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We investigate the numerical approximation of integrals over Rd equipped with the standard Gaussian
measure γ for integrands belonging to the Gaussian-weighted Sobolev spaces Wα

p (Rd , γ ) of mixed
smoothness α ∈ N for 1 < p < ∞. We prove the asymptotic order of the convergence of optimal
quadratures based on n integration nodes and propose a novel method for constructing asymptotically
optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of
the linear, Kolmogorov and sampling n-widths in the Gaussian-weighted space Lq(Rd , γ ) of the unit ball
of Wα

p (Rd , γ ) for 1 ≤ q < p < ∞ and q = p = 2.
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1. Introduction

We investigate numerical approximation of integrals

I(f ) :=
∫
Rd

f (x) γ (dx) =
∫
Rd

f (x)g(x) dx (1.1)

for functions f belonging to the Gaussian-weighted Sobolev spaces Wα
p (Rd, γ ) of mixed smoothness

α ∈ N for 1 < p < ∞ (see Section 2 for the definition), where γ (dx) = g(x) dx is the d-dimensional
standard Gaussian measure on R

d with the density

g(x) := (2π)−d/2 exp
(
−|x|2/2

)
, x ∈ R

d.
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1243

To approximate this integral we use a (linear) quadrature defined by

In(f ) :=
n∑

i=1

λif (xi) (1.2)

with the convention I0(f ) = 0, where {x1, . . . , xn} ⊂ R
d are given integration nodes and (λ1, . . . , λn) the

integration weights. For convenience, we assume that some of the integration nodes may coincide. Let
Wα

p (Rd, γ ) be the unit ball of Wα
p (Rd, γ ). The optimality of quadratures for Wα

p (Rd, γ ) is measured by
the quantity

Intn(W
α
p (Rd, γ )) := inf

In
sup

f ∈Wα
p (Rd ,γ )

|I(f ) − In(f )|. (1.3)

We are interested in the asymptotic order of this quantity when n → ∞, as well as in constructing
asymptotically optimal quadratures. We do not investigate the dependence on the dimension and the
problem of tractability. The problem of multivariate numerical integration (1.1)–(1.2) has been studied
in Irrgeher & Leobacher (2015); Irrgeher et al. (2015); Dick et al. (2018) for functions in certain Hermite
spaces, in particular, the space Hd,α in Dick et al. (2018), which coincides with Wα

2 (Rd, γ ) in terms of
norm equivalence. So far the best result on this problem is

n−α(log n)
d−1

2 � Intn
(
Wα

2 (Rd, γ )
)� n−α(log n)

d(2α+3)
4 − 1

2 ,

which has been proven in Dick et al. (2018). Moreover, the upper bound is achieved by a translated
and scaled quasi-Monte Carlo (QMC) quadrature based on Dick’s higher order digital nets. We note
the related work (Kritzer et al., 2020), which studied weighted integration via a change of variables for
functions on R

d from non-weighted spaces of mixed smoothness.
The aim of this paper is to prove the asymptotic order of Intn

(
Wα

p (Rd, γ )
)
. Let us briefly describe

the main results.
For α ∈ N and 1 < p < ∞, we construct an asymptotically optimal quadrature Iγ

n of the form (1.2)
which gives the asymptotic order of the convergence

sup
f ∈Wα

p (Rd ,γ )

∣∣∣∣
∫
Rd

f (x)γ (dx) − Iγ
n (f )

∣∣∣∣ 	 Intn
(
Wα

p (Rd, γ )
) 	 n−α(log n)

d−1
2 . (1.4)

In constructing Iγ
n , we propose a novel method assembling an asymptotically optimal quadrature for

the related Sobolev spaces on the unit d-cube to the integer-shifted d-cubes which cover R
d. The

asymptotically optimal quadrature Iγ
n is based on very sparse integration nodes contained in a d-ball

of radius
√

log n.
As for related problems with a similar approach, we establish the asymptotic orders of linear n-widths

λn, Kolmogorov n-widths dn, and sampling n-widths �n of the set Wα
p (Rd, γ ) in the Gaussian-weighted

space Lq(R
d, γ ) (see Section 3 for definitions). For α ∈ N and 1 ≤ q < p < ∞ we prove that

λn 	 dn 	 n−α(log n)(d−1)α , (1.5)
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1244 D. DŨNG AND V. K. NGUYEN

and with the additional condition q = 2,

�n 	 n−α(log n)(d−1)α . (1.6)

For α ∈ N and q = p = 2, we prove that

λn = dn 	 n− α
2 (log n)

(d−1)α
2 , (1.7)

and with the additional condition α ≥ 2,

�n 	 n− α
2 (log n)

(d−1)α
2 . (1.8)

The asymptotic orders (1.5)–(1.8) show very different approximation results between the cases q < p
and q = p = 2. We conjecture that the asymptotic orders (1.7) and (1.8) still hold true for p, q with the
restrictions p = q �= 2 and 1 < p < ∞. The case 1 ≤ p < q < ∞ of these n-widths is excluded from the
consideration caused by the natural reason that in this case we do not have a continuous embedding of
Wα

p (Rd, γ ) into Lq(R
d, γ ). For example, the function f (x) = ∏d

i=1

(
1 + x2

i

)−m exp
(|x|2/(2p)

)
belongs

to Wα
p (Rd, γ ) if m > 1/2 + α. However, this function does not belong to Lq(R

d, γ ) when q > p.

The paper is organized as follows. In Section 2, we prove the asymptotic order of Intn
(
Wα

p (Rd, γ )
)

and construct asymptotically optimal quadratures. Section 3 is devoted to the proof of the asymptotic
order of linear n-widths λn and Kolmogorov n-widths dn for the cases q < p and q = p = 2 and the
construction of asymptotically optimal linear approximations. In this section we also give asymptotic
order of sampling n-widths for the cases q = 2 < p and q = p = 2. In Section 4, we illustrate our
integration nodes in comparison with those used in Dick et al. (2018) and give a numerical test for the
results obtained in Section 2.

Notation. We write R1 := {x ∈ R : x ≥ 1}. For a Banach space E, denote by the bold symbol E the
unit ball in E. The letter d is always reserved for the underlying dimension of Rd, Nd, etc. Vectors in
R

d are denoted by boldface letters. For x ∈ R
d, xi denotes the ith coordinate, i.e., x := (x1, . . . , xd). If

1 ≤ p ≤ ∞, we write |x|p := (∑d
i=1 |xi|p

)1/p with the usual modification when p = ∞. When p = 2 we
simply write |x|. For the quantities An and Bn depending on n in an index set J we write An � Bn if there
exists some constant C > 0 independent of n such that An ≤ CBn for all n ∈ J, and An 	 Bn if An � Bn
and Bn � An. General positive constants or positive constants depending on parameters α, d, . . . are
denoted by C or Cα,d,..., respectively. Values of constants C and Cα,d in general, are not specified except
in the cases when they are precisely given, and may be different in various places. Denote by |G| the
cardinality of the finite set G.

2. Numerical integration

In this section, based on a quadrature on the d-cube Id := [− 1
2 , 1

2

]d for numerical integration of functions
from classical Sobolev spaces of mixed smoothness on I

d, by assembling we construct a quadrature on
R

d for numerical integration of functions from γ -weighted Sobolev spaces Wα
p (Rd, γ ) which preserves

the convergence rate. As a consequence, we prove the asymptotic order of Intn
(
Wα

p (Rd, γ )
)
.
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1245

2.1 Assembling quadratures

We first introduce γ -weighted Sobolev spaces of mixed smoothness. Let 1 ≤ p < ∞ and Ω be a
Lebesgue measurable set on R

d. We define the γ -weighted space Lp(Ω , γ ) to be the set of all functions
f on Ω such that the norm

‖f ‖Lp(Ω ,γ ) :=
(∫

Ω

|f (x)|pγ (dx)

)1/p

=
(∫

Ω

|f (x)|pg(x) dx
)1/p

< ∞.

