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Abstract. In this paper, we consider parametric set-valued equilibrium prob-
lems in normed spaces. By employing the direct approach based on general-

ized convexity and monotonicity assumptions, we establish Hölder/Lipschitz

conditions for both exact and approximate efficient solutions of the reference
problems. We demonstrate that with this approach, the commonly required

additional conditions of indirect methods, such as scalarization methods, as

seen in existing works, can be avoided. Utilizing the proposed approach and
techniques, we also derive Lipschitz conditions for two optimal control models

in biology and economics: one describing the interaction between a predator

and its prey, and another addressing the balance between holding cash and
investing.

1. Introduction. The equilibrium problem holds significant importance in various
fields and serves as a unifying framework for many important problems in optimiza-
tion theory, including variational inequalities, game theory, mathematical econom-
ics, optimization problems, and fixed point theory [13,16,33,39,46]. Although most
authors claim that the term “equilibrium problem” was first introduced by Blum
and Oettli [21] in 1994, it actually appeared two years earlier in a paper by Muu and
Oettli [38]. However, it is widely agreed that the problem truly began its most sig-
nificant and sustained development phase with the paper by Blum and Oettli [21],
which is likely why many regard it as the starting point for the field. Since then,
the equilibrium problem model has been significantly extended to address various
practical demands [2, 3, 22]. Notable works in this area include the vector equilib-
rium problem [8,23,30], the vector equilibrium problem with a set-valued objective
map [5, 17], the variational inclusion problems [11, 29], and the variational relation
problems [19,36].
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One of the research topics for optimization models that has attracted significant
attention from researchers is the Hölder/Lipschitz property of solutions, and natu-
rally, the equilibrium problem is no exception. To study the properties of solutions
of this type for the equilibrium problem, mathematicians have so far employed two
main approaches. The first is the direct approach, in which researchers establish
the Hölder/Lipschitz property by imposing conditions related to strong monotonic-
ity [10, 20] or strong convexity [6, 42] of the objective maps with respect to exact
solutions. In the case of approximate solutions, these strong conditions are weak-
ened to monotonicity or convexity conditions [12, 30]. The second is the indirect
approach, which follows a general research procedure that can be summarized as fol-
lows. First, researchers construct scalarization functions compatible with the types
of solutions under consideration. Next, they examine the fundamental properties
of these scalarization functions, such as convexity, monotonicity, and continuity.
Finally, the properties of the scalarization functions are applied to represent the so-
lutions of the vector problem and to establish Hölder/Lipschitz conditions for these
solutions. The advantage of this second approach lies in its clear and structured
process, making it relatively easy to apply. However, its drawback is the addi-
tional cost incurred in transforming (or representing) the solutions of the original
problem into scalar problems. This transformation requires supplementary condi-
tions, such as convexlikeness conditions for the linear scalarization method [30, 40]
or cone solidness condition for the nonlinear scalarization method [14,15]. Return-
ing to the equilibrium problems with set-valued objective maps, often referred to
simply as the set-valued equilibrium problem, due to technical difficulties, research
on Hölder/Lipschitz conditions for such problems remains limited. Most studies fo-
cus on weak solutions or ideal solutions, as the scalarization method is particularly
suitable for these types of solutions [15,20,34]. For efficient solutions, however, the
problem is much harder to handle. The first approach often involves evaluating
whether the sum of two vectors belonging to the complement of a convex cone still
does not belong to the cone. Meanwhile, for the scalarization method, a suitable
scalarization function has yet to be found, further complicating the analysis for
efficient solutions.

From the review of research on Hölder/Lipschitz conditions for equilibrium prob-
lems, as mentioned above, we identify the main objective of this study as investi-
gating the Hölder/Lipschitz properties of both exact and approximate solutions to
set-valued equilibrium problems using the first approach. This approach aims to
eliminate the supplementary conditions of the second approach and relax the strong
conditions so that the results obtained can be applied to optimization models in
practice. Specifically, as follows: In Section 2, we recall concepts and results related
to the monotonicity, convexity, and Hölder/Lipschitz properties of single-valued
and set-valued maps, which will be used in the subsequent sections. Section 3, the
main part of this study, presents the results on the Hölder/Lipschitz conditions for
both exact and approximate efficient solutions of set-valued equilibrium problems.
Section 4 focuses on the study of Hölder/Lipschitz properties of optimal control
problems in biology and economics, including a problem describing the interac-
tion between a predator and its prey, and another addressing the balance between
holding cash and investing. Finally, Section 5 provides conclusions and discussions
related to the results achieved in this study.
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2. Preliminaries. Let X, Y be normed spaces, C be a pointed, convex cone in
Y, and BY be the closed unit ball in Y. We denote the set of all nonnegative real
numbers by R+.

We first recall the Hölder/Lipschitz continuity concepts of a set-valued map.

Definition 2.1. (see [31]) Let Ω be a nonempty subset of X. A set-valued map
G : Ω ⇒ Y is said to be

(a) locally Hölder continuous at x0 ∈ Ω if there exist positive real numbers ℓ, α and
a neighborhood U of x0 such that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY for all x1, x2 ∈ U ∩ Ω,

or equivalently
H(G(x1), G(x2)) ≤ ℓ∥x1 − x2∥α,

where H is the Hausdorff distance between two sets.
(b) upper locally Hölder continuous at x0 ∈ Ω if there exist positive real numbers

ℓ, α and a neighborhood U of x0 such that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY − C for all x1, x2 ∈ U ∩ Ω;

(c) locally Hölder continuous on Ω if G is locally Hölder continuous at every point
x ∈ Ω;

(d) upper locally Hölder continuous on Ω if G is upper locally Hölder continuous at
every point x ∈ Ω;

(e) globally Hölder continuous on Ω if there exist positive real numbers ℓ, α such
that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY for all x1, x2 ∈ Ω;

(f) upper globally Hölder continuous on Ω if there exist positive real numbers ℓ, α
such that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY − C for all x1, x2 ∈ Ω.

If α = 1, then the Hölder continuity reduces to the Lipschitz continuity.

Remark 2.2. Obviously, if G is (upper) globally Hölder continuous on Ω, then it
is also (upper) locally Hölder continuous on Ω. Moreover, if G is globally/locally
Hölder continuous on Ω, then G is also upper globally/locally Hölder continuous on
Ω.

The following examples indicate that the reverse of the aforementioned state-
ments generally does not occur.

Example 2.3. (Upper globally Hölder continuity but not globally Hölder continu-
itys)

Let X = Y = R and Ω = C = R+. Consider the set-valued map G : Ω ⇒ R by

G(x) =

{
{0}, x = 0,[
− 1

x , x
]
, x ̸= 0.

It is easy to see that G is upper globally Hölder continuous on Ω with ℓ = 1 and
α = 1, but not globally Hölder continuous on Ω.

Example 2.4. Let X = Y = Ω = R and C = R+. The set-valued map G : X ⇒ Y
is defined as follows

G(x) =

{
[x− 1, x] if x ̸= 0,

−R+ if x = 0.
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It is easy to see that G is upper locally Lipschitz continuous at 0 ∈ R, but G is not
locally Lipschitz continuous at 0 ∈ R.

Lemma 2.5. Let Ω be a nonempty subset of X and Q : X ⇒ Y be a set-valued map
defined by

Q(x) = G(x)− C for all x ∈ X.
Then, the map G is upper (globally/locally) Hölder continuous on Ω if and only if
Q is (globally/locally) Hölder continuous on Ω.

Proof. Since the proof is similar, we only show one statement. Let x0 ∈ Ω be
arbitrary.

(Sufficient condition): Since the map G is upper locally Hölder continuous at x0,
there exist positive real numbers ℓ, α and a neighborhood U of x0 such that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY − C for all x1, x2 ∈ U ∩ Ω.

Combining this with the convexity of C, we obtain

G(x1)− C ⊆ G(x2)− C + ℓ∥x1 − x2∥αBY − C

⊆ G(x2)− C + ℓ∥x1 − x2∥αBY,

for all x1, x2 ∈ U ∩ Ω. It means that

Q(x1) ⊆ Q(x2) + ℓ∥x1 − x2∥αBY for all x1, x2 ∈ U ∩ Ω.

(Necessary condition): By the same above arguments, we can find positive real
numbers ℓ, α and a neighborhood U of x0 such that

G(x1)− C ⊆ G(x2)− C + ℓ∥x1 − x2∥αBY for all x1, x2 ∈ U ∩ Ω.

This together with 0 ∈ C would imply that

G(x1) ⊆ G(x2) + ℓ∥x1 − x2∥αBY − C for all x1, x2 ∈ U ∩ Ω,

and hence the proof is complete.

