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ARTICLE INFO ABSTRACT

AMS 2020 subject classifications: Invariant coordinate selection (ICS) is a dimension reduction method, used as a preliminary
62H25 step for clustering and outlier detection. It has been primarily applied to multivariate data.
62R10

This work introduces a coordinate-free definition of ICS in an abstract Euclidean space and

62G07 extends the method to complex data. Functional and distributional data are preprocessed
65D07 . . . . . . :

into a finite-dimensional subspace. For example, in the framework of Bayes Hilbert spaces,
Keywords:

distributional data are smoothed into compositional spline functions through the Maximum
Penalised Likelihood method. We describe an outlier detection procedure for complex data
and study the impact of some preprocessing parameters on the results. We compare our
approach with other outlier detection methods through simulations, producing promising results

Bayes spaces
Distributional data
Extreme weather
Functional data

Invariant coordinate selection in scenarios with a low proportion of outliers. ICS allows detecting abnormal climate events in a
Outlier detection sample of daily maximum temperature distributions recorded across the provinces of Northern
Temperature distribution Vietnam between 1987 and 2016.

1. Introduction

The invariant coordinate selection (ICS) method was introduced in a multivariate data analysis framework by Tyler et al. [1].
ICS is one of the dimension reduction methods that extend beyond Principal Component Analysis (PCA) and second moments.
ICS seeks projection directions associated with the largest and/or smallest eigenvalues of the simultaneous diagonalisation of two
scatter matrices [see 2,3, for recent references]. This approach enables ICS to uncover underlying structures, such as outliers
and clusters, that might be hidden in high-dimensional spaces. ICS is termed “invariant” because it produces components, linear
combinations of the original features of the data, that remain invariant (up to their sign and some permutation) under affine
transformations of the data, including translations, rotations and scaling. Moreover, Theorem 4 in [1] demonstrates that, for a
mixture of elliptical distributions, the projection directions of ICS associated with the largest or smallest eigenvalues usually generate
the Fisher discriminant subspace, regardless of the chosen pair of scatter matrices and without prior knowledge of group assignments.
Once the pair of scatter matrices is chosen, invariant components can be readily computed, and dimension reduction is achieved by
selecting the components that reveal the underlying structure. Recent articles have examined in detail the implementation of ICS in
a multivariate framework, focusing on objectives such as anomaly detection [4] or clustering [5]. These studies particularly address
the choice of pairs of scatter matrices and the selection of relevant invariant components. Note that this idea of joint diagonalisation
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of scatter matrices is also used in the context of blind source separation and more precisely for Independent Component Analysis
(ICA) which is a model-based approach as opposed to ICS [see 3, for more details]. ICS has later been adapted to more complex
data, namely compositional data [6], functional data [7,8, for ICA] and multivariate functional data [9,10, for ICA].

A significant contribution of the present work is the formulation of a coordinate-free variant of ICS, considering data objects in
an abstract Euclidean space, without having to choose a specific basis. This formulation allows ICS to be consistently defined in a
very general framework, unifying its original definition for multivariate data and its past adaptations to specific types of complex
data. In the case of compositional data, the coordinate-free approach yields an alternative implementation of ICS that is more
computationally efficient. We are also able to propose a new version of invariant coordinate selection adapted to distributional data.
Note that a coordinate-free version of ICS has already been mentioned in [1], in the discussion by Mervyn Stone, who proposed to
follow the approach of Stone [11]. In their response, Tyler and co-authors agree that this could offer a theoretically elegant and
concise view of the topic. A coordinate-free approach of ICA is proposed by Li et al. [8], but to our knowledge, no coordinate-free
approach to ICS exists for a general Euclidean space.

As mentioned above, a possible application of ICS is outlier detection. In the context of a small proportion of outliers, a
complete detection procedure integrating a dimension reduction step based on the selection of invariant coordinates is described
by Archimbaud et al. [4]. This method, called ICSOutlier, flags outlying observations and has been implemented for multivariate
data by Archimbaud et al. [4]. It has been adapted to compositional data by Ruiz-Gazen et al. [6] and to multivariate functional
data by Archimbaud et al. [9]. We propose to extend this detection procedure to complex data and illustrate it on distributional
data.