For α ∈ N, we define the γ -weighted space Wα
p (Ω , γ ) to be the normed space of all functions

f ∈ Lp(Ω , γ ) such that the weak (generalized) partial derivative Drf of order r belongs to Lp(Ω , γ )

for all r ∈ N
d
0 satisfying |r|∞ ≤ α. The norm of a function f in this space is defined by

‖f ‖Wα
p (Ω ,γ ) :=

( ∑
|r|∞≤α

‖Drf ‖p
Lp(Ω ,γ )

)1/p

. (2.1)

The space Wα
p (Ω) is defined as the classical Sobolev space by replacing Lp(Ω , γ ) with Lp(Ω) in (2.1),

where as usual, Lp(Ω) denotes the Lebesgue space of functions on Ω equipped with the usual p-integral
norm. For technical convenience we use the conventions Intn := Int�n� and In := I�n� for n ∈ R1.

For numerical approximation of integrals IΩ(f ) := ∫
Ω

f (x) dx over the set Ω , we need natural
modifications IΩ

n (f ) for functions f on Ω , and IntΩn (F) for a set F of functions on Ω , of the definitions
(1.2) and (1.3). For simplicity we will drop Ω from these notations if there is no misunderstanding.

Let α ∈ N, 1 < p < ∞ and a > 0, b ≥ 0. Assume that for the quadrature

Im(f ) :=
m∑

i=1

λif (xi), {x1, . . . , xm} ⊂ I
d, (2.2)

holds the convergence rate

∣∣∣∣
∫
Id

f (x) dx − Im(f )

∣∣∣∣ ≤ Cm−a(log m)b‖f ‖Wα
p (Id), f ∈ Wα

p (Id). (2.3)

Then based on Im, we will construct a quadrature on R
d, which approximates the integral I(f ) with the

same convergence rate for f ∈ Wα
p (Rd, γ ).

Our strategy is as follows. The integral I(f ) can be represented as the sum of component integrals
over the integer-shifted d-cubes Id

k by

I(f ) =
∑
k∈Zd

∫
I
d
k

fk(x)gk(x) dx, (2.4)

where for k ∈ Z
d, Id

k := k + I
d and for a function f on R

d, fk denotes the restriction of f to I
d
k. For

a given n ∈ R1, we take ‘shifted’ quadratures Ink
of the form (2.2) for approximating the component

integrals in the sum in (2.4). The integration nodes in Ink
, k ∈ Z

d, are taken so that they become sparser
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1246 D. DŨNG AND V. K. NGUYEN

as |k| gets larger and

∑
k∈Zd

�nk� ≤ n.

In the next step, we ‘assemble’ these shifted integration nodes to form a quadrature Iγ
n for approximating

I(f ). Let us describe this construction in detail.
It is clear that if f ∈ Wα

p (Rd, γ ), then fk(· + k) ∈ Wα
p (Id), and

‖fk(· + k)‖Wα
p (Id) =

( ∑
|r|∞≤α

‖Drfk(· + k)‖p
Lp(Id)

)1/p

=
( ∑

|r|∞≤α

‖Drfk‖p
Lp(I

d
k)

)1/p

=
( ∑

|r|∞≤α

(2π)d/2
∫
I
d
k

e
|x|2

2 |Drfk(x)|pg(x) dx
)1/p

. (2.5)

When x ∈ I
d
k we have e

|x|2
2 ≤ e

|k+(sign k)/2|2
2 , where sign k := (sign k1, . . . , sign kd

)
and sign x := 1 if

x ≥ 0, and sign x := −1 otherwise for x ∈ R. Therefore,

‖fk(· + k)‖Wα
p (Id) ≤ (2π)

d
2p e

|k+(sign k)/2|2
2p ‖f ‖Wα

p (Rd ,γ ). (2.6)

We have

‖gk(· + k)‖Wα
p (Id) =

( ∑
|r|∞≤α

‖Drg‖p
Lp(I

d
k)

)1/p

.

A direct computation shows that for r ∈ N
d
0 we have Drg(x) = Pr(x)g(x) where Pr(x) is a polynomial of

order |r|1 of x. Moreover, we have −|x|2 ≤ 1
2 − |k − (sign k)/2|2 for x ∈ [− 1

2 , 1
2 ] + k, k ∈ Z. Therefore,

for x ∈ I
d
k we get

|Drg(x)| =
∣∣∣(2π)−d/2Pr(x) e− |x|2

2

∣∣∣ ≤ Ce− |x|2
2τ ′ ≤ Ce− |k−(sign k)/2|2

2τ ′ ≤ Ce− |k|2
2τ

for some τ ′ and τ such that 1 < τ ′ < τ < p < ∞. This implies that

‖gk(· + k)‖Wα
p (Id) ≤ Ce− |k|2

2τ (2.7)
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1247

with C independent of k ∈ Z
d. Since Wα

p (Id) is a multiplication algebra (see Nguyen & Sickel, 2017,
Theorem 3.16), from (2.6) and (2.7) we have that

fk(· + k)gk(· + k) ∈ Wα
p (Id), (2.8)

and

‖fk(· + k)gk(· + k)‖Wα
p (Id) ≤ C‖fk(· + k)‖Wα

p (Id) · ‖gk(· + k)‖Wα
p (Id)

≤ Ce
|k+(sign k)/2|2

2p − |k|2
2τ ‖f ‖Wα

p (Rd ,γ ).
(2.9)

For 1 < τ < p < ∞, we choose δ > 0 so that

max
{

e− |k−(sign k)/2|2
2

(
1− 1

p

)
, e

|k+(sign k)/2|2
2p − |k|2

2τ

}
≤ Ce−δ|k|2 (2.10)

for k ∈ Z
d, and therefore,

‖fk(· + k)gk(· + k)‖Wα
p (Id) ≤ Ce−δ|k|2‖f ‖Wα

p (Rd ,γ ), k ∈ Z
d. (2.11)

We define for n ∈ R1,

ξn =
√

δ−12a(log n), (2.12)

and for k ∈ Z
d,

nk =
{

�ne− δ
2a |k|2 if |k| < ξn,

0 if |k| ≥ ξn,
(2.13)

where � := 2−d
(

1 − e− δ
2a

)d
. We have

∑
|k|<ξn

nk ≤ n. (2.14)

Indeed,

∑
|k|<ξn

nk =
∑

|k|<ξn

�ne− δ
2α

|k|2 ≤ 2d�n
�ξn�∑
s=0

(
s + d − 1

d − 1

)
e− δ

2a s2

≤ 2d�n
∞∑

s=0

(
s + d − 1

d − 1

)
e− δ

2a s ≤ n,
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1248 D. DŨNG AND V. K. NGUYEN

where in the last estimate we used the well-known formula

∞∑
j=0

xj
(

j + k

k

)
= (1 − x)−k−1, k ∈ N0, x ∈ (0, 1). (2.15)

We define

In(f ) :=
∑

|k|<ξn

Ink
(fk(· + k)gk(· + k)) =

∑
|k|<ξn

�nk�∑
j=1

λjfk(xj + k)gk(xj + k), (2.16)

or equivalently,

In(f ) :=
∑

|k|<ξn

�nk�∑
j=1

λk,jf (xk,j) (2.17)

as a quadrature for the approximate integration of γ -weighted functions f on R
d, where xk,j := xj + k

and λk,j := λjgk(xj + k) (here for simplicity, with an abuse of notation the dependence of integration
nodes and weights on the quadratures Ink

is omitted). The integration nodes of the quadrature In are

{xk,j : |k| < ξn, j = 1, . . . , �nk�} ⊂ R
d, (2.18)

and the integration weights

(λk,j : |k| < ξn, j = 1, . . . , �nk�).