Next, we recall some concepts of cone-convexity for a set-valued map, which are
used to study stability conditions in the next section.

Definition 2.6. (see [41]) Let Ω be a nonempty convex subset of X. A set-valued
map G : X ⇒ Y is said to be

(a) lower C-convex on Ω if for any x1, x2 ∈ Ω and t ∈ [0, 1],

tG(x2) + (1− t)G(x1) ⊆ G(tx2 + (1− t)x1) + C;

(b) upper C-convex on Ω if for any x1, x2 ∈ Ω and t ∈ [0, 1],

G(tx2 + (1− t)x1) ⊆ tG(x2) + (1− t)G(x1)− C;

(c) lower C-quasiconvex on Ω if for any convex subset A of Y, x1, x2 ∈ Ω and
t ∈]0, 1[,

0 ∈ tG(x2) + (1− t)G(x1) +A+ C

implies
0 ∈ G((1− t)x1 + tx2) +A+ C;

(d) upper C-quasiconvex on Ω if for any convex subset A of Y, x1, x2 ∈ Ω and
t ∈]0, 1[,

tG(x2) + (1− t)G(x1) ⊆ A− C

implies
G((1− t)x1 + tx2) ⊆ A− C.
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Remark 2.7. Let G : X ⇒ Y be a set-valued map and Ω be a nonempty convex
subset of X. In view of Definition 2.6, we obtain the statements below.

(a) If G is lower C-quasiconvex on Ω, then for any x1, x2 ∈ Ω, r ∈ R+ and t ∈]0, 1[,
(tG(x2) + (1− t)G(x1)) ∩ (rBY − C) ̸= ∅

implies

(G((1− t)x1 + tx2)) ∩ (rBY − C) ̸= ∅;
(b) If G is upper C-quasiconvex on Ω, then for any x1, x2 ∈ Ω, r ∈ R+ and t ∈]0, 1[,

tG(x2) + (1− t)G(x1) ⊆ rBY − C

implies

G((1− t)x1 + tx2) ⊆ rBY − C.

Lemma 2.8. (see [41]) Let Ω be a nonempty convex subset of X. If G is upper
(lower) C-convex on Ω, then it is upper (lower) C-quasiconvex on Ω.

We conclude this section by revisiting some concepts of generalized monotonicity
for set-valued functions.

Definition 2.9. (see [9]) Let Ω be a nonempty subset of X. A set-valued map
Q : X× X ⇒ Y is said to be

(a) quasimonotone wrt C on Ω ⊆ X if for all x, y ∈ Ω,

[Q(x, y) ⊆ Y \ C] =⇒ [Q(y, x) ̸⊆ Y \ C] ;
(b) Hölder strongly monotone wrt C on Ω ⊆ X if there exist positive real numbers

η, γ such that

Q(y, x) +Q(x, y) + η∥x− y∥γBY ⊆ −C for all x, y ∈ Ω;

(c) Hölder strongly pseudomonotone wrt C on Ω if there exist positive real numbers
η, γ such that

[Q(x, y) ∩ C ̸= ∅] =⇒ [η∥x− y∥γBY +Q(y, x) ⊆ −C] for all x, y ∈ Ω.

Remark 2.10. Let Ω be a nonempty subset of X. If a map Q : X × X ⇒ Y is
Hölder strongly pseudomonotone as well as quasimonotone wrt C on Ω, then there
exist positive real numbers η, γ such that

either η∥x− y∥γBY +Q(x, y) ⊆ −C or η∥x− y∥γBY +Q(y, x) ⊆ −C.

3. Global Hölder conditions for set-valued equilibrium problems. In this
section, we study the stability for parametric set-valued equilibrium problems. Let
X, Y be defined as in Section 2, and W be a normed space. Let Ω be a nonempty
convex subset of X, and Λ,Θ be nonempty subsets of W. For set-valued maps with
nonempty values F : Ω × Ω × Θ ⇒ Y and K : Λ ⇒ Ω, we consider the following
parametric set-valued equilibrium problem.

(SEP): Find x̄ ∈ K(λ) such that

F (x̄, y, µ) ∩ C ̸= ∅ for all y ∈ K(λ). (1)

Definition 3.1. For each (λ, µ) ∈ Λ×Θ, x̄ ∈ K(λ) is called

(a) an efficient solution to (SEP) if (1) holds true;
(b) an ideal solution to (SEP) if

F (x̄, y, µ) ⊆ C for all y ∈ K(λ);
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(c) a weak solution to (SEP) if

F (x̄, y, µ) ∩ (Y \ − intC) ̸= ∅ for all y ∈ K(λ).

We denote the efficient solution (ideal solution, weak solution, respectively) set
to (SEP) by SolE(SEP) (SolI(SEP),SolW(SEP), respectively). Then, we have the
following inclusions:

SolI(SEP) ⊆ SolE(SEP) ⊆ SolW(SEP).

Since the solvability of equilibrium problems has been extensively discussed [4, 27,
32], we assume throughout this work that the problem (SEP) is solvable at every
point (λ, µ). Until now, there are many studies devoted to sufficient conditions
for the Hölder/Lipschitz continuity of the ideal solution map SolI(SEP) [30, 42] as
well as the weak solution map SolW(SEP) [9,10,34]. Due to technical challenges in
studying stability conditions for the efficient solution map SolE(SEP), to the best
of our knowledge, only papers [7,17] have examined the Hausdorff continuity of this
efficient solution map. Moreover, as far as we know, there has been no research on
the Hölder/Lipschitz continuity of SolE(SEP).

Based on existing works on the Hölder continuity of solution maps for equilibrium
problems, we have identified two main approaches. The first approach examines
Hölder continuity through conditions related to the strong monotonicity of the
objective map [10,20], while the second investigates this property through conditions
related to convexity and strong convexity [30,42]. Motivated by these observations,
we will study the Hölder continuity of the efficient solution map SolE(SEP) for
set-valued equilibrium problems using both approaches.

3.1. Monotone set-valued equilibrium problems. In this subsection, we em-
ploy conditions related to the monotonicity of a set-valued map to discuss Hölder
conditions for the efficient solution map of (SEP). We first study the Hölder conti-
nuity conditions for SolE(SEP) under perturbations in the objective map.

Theorem 3.2. Let λ ∈ Λ be given. Assume that

(i) F is upper globally Hölder continuous in the third argument on Θ;
(ii) for each µ ∈ Θ, F (·, ·, µ) is Hölder strongly pseudomonotone wrt C on K(λ).

Then, SolE(SEP)(λ, ·) is globally Hölder continuous on Θ.

Proof. Let µ1, µ2 ∈ Θ be arbitrary. Taking arbitrary x1 ∈ SolE(SEP)(λ, µ1) and
x2 ∈ SolE(SEP)(λ, µ2), for all y ∈ Ω, we have then

F (x1, y, µ1) ∩ C ̸= ∅ and F (x2, y, µ2) ∩ C ̸= ∅.
Equivalently,

0 ∈ F (x1, y, µ1)− C and 0 ∈ F (x2, y, µ2)− C. (2)

It follows from (i) that there exist positive real numbers ℓ, α such that

F (x2, x1, µ2) ⊆ F (x2, x1, µ1) + ℓ∥µ1 − µ2∥αBY − C. (3)

By the Hölder strong pseudomonotonicity of F wrt C on Ω and 0 ∈ F (x1, x2, µ1)
− C, there exist positive real numbers η, γ such that

η∥x1 − x2∥γBY + F (x2, x1, µ1) ⊆ −C.
Combining this with (2) and (3), we obtain

η∥x1 − x2∥γBY ⊆ η∥x1 − x2∥γBY + F (x2, x1, µ2)− C
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⊆ η∥x1 − x2∥γBY + F (x2, x1, µ1) + ℓ∥µ1 − µ2∥αBY − C

⊆ ℓ∥µ1 − µ2∥αBY − C.

Then, η∥x1 − x2∥γ ≤ ℓ∥µ1 − µ2∥α, and so

∥x1 − x2∥ ≤ γ

√
ℓ

η
∥µ1 − µ2∥α/γ .

Therefore, the proof is complete.

We next examine the conditions for Hölder continuity of SolE(SEP) with a para-
metric constraint map.

Theorem 3.3. Let µ ∈ Θ be given. Assume that

(i) K is globally Hölder continuous on Λ;
(ii) F is upper globally Hölder continuous in the second argument on K(Λ);
(iii) F (·, ·, µ) is Hölder strongly pseudomonotone as well as quasimonotone wrt C

on K(Λ).

Then, SolE(SEP)(·, µ) is globally Hölder continuous on Λ.