Detecting outliers is already challenging in a classical multivariate context because outliers may differ from the other observations
in their correlation pattern [see 12, for an overview on outlier detection and analysis]. Archimbaud et al. [4] demonstrate how
the ICS procedure outperforms those based on the Mahalanobis distance and PCA (robust or not). For compositional data, the
constraints of positivity and constant sum of coordinates must be taken into account as detailed in [6] and further examined in
this paper. For univariate functional data, outliers are categorised as either magnitude or shape outliers, with shape outliers being
more challenging to detect because they are hidden among the other curves. Many existing detection methods for functional data
rely on depth measures, including the Mahalanobis distance [see, e.g., the recent paper 13, and the included references]. Density
data are constrained functional data, and thus combine the challenges associated with both compositional and functional data. The
literature on outlier detection for density data is very sparse and recent with, as far as we know, the papers by Menafoglio et al.
[14], Lei et al. [15] and Murph et al. [16] only. Two types of outliers have been identified for density data: the horizontal-shift
outliers and the shape outliers, with shape outliers being again more challenging to detect [see 15, for details]. The procedure
proposed by Menafoglio et al. [14] is based on an adapted version of functional PCA to density objects in a control chart context. In
order to derive a robust distribution-to-distribution regression method, Lei et al. [15] propose a transformation tree approach that
incorporates many different outlier detection methods adapted to densities. Their methods involve transforming density data into
unconstrained data and using standard functional outlier detection methods. Murph et al. [16] continue the work of the previously
cited article by comparing more methods through simulations, and give an application to gas transport data. ICS is not mentioned
in these references.

Our coordinate-free definition of ICS enables direct adaptation of the ICSOutlier method to complex data. Through a case study on
temperature distributions in Vietnam, we assess the impact of preprocessing parameters and provide practical recommendations for
their selection. In addition, the results of a simulation study demonstrate that our method performs favourably compared with other
approaches. An original application to Vietnamese data provides a detailed description of the various stages involved in detecting
low-proportion outliers using ICS, as well as interpreting them from the dual eigendensities.

Section 2 presents ICS in a coordinate-free framework, states a useful result to link ICS in different spaces, and treats the
specific cases of compositional, functional and distributional data. For the latter, we develop a Bayes space approach and discuss the
maximum penalised likelihood method to preprocess the original samples of real-valued data into a sample of compositional splines.
Section 3 describes the ICS-based outlier detection procedure adapted to complex data, discusses the impact of the preprocessing
parameters on outlier detection through a toy example. Simulating data from multiple generating schemes, we compare ICS with
other outlier detection methods for density data. Section 4 provides an application of the outlier detection methodology to maximum
temperature data in Vietnam over 30 years. Section 5 concludes the paper and offers some perspectives. Supplementary material
on ICS, a reminder on Bayes spaces, as well as proofs of the propositions and corollaries are given in Appendix.

2. ICS for complex data

A naive approach to ICS for complex data would be to apply multivariate ICS to coordinate vectors in a basis. This not only
ignores the metric on the space when the basis is not orthonormal, but also gives a potentially different ICS method for each
choice of basis [as in 9]. Defining a unique coordinate-free ICS problem avoids defining multiple ICS methods and having to discuss
the potential links between them, thus making our approach more intrinsic. In particular, it leads to more interpretable invariant
components that are of the same nature as the considered complex random objects. In the case of functional or distributional data,
the usual framework assumes that the data objects reside in an infinite-dimensional Hilbert space, which leads to non-orthonormal
bases and incomplete inner product spaces. We choose to restrict our attention to finite-dimensional approximations of the data in
the framework of Euclidean spaces, which are particularly suitable here because ICS is known to fail when the dimension is larger
than the sample size [17]. This suggests that an ICS method for infinite-dimensional Hilbert spaces would require modifying the
core of the method, which is beyond the scope of this work.
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2.1. A coordinate-free ICS problem

In order to generalise invariant coordinate selection [1, def. 1] to a coordinate-free framework in a Euclidean space E, we
need to eliminate any reference to a coordinate system, which means replacing coordinate vectors by abstract vectors, matrices by
linear mappings, bases or quadratic forms, depending on the context. This coordinate emancipation procedure will ensure that our
definition of ICS for an E-valued random object X does not depend on any particular choice of basis of E to represent X.