Due to (2.14), the number of integration nodes is not greater than n. From the definition we can see that
the integration nodes are contained in the ball of radius ξ∗

n := √
d/2 + ξn, i.e., {xk,j : |k| < ξn, j =

1, . . . , �nk�} ⊂ B(ξ∗
n ) := {x ∈ R

d : |x| ≤ ξ∗
n

}
. The density of the integration nodes is exponentially

decreasing in |k| to zero from the origin of Rd to the boundary of the ball B(ξ∗
n ), and the set of integration

nodes is very sparse because of the choice of nk as in (2.13).

Theorem 2.1 Let α ∈ N, 1 < p < ∞ and a > 0, b ≥ 0. Assume that for any m ∈ R1, there is a
quadrature Im of the form (2.2) satisfying (2.3). Then for the quadrature In defined as in (2.17) we have

∣∣∣∣
∫
Rd

f (x)γ (dx) − In(f )

∣∣∣∣� n−a(log n)b‖f ‖Wα
p (Rd ,γ ), f ∈ Wα

p (Rd, γ ). (2.19)

Proof. Let f ∈ Wα
p (Rd, γ ) and m ∈ R1. For the quadrature Im for functions on I

d in the assumption,
from (2.3) and (2.11) we have

∣∣∣∣
∫
Id

fk(x + k)gk(x + k) dx − Im(fk(· + k)gk(· + k))

∣∣∣∣� m−a(log m)be−δ|k|2‖f ‖Wα
p (Rd ,γ ). (2.20)
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1249

From (2.4) and (2.16) it follows that

∣∣∣∣
∫
Rd

f (x)γ (dx) − In(f )

∣∣∣∣ ≤ ∑
|k|<ξn

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx − Ink
(fk(· + k)gk(· + k))

∣∣∣∣
+
∑

|k|≥ξn

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx

∣∣∣∣.

For each term in the first sum by (2.20) we derive the estimates

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx − Ink
(fk(· + k)gk(· + k))

∣∣∣∣
=
∣∣∣∣
∫
Id

fk(x + k)gk(x + k) dx − Ink
(fk(· + k)gk(· + k))

∣∣∣∣
� n−a

k (log nk)be−δ|k|2‖f ‖Wα
p (Rd ,γ )

� (ne− δ
2a |k|2)−a(log n)be−δ|k|2‖f ‖Wα

p (Rd ,γ )

= n−a(log n)be− |k|2δ
2 ‖f ‖Wα

p (Rd ,γ ).

Hence,

∑
|k|<ξn

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx − Ink
(fk(· + k)gk(· + k))

∣∣∣∣� ∑
|k|<ξn

n−a(log n)be− |k|2δ
2 ‖f ‖Wα

p (Rd ,γ )

� n−a(log n)b‖f ‖Wα
p (Rd ,γ ).

For each term in the second sum we get by Hölder’s inequality and (2.10),

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx

∣∣∣∣ ≤
(∫

I
d
k

|fk(x)|pgk(x) dx
) 1

p
(∫

I
d
k

gk(x) dx
)1− 1

p

� e− |k−(sign k)/2|2
2 (1− 1

p )‖f ‖Wα
p (Rd ,γ )

� e−δ|k|2‖f ‖Wα
p (Rd ,γ ),
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1250 D. DŨNG AND V. K. NGUYEN

which implies

∑
|k|≥ξn

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx

∣∣∣∣� ∑
|k|≥ξn

e−δ|k|2‖f ‖Wα
p (Rd ,γ )

≤ 2d
∞∑

s=�ξn�
e−s2δ

(
s + d − 1

d − 1

)
‖f ‖Wα

p (Rd ,γ )

≤ 2de−ξ2
n δ(1−ε)

∞∑
s=�ξn�

e−s2εδ

(
s + d − 1

d − 1

)
‖f ‖Wα

p (Rd ,γ )

� e−ξ2
n δ(1−ε)

∞∑
s=0

e−sεδ
(

s + d − 1

d − 1

)
‖f ‖Wα

p (Rd ,γ ) (2.21)

with ε ∈ (0, 1/2). Using (2.15) we get

∑
|k|≥ξn

∣∣∣∣
∫
I
d
k

fk(x)gk(x) dx

∣∣∣∣� e−2a(1−ε) log n‖f ‖Wα
p (Rd ,γ ) � n−a(log n)b‖f ‖Wα

p (Rd ,γ ). (2.22)

Summing up, we have proven (2.19). �
Some important quadratures such as the Frolov quadrature and the QMC quadrature based on

Fibonacci lattice rules (d = 2) are constructively designed for functions on R
d with support contained in

the unit d-cube or for 1-periodic functions. To employ them for constructing a quadrature for functions
on R

d we need to modify those constructions.
Assume that there is a quadrature Im of the form (2.2) with the integration nodes {x1, . . . , xm} ⊂(

− 1
2 , 1

2

)d
and weights (λ1, . . . , λm) such that the convergence rate

∣∣∣∣
∫
Id

f (x) dx − Im(f )

∣∣∣∣ ≤ Cm−a(log m)b‖f ‖Wα
p (Id), f ∈ ◦

Wα
p (Id) (2.23)

holds, where
◦

Wα
p (Id) denotes the space of functions in Wα

p (Rd) with support contained in I
d. Then

based on the quadrature Im, we propose two constructions of quadratures which approximate the integral∫
Rd f (x)γ (dx) with the same convergence rate for f ∈ Wα

p (Rd, γ ).
The first method is a preliminary change of variables to transform the quadrature Im into a quadrature

for functions in Wα
p (Id), which gives the same convergence rate, and then apply the construction as in

(2.17). Let us describe it. Let k ∈ N and ψk be the function defined by

ψk(t) =

⎧⎪⎪⎨
⎪⎪⎩

Ck

∫ t
0( 1

4 − ξ2)k dξ , t ∈ [− 1
2 , 1

2 ],
1
2 , t > 1

2 ,

− 1
2 , t < − 1

2 ,

(2.24)
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where Ck = ( ∫ 1/2
−1/2(

1
4 − ξ2)k dξ

)−1. Observe that ψk is a one-to-one mapping on [− 1
2 , 1

2 ] and ψ ′
k has

compact support on [− 1
2 , 1

2 ]. If f ∈ Wα
p (Id), a change of variable yields that

∫
Id

f (x) dx =
∫
Id

(
Tψk

f
)
(x) dx,

where

(
Tψk

f
)
(x) := ψ ′

k(x1) · . . . · ψ ′
k(xd)f
(
ψk(x1), . . . , ψk(xd)

)
, x ∈ I

d.

Observe that the function Tψk
f has support contained in I

d. If Tψk
f belongs to

◦
Wα

p (Id), then a quadrature

with the integration nodes {x̃1, . . . , x̃m} ⊂ I
d and weights (λ̃1, . . . , λ̃m) for the function f can be defined

as

Ĩm(f ) := Im(Tψk
f ) =

m∑
j=1

λ̃jf (x̃j),

where x̃j = (ψk(xj,1), . . . , ψk(xj,d)) and λ̃j = λjψ
′
k(xj,1) · . . . · ψ ′

k(xj,d). Hence, our task is finding a
condition on k so that the mapping

f �→ Tψk
f

is a bounded operator from Wα
p (Id) to

◦
Wα

p (Id). A first result was proved by Bykovskii (1985) where he

showed that Tψk
is bounded in Wα

2 (Id) if k ≥ 2α + 1. This result has been extended by Temlyakov

(see Temlyakov, 1993, Theorem IV.4.1) to Wα
p (Id) under the condition k ≥ ⌊ αp

p−1

⌋ + 1 . A recent
improvement k > α + 1 was obtained in Nguyen et al. (2017).