Proof. Let λ1, λ2 be arbitrary elements in Λ. For x1 = SolE(SEP)(λ1, µ) and x2 =
SolE(SEP)(λ2, µ), we will provide an estimation for ∥x1 − x2∥. We first consider
the case where x1 and x2 are distinct. Since x1, x2 are efficient solutions of (SEP),
for all y1 ∈ K(λ1) and y2 ∈ K(λ2),

0 ∈ F (x1, y1, µ)− C and 0 ∈ F (x2, y2, µ)− C. (4)

The global Hölder continuity of K leads to the existence of positive real numbers
ℏ, β and vectors z1 ∈ K(λ1), z2 ∈ K(λ2) such that

max{∥x1 − z2∥, ∥x2 − z1∥} ≤ ℏ∥λ1 − λ2∥β . (5)

In view of (ii), we also have positive real numbers ℓ, α such that

F (x1, z1, µ) ⊆ F (x1, x2, µ) + ℓ∥x2 − z1∥αBY − C. (6)

Thanks to (iii) and Remark 2.10, there exist positive real numbers η, γ such that

either F (x1, x2, µ) + η∥x1 − x2∥γBY ⊆ −C or F (x2, x1) + η∥x1 − x2∥γBY ⊆ −C.
We consider two cases as follows.

Case 1. F (x1, x2, µ) + η∥x1 − x2∥γBY ⊆ −C: In view of (4), (5), and (6), we have

η∥x1 − x2∥γBY ⊆ η∥x1 − x2∥γBY + F (x1, z1, µ)− C

⊆ η∥x1 − x2∥γBY + F (x1, x2, µ) + ℓ∥x2 − z1∥αBY − C

⊆ ℓℏα∥λ1 − λ2∥αβBY − C.

Case 2. F (x2, x1) + η∥x1 − x2∥γBY ⊆ −C: It follows from (4), (5), and (6) that

η∥x1 − x2∥γBY ⊆ η∥x1 − x2∥γBY + F (x2, z2, µ)− C

⊆ η∥x1 − x2∥γBY + F (x2, x1, µ) + ℓ∥z2 − x1∥αBY − C

⊆ ℓℏα∥λ1 − λ2∥αβBY − C.

Therefore,

∥x1 − x2∥ ≤ γ

√
ℓℏα
η

∥λ1 − λ2∥αβ/γ . (7)
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If x1 = x2, then of course (7) is also true, and so SolE(SEP)(·, µ) is globally Hölder
continuous on Λ.

We will conclude this subsection with a result on the Hölder continuity of the
efficient solution map SolE(SEP) for equilibrium problems under perturbations to
both the constraint and objective maps.

Theorem 3.4. Assume that

(i) K is globally Hölder continuous on Λ;
(ii) F is upper globally Hölder continuous in the third argument on Θ;
(iii) F is upper globally Hölder continuous in the second argument on K(Λ);
(iv) F (·, ·, µ) is Hölder strongly pseudomonotone as well as quasimonotone wrt C

on K(Λ).

Then, SolE(SEP)(·, ·) is globally Hölder continuous on Λ.

Remark 3.5. As far as we know, the Hölder continuity of the efficient solution
map SolE(SEP) for set-valued equilibrium problems has not been previously inves-
tigated. Therefore, to compare and clarify the novelty of our results with existing
works, we consider the special case where F is a single-valued map, and then the
problem (SEP) has become (VEP) considered in [6]. For this special case, the
main distinction in our findings, Theorems 3.2−3.4, in this subsection is that we
have established Hölder conditions for the problem under strongly pseudomonotone
assumptions instead of the strongly convexity as in Theorems 3.1 and 3.6 of [6],
and furthermore the monotonicity of the objective map has been reduced to quasi-
monotonicity. More especially, when the cone C generates a total order relation in
Y.

Example 3.6. Let X = Y = Ω = R, C = R+, Λ = Θ = [1, 2], K(λ) = [0, λ] and
F : R× R×Θ ⇒ R defined

F (x, y, µ) =
{
−|x− y|1/2, (y − x)µ

}
.

It is clear that F (·, ·, µ) is nonconvex on K(λ) for all µ ∈ Θ.
To verify Hölder strong pseudomonotonicity, we assume that for all x, y ∈ K(λ),

F (x, y, µ) ∩ C ̸= ∅.
Then, (y − x)µ > 0, i.e., (x− y)µ < 0, and so

(x− y)µ = −|y − x|µ < −|y − x| < −|x− y|1/2 < 0.

This leads to

(x− y)µ+ |x− y|1/2 < 0 and − |x− y|1/2 + |x− y|1/2 = 0.

Hence, F (y, x, µ)+ |x−y|1/2.1 ⊆ −C. Therefore, F satisfies the condition for Hölder
strong pseudomonotonicity with respect to C.

To check quasimonotonicity with respect to C, we assume that for any x, y ∈
K(λ),

F (x, y, µ) ⊆ Y \ C.
This means that F (x, y, µ) ⊆]−∞, 0[, it points out (y − x)µ < 0, or equivalently

(x− y)µ > 0.

Thus, F (y, x, µ) ̸⊆ Y\C. It is easy to see that F is upper globally Hölder continuous
in the second and third arguments on K(Λ)×Θ. Then, all assumptions of Theorem
3.4 hold true, and so SolE(SEP)(·, ·) is globally Hölder continuous on Λ.
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3.2. Convex set-valued equilibrium problems. In this subsection, we utilize
convexity conditions to study Hölder/Lipschitz continuity for approximate efficient
solution maps of equilibrium problems.

For each (ε, λ, µ) ∈ R+ ×Λ×Θ, we define the approximate efficient solution set
of (SEP) as follows.

S̃olE(SEP)(ε, λ, µ) := {x ∈ K(λ) | F (x, y, µ) ∩ (εBY + C) ̸= ∅ for all y ∈ K(λ)}.

Then, by the definition, we can verify that

S̃olE(SEP)(0, λ, µ) = SolE(SEP)(λ, µ), and

S̃olE(SEP)(ε1, λ, µ) ⊆ S̃olE(SEP)(ε2, λ, µ) for all 0 ≤ ε1 ≤ ε2.

Theorem 3.7. Let ε0 > 0 be a given point. For a given vector (λ, µ) ∈ Λ × Θ,
assume that

(i) K(λ) is bounded and convex;
(ii) F is lower (−C)-quasiconvex in the first variable on K(λ).

Then, S̃olE(SEP)(·, λ, µ) is globally Lipschitz continuous on [ε0,+∞[.

Proof. Let ε1, ε2 ∈ [ε0,+∞[ be arbitrary with ε1 ≤ ε2. Take any x2 ∈ S̃olE
(SEP)(ε2, λ, µ) and x0 ∈ S̃olE(SEP)(0, λ, µ), then we have

F (x0, y, µ) ∩ C ̸= ∅ and F (x2, y, µ) ∩ (ε2BY + C) ̸= ∅ for all y ∈ K(λ),

that is,

0 ∈ F (x0, y, µ)− C and 0 ∈ F (x2, y, µ) + ε2BY − C.

Consequently,

0 ∈ ε1
ε2
F (x2, y, µ) +

ε2 − ε1
ε2

F (x0, y, µ) + ε1BY − C.

Equivalently,(
ε1
ε2
F (x2, y, µ) +

ε2 − ε1
ε2

F (x0, y, µ)

)
∩ (ε1BY + C) ̸= ∅. (8)

Since K(λ) is convex, we get

x1 :=
ε1
ε2
x2 +

ε2 − ε1
ε2

x0 ∈ K(λ).

By the lower (−C)-quasiconvexity of F (·, y, µ) and (8), Remark 2.7(a) derives that

F (x1, y, µ) ∩ (ε1BY + C) ̸= ∅ for all y ∈ K(λ).

Then,

x1 ∈ S̃olE(SEP)(ε1, λ, µ).

It is clear that

∥x2 − x1∥ =
|ε1 − ε2|

ε2
∥x2 − x0∥.

Combining this with (i), we can find ρ > 0 such that

∥x2 − x1∥ ≤ ρ

ε0
|ε1 − ε2|.

Therefore,

x2 ∈ x1 +
ρ

ε0
|ε1 − ε2|BX,
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where BX is the closed unit ball in X. Consequently,

S̃olE(SEP)(ε2, λ, µ) ⊆ S̃olE(SEP)(ε1, λ, µ) +
ρ

ε0
|ε1 − ε2|BX. (9)

On the other hand, since ε1 ≤ ε2, we have

S̃olE(SEP)(ε1, λ, µ) ⊆ S̃olE(SEP)(ε2, λ, µ),

and so

S̃olE(SEP)(ε1, λ, µ) ⊆ S̃olE(SEP)(ε2, λ, µ)+
ρ

ε0
|ε1−ε2|BX for all ε1, ε2 ∈ [ε0,+∞[.

