustrate the applicability of Theorem 5.1, we consider the following example.

Example 5.1 Let X be a given n × n symmetric and positive semidefinite matrix,
X = R

n , Ω ⊂ R
n be a closed bounded convex set, U = P = R, Y = R

2, K = R
2+,

D = (0, 1) + R
2+, Γ = [0, 1], Θ = [0, 2], θ0 = 1 and ζ : Ω × [0, 2] × [0, 1] → R

2

be defined by

ζ(x, θ, γ ) :=
(
xT Xx + bT x, θ + γ

)
,

where b ∈ R
n is given. Obviously, assumptions (A0), (A′1), (A′3) and (A4) of

Theorem 5.1 are satisfied. Next, by the same techniques of the proof of Corollary 3.3
in [41], ζ is naturally K -quasiconvex in the first component on Ω, and so assumption
(A5) of Theorem 5.1 is also satisfied. Therefore, all the assumptions of Theorem
5.1 are fulfilled, and hence due to this theorem, the problem (PUVOP) is Hausdorff
well-posed.

Similar to the previous section, we also study Hausdorff well-posedness for the
parametric constrained uncertain vector optimization problem (PCUVOP). Motivated
by Definition 5.1, we define the concept of approximate robust Benson efficient solu-
tions of (PCUVOP).

Definition 5.3 For each (γ, ε) ∈ Γ × R+, an element x0 ∈ Ω is called an ε-robust
Benson efficient solution of (PCUVOP) corresponding to θ0 ∈ Θ , written as x0 ∈
B̂EffK (PCUVOP)(ζ, η, D)(γ, ε), if

clcone
({ζ(x, θ, γ )−ζ(x0, θ0, γ ) : η(x, θ) ∈ −C, (x, θ) ∈ Ω×Θ}+εk0+D

)∩(−K ) = {0Y}.

The concept of Hausdorff well-posedness for the problem (PCUVOP) with respect
to robust Benson efficient solutions is defined as follows.

Definition 5.4 The problem (PCUVOP) is said to be Hausdorff well-posed on Γ for
robust Benson efficient solutions if for any γ ∈ Γ ,

(i) BEffK (PCUVOP)(ζ, η, D)(γ ) �= ∅;
(ii) the solution map B̂EffK (PCUVOP)(ζ, η, D) is upper Hausdorff semicontinuous

at (γ, 0).

We will conclude this section by providing sufficient conditions for the Hausdorff
well-posedness of the problem (PCUVOP) for robust Benson efficient solutions. The
proof of this result is approached similarly to that of Theorem 4.4, so we leave the
details of the proof to the reader.

Theorem 5.2 Assume that assumptions (A0), (A′1), (A2), (A′3), (A4)-(A6) are ful-
filled. Then, the problem (PCUVOP) is Hausdorff well-posed on Γ .

123



   19 Page 34 of 37 Journal of Optimization Theory and Applications           (2025) 205:19 

Remark 5.1 (a) Themodels of robust optimization problems and parametric optimiza-
tion problems share similarities in their construction. Both frameworks include
structural elements where parameters (either uncertain or certain) influence the
optimization process. However, their objectives differ. In robust optimization prob-
lems, due to the uncertainty of the scenario θ , the solution must account for all
worst-case scenarios that the parameter may present. This often leads to conser-
vative solution structures, as the problems focus on ensuring performance in the
worst-case scenario. The solution not only needs to work well for a specific value
of θ but must also remain effective across the entire set Θ , leading to solutions
designed to withstand significant variations. In contrast, parametric optimization
problems focus on finding the optimal solution for a specific value of the parameter
p. In this case, the structure of the solution is tightly dependent on the parame-
ter p, and any change in p typically requires recalculating the solution. Thus, the
solution is local, depending on each specific value of p rather than the entire param-
eter space. Consequently, the solution conditions for robust optimization problems
often involve stricter requirements related to the constraint set and objective map
compared to those for parametric optimization problems. For instance, the qual-
itative properties of solutions in robust optimization problems frequently involve
conditions such as uniform continuity or uniform convexity.

(b) From these observations, the main contributions of this section can be summa-
rized as follows. First, the study reduces conservativeness in robust optimization.
By achieving stability results for robust optimization problems under common
assumptions used in parametric optimization problems, the study bridges the
gap between the two frameworks, demonstrating that the stability of solutions
in robust optimization problems can be achieved without overly stringent condi-
tions. Second, the study extends the applicability of robust optimization problems.
By reducing reliance on specialized assumptions, this approach makes robust opti-
mization problems more accessible in scenarios typically addressed by parametric
optimization problems. This broadens the potential applications of robust opti-
mization problems to areas where precise information about uncertainty is not
available, while still ensuring the stability of the model. Third, the study unifies
the two frameworks. The results highlight the conceptual unification of robust
and parametric optimization problems, showing that the uncertainty set in robust
optimization problems can be viewed as a parameter space. The demonstration
that stability in robust optimization models can be achieved under assumptions
from parametric optimization models reveals that parametric optimization mod-
els, to some extent, serve as a natural generalization of robust optimizationmodels.
Finally, the theoretical significance of the study lies in achieving stability for robust
optimization problems using assumptions from parametric optimization problems.
This is not merely a technical convenience; it reflects the flexibility and generality
of the stability framework. By enhancing the theoretical understanding of both
optimization types, the study opens new research directions for cross-applications
between them.
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6 Conclusions