The second method is to decompose functions in Wα
p (Rd, γ ) into a sum of functions on R

d having

support contained in integer translations of the d-cube I
d
θ := [ − θ

2 , θ
2

]
for a fixed θ > 1. Then the

quadrature for Wα
p (Rd, γ ) is the sum of integer-translated dilations of Im. Details of this construction are

presented below.
First observe that

R
d =
⋃

k∈Zd

I
d
θ ,k,

where I
d
θ ,k := I

d
θ + k. It is well-known that one can constructively define a partition of unity

{
ϕk
}

k∈Zd

such that

(i) ϕk ∈ C∞
0 (Rd) and 0 ≤ ϕk(x) ≤ 1, x ∈ R

d, k ∈ Z
d;

(ii) supp ϕk are contained in the interior of Id
θ ,k, k ∈ Z

d;

(iii)
∑

k∈Zd ϕk(x) = 1, x ∈ R
d;

(iv)
∥∥ϕk

∥∥
Wα

p (Id
θ ,k)

≤ Cα,d,θ , k ∈ Z
d
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1252 D. DŨNG AND V. K. NGUYEN

(see, e.g., Stein, 1970, Chapter VI, 1.3). By the items (ii) and (iii) the integral
∫
Rd f (x)γ (dx) can be

represented as

∫
Rd

f (x)γ (dx) =
∑
k∈Zd

∫
I
d
θ ,k

fθ ,k(x)gθ ,k(x)ϕk(x) dx, (2.25)

where fθ ,k and gθ ,k denote the restrictions of f and g on I
d
θ ,k, respectively. The quadrature (2.2) induces

the quadrature

Iθ ,m(f ) :=
m∑

i=1

λθ ,if (xθ ,i), (2.26)

for functions f on I
d
θ , where xθ ,i := θxi and λθ ,i := θλi.

Denote by
◦

Wα
p (Id

θ ) the subspace of functions in Wα
p (Rd) with support contained in I

d
θ . From (2.23)

the error bound ∣∣∣∣
∫
I
d
θ

f (x) dx − Iθ ,m(f )

∣∣∣∣� m−a(log m)b‖f ‖Wα
p (Id

θ )

holds for every f ∈ ◦
Wα

p (Id
θ ). Let f ∈ Wα

p (Rd, γ ). It is clear that fθ ,k(· + k) ∈ Wα
p (Id

θ ) and similar to (2.5)
and (2.6) we get

‖fθ ,k(· + k)‖Wα
p (Id

θ ) � e
|k+(θsign k)/2|2

2p ‖f ‖Wα
p (Rd ,γ ), f ∈ Wα

p (Rd, γ ), k ∈ Z
d.

Similarly to (2.8) and (2.9), by additionally using the items (ii) and (iv) we have that

fθ ,k(· + k)gθ ,k(· + k)ϕk(· + k) ∈ ◦
Wα

p (Id
θ ),

and

‖fθ ,k(· + k)gθ ,k(· + k)ϕk(· + k)‖Wα
p (Id

θ ) � e
|k+(θsign k)/2|2

2p − |k|2
2τ ‖f ‖Wα

p (Rd ,γ ),

where τ is a fixed number satisfying the inequalities 1 < τ < p < ∞. We choose δ > 0 so that

max
{

e− |k−(θsign k)/2|2
2 (1− 1

p ), e
|k+(θsign k)/2|2

2p − |k|2
2τ

}
≤ Ce−δ|k|2 , k ∈ Z

d.

For n ∈ R1, let ξn and nk be given as in (2.12) and (2.13), respectively. Noting (2.25) and (2.26), we
define

Iθ ,n(f ) :=
∑

|k|<ξn

Iθ ,nk

(
fθ ,k(· + k)gθ ,k(· + k)ϕk(· + k)

)
,
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1253

or equivalently,

Iθ ,n(f ) :=
∑

|k|<ξn

�nk�∑
j=1

λθ ,k,jf (xθ ,k,j) (2.27)

as a linear quadrature for the approximate integration of γ -weighted functions f on R
d where

xθ ,k,j := xθ ,j + k and λθ ,k,j := λθ ,jgk(xθ ,k,j)ϕk(xθ ,k,j). The integration nodes of the quadrature Iθ ,n
are

{xθ ,k,j : |k| < ξn, j = 1, . . . , �nk�} ⊂ R
d, (2.28)

and the weights

(λθ ,k,j : |k| < ξn, j = 1, . . . , �nk�).

Due to (2.14), the number of integration nodes is not greater than n. Moreover, from the definition we
can see that the integration nodes are contained in the ball of radius ξ∗

θ ,n := θ
√

d/2 + ξn, i.e.,

{xθ ,k,j : |k| < ξ∗
θ ,n, j = 1, . . . , �nk�} ⊂ B(ξ∗

θ ,n) :=
{

x ∈ R
d : |x| ≤ ξ∗

θ ,n

}
.

Notice that the set of integration nodes (2.28) possesses similar sparsity properties as the set (2.18).
In a way similar to the proof of Theorem 2.1 we derive

Theorem 2.2 Let α ∈ N, 1 < p < ∞ and a > 0, b ≥ 0, θ > 1. Assume that for any m ∈ R1, there is a

quadrature Im of the form (2.2) with {x1, . . . , xm} ⊂
(
− 1

2 , 1
2

)d
satisfying (2.23). Then for the quadrature

Iθ ,n defined as in (2.27) we have

∣∣∣∣
∫
Rd

f (x)γ (dx) − Iθ ,n(f )

∣∣∣∣� n−a(log n)b‖f ‖Wα
p (Rd ,γ ), f ∈ Wα

p (Rd, γ ). (2.29)

As noticed in Introduction, we do not study the dimension dependence for error estimates of
integration. Hence, the hidden constant in the bound (2.29) may depend on the dimension d and may
increase exponentially in d. Therefore, for very large d, the resulting algorithm may not be practical.

2.2 Asymptotic order of optimal numerical integration

In this subsection, we prove the asymptotic order of optimal numerical integration as formulated in (1.4)
based on Theorem 2.2 and known results on numerical integration for functions from Wα

p (Id).

Theorem 2.3 Let α ∈ N and 1 < p < ∞. Then one can construct an asymptotically optimal family of
quadratures of the form (2.27)

(
Iγ
n
)

n∈R1
such that

sup
f ∈Wα

p (Rd ,γ )

∣∣∣∣
∫
Rd

f (x)γ (dx) − Iγ
n (f )

∣∣∣∣ 	 Intn
(
Wα

p (Rd, γ )
) 	 n−α(log n)

d−1
2 . (2.30)
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1254 D. DŨNG AND V. K. NGUYEN

Proof. Let IF,m be the Frolov quadrature for functions in
◦

Wα
p (Id) (see, e.g., Dũng et al., 2018, Chapter

8, for the definition) in the form (2.2) with {x1, . . . , xm} ⊂
(
− 1

2 , 1
2

)d
. It was proven in Frolov (1976) for

p = 2, and in Skriganov (1994) for 1 < p < ∞ that

∣∣∣∣
∫
Id

f (x) dx − IF,m(f )

∣∣∣∣ ≤ Cm−α(log m)
d−1

2 ‖f ‖ ◦
Wα

p (Id)
, f ∈ ◦

Wα
p (Id). (2.31)

For a fixed θ > 1, we define Iγ
n := Iθ ,n as the quadrature described in Theorem 2.2 for a = α and

b = d−1
2 , based on Im = IF,m. By Theorem 2.2 and (2.31) we prove the upper bound in (2.30).

Since for f ∈ ◦
Wα

p (Id)

‖f ‖Wα
p (Rd ,γ ) ≤ (2π)

− d
2p ‖f ‖ ◦

Wα
p (Id)

,

we get

Intn
(
Wα

p (Rd, γ )
)� Intn(

◦
Wα

p (Id)).