Following this methodology, we are able to immediately generalise the definition of (affine equivariant) scatter operators from
random vectors in £ = R? [as defined in 1, eq. 3] to random objects in a Hilbert space E. This is a perfect example of how the
coordinate-free framework can be used to extend existing work to infinite-dimensional spaces. For further details, see Definition 3
in Appendix. A notable difference from [1] is that we work directly with random objects instead of their underlying distributions.
In particular, we introduce an affine invariant space £ of random objects on which the scatter operators are defined and to which
we assume that X belongs. For example, & = L?(£, E) corresponds to assuming the existence of the p first moments of || X]|.

Again, emancipating from coordinates allows us to naturally generalise ICS to complex random objects in a Euclidean space.

Definition 1 (Coordinate-free ICS). Let (E,(-,-)) be a Euclidean space of dimension p, £ C L'(2, E) an affine invariant set of
integrable E-valued random objects, .S; and .S, two scatter operators on £ and X € £. The invariant coordinate selection problem
ICS(X, S,..S,) is to find a basis H = (h, ..., h,) of E and a finite non-increasing real sequence A = (4, > --- > Ap) such that

(S[Xlh; hy)y =3

1< <p )

ICS(X, S4,.S,) : { (LX) hy) =80,

where 6, equals 1 if j = j’ and 0 otherwise. Such a basis H is called an ICS(X, S|, S,) eigenbasis, whose elements are ICS(X, S;,.5,)
eigenobjects. Such a A is called an ICS(X, .S}, S,) spectrum, whose elements are called ICS(X, S|, .S,) eigenvalues or generalised
kurtosis. Given an ICS(X, S,,.S,) eigenbasis H and 1 < j < p, the real number

z; = (X —EX,h;) @
is called the jth invariant coordinate (in the eigenbasis H).

In Definition 1, our coordinate emancipation procedure does not yield a generalisation to infinite-dimensional Hilbert spaces,
where a basis H would not be properly defined as it is not necessarily orthonormal.

Remark 1 (Multivariate Case). If E = R?, we identify S, and .S, with their associated (p x p)-matrices in the canonical basis, and we
identify an ICS eigenbasis H with the (p x p)-matrix of its vectors stacked column-wise, so that we retrieve the classical formulation
of invariant coordinate selection by Tyler et al. [1].

In the ICS problem (1), the scatter operators .S; and .S, do not play symmetrical roles. This is because the usual method of solving
ICS(X, S,..S,) is to use the associated inner product of .S|[X], which requires S,[X] to be injective. In that case, Proposition 2 in
the Appendix proves the existence of solutions to the ICS problem.

Another way to understand the coordinate-free nature of this ICS problem is to work with data isometrically represented in two
spaces and to understand how we can relate a given ICS problem in the first space to a corresponding ICS problem in the second.
This is the object of the following proposition, which will be used in Section 2.3.

Proposition 1. Let ¢ : (E,(-,-)g) — (F,(-,-)r) be an isometry between two Euclidean spaces of dimension p, &€ C L'(2, E) an affine
invariant set of integrable E-valued random objects, Sf and Szg two affine equivariant scatter operators on €. Then:

@ F = @& = {p(X%),X¢ € &} is an affine invariant set of integrable F-valued random objects, and we denote X* = p(X¢) € F
whenever X¢ € &;

) S; XPeFre (poSf[XS]o(p‘l,f € (1,2}, are two affine equivariant scatter operators on F;

(¢) H” = p(H?) = ((p(h‘f), ,(p(hlf)) is a basis of F whenever HE = (h?, ... ,h"f) is a basis of E.
For any E-valued random object X¢ € €, any basis H® = (h{, ..., h%) of E, and any finite non-increasing real sequence A = (; > - > A,)
the following assertions are equivalent:

(@) (H?, A) solves ICS(X¢, S¢, %) in the space E

(i) (H7, A) solves ICS(XT, ST, SZF) in the space F.