This together with (9) implies that the map S̃olE(SEP)(·, λ, µ) is globally Lipschitz
continuous on [ε0,+∞[.

Remark 3.8. In Theorem 3.7, we employ lower cone-quasiconvexity to establish the
Lipschitz continuity of the approximate solution map. By leveraging this technique,
we eliminate the need for the Lipschitz conditions on constrained maps required in
Lemma 3.1 of [15] and Lemma 3.3 of [14]. Therefore, Theorem 3.7 can be regarded
as an improved version of these lemmas.

Theorem 3.9. Let ε0 > 0 be a given point. For a fixed point λ ∈ Λ, assume that

(i) K(λ) is bounded and convex;
(ii) F is lower (−C)-quasiconvex in the first variable on K(λ);
(iii) F is upper globally Lipschitz continuous in the third variable on Θ.

Then, S̃olE(SEP)(·, λ, ·) is globally Lipschitz continuous on [ε0,+∞[×Θ.

Proof. In view of (i) and (ii), Theorem 3.7 gives us to find ρ > 0 such that for all
µ ∈ Θ,

S̃olE(SEP)(ε1, λ, µ) ⊆ S̃olE(SEP)(ε2, λ, µ)+
ρ

ε0
|ε1−ε2|BX for all ε1, ε2 ∈ [ε0,+∞[.

(10)
It follows from (iii) that for all x, y ∈ K(λ), there exists ℓ > 0 such that

F (x, y, µ1) ⊆ F (x, y, µ2) + ℓ∥µ1 − µ2∥BY − C for all µ1, µ2 ∈ Θ. (11)

For (ε1, µ1), (ε2, µ2) ∈ [ε0,+∞[×Θ, we set

r := ℓ∥µ1 − µ2∥ and τ := ε2 − ε0,

and consider two cases.

Case 1. If r ≤ τ , then ε2 − r ≥ ε2 − τ = ε0. Let x̄ ∈ S̃olE(SEP)(ε2 − r, λ, µ1) be
arbitrary. Then, for all y ∈ K(λ), we have

F (x̄, y, µ1) ∩ ((ε2 − r)BY + C) ̸= ∅.

Consequently, for each y ∈ K(λ), there exists some element z1 ∈ F (x̄, y, µ1) such
that

z1 ∈ (ε2 − r)BY + C. (12)

Thanks to (11), we obtain

z1 ∈ F (x̄, y, µ2) + ℓ∥µ1 − µ2∥BY − C = F (x̄, y, µ2) + rBY − C.

It means that there exist z2 ∈ F (x̄, y, µ2) and c1 ∈ C such that z1 − z2 + c1 ∈ rBY,
or equivalently

z2 − z1 − c1 ∈ rBY.
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Combining this with (12), we get

z2 ∈ z1 + c1 + rBY

∈ (ε2 − r)BY + C + C + rBY ⊆ ε2BY + C.

Therefore,

F (x̄, y, µ2) ∩ (ε2BY + C) ̸= ∅,
and thus x̄ ∈ S̃olE(SEP)(ε2, λ, µ2). Equivalently,

S̃olE(SEP)(ε2 − r, λ, µ1) ⊆ S̃olE(SEP)(ε2, λ, µ2).

Then, by Theorem 3.7, we achieve

S̃olE(SEP)(ε1, λ, µ1) ⊆ S̃olE(SEP)(ε2, λ, µ1) +
ρ

ε0
|ε1 − ε2|BX

⊆ S̃olE(SEP)(ε2 − r, λ, µ1) +
ρ

ε0
(r + |ε1 − ε2|)BX

⊆ S̃olE(SEP)(ε2, λ, µ2) +
ρ

ε0
(r + |ε1 − ε2|)BX

⊆ S̃olE(SEP)(ε2, λ, µ2) +
ρ

ε0
(ℓ∥µ1 − µ2∥+ |ε1 − ε2|)BX.

Similarly, we also have

S̃olE(SEP)(ε2, λ, µ2) ⊆ S̃olE(SEP)(ε1, λ, µ1) +
ρ

ε0
(ℓ∥µ1 − µ2∥+ |ε1 − ε2|)BX.

Case 2. If r > τ , then there is a natural number n0 satisfying

r

n0
=
ℓ∥µ1 − µ2∥

n0
≤ τ.

Let P be a partition of segment [µ1, µ2] with n0+1 nodes u1, u2, ..., un0+1 such that

u1 = µ1, un0+1 = µ2, ∥ui − ui+1∥ =
∥µ1 − µ2∥

n0
≤ τ

ℓ
.

Thus,

ℓ∥ui − ui+1∥ ≤ τ.

Applying Case 1, we obtain

S̃olE(SEP)(ε2, λ, ui) ⊆ S̃olE(SEP)(ε2, λ, ui+1) +
ρℓ

ε0
∥ui − ui+1∥BX

⊆ S̃olE(SEP)(ε2, λ, ui+1) +
ρℓ

n0ε0
∥µ1 − µ2∥BX.

Consequently,

S̃olE(SEP)(ε2, λ, µ1) ⊆ S̃olE(SEP)(ε2, λ, µ2) +
ρℓ

ε0
∥µ1 − µ2∥BX.

Then, by Case 1, we get

S̃olE(SEP)(ε1, λ, µ1) ⊆ S̃olE(SEP)(ε2, λ, µ1) +
ρ

ε0
|ε1 − ε2|BX

⊆ S̃olE(SEP)(ε2, λ, µ2) +
ρ

ε0
(ℓ∥µ1 − µ2∥+ |ε1 − ε2|)BX.

Similarly, we also get

S̃olE(SEP)(ε2, λ, µ2) ⊆ S̃olE(SEP)(ε1, λ, µ1) +
ρ

ε0
(ℓ∥µ1 − µ2∥+ |ε1 − ε2|)BX.
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Therefore, both of two cases, we always have

S̃olE(SEP)(εi, λ, µi) ⊆ S̃olE(SEP)(εj , λ, µj) +
ρ

ε0
(ℓ∥µi − µj∥+ |εi − εj |)BX,

for i, j ∈ {1, 2}, completing the proof.

We now recall a concept playing an important role in our analysis.

Definition 3.10. (see [8]) For a given number ρ > 0, the map G : X ⇒ Y is
termed to satisfied the ρ-uniformly bounded diameter property on Ω ⊆ X if for all
x ∈ Ω, diamG(x) ≤ ρ where diam(·) is the diameter of “·”.

Next, we consider the globally Lipschitz continuity of the efficient solution map
to (SEP) under both data perturbation.

Theorem 3.11. Let ε0 > 0 be a given point. Assume that

(i) K is globally Lipschitz continuous on Λ;
(ii) K has uniformly bounded diameter and convex values on Λ;
(iii) F is upper globally Lipschitz continuous on K(Λ)×K(Λ)×Θ;
(iv) for λ ∈ Λ, the map F is lower (−C)-quasiconvex in the first component on

K(λ).

Then, S̃olE(SEP) is globally Lipschitz continuous on [ε0,+∞[×Λ×Θ.

Proof. In view of (i), we can find ℏ > 0 such that

K(λ1) ⊆ K(λ2) + ℏ∥λ1 − λ2∥BX for all λ1, λ2 ∈ Λ. (13)

By the upper globally Lipschitz continuity of F on K(Λ)×K(Λ)×Θ, there exists
ℓ > 0 such that for all (x1, y1, µ1), (x2, y2, µ2) ∈ K(Λ)×K(Λ)×Θ,

F (x1, y1, µ1) ⊆ F (x2, y2, µ2)+ ℓ (∥x̄1 − x2∥+ ∥y1 − y2∥+ ∥µ1 − µ2∥)BY −C. (14)

For (ε1, λ1, µ1), (ε2, λ2, µ2) ∈ [ε0,+∞[×Λ×Θ, we set

r := 2ℓℏ∥λ1 − λ2∥, s := ℓ∥µ1 − µ2∥ and τ := ε2 − ε0,

and consider two cases.

Case 1. If r+s ≤ τ , then ε2−r−s ≥ ε2−τ = ε0. Let x̄ ∈ S̃olE(SEP)(ε2−r−s, λ1, µ1)
be arbitrary. Since x̄ ∈ K(λ1), Assumption (i) implies that there exists x22 ∈ K(λ2),

∥x̄− x22∥ ≤ ℏ∥λ1 − λ2∥. (15)

We claim that x22 ∈ S̃olE(SEP)(ε2, λ2, µ2). Taking any y2 ∈ K(λ2), there exists
y1 ∈ K(λ1) satisfying

∥y1 − y2∥ ≤ ℏ∥λ1 − λ2∥. (16)

It follows from x̄ ∈ S̃olE(SEP)(ε2 − r − s, λ1, µ1) and y1 ∈ K(λ1) that there is
z1 ∈ F (x̄, y1, µ1) such that

z1 ∈ (ε2 − r − s)BY + C. (17)

Thanks to (iii), (15) and (16), there exists ℓ > 0 such that

F (x̄, y1, µ1) ⊆ F (x22, y2, µ2) + ℓ (∥x̄− x22∥+ ∥y1 − y2∥+ ∥µ1 − µ2∥)BY − C

⊆ F (x22, y2, µ2) + (2ℓℏ∥λ1 − λ2∥+ ℓ∥µ1 − µ2∥)BY − C

⊆ F (x22, y2, µ2) + (r + s)BY − C.