Hence, the lower bound in (2.30) follows from the lower bound Intn(
◦

Wα
p (Id)) � n−α(log n)

d−1
2 proven

in Temlyakov (1990). �
Besides Frolov quadratures, there are many quadratures for efficient numerical integration for

functions on I
d to list. We refer the reader to Chapter 8 in Dũng et al. (2018) for bibliography and

historical comments as well as related results, in particular, the asymptotic order

Intm
(
Wα

p (Id)
) 	 m−α(log m)

d−1
2

for 1 < p < ∞. We recall only some of them, especially those which give asymptotic order of optimal
integration.

A quasi-Monte Carlo (QMC) quadrature based on a set of integration nodes {x1, . . . , xm} ⊂ I
d is of

the form

Im(f ) = 1

m

m∑
i=1

f (xi).

In Dick (2007, 2008) for a prime number q the author introduced higher order digital nets over the
finite field Fq := {0, 1, . . . , q − 1} equipped with the arithmetic operations modulo q. Such digital nets

can achieve the convergence rate m−α(log m)dα with m = qs for functions from Wα
2 (Id); see Dick

& Pillichshammer (2014). In the recent paper (Goda et al., 2018), the authors have shown that the
asymptotic order of Intm

(
Wα

2 (Id)
)

can be achieved by Dick’s digital nets {x∗
1, . . . , x∗

qs} of order (2α+1).
Namely, they proved that

∣∣∣∣
∫
Id

f (x) dx − 1

m

m∑
i=1

f (x∗
i )

∣∣∣∣ ≤ Cm−α(log m)
d−1

2 ‖f ‖Wα
2 (Id), f ∈ Wα

2 (Id), m = qs. (2.32)
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1255

In the case d = 2 the QMC quadrature Im = IΦ,m based on Fibonacci lattice rules (d = 2) is also

asymptotically optimal for numerical integration of periodic functions in W̃α
p (I2), that is,

∣∣∣∣
∫
I2

f (x) dx − IΦ,m(f )

∣∣∣∣ ≤ Cm−α(log m)
1
2 ‖f ‖Wα

p (I2), f ∈ W̃α
p (I2), (2.33)

where W̃α
p (I2) denotes the subspace of Wα

p (I2) of all functions which can be extended to the whole R
2

as 1-periodic functions in each variable. The estimate (2.33) was proven in Bakhvalov (1963) for p = 2
and in Temlyakov (1991) for 1 < p < ∞. The QMC quadrature Im = IΦ,m based on Fibonacci lattice
rules (d = 2) is defined by

IΦ,m(f ) := 1

bm

bm∑
i=1

f

({ i

bm

}
− 1

2
,
{ ibm−1

bm

}
− 1

2

)
,

where b0 = b1 = 1, bm := bm−1 + bm−2 are the Fibonacci numbers and {x} denotes the fractional part
of the number x.

Therefore, from Theorems 2.1–2.3 and (2.32), (2.33) it follows that the QMC quadratures based on
Dick’s digital nets of order (2α + 1) and Fibonacci lattice rules (d = 2) can be used for assembling
asymptotically optimal quadratures Iγ

n and Iγ
θ ,n of the forms (2.17) and (2.27) for Intn

(
Wα

p (Rd, γ )
)
, in

the particular cases p = 2, d ≥ 2, and 1 < p < ∞, d = 2, respectively.
The sparse Smolyak grid SG(ξ) in I

d is defined as the set of points:

SG(ξ) :=
{

xk,s := 2−ks ∈ Z
d : |k|1 ≤ ξ , |si| ≤ 2ki−1, i = 1, . . . , d

}
, ξ ∈ R1.

For a given m ∈ R1, let ξm be the maximal number satisfying |SG(ξm)| ≤ m. Then we can constructively
define a quadrature Im = IS,m based on the integration nodes in SG(ξm) so that

∣∣∣∣
∫
Id

f (x) dx − IS,m(f )

∣∣∣∣ ≤ Cm−α(log m)(d−1)(α+1/2)‖f ‖Wα
p (Id), f ∈ Wα

p (Id). (2.34)

To understand this quadrature, let us recall a detailed construction from Dũng & Ullrich (2015), page
760. Indeed, from the well-known embedding of Wα

p (Id) into the Besov space of mixed smoothness

Bα
p,max(p,2)(I

d) (see, e.g., Dũng et al. (2018), Lemma 3.4.1(iv)), and the result on B-spline sampling
recovery of functions from the last space it follows that one can constructively define a sampling recovery
algorithm of the form

Rm(f ) :=
∑

xk,s∈SG(ξm)

f (xk,s)φk,s

with certain B-splines φk,s, such that

∥∥f − Rm(f )
∥∥

L1(I
d)

≤ Cm−α(log m)(d−1)(α+1/2)‖f ‖Wα
p (Id), f ∈ Wα

p (Id).
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1256 D. DŨNG AND V. K. NGUYEN

Then the quadrature IS,m can be defined as

IS,m(f ) :=
∑

xk,s∈SG(ξm)

λk,sf (xk,s), λk,s :=
∫
Id

φk,s(x) dx,

and (2.34) is implied by the obvious inequality
∣∣ ∫

Id f (x) dx − IS,m(f )
∣∣ ≤ ∥∥f − Rm(f )

∥∥
L1(I

d)
. Therefore,

from Theorem 2.1 and (2.34) we can see that the Smolyak quadrature IS,m can be used for assembling
a quadrature IS,n of the form (2.17) with ‘double’ sparse integration nodes which gives the convergence
rate ∣∣∣∣

∫
Rd

f (x)γ (dx) − IS,n(f )

∣∣∣∣� n−α(log n)(d−1)(α+1/2), f ∈ Wα
p (Rd, γ ).

3. Approximation

In this section we study the linear approximation and sampling recovery in Lq(R
d, γ ) of functions from

Wα
p (Rd, γ ), and the asymptotic optimality in terms of Kolmogorov n-widths and the linear n-widths and

sampling n-widths for 1 ≤ q < p < ∞ and p = q = 2.
Let n ∈ N and let X be a Banach space and F a central symmetric compact set in X. Then the

Kolmogorov n-width of F is defined by

dn(F, X) := inf
Ln

sup
f ∈F

inf
g∈Ln

‖f − g‖X ,

where the left-most infimum is taken over all subspaces Ln of dimension ≤ n in X. The linear n-width
of the set F is defined by

λn(F, X) := inf
An

sup
f ∈F

‖f − An(f )‖X ,

where the infimum is taken over all linear operators An in X with rank An ≤ n. Notice that if X is a Hilbert
space, then λn(F, X) = dn(F, X).

Let Ω be a domain in R
d. Let n ∈ N and let X be a Banach space of functions on Ω and F a compact

set in X. Given {xi}n
i=1 ⊂ Ω , to approximately recover f ∈ F from the sampled values

{
f (xi)
}n

i=1 we use
a (linear) sampling algorithm defined by

Rn(f ) :=
n∑

i=1

f (xi)ϕi, (3.1)

where
{
ϕi

}n
i=1 is a collection of n functions in X. For convenience, we assume that some points from

{xi}n
i=1 ⊂ Ω and some functions from

{
ϕi

}n
i=1 may coincide. For n ∈ N we define the sampling n-width

of the set F in X as

�n(F, X) := inf
x1,...,xn∈Ω ,
ϕ1,...,ϕn∈X

sup
f ∈F

‖f − Rn(f )‖X ,
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OPTIMAL NUMERICAL INTEGRATION AND APPROXIMATION OF FUNCTIONS 1257

where Rn(f ) is given by (3.1). Obviously, we have the inequalities

dn(F, X) ≤ λn(F, X) ≤ �n(F, X). (3.2)

There are other popular n-widths in approximation theory like the entropy n-widths, Gel’fand n-
widths and Bernstein n-widths, etc. In particular, for optimality of numerical algorithms, the Gel’fand
n-widths are very important, since optimal algorithms could be non-linear (for detail, see, e.g., Dũng et
al., 2018, Section 6 and Section 9.6). However, these n-widths are not in the scope of consideration of
the present paper.