In this paper, we examined the qualitative properties of robust Benson efficient solu-
tions for both unconstrained and constrained uncertain vector optimization problems
involving free disposal sets. We established necessary and sufficient optimality con-
ditions for robust Benson efficient solutions of these problems through the linear
scalarization method. Additionally, we formulated the stability of robust Benson effi-
cient solutions of the reference problems in terms of the semicontinuity properties of
solution maps and Hausdorff well-posedness. We are confident that the techniques
and methods proposed in this paper, with suitable adjustments, have the potential to
be applied in exploring the qualitative properties of various types of efficient solutions
for other uncertainty vector optimization models.

Acknowledgements The authors would like to sincerely thank the editor and two anonymous reviewers
for their valuable remarks and suggestions, which significantly helped improve the paper. The first author
was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED)
[grant number 101.01−2023.19]. Part of this work was completed while the first and the second authors
were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM), and the authors would
like to thank the Institute for its hospitality and support.

Author Contributions Each author contributed equally to the article.

Funding The first author was funded by the Vietnam National Foundation for Science and Technology
Development (NAFOSTED) [grant number 101.01−2023.19].

Data Availability Data sharing is not applicable to this article as no data sets were generated or analyzed
during the current study.

Declarations

Conflict of interest The authors affirm that there are no actual or potential conflict of interest associated
with this article.

Consent for Publication All the authors have read and endorsed the final manuscript.

References

1. Anh, L.Q., Duoc, P.T., Thuy, V.T.M.: Existence and stability to vector optimization problems via
improvement sets. J. Appl. Numer. Optim. 5(2), 219–235 (2023)

2. Anh, L.Q., Duy, T.Q., Hien, D.V.: Well-posedness for the optimistic counterpart of uncertain vector
optimization problems. Ann. Oper. Res. 295, 517–533 (2020)

3. Bednarczuk, E.: Stability Analysis for Parametric Vector Optimization Problems. Polish Academy of
Sciences, Warszawa (2007)

4. Bednarczuk, E.M., Przybyła, M.J.: The vector-valued variational principle in banach spaces ordered
by cones with nonempty interiors. SIAM J. Optim. 18(3), 907–913 (2007)

5. Ben-Tal,A., ElGhaoui, L.,Nemirovski,A.:RobustOptimization. PrincetonUniversity Press, Princeton
(2009)

6. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory
Appl. 26, 569–580 (1978)

7. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to
cones. J. Math. Anal. Appl. 71(1), 232–241 (1979)

123



   19 Page 36 of 37 Journal of Optimization Theory and Applications           (2025) 205:19 

8. Benson, H.P.: Efficiency and proper efficiency in vector maximization with respect to cones. J. Math.
Anal. Appl. 93(1), 273–289 (1983)

9. Berge, C.: Topological Spaces. Oliver and Boyd, London (1963)
10. Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim.

15(1), 57–63 (1977)
11. Caprari, E., Cerboni Baiardi, L., Molho, E.: Scalarization and robustness in uncertain vector optimiza-

tion problems: a non componentwise approach. J. Glob. Optim. 84(2), 295–320 (2022)
12. Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvement sets.

J. Optim. Theory Appl. 150(3), 516–529 (2011)
13. Chuong, T.D.: Robust optimality and duality inmultiobjective optimization problems under data uncer-

tainty. SIAM J. Optim. 30(2), 1501–1526 (2020)
14. Crespi, G.P., Kuroiwa, D., Rocca, M.: Quasiconvexity of set-valued maps assures well-posedness of

robust vector optimization. Ann. Oper. Res. 251, 89–104 (2017)
15. Doolittle, E.K., Kerivin, H.L., Wiecek, M.M.: Robust multiobjective optimization with application to

internet routing. Ann. Oper. Res. 271, 487–525 (2018)
16. Du, T., Wang, Q., Kasimbeyli, R., Yao, J.C.: Second-Order Weak Subdifferential for Set-Valued Map-

pings and its Applications. Submitted for Publication (2025)
17. Edgeworth, F.Y.: Mathematical Psychics: An Essay on the Application of Mathematics to the Moral

Sciences. CK Paul, London (1881)
18. Fakhar, M., Mahyarinia, M., Zafarani, J.: On approximate solutions for nonsmooth robust multiobjec-

tive optimization problems. Optimization 68(9), 1–31 (2019)
19. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper.

Res. 235(3), 471–483 (2014)
20. Gao, Y., Yang, X., Teo, K.L.: Optimality conditions for approximate solutions of vector optimization

problems. J. Indust. Manag. Optim. 7(2), 483–496 (2011)
21. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3),

618–630 (1968)
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