For z1 ∈ F (x̄, y1, µ1), there exist z2 ∈ F (x22, y2, µ2) and c1 ∈ C such that

z1 − z2 + c1 ∈ (r + s)BY,
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and consequently

z2 − z1 − c1 ∈ (r + s)BY.

Combining this with (17), we get

z2 ∈ z1 + c1 + (r + s)BY

∈ (ε2 − r − s)BY + C + C + (r + s)BY ⊆ ε2BY + C.

Therefore,

F (x22, y2, µ2) ∩ (ε2BY + C) ̸= ∅ for all y ∈ K(λ2),

and so x22 ∈ S̃olE(SEP)(ε2, λ2, µ2).
On the other hand, in view of Theorem 3.7, we have

S̃olE(SEP)(ε1, λ1, µ1) ⊆ S̃olE(SEP)(ε2, λ1, µ1) +
ρ

ε0
|ε1 − ε2|BX, (18)

and

S̃olE(SEP)(ε2, λ1, µ1) ⊆ S̃olE(SEP)(ε2 − r − s, λ1, µ1) +
(r + s)ρ

ε0
BX. (19)

It follows (15) that

x̄ ∈ x22 + ℏ∥λ1 − λ2∥BX.

Thus,

S̃olE(SEP)(ε2 − r − s, λ1, µ1) ⊆ S̃olE(SEP)(ε2, λ2, µ2) + ℏ∥λ1 − λ2∥BX. (20)

Combining (18), (19) and (20), one has

S̃olE(SEP)(ε1, λ1, µ1)

⊆ S̃olE(SEP)(ε2, λ1, µ1) +
ρ

ε0
|ε1 − ε2|BX

⊆ S̃olE(SEP)(ε2 − r − s, λ1, µ1) +
ρ

ε0
(r + s+ |ε1 − ε2|)BX

⊆ S̃olE(SEP)(ε2, λ2, µ2) +

[
ρ

ε0
(r + s+ |ε1 − ε2|) + ℏ∥λ1 − λ2∥

]
BX,

and hence

S̃olE(SEP)(ε1, λ1, µ1)

⊆ S̃olE(SEP)(ε2, λ2, µ2)

+

[
ρ

ε0
|ε1 − ε2|+

(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥+

ρ

ε0
ℓ∥µ1 − µ2∥

]
BX.

Similarly, we also obtain

S̃olE(SEP)(ε2, λ2, µ2)

⊆ S̃olE(SEP)(ε1, λ1, µ1)

+

[
ρ

ε0
|ε1 − ε2|+

(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥+

ρ

ε0
ℓ∥µ1 − µ2∥

]
BX.

Case 2. If r+s > τ , then there is a natural number n0 satisfying
1
n0

≤ min{ τ
2r ,

τ
2s}.

Let P be a partition of segment [λ1, λ2] with n0+1 nodes u1, u2, ..., un0+1 such that

u1 = λ1, un0+1 = λ2, ∥ui − ui+1∥ =
∥λ1 − λ2∥

n0
.
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Then,

∥ui − ui+1∥ ≤ ∥λ1 − λ2∥
n0

≤ τ

2ℓℏ
,

that is,

2ℓℏ∥ui − ui+1∥ ≤ τ

2
. (21)

In addition, let V be a partition of segment [µ1, µ2] with n0+1 nodes v1, v2, ..., vn0+1

such that

v1 = µ1, vn0+1 = µ2, ∥vi − vi+1∥ =
∥µ1 − µ2∥

n0
.

It is clear that

∥vi − vi+1∥ ≤ ∥µ1 − µ2∥
n0

≤ τ

2ℓ
,

and so,

ℓ∥vi − vi+1∥ ≤ τ

2
. (22)

From (21) and (22),one has

2ℓℏ∥ui − ui+1∥+ ℓ∥vi − vi+1∥ ≤ τ.

Applying Case 1, we get

S̃olE(SEP)(ε2, ui, vi)

⊆ S̃olE(SEP)(ε2, ui+1, vi+1) +

[(
ρ

ε0
2ℓℏ+ ℏ

)
∥ui − ui+1∥+

ρ

ε0
ℓ∥vi − vi+1∥

]
BX

⊆ S̃olE(SEP)(ε2, ui+1, vi+1) +

[(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥

n0
+

ρ

ε0
ℓ
∥µ1 − µ2∥

n0

]
BX.

Consequently,

S̃olE(SEP)(ε2, λ1, µ1)

⊆ S̃olE(SEP)(ε2, λ2, µ2) +

[(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥+

ρ

ε0
ℓ∥µ1 − µ2∥

]
BX.

Then, by using Case 1 again, we get

S̃olE(SEP)(ε1, λ1, µ1)

⊆ S̃olE(SEP)(ε2, λ1, µ1) +
ρ

ε0
|ε1 − ε2|BX

⊆ S̃olE(SEP)(ε2, λ2, µ2)

+

[
ρ

ε0
|ε1 − ε2|+

(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥+

ρ

ε0
ℓ∥µ1 − µ2∥

]
BX.

Similarly, we also have

S̃olE(SEP)(ε2, λ2, µ2)

⊆ S̃olE(SEP)(ε1, λ1, µ1)

+

[
ρ

ε0
|ε1 − ε2|+

(
ρ

ε0
2ℓℏ+ ℏ

)
∥λ1 − λ2∥+

ρ

ε0
ℓ∥µ1 − µ2∥

]
BX.

Therefore, both of two cases, we always have

S̃ol(SEP)(εi, λi, µi)

⊆ S̃olE(SEP)(εj , λj , µj)
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+

[
ρ

ε0
|εi − εj |+

(
ρ

ε0
2ℓℏ+ ℏ

)
∥λi − λj∥+

ρ

ε0
ℓ∥µi − µj∥

]
BX.

for i, j ∈ {1, 2}, completing the proof.

The following example illustrates that Theorem 3.11 is applicable.

Example 3.12. Let X = W = R,Y = R2, C = R+ × {0}, Λ = Θ = [0, 1],K(λ) =
[λ− 2, 3] and

F (x, y, µ) = conv{(x, x), (x, x2 − 6)}+ (µ+ |y|)BY.

Find x ∈ K(λ) such that

F (x, y, µ) ∩ C ̸= ∅ for all y ∈ K(λ)

Assumption (i) of Theorem 3.11 holds true with ℏ = 1. Obviously, Assumption
(ii) of Theorem 3.11 is true with ρ = 5. Moreover, for any x1, x2 ∈ K(λ) and
t ∈ [0, 1], one has

(1− t)F (x1, y, µ) + tF (x2, y, µ)

= (1− t) conv{(x1, x1), (x1, x21 − 6)}+ t conv{(x2, x2), (x2, x22 − 6)}+ (µ+ |y|)BY

= conv{(1− t)(x1, x1) + t(x2, x2), (1− t)(x1, x
2
1 − 6) + t(x2, x

2
2 − 6)}+ µyBY

= conv{(xt, xt), (xt, (1− t)x21 + tx22 − 6)}+ (µ+ |y|)BY

⊆ conv{(xt, xt), (xt, x2t − 6)}+ (µ+ |y|)BY − C = F (xt, y, µ)− C,

where xt := (1− t)x1 + tx2. Then, F (·, y, µ) is lower (−C)-convex on K(λ).
Moving to the global Lipschitz continuity of F , for x1, y1, x2, y2 ∈ [−2, 3] and

µ1, µ2 ∈ [0, 1], we have

conv{(x1, x1), (x1, x21 − 6)} ⊆ conv{(x2, x2), (x2, x22 − 6)}+
√
37|x1 − x2|BY,

and
(µ1 + |y1|)BY ⊆ (µ2 + |y2|)BY + (|µ1 − µ2|+ |y1 − y2|)BY.

Therefore, by choosing ℓ =
√
37, Assumptions (iii) and (iv) of Theorem 3.11 hold

true. Then, applying Theorem 3.11, the solution map S̃olE(SEP) is globally Lips-
chitz continuous on [ε0,+∞[×Λ×Θ.