For technical convenience we use the conventions An := A�n�, Rn := R�n�, dn(F, X) := d�n�(F, X),
λn(F, X) := λ�n�(F, X) and �n(F, X) := ��n�(F, X) for n ∈ R1.

For given α and p, q, we make use of the abbreviations:

λn := λn

(
Wα

p (Rd, γ ), Lq(R
d, γ )
)
, dn := dn

(
Wα

p (Rd, γ ), Lq(R
d, γ )
)
,

�n := �n(W
α
p (Rd, γ ), Lq(R

d, γ )).

We prove the asymptotic orders of λn, dn and �n as well as constructively define asymptotically optimal
linear approximation methods which are very different for the cases 1 ≤ q < p < ∞ and q = p = 2.

3.1 The case 1 ≤ q < p < ∞
Let α ∈ N, 1 ≤ q < p < ∞ and a > 0, b ≥ 0. Denote by L̃q(I

d) and W̃α
p (Id) the subspaces of Lq(I

d) and

Wα
p (Id), respectively, of all functions f which can be extended to the whole R

d as 1-periodic functions

in each variable (denoted again by f ). Let Am be a linear operator in L̃q(I
d) of rank ≤ m. Assume it holds

that

‖f − Am(f )‖L̃q(Id)
≤ Cm−a(log m)b‖f ‖W̃α

p (Id)
, f ∈ W̃α

p (Id). (3.3)

Then based on Am, we will construct a linear operator Aγ
m in Lq(R

d, γ ) which approximates f ∈
Wα

p (Rd, γ ) with the same convergence rate. Our strategy is similar to the problem of numerical
integration considered in Subsection 2.1.

Fix a number θ with θ > 1. Denote by L̃q(I
d
θ ) and W̃α

p (Id
θ ) the subspaces of Lq(I

d
θ ) and Wα

p (Id
θ ),

respectively, of all functions f which can be extended to the whole R
d as θ -periodic functions in each

variable (denoted again by f ). A linear operator Am induces the linear operator Aθ ,m in L̃q(I
d
θ ), defined

for f ∈ L̃q(I
d
θ ) by Aθ ,m(f ) := Am(f (·/θ)).

From (3.3) it follows that

‖f − Aθ ,m(f )‖L̃q(I
d
θ )

≤ Cm−a(log m)b‖f ‖W̃α
p (Id

θ )
, f ∈ W̃α

p (Id
θ ).

Since q < p, we can choose a fixed δ > 0 such that

e
|k+(θsign k)/2|2

2p − |k−(θsign k)/2|2
2q ≤ Ce−δ|k|2 , k ∈ Z

d. (3.4)
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1258 D. DŨNG AND V. K. NGUYEN

For n ∈ R1, let ξn and nk be given as in (2.12) and (2.13). Recall that we write Id
θ ,k := k+ I

d
θ for k ∈ Z

d,

and fθ ,k the restriction of f on I
d
θ ,k for a function f on R

d. Let
{
ϕk
}

k∈Zd be the partition of unity satisfying
items (i)–(iv), introduced in Subsection 2.1. Similarly to (2.8) and (2.9), by additionally using the items
(ii) and (iv) we have that if f ∈ Wα

p (Rd, γ ), then

fθ ,k(· + k)ϕk(· + k) ∈ W̃α
p (Id

θ ),

and it holds that

‖fθ ,k(· + k)ϕk(· + k)‖W̃α
p (Id

θ )
� e

|k+(θsign k)/2|2
2p ‖f ‖Wα

p (Rd ,γ ). (3.5)

We define the linear operator Aγ
θ ,n in Lq(R

d, γ ) of rank ≤ n by

(
Aγ

θ ,nf
)

(x) :=
∑

|k|<ξn

(
Aθ ,nk

f̃θ ,k

)
(x − k), (3.6)

where f̃θ ,k(x) = fθ ,k(x + k)ϕk(x + k). Indeed, by (2.14),

rank Aγ
θ ,n ≤

∑
|k|<ξn

rank Aθ ,nk
≤
∑

|k|<ξn

nk ≤ n.

Theorem 3.1 Let α ∈ N, 1 ≤ q < p < ∞ and a > 0, b ≥ 0, θ > 1. Assume that for any m ∈ R1, there
is a linear operator Am in L̃q(I

d) of rank ≤ m such that the convergence rate (3.3) holds. Then for any

n ∈ R1, based on this linear operator one can construct the linear operator Aγ
θ ,n in Lq(R

d, γ ) of rank ≤ n
as in (3.6) so that

‖f − Aγ
θ ,n(f )‖Lq(Rd ,γ ) ≤ Cn−a(log n)b‖f ‖Wα

p (Rd ,γ ), f ∈ Wα
p (Rd, γ ). (3.7)

Proof. The proof of this theorem is analogous to that of Theorem 2.2 with certain modifications. We
give a short description of it. From the items (ii) and (iii) in Subsection 2.1 it is implied that

f =
∑
k∈Zd

fθ ,kϕk.

Hence, we have

‖f − Aγ
θ ,n(f )‖Lq(Rd ,γ ) ≤

∑
|k|<ξn

∥∥∥fθ ,kϕk −
(

Aθ ,nk
f̃θ ,k

)
(· − k)

∥∥∥
Lq(I

d
θ ,k,γ )

+
∑

|k|≥ξn

∥∥fθ ,kϕk

∥∥
Lq(I

d
θ ,k,γ )

. (3.8)
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From (2.13), (3.3) and (3.5) we derive the estimates

∥∥∥fθ ,kϕk −
(

Aθ ,nk
f̃θ ,k

)
(· − k)

∥∥∥
Lq(I

d
θ ,k,γ )

� e− |k−(θsign k)/2|2
2q

∥∥∥fθ ,k(· + k)ϕk(· + k) − Aθ ,nk
f̃θ ,k

∥∥∥
L̃q(I

d
θ )

� e− |k−(θsign k)/2|2
2q n−a

k (log nk)b‖f (· + k)ϕk(· + k)‖W̃α
p (Id

θ )

� e
|k+(θsign k)/2|2

2p − |k−(θsign k)/2|2
2q

(
ne− δ

2a |k|2)−a
(log n)b‖f ‖Wα

p (Rd ,γ ).

Using (3.4) we get

∥∥∥fθ ,kϕk −
(

Aθ ,nk
f̃θ ,k

)
(· − k)

∥∥∥
Lq(I

d
θ ,k,γ )

� e− δ
2 |k|2n−a(log n)b‖f ‖Wα

p (Rd ,γ ),

which implies

∑
|k|<ξn

∥∥∥fθ ,kϕk −
(

Aθ ,nk
f̃θ ,k

)
(· − k)

∥∥∥
Lq(I

d
θ ,k,γ )

�
∑

|k|<ξn

e− δ
2 |k|2n−a(log n)b‖f ‖Wα

p (Rd ,γ )

� n−a(log n)b‖f ‖Wα
p (Rd ,γ ).

Similar to (2.21) and (2.22), we have for a fixed ε ∈ (0, 1/2),

∑
|k|≥ξn

∥∥fθ ,kϕk

∥∥
Lq(I

d
θ ,k,γ )

�
∑

|k|≥ξn

e− |k−(θsign k)/2|2
2q + |k+(θsign k)/2|2

2p ‖f ‖Wα
p (Rd ,γ )

�
∑

|k|≥ξn

e−δ|k|2‖f ‖Wα
p (Rd ,γ ) � e−δ(1−ε)ξ2

n ‖f ‖Wα
p (Rd ,γ )

= e−2a(1−ε) log n‖f ‖Wα
p (Rd ,γ ) � n−a(log n)b‖f ‖Wα

p (Rd ,γ ).