2.2. The case of weighted covariance operators

A difficulty in ICS is to find interesting scatter operators that capture the non-ellipticity of the random object. Usually, for
multivariate data, we use the pair of scatter matrices (Cov, Cov,). In this section, we define an important family of scatter operators,
namely the weighted covariance operators, which contains both Cov and Cov,. They are explicitly defined by coordinate-free
formulas which allow us to relate ICS problems using weighted covariance operators between any two Euclidean spaces. We denote
by GL(E) the group of linear automorphisms of E and by A!/? the unique non-negative square root of a linear mapping A.
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Definition 2 (Weighted Covariance Operators). For any measurable function w : R* — R, let

Ep= {x € L*(Q,E)

Cov[X] € GL(E) and w (HCov[X]—l/Z(x - IEX)”) I1X —EX|| € L2, R) } . 3)

Note that &, is an affine invariant set of integrable E-valued random objects. For X € &, we define the w-weighted covariance
operator Cov,[X] by

V(x,y) € E%,(Cov,,[X]x,y) = E [w2 (”cOv[Xr‘ﬂ(x - IEX)“) (X —EX,x)(X - EX, y)] . )

When necessary, we will also write Covf, for the w-weighted covariance operator on E to avoid any ambiguity. It is easy to check
that weighted covariance operators are affine equivariant scatter operators in the sense of Definition 3.

Example 1. If w = 1, we retrieve Cov, the usual covariance operator on L%(2, E).

Example 2. If for x € R*, w(x) = (p +2)~1/2x, we obtain the fourth-order moment operator Cov, [as in 3, for the case E = R”] on
£,={X € LYQ,E)| Cov[X] € GL(E)}.

The following corollary applies Proposition 1 to the pair of w,-weighted covariance operators S)f =Cov,,.¢ € {1,2}, for which
the corresponding S; are exactly the w,-weighted covariance operators on F.

Corollary 1. Let (E, (-, ")) z (F,{-,-)p) be an isometry between two Euclidean spaces of dimension p and w,, w, : Rt — R two measurable
functions. For any integrable E-valued random object X € £,, n &, (with the notations from Definition 2), the equality

Covyy [@(X)] = go Covyy [X]og™ (5)

holds for ¢ € {1,2}, as well as the equivalence between the following assertions, for any basis H = (h,,...,.h,) of E, and any finite
non-increasing real sequence A = (A 2+ > 4,):

() (H.A) solves ICS(X, Cov,: ,Cov,: ) in the space E.
(i) (¢(H), A) solves ICS(¢(X), Covy, . Covy ) in the space F.

wy
2.3. Implementation

In order to implement coordinate-free ICS in any Euclidean space E, we restrict our attention to the pair (Cov,,,Cov,,) of
weighted covariance operators defined in Section 2.2. Note that we could also transport other known scatter matrices, such as the
Minimum Covariance Determinant [defined in 18], back to the space E using Proposition 1, but this approach would no longer be
coordinate-free.

We now choose a basis B = (b,...,b,) of E in order to represent each element x of E by its coordinate vector [x]p; =
(Ix1p, .- Ix] bP)T € RP. Then, the following corollary of Proposition 1 allows one to relate the coordinate-free approach in E to three
different multivariate approaches applied to the coordinate vectors in any basis B of E, where the Gram matrix Gg = ({(b;, by ))i<; jr<,
appears, accounting for the non-orthonormality of B. Notice that, since the ICS problem has been defined in Section 2.1 without
any reference to a particular basis, it is obvious that the basis B has no influence on ICS.

Corollary 2. Let (E,(-,-)) be a Euclidean space of dimension p, w;,w, : R* — R two measurable functions. Let B be any basis of E,
Gg = (b, b))\« <, its Gram matrix and [-]p the linear map giving the coordinates in B. For any X € £, N &,, (with the notations
from Definition 2), any basis H = (h, ..., h,) of E, and any finite non-increasing real sequence A = (4, 2 --- > 4,) the following assertions
are equivalent:

(1) (H, A) solves ICS(X, Covil,Coviz) in the space E

(2) (G}/*[H]p. A) solves ICS(G}/*[X15.Cov,, ,Cov,,) in the space R?
(3) ([H1g, A) solves ICS(G[X]p, Covwl,Cova) in the space R?