Remark 3.13. - Existing works have demonstrated that analyzing the Lipschitz
properties of the efficient solution maps of equilibrium problems through a direct
approach is challenging, primarily because the complement of the cone K is not
closed under vector addition. Consequently, most studies on this topic adopt an
indirect approach, specifically through scalarization methods. Although this ap-
proach is quite effective, it requires additional conditions for the scalar represen-
tation of the solution set of the vector problem model under consideration. For
instance, convexity conditions on objective maps are needed for linear scalarization
functions [30, 40], and cone solidness is required for a general Gerstewitz nonlinear
scalar function [14,15]. By contrast, using the direct approach presented in Theorem
3.11, we establish the global Lipschitz property without assuming any additional
conditions. Therefore, Theorem 3.11 contributes not only a new result but also
introduces new techniques.

- Recently, in [8], the authors studied the Lipschitz conditions of the solution map
of a single-valued strong equilibrium problem in a reflexive Banach space. By com-
bining the weak compactness of the closed unit ball with a general Hiriart-Urruty
oriented distance function, they established the Lipschitz continuity of approximate
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solution maps for the reference problem. In this context, although the convexity
condition imposed in Theorem 3.11 appears slightly stronger than the correspond-
ing condition in Theorem 2 of [8], our approach allows us to address the problem
in incomplete normed spaces.

4. Applications. Motivated by the interesting applications of equilibrium prob-
lems in studying the properties of solutions to optimal control problems, as proposed
in the excellent papers [24–26], in this section, we will apply the results obtained
in the previous section to analyze the stability of two optimal control models in
biology and economics.

4.1. Lotka−Volterra model. The predator-prey system was independently devel-
oped by Lotka [35] and Volterra [44] and has since been known as the Lotka–Volterra
system, which describes the interaction between a predator and its prey [37]. For
a finite time interval [0, T ], for each t ∈ [0, T ], let ζ(t) and ξ(t) be the number
of the individuals of the prey population and the predator one, respectively. A
prey-predator system is defined by

ζ̇(t) = ζ(t) (a1 − b1ξ(t)) , (23)

ξ̇(t) = ξ(t) (a2ζ(t)− b2) , (24)

where a1: the natural growth rate of the prey (in the absence of predators); b1:
the rate at which prey are killed by predators; a2: the growth rate of the predator
(dependent on the prey population); b2: the natural death rate of the predator (in
the absence of prey).

Suppose now that hunter populations are introduced in the ecosystem and their
acts both on the preys and predators. At each moment t, the number of the hunted
individuals is assumed to be proportional to the total number of the existing preda-
tors. For a finite time interval [0, T ] and functions u1, u2 : [0, T ] → [0, 1], we consider
the control map u : [0, T ] → [0, 1]× [0, 1] defined by u(t) := (u1(t), u2(t)). Thus, the
dynamics of the new ecosystem is described by the system of ordinary differential
equations

ζ̇(t) = ζ(t) (a1 − b1ξ(t)− c1u1(t)) , (25)

ξ̇(t) = ξ(t) (a2ζ(t)− c2u2(t)− b2) , (26)

min{ζ(0), ξ(0), ζ(T ), ξ(T )} > 0, (27)

where the constants c1, c2 represent the maximum level of hunting in a time instant
for each population. By setting

κ := (ζ, ξ) and g(κ, u) := (ζ(t) (a1 − b1ξ(t)− c1u1(t)) , ξ(t) (a2ζ(t)− c2u2(t)− b2)) ,

then the system (25)−(27) is rewritten as follows.

κ̇ = g(κ, u) and min{ζ(0), ξ(0), ζ(T ), ξ(T )} > 0. (28)

Definition 4.1. [1, page 27] A map υ : [0, T ] → R2 that is measurable on [0, T ] is
said to be essentially bounded on [0, T ] if there is a constant M such that

∥υ(t)∥ ≤M a.e. on [0, T ].

The greatest lower bound of such constants M is called the essential supremum of
∥υ∥ on [0, T ], and is denoted by ess supt∈[0,T ] ∥υ(t)∥. We denote by L∞([0, T ],R2)

the vector space of all maps u that are essentially bounded on [0, T ], maps being
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once again identified if they are equal a.e. on [0, T ]. It is easily checked that the
functional ∥ · ∥∞ defined by

∥υ∥∞ = ess sup
t∈[0,T ]

∥υ(t)∥

is a norm on L∞([0, T ],R2).

We denote

K := {u ∈ L∞([0, T ],R2) : u(t) ∈ [0, 1]× [0, 1] for all t ∈ [0, T ]}.
Motivated by [43,45], we consider the static optimal control problem (SOCP)

max {µ1ζ(T ) + µ2ξ(T ) : g(κ, u) = 0, u ∈ K} ,
with nonnegative weights µ1, µ2 representing the individual economical values of
preys and predators, respectively. Here, g(κ, u) = 0 represents the set of equilibrium
points with respect to the control map u, as defined in [18, 43]. It follows from
g(κ, u) = 0 that

ζ(T ) =
c2u2(T ) + b2

a2
and ξ(T ) =

a1 − c1u1(T )

b1
.

Then, the problem (SOCP) is rewritten in the following form

max
u=(u1,u2)∈K

(
µ1
c2u2(T ) + b2

a2
+ µ2

a1 − c1u1(T )

b1

)
.

To study the Lipschitz property for (SOCP), we examine the convex property of
the constraint set K.

Lemma 4.2. The set K is convex.

Proof. Let u, ū ∈ K be arbitrary. We have

u, ū ∈ L∞([0, T ],R2) and u(t), ū(t) ∈ [0, 1]× [0, 1] for all t ∈ [0, T ]}.
Then, for all s ∈ [0, 1], we get

(1−s)u+sū ∈ L∞([0, T ],R2) and (1−s)u(t)+sū(t) ∈ [0, 1]×[0, 1] for all t ∈ [0, T ]},
and therefore (1− s)u+ sū ∈ K.

Corollary 4.3. For any ε0 > 0, S̃olE(SOCP) is globally Lipschitz continuous on
[ε0,+∞[×R2

+.

Proof. Obviously, for all ε > 0 and µ = (µ1, µ2), we have S̃olE(SOCP)(ε, µ) ≡
S̃olE(SEP)(ε, µ), where

F (u, v, µ) =

(
µ1
c2u2(T ) + b2

a2
+ µ2

a1 − c1u1(T )

b1

)
−
(
µ1
c2v2(T ) + b2

a2
+ µ2

a1 − c1v1(T )

b1

)
=
c2µ1

a2
(u2(T )− v2(T )) +

µ2c1
b1

(v1(T )− u1(T )) ,

for all u = (u1, u2) and v = (v1, v2). Thus, to obtain the conclusion of Corollary
4.3, we will show that all the assumptions of Theorem 3.9 are fulfilled. By Lemma
4.2, Assumption (i) in Theorem 3.9 holds true. We now check other assumptions in
Theorem 3.9.
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⋄ F is affine in the first component on K: Let u = (u1, u2), ū = (ū1, ū2), v =
(v1, v2) ∈ K and µ = (µ1, µ2) ∈ R2

+ be arbitrary. Then, for all s ∈ [0, 1],

F ((1− s)u+ sū, v, µ) =
c2µ1

a2
((1− s)u2(T ) + sū2(T )− v2(T ))

+
µ2c1
b1

(v1(T )− (1− s)u1(T )− sū1(T ))

= (1− s)

(
c2µ1

a2
(u2(T )− v2(T )) +

µ2c1
b1

(v1(T )− u1(T ))

)
+ s

(
c2µ1

a2
(u2(T )− v̄2(T )) +

µ2c1
b1

(v̄1(T )− u1(T ))

)
= (1− s)F (u, v, µ) + sF (ū, v, µ).

⋄ F is globally Lipschitz continuous in the third variable on R2
+. Let u = (u1, u2), v =

(v1, v2) belong to K and µ = (µ1, µ2), µ̄ = (µ̄1, µ̄2) ∈ R2
+, we have

F (u, v, µ) =
c2µ1

a2
(u2(T )− v2(T )) +

c1µ2

b1
(v1(T )− u1(T )) ,

and

F (u, v, µ̄) =
c2µ̄1

a2
(u2(T )− v2(T )) +

c1µ̄2

b1
(v1(T )− u1(T )) .

Then,

|F (u, v, µ)− F (u, v, µ̄)|

≤ c2
a2

|u2(T )− v2(T )| |µ1 − µ̄1|+
c1
b1

|v1(T )− u1(T )| |µ2 − µ̄2|.