From the last two estimates and (3.8) we obtain (3.7). �

Lemma 3.2 Let α ∈ N and 1 ≤ q < p < ∞. Then we have

dm(W̃α
p (Id), L̃q(I

d)) 	 m−α(log m)(d−1)α .

Moreover, truncations on certain hyperbolic crosses of the Fourier series form an asymptotically optimal
linear operator Am in L̃q(I

d) of rank ≤ m such that

‖f − Am(f )‖L̃q(Id)
� m−α(log m)(d−1)α‖f ‖W̃α

p (Id)
, f ∈ W̃α

p (Id). (3.9)
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1260 D. DŨNG AND V. K. NGUYEN

For details on this lemma, see, e.g., Theorems 4.2.5, 4.3.1 and 4.3.7 in Dũng et al. (2018) and related
comments on the asymptotic optimality of the hyperbolic cross approximation.

We are now in the position to prove the main result in this section.

Theorem 3.3 Let α ∈ N and 1 ≤ q < p < ∞. Then for any n ∈ R1, based on the linear operator Am in
Lemma 3.2 one can construct the linear operator Aγ

n in Lq(R
d, γ ) of rank ≤ n as in (3.6) so that

sup
f ∈Wα

p (Rd ,γ )

‖f − Aγ
n (f )‖Lq(Rd ,γ ) 	 λn 	 dn 	 n−α(log n)(d−1)α . (3.10)

Moreover, with the additional condition q = 2,

�n 	 n−α(log n)(d−1)α . (3.11)

Proof. For a fixed θ > 1, we define Aγ
n := Aγ

θ ,n as the linear operator described in Theorem 3.1. The
upper bounds in (3.10) follow from (3.9) and Theorem 3.1 with a = α, b = (d − 1)α.

If f is a 1-periodic function on R
d and f ∈ W̃α

p (Id), then

‖f ‖Wα
p (Rd ,γ ) =

(
(2π)−d/2

∑
|r|∞≤α

∫
Rd

|Drf (x)|pe− |x|2
2 dx
)1/p

= (2π)
− d

2p

( ∑
|r|∞≤α

∑
k∈Zd

∫
Id

|Drf (x + k)|pe− |x+k|2
2 dx
)1/p

�
( ∑

|r|∞≤α

∫
Id

|Drf (x)|p dx
∑
k∈Zd

e− |k−(sign k)/2|2
2

)1/p

� ‖f ‖W̃α
p (Id)

,

and

‖f ‖L̃q(Id)
=
(

(2π)
d
2

∫
Id

|f (x)|qe
|x|2

2 g(x) dx
)1/q

≤ (2π)
d
2q e

d
8q ‖f ‖Lq(Rd ,γ ).

Hence, we get

λn ≥ dn � dn(W̃
α
p (Id), L̃q(I

d)).

Now Lemma 3.2 implies the lower bounds in (3.10).
We now prove (3.11). Assume q = 2. The lower bound of (3.11) follows from (3.2) and (3.10). Let

us verify the upper one. By (3.10) we have that

dn � n−α(log n)(d−1)α . (3.12)
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Notice that the separable normed space Wα
p (Rd, γ ) is continuously embedded into L2(R

d, γ ), and the

evaluation functional f �→ f (x) is continuous on the space Wα
p (Rd, γ ) for each x ∈ R

d. This means that

Wα
p (Rd, γ ) satisfies Assumption A in Dolbeault et al. (2023). By Corollary 4 in Dolbeault et al. (2023)

and (3.12) we prove the upper bound:

�n � dn � n−α(log n)(d−1)α .

�

3.2 The case q = p = 2

Our approach to this case, which is completely different from the one in the case 1 ≤ q < p < ∞,
is similar to the hyperbolic cross trigonometric approximation in the Hilbert space L̃2(I

d) of periodic
functions from the Sobolev space W̃α

2 (Id) (see, e.g., Dũng et al. 2018, for details). Here, in the
approximation, the trigonometric polynomials are replaced by the Hermite polynomials.

For k ∈ N0, the normalized probabilistic Hermite polynomial Hk of degree k on R is defined by

Hk(x) := (−1)k

√
k!

exp
(

x2

2

)
dk

dxk
exp
(

−x2

2

)
.

For every multi-degree k ∈ N
d
0, the d-variate Hermite polynomial Hk is defined by

Hk(x) :=
d∏

j=1

Hkj
(xj), x ∈ R

d.

It is well-known that the Hermite polynomials
{
Hk
}

k∈Nd
0

constitute an orthonormal basis of the Hilbert

space L2(R
d, γ ) (see, e.g., Szego, 1939, Section 5.5). In particular, every f ∈ L2(R

d, γ ) can be
represented by the Hermite series

f =
∑

k∈Nd
0

f̂ (k)Hk with f̂ (k) :=
∫
Rd

f (x) Hk(x)γ (dx) (3.13)

converging in the norm of L2(R
d, γ ), and in addition, there holds Parseval’s identity

‖f ‖2
L2(R

d ,γ )
=
∑

k∈Nd
0

|f̂ (k)|2. (3.14)

For α ∈ N0 and k ∈ N
d
0, we define

ρα,k :=
d∏

j=1

(
kj + 1
)α

.
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Lemma 3.4 Let α ∈ N0. Then we have that

‖f ‖2
Wα

2 (Rd ,γ )
	
∑

k∈Nd
0

ρα,k|f̂ (k)|2, f ∈ Wα
2 (Rd, γ ). (3.15)

Proof. This lemma in an implicit form has been proven in Dick et al. (2018), pages 687–688. Let us
prove it for completeness. From the formula for the rth derivative of the Hermite polynomial Hk

H(r)
k =
{√

k!
(k−r)! Hk−r, if k ≥ r,

0, otherwise,

we deduce that for f ∈ Wα
2 (R, γ ) and r ≤ α,

f (r) =
∑
k≥r

√
k!

(k − r)!
f̂ (k)Hk−r,

and hence,

‖f ‖2
Wα

2 (Rd ,γ )
=

α∑
r1=0

∑
k1≥r1

k1!

(k1 − r1)!
· · ·

α∑
rd=0

∑
kd≥rd

kd!

(kd − rd)!
|f̂ (k1, . . . , kd)|2. (3.16)

From the last equality and the relation k!
(k−r)! 	 ρr,k, k ∈ N0, it is easy to derive (3.15) for the case d = 1.

In the case d ≥ 2, (3.15) can be proven by induction on d with the help of the equality (3.16). �
We extend the space Wα

2 (Rd, γ ) to any α > 0. Denote by Hα the space of all functions f ∈ L2(R
d, γ )

represented by the Hermite series (3.13) for which the norm

‖f ‖Hα :=
⎛
⎜⎝∑

k∈Nd
0

ρα,k|f̂ (k)|2
⎞
⎟⎠

1/2

(3.17)

is finite. With this definition, we identify Wα
2 (Rd, γ ) with Hα for α ∈ N.

For functions f ∈ Hα , we construct a hyperbolic cross approximation based on truncations of the
Hermite series (3.13). For the hyperbolic cross G(ξ) := {k ∈ N

d
0 : ρ1,k ≤ ξ

}
, ξ ∈ R1, the truncation

Sξ (f ) of the Hermite series (3.13) on this set is defined by

Sξ (f ) :=
∑

k∈G(ξ)

f̂ (k)Hk.