Combining this with u, v ∈ L∞([0, T ],R2), there exists M > 0 such that

|F (u, v, µ)− F (u, v, µ̄)| ≤ 2Mc2
a2

|µ1 − µ̄1|+
2Mc1
b1

|µ2 − µ̄2|

≤
(
4Mc2
a2

+
4Mc1
b1

)
∥µ− µ̄∥.

Therefore, all assumptions of in Theorem 3.9 hold true, and so S̃olE(SOCP) is
globally Lipschitz continuous on [ε0,+∞[×R2

+.

4.2. A cash balance problem. Businesses always need to maintain a certain
amount of cash to ensure their ability to meet daily operational needs, such as
payroll, operating expenses, or other payables. However, holding too much cash
may cause businesses to miss out on profitable investment opportunities in securities
such as bonds, stocks, or other financial instruments. On the other hand, if they
hold too little cash, businesses may have to sell securities unexpectedly to meet
urgent financial demands. This not only disrupts their investment strategy but also
incurs additional brokerage fees and related costs. Therefore, a key challenge for
businesses is determining the optimal balance between holding cash and investing
in securities to maximize values while minimizing associated costs.

We denote by Rn the n-dimensional Euclidean space with the norm | · |. The
Banach space C ([0, T ] ,Rn) is the space of all continuous functions ψ : [0, T ] → Rn

equipped with the norm ∥ψ∥ = maxt∈[0,T ] |ψ(t)|. For 1 ≤ p ≤ ∞, let Lp ([0, T ] ,Rn)
denote the space of all the Lebesgue integrable functions defined on [0, T ] with the
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norm ∥ · ∥p. For a matrix A = (aij)m×n ∈ Rm×n, the norm of a square matrix A is
a non-negative real number defined by

∥A∥∞ := max
1≤i≤m

n∑
j=1

|aij |.

For a finite time interval [0, T ], let ζ(t) and ξ(t) represent the cash balance and
the security balance (both in dollars) at time t ∈ [0, T ], respectively, for a company.
Motivated by [28], we now consider parameters r1, r2 and r3 as follows:

⋄ r1 : the interest rates earned on the cash balance,
⋄ r2 : the interest rates earned on the security balance,
⋄ r3 : the instantaneous rate of demand for cash.

Then, the state equations are expressed as:

ζ̇(t) = r1(t)ζ(t)− r3(t) and ξ̇(t) = r2(t)ξ(t) a.e. t ∈ [0, T ] .

To ensure the cash balance problem, the company controls the rate of sale of se-
curities u ∈ Lp ([0, T ] ,R) with −υ2 ≤ u(t) ≤ υ1, where υ1 and υ2 are nonnegative
constants. Then, we reconsider the state equations as follows.

ζ̇(t) = r1(t)ζ(t)− r3(t) + u(t) a.e. t ∈ [0, T ] , (29)

and

ξ̇(t) = r2(t)ξ(t)− u(t) a.e. t ∈ [0, T ] . (30)

The objective is to maximize the total value of assets (cash and securities) at the
end of the time horizon T , which is expressed by

max{ζ(T ) + ξ(T )},

subject to (29) and (30).
Let Υ be a nonempty bounded subset of R. Setting λ := (r1, r2, r3) is an element

of the parameter space Λ which is defined by

Λ :=
{
λ ∈ Lq ([0, T ] ,R)× Lq ([0, T ] ,R)× Lq ([0, T ] ,R) : λ(t) ∈ Υ3 a.e. t ∈ [0, T ]

}
.

Let U be a nonempty convex subset of Lp ([0, T ] ,R), we define

κ := (ζ, ξ), X := C
(
[0, T ] ,R2

)
, W := X × U .

Then, (29) and (30) have become[
ζ̇(t)

ξ̇(t)

]
=

[
r1(t) 0
0 r2(t)

] [
ζ(t)
ξ(t)

]
+

[
1
−1

]
u(t) +

[
−1
0

]
d(t),

or equivalently

κ̇(t) =

[
r1(t) 0
0 r2(t)

]
κ(t) +Au(t) +Br3(t), (31)

where A =

[
1
−1

]
, B =

[
−1
0

]
. For λ = (r1, r2, r3) ∈ Λ, we define

K(λ) := {w = (κ, u) ∈ X × U : (31) is satisfied},

with K : Λ ⇒ X ×U is a feasible solution map. Then, the following statement holds
true.

Lemma 4.4. The function K is globally Lipschitz continuous as well as has uni-
formly bounded diameter and convex values on Λ.
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Proof. ⋄ For each λ = (r1, r2, r3) ∈ Λ, the set K(λ) is convex : Let w = (κ, u) , z =
(η, v) ∈ K(λ) be arbitrary. Since X and U are convex,

(1− s)w + sz ∈ X × U for all s ∈ [0, 1].

We get

d

dt
((1− s)κ(t) + η(t))

= (1− s)κ̇(t) + sη̇(t)

=

[
r1(t) 0
0 r2(t)

]
((1− s)κ(t) + sη(t)) +A ((1− s)u(t) + sv(t)) +Br3(t).

Therefore, (1− s)w + sz ∈ K(λ) for all w, z ∈ K(λ), and hence K(λ) is convex.
♢ K globally Lipschitz continuous on Λ: For λ1 = (r11, r12, r13), λ2 = (r21, r22, r23) ∈
Λ, and (κ1, u1) ∈ K (λ1), we have

κ̇1(t) =

[
r11(t) 0
0 r12(t)

]
κ1(t) +Au1(t) +Br13(t) a.e. t ∈ [0, T ] . (32)

Then, there exists κ2 ∈ X such that

κ̇2(t) =

[
r21(t) 0
0 r22(t)

]
κ2(t) +Au1(t) +Br23(t) a.e. t ∈ [0, T ] . (33)

It follows from (32) and (33) that

κ̇1(t)− κ̇2(t)

=

[
r11(t) 0
0 r12(t)

]
κ1(t)−

[
r21(t) 0
0 r22(t)

]
κ2(t) +B (r13(t)− r23(t))

=

[
r11(t) 0
0 r12(t)

]
(κ1(t)− κ2(t)) +

[
r11(t)− r21(t) 0

0 r12(t)− r22(t)

]
κ2(t)

+B (r13(t)− r23(t)) .

Consequently,

∥κ̇1(t)− κ̇2(t)∥
≤ max{|r11(t)|, |r12(t)|} ∥κ1(t)− κ2(t)∥+
+max{|r11(t)− r21(t)| , |r12(t)− r22(t)|}∥κ2(t)∥+ ∥B∥ |r13(t)− r23(t)|

≤ max{|r11(t)| , |r12(t)|} ∥κ1(t)− κ2(t)∥+ (∥κ2(t)∥+ 1) ∥λ1 − λ2∥
≤ ρ1 ∥κ1(t)− κ2(t)∥+ (ρ2 + 1) ∥λ1 − λ2∥,

where max{|r11(t)| , |r12(t)|} ≤ ρ1, ∥κ2(t)∥ ≤ ρ2, a.e. t ∈ [0, T ],

∥λ1 − λ2∥ = max{|r11(t)− r21(t)| , |r12(t)− r22(t)| , |r13(t)− r23(t)|},

and ∥∥∥∥[a b
c d

]∥∥∥∥ := max{|a|, |b|, |c|, |d|}.

It follows that

∥κ1(T )− κ2(T )∥ ≤
∫ T

0

(ρ1 ∥κ1(s)− κ2(s)∥+ (ρ2 + 1) ∥λ1 − λ2∥) ds

≤
∫ T

0

ρ1 ∥κ1(s)− κ2(s)|ds+ T (ρ2 + 1) ∥λ1 − λ2∥ .
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Using the Gronwall inequality, we get

∥κ1(T )− κ2(T )∥ ≤ T (ρ2 + 1) ∥λ1 − λ2∥ e
∫ T
0

ρ1ds

≤ T (ρ2 + 1) ∥λ1 − λ2∥ eρ1T .

Consequently,
∥κ1 − κ2∥ ≤ T (ρ2 + 1) eρ1T ∥λ1 − λ2∥ .

It results that

K(λ1) ⊆ K(λ2) + T (ρ2 + 1) eρ1T ∥λ1 − λ2∥BY.

Therefore, K is globally Lipschitz continuous on Λ.

Next, by setting

φ(w) := φ(κ, u) = ζ(T ) + ξ(T ) for all w = (κ, u) ∈ W, κ = (ζ, ξ),

the cash balance problem (CBP) can be cast as the following problem

maxφ(w) subject to w ∈ K(λ).

The following result is obtained by Theorem 3.11.

Corollary 4.5. For any ε0 > 0, S̃olE(CBP) is globally Lipschitz continuous on
[ε0,+∞[×Λ.

Proof. For w1 = (κ1, u1), w2 = (κ2, u2) ∈W and s ∈ [0, 1], we have

ws := (1− s)w1 + sw2 = ((1− s)κ1 + sκ2, (1− s)u1 + su2) ∈ W.