Notice that Sξ is a linear projection from L2(R
d, γ ) onto the linear subspace L(ξ) spanned by the Hermite

polynomials Hk, k ∈ G(ξ) and dim L(ξ) = |G(ξ)|.
Recall that according to the section on notation in the introduction Hα denotes the unit ball in Hα .
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Theorem 3.5 Let α > 0. Then we can construct a sequence
{
ξn

}∞
n=2 with |G(ξn)| ≤ n so that

sup
f ∈Hα

∥∥∥f − Sξn
(f )
∥∥∥

L2(R
d ,γ )

	 λn(Hα , L2(R
d, γ )) = dn(Hα , L2(R

d, γ )) 	 n− α
2 (log n)

(d−1)α
2 . (3.18)

Moreover, with the additional condition α > 1,

�n(Hα , L2(R
d, γ )) 	 n− α

2 (log n)
(d−1)α

2 . (3.19)

Proof. Since L2(R
d, γ ) is a Hilbert space, we have the equality λn(Hα , L2(R

d, γ )) = dn(Hα , L2(R
d, γ ))

in (3.18). To prove the upper bounds in (3.18) it is sufficient to construct a sequence
{
ξn

}∞
n=2 so that

|G(ξn)| ≤ n and

sup
f ∈Hα

∥∥∥f − Sξn
(f )
∥∥∥

L2(R
d ,γ )

� n− α
2 (log n)

(d−1)α
2 . (3.20)

From Parseval’s identity (3.14) and Lemma 3.4 we have that for every f ∈ Wα
2 (Rd, γ ) and ξ > 1,

∥∥∥f − Sξ (f )
∥∥∥2

L2(R
d ,γ )

=
∑

k/∈G(ξ)

f̂ (k)2 � ξ−α
∑

k/∈G(ξ)

ρα,k f̂ (k)2 � ξ−α ‖f ‖Wα
2 (Rd ,γ ) ≤ ξ−α . (3.21)

Let
{
ξn

}∞
n=2 be the sequence of ξn defined as the largest number satisfying the condition |G(ξn)| ≤ n.

From the relation |G(ξn)| 	 ξn(log ξn)
d−1 (see, e.g., Temlyakov, 1993, p. 130) we derive that ξ−α

n 	
n−α(log n)(d−1)α which together with (3.21) yields (3.20).

To show the lower bounds of (3.18) we need Tikhomirov’s theorem (Tikhomirov, 1960, Theorem 1)
which states that if X is a Banach space and Un+1(λ) the ball of radius λ > 0 in a linear n+1-dimensional
subspace of X, then dn(Un+1(λ), X) = λ. Further, if

U(ξ) :=
{

f ∈ L(ξ) : ‖f ‖L2(R
d ,γ ) ≤ 1

}

and f ∈ U(ξ), then by Parseval’s identity (3.14) and the definition of Hα , similarly to (3.21), we deduce
that ‖f ‖Hα � ξα/2. This means that Cξα/2U(ξ) ⊂ Hα for some C > 0. Let

{
ξ ′

n

}∞
n=2 be the sequence of

ξ ′
n defined as the smallest number satisfying the condition |G(ξ ′

n)| ≥ n+1. Then dim L(ξ ′
n) = |G(ξ ′

n)| ≥
n + 1, and similarly as in the upper estimation, (ξ ′

n)
−α 	 n−α(log n)(d−1)α . By Tikhomirov’s theorem

for the smallest quantity dn in (3.18) we have that

dn(Hα , L2(R
d, γ )) ≥ dn(Cξα/2U(ξ ′

n+1), L2(R
d, γ )) � (ξ ′

n)
−α 	 n− α

2 (log n)
(d−1)α

2 .

Let us prove (3.19). The lower bound of (3.19) follows from (3.18) and the inequality
�n(Hα , L2(R

d, γ )) ≥ λn(Hα , L2(R
d, γ )). We verify the upper one. By (3.18),

dn(Hα , L2(R
d, γ )) � n− α

2 (log n)
(d−1)α

2 . (3.22)
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Notice that for α > 1, Hα is a separable reproducing kernel Hilbert space with the reproducing kernel

K(x, y) =
∑

k∈Nd
0

ρ−1
α,kHk(x)Hk(y). (3.23)

From the orthonormality of the system
{
Hk
}

k∈Nd
0

it is easily seen that K(x, y) satisfies the finite trace

assumption

∫
Rd

K(x, x)γ (dx) < ∞. (3.24)

Hence, by Corollary 2 in Dolbeault et al. (2023) we obtain �n(Hα , L2(R
d, γ )) � dn(Hα , L2(R

d, γ )).
This and (3.22) prove the upper bound of (3.19). �

In the case when α ∈ N, Theorem 3.5 yields the following result on sampling n-widths of the Sobolev
class Wα

2 (Rd, γ ) of mixed smoothness α.

Corollary 3.6 Let α ∈ N. Then we can construct a sequence
{
ξn

}∞
n=2 with |G(ξn)| ≤ n so that

sup
f ∈Wα

2 (Rd ,γ )

∥∥∥f − Sξn
(f )
∥∥∥

L2(R
d ,γ )

	 λn = dn 	 n− α
2 (log n)

(d−1)α
2 . (3.25)

Moreover, with the additional condition α ≥ 2,

�n 	 n− α
2 (log n)

(d−1)α
2 . (3.26)

We stress that the assumption α > 1 for (3.19) is vital since it is a necessary and sufficient
condition for Hα to be a separable reproducing kernel Hilbert space with the finite trace condition (3.24)
and, therefore, the result (Dolbeault et al., 2023, Corollary 2) can be applied. We conjecture that the
consequent asymptotic order (3.26) still holds true for α = 1. Here it may require a different technique.

4. Numerical comparison with other quadratures

We illustrate the integration nodes of the quadratures constructed in the present paper, in comparison with
the integration nodes used in Dick et al. (2018). Assume that {x1, . . . , xn} are the integration nodes for an
optimal quadrature In for functions in Wα

p (I2). Then the integration nodes in Dick et al. (2018) are just a

dilation of these nodes to the cube [−C
√

log n, C
√

log n]2. Hence, these nodes are distributed similarly
on this cube. Differently, the integration nodes in our construction are formed from certain integer-shifted
dilations of {x1, . . . , xm} and contained in the ball of radius C

√
log n. These nodes are dense when they

are near the origin and getting sparser as they are farther from the origin. The illustration is given in
Figure 1.

The following is a numerical test of our result for the cases d = 1 and α = 1, 2, 3. We consider the
algorithm for the space Wα

2 (R). For numerical integration of functions in
◦

Wα
2 (I) we use the Smolyak point

set. Observe that these nodes give the optimal convergence rate since d = 1, see Section 2.2. In this test
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Fig. 1. Distribution of integration nodes in Dick et al. (2018) and in this paper.

Fig. 2. Errors of the assembling quadratures.

δ in (2.10) is chosen as δ = 1
6 . We apply the method of change of variable by ψ3 to get asymptotically

optimal integration nodes and weights for functions in Wα
2 (I) where the function ψ3 is defined as in

(2.24). From these nodes and weights we get the optimal quadrature {x1, . . . , xn} and {λ1, . . . , λn} for

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/doi/10.1093/im
anum

/drad051/7234329 by guest on 03 April 2024
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Wα
2 (R, γ ) as described in Section 2.1. The error of this quadrature is given by

err =
((

1 −
n∑

i=1

λi

)2

+
∞∑

k=1

ρα,k

( n∑
i=1

λiHk(xi)

)2)1/2

;

see, e.g., Section 4 in Dick et al. (2018).
For the numerical computation this error is replaced by the truncated version

errm =
((

1 −
n∑

i=1

λi

)2

+
m∑

k=1

ρα,k

( n∑
i=1

λiHk(xi)

)2)1/2

.

In our test we choose m = 105. Our result is given in Figure 2 which shows that the worst-case errors of
the assembled quadratures for α ∈ {1, 2, 3} have convergence rate O(n−α). It has been observed in Dick
et al. (2018) that the interlaced Sobol’ sequence also gives the optimal convergence rates for numerical
integration of Wα

2 (R, γ ). The numerical result reaffirms the theory in this paper.
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