If κi := (ζi, ξi) for all i ∈ {1, 2}, then
φ (ws) = ((1− s)ζ1 + sζ2) (T ) + ((1− s)ξ1 + sξ2) (T )

= (1− s) (ζ1(T ) + ξ1(T )) + (1− s) (ζ2(T ) + ξ2(T ))

= (1− s)φ(w1) + sφ(w2).

Hence, φ is affine on W. Consequently, the function F defined by

F (w, z) := φ(w)− φ(z) for all w, z ∈ K(λ),

is also affine in the first component on K(λ). Combining this with Lemma 4.4,

all assumptions in Theorem 3.11 hold true, and so we conclude that S̃olE(CBP) is
globally Lipschitz continuous on [ε0,+∞[×Λ.

5. Conclusion. In this study, we have used a direct approach to investigate the
Hölder/Lipschitz properties of the efficient solution map for the vector equilibrium
problem with multivalued objective map. With this approach, we have avoided
the common additional conditions typically required by indirect methods, such as
scalarization of linear or nonlinear functions, as presented in previous works. By
applying this approach and the techniques mentioned in the results above, we also
establish the stability in the sense of Hölder/Lipschitz continuity of solution maps of
two optimal control problems, including one that describes the interaction between
a predator and its prey, and another that addresses the balance between holding
cash and investing. We believe that with the techniques and approach presented
in this paper, along with appropriate adjustments, there is great potential for fur-
ther application in studying the Hölder/Lipschitz conditions of other optimization
models, as well as in practical situations related to optimal models in biology and
economics.
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equilibrium problems in metric spaces, J. Glob. Optim., 37 (2007), 449-465.
[11] L. Q. Anh, P. Q. Khanh and D. N. Quy, About semicontinuity of set-valued maps and stability

of quasivariational inclusions, Set-Valued Var. Anal., 22 (2014), 533-555.
[12] L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to
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[16] Q. H. Ansari, E. Köbis and J.-C. Yao, Vector Variational Inequalities and Vector Optimiza-
tion: Theory and Applications, Springer, Cham, 2018.

[17] Q. H. Ansari, P. K. Sharma and N. Hussain, Semi-continuity of the solution maps of set-valued
equilibrium problems with equilibrium constraints, Optimization, (2024), 1-23.

[18] V. V. Au and D. H. Manh, Chaotic and stable behavior around the equilibrium points of a

non-autonomous competitive Lotka-Volterra system, Discrete Cont. Dynamical Syst.-S , 18
(2025), 482-498.

[19] M. Balaj and L.-J. Lin, Generalized variational relation problems with applications, J. Optim.

Theory Appl., 148 (2011), 1-13.
[20] M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria, Optimization, 55 (2006),

221-230.

http://www.ams.org/mathscinet-getitem?mr=MR2424078&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3938030&return=pdf
http://dx.doi.org/10.1080/00036811.2017.1419198
http://dx.doi.org/10.1080/00036811.2017.1419198
http://dx.doi.org/10.1080/00036811.2017.1419198
http://www.ams.org/mathscinet-getitem?mr=MR3964272&return=pdf
http://dx.doi.org/10.1007/s00025-019-1057-0
http://dx.doi.org/10.1007/s00025-019-1057-0
http://dx.doi.org/10.1007/s00025-019-1057-0
http://www.ams.org/mathscinet-getitem?mr=MR3707919&return=pdf
http://dx.doi.org/10.1007/s10957-017-1169-1
http://dx.doi.org/10.1007/s10957-017-1169-1
http://www.ams.org/mathscinet-getitem?mr=MR4402538&return=pdf
http://dx.doi.org/10.1080/02331934.2020.1812067
http://dx.doi.org/10.1080/02331934.2020.1812067
http://www.ams.org/mathscinet-getitem?mr=MR3820581&return=pdf
http://dx.doi.org/10.1080/02331934.2018.1466298
http://dx.doi.org/10.1080/02331934.2018.1466298
http://www.ams.org/mathscinet-getitem?mr=MR4218758&return=pdf
http://dx.doi.org/10.1007/s11590-020-01604-0
http://dx.doi.org/10.1007/s11590-020-01604-0
http://www.ams.org/mathscinet-getitem?mr=MR4368972&return=pdf
http://dx.doi.org/10.1007/s40314-022-01758-w
http://dx.doi.org/10.1007/s40314-022-01758-w
http://www.ams.org/mathscinet-getitem?mr=MR2236560&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2005.08.018
http://dx.doi.org/10.1016/j.jmaa.2005.08.018
http://www.ams.org/mathscinet-getitem?mr=MR2293665&return=pdf
http://dx.doi.org/10.1007/s10898-006-9062-8
http://dx.doi.org/10.1007/s10898-006-9062-8
http://www.ams.org/mathscinet-getitem?mr=MR3252080&return=pdf
http://dx.doi.org/10.1007/s11228-014-0276-5
http://dx.doi.org/10.1007/s11228-014-0276-5
http://www.ams.org/mathscinet-getitem?mr=MR2870919&return=pdf
http://dx.doi.org/10.1016/j.na.2011.10.029
http://dx.doi.org/10.1016/j.na.2011.10.029
http://www.ams.org/mathscinet-getitem?mr=MR4757320&return=pdf
http://dx.doi.org/10.3934/eect.2024024
http://dx.doi.org/10.3934/eect.2024024
http://www.ams.org/mathscinet-getitem?mr=MR3733127&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR4548358&return=pdf
http://dx.doi.org/10.1080/02331934.2021.1970753
http://dx.doi.org/10.1080/02331934.2021.1970753
http://www.ams.org/mathscinet-getitem?mr=MR3727107&return=pdf
http://dx.doi.org/10.1080/02331934.2024.2306291
http://dx.doi.org/10.1080/02331934.2024.2306291
http://www.ams.org/mathscinet-getitem?mr=MR4834763&return=pdf
http://dx.doi.org/10.3934/dcdss.2024098
http://dx.doi.org/10.3934/dcdss.2024098
http://www.ams.org/mathscinet-getitem?mr=MR2747742&return=pdf
http://dx.doi.org/10.1007/s10957-010-9741-y
http://www.ams.org/mathscinet-getitem?mr=MR2238411&return=pdf
http://dx.doi.org/10.1080/02331930600662732


SENSITIVITY ANALYSIS 1189

[21] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems, Math. Stud., 63 (1994), 123-145.

[22] O. Chadli, Q. H. Ansari and S. Al-Homidan, Existence of solutions for nonlinear implicit

differential equations: An equilibrium problem approach, Numer. Funct. Anal. Optim., 37
(2016), 1385-1419.

[23] O. Chadli, Q. H. Ansari and S. Al-Homidan, Existence of solutions and algorithms for bilevel
vector equilibrium problems: An auxiliary principle technique, J. Optim. Theory Appl., 172

(2017), 726-758.

[24] O. Chadli, Q. H. Ansari, S. Al-Homidan and M. Alshahrani, Optimal control of systems gov-
erned by mixed equilibrium problems under monotonicity type conditions with applications,

Appl. Math. Optim., 83 (2021), 373-403.

[25] O. Chadli, Q.H. Ansari, S. Al-Homidan, Augmented Lagrangian methods for optimal control
problems governed by mixed quasi-equilibrium problems with applications, Optimal Control

Appl. Methods, 42 (2021), 1178-1205.

[26] O. Chadli, Q. H. Ansari, S. Al-Homidan and M. Alshahrani, Optimal control of problems
governed by mixed quasi-equilibrium problems under monotonicity type conditions with ap-

plications, Appl. Math. Optim., 83 (2021), 2185-2209.

[27] L. Eslamizadeh and E. Naraghirad, Existence of solutions of set-valued equilibrium problems
in topological vector spaces with applications, Optim. Lett., 14 (2020), 65-83.

[28] C. Gaimon, Optimal Control Theory: Applications to Management Science and Economics,
Springer, Cham, 2002.

[29] N. X. Hai and P. Q. Khanh, Existence of solutions to general quasiequilibrium problems and

applications, J. Optim. Theory Appl., 133 (2007), 317-327.
[30] Y. Han, Lipschitz continuity of approximate solution mappings to parametric generalized

vector equilibrium problems, J. Optim. Theory Appl., 178 (2018), 763-793.

[31] Y. Han, Nonlinear scalarizing functions in set optimization problems, Optimization, 68
(2019), 1685-1718.

[32] S. Jafari, A. P. Farajzadeh, S. Moradi and P. Q. Khanh, Existence results for φ-quasimonotone

equilibrium problems in convex metric spaces, Optimization, 66 (2017), 293-310.
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