(4) (GglH]pg, A) solves ICS([X]g, Covwl,Cov ) in the space R?

wy

where [H]p denotes the non-singular p X p matrix representing the basis ([h,1g, ..., [h,]p) of R2.

In practice, we prefer assertion (3) (first transforming the data by the Gram matrix of the basis) because it is the only one
that does not require inverting the Gram matrix in order to recover the eigenobjects. Then, the problem is reduced to multivariate
ICS, already implemented in the R package ICS using the QR decomposition [19]. This QR approach enhances stability compared
to methods based on a joint diagonalisation of two scatter matrices, which can be numerically unstable in some ill-conditioned
situations.

After we obtain the ICS eigenelements, we can use them to reconstruct the original random object, in order to interpret the
contribution of each invariant component. Proposition 3 in the Appendix generalises the multivariate reconstruction formula to
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complex data. In order to implement this reconstruction, we need the coordinates of the elements of the dual ICS eigenbasis.
Identifying the basis [H]z with the matrix whose columns are its vectors, the dual basis [H*]; is the matrix

(H*15 = (IH1}Gp) ™. ®)

Remark 2 (Empirical ICS and Estimation). In order to work with samples of complex random objects, we can study the particular case
of a finite E-valued random object X where we have a fixed sample D, = (x,,...,x,) and we assume that X follows the empirical
probability distribution Pp, of (xy,...,x,). In that case, the expressions (in Definition 2 for instance) of the form Ef(X) for any
function f are discrete and equal to % ZLI f(x).

Now, let us assume that we observe an i.i.d. sample D, = (X,,...,X,) following the distribution of an unknown E-valued
random object X,. We can estimate solutions of the problem ICS(X,, S}, S,) from Definition 1 by working conditionally on the data
(X, ..., X,) and taking the particular case where X follows the empirical probability distribution Pp,. This defines estimates of the
ICS(X,. S, S,) eigenobjects as solutions of an ICS problem involving empirical scatter operators. Since the population version of ICS
for a complex random object X € E is more concise than its sample counterpart for D, = (X|, ..., X,,), we shall use the notations of
the former in the next subsections.

2.4. ICS for compositional data

The specific case of coordinate-free ICS for compositional data is equivalent to the approach of Ruiz-Gazen et al. [6]. To see
this, let us consider the simplex E = (S**!, @, 0, (-, ) sp+1) of dimension p in RP*+! with the Aitchison structure [20]. The results from
Section 5.1 (resp. Section 5.2) in [6] can be recovered by applying Corollary 1 to any isometric log-ratio transformation [see 20,
for a definition] (resp. the centred log-ratio transformation).

Corollary 2 gives a new characterisation of the problem ICS(X, Cov,, ,Cov,, ) using additive log-ratio transformations. For a
given index 1 < j < p, let B; = (b, ..., b,) denote the basis of SP+1 corresponding to the alr ; transformation, i.e. obtained by taking
the canonical basis of R?*!, removing the jth vector and applying the exponential. In that case, it is easy to compute the px p Gram
matrix of B;:

ptl ptl p+l1
1 . . .
Gy =1,- ——1,17=| " ' ' L @
J p+1 P : _ﬁ
P
L L -
p+1 p+l p+l

Then, we get the equivalence between the following two ICS problems:

1. (H, A) solves ICS(X, Cov,, ,Cov

wy > w,

2. (alr;(H), A) solves ICS(clr()()(j),Covw1 ,Cov

,) in the space SP*!
w,) in the space R?

where clr(x)¥) = GBJ alr;(x) is the centred log-ratio transform of x € SP+! from which the jth coordinate has been removed. This
suggests a new and fastest implementation of invariant coordinate selection for compositional data, in an unconstrained space and
only requiring the choice of an index j instead of a full contrast matrix.

2.5. ICS for functional data

The difficulty of functional data (in the broader sense, encompassing density data) is twofold: first, functions are usually analysed
within the infinite-dimensional Hilbert space L?(a, b), second, a random function is almost never observed for every argument, but
rather on a discrete grid. This grid can be regular or irregular, deterministic or random, dense (the grid spacing goes to zero) or
sparse. We describe a general framework for adapting coordinate-free ICS to functional data, solving both difficulties at the same
time by smoothing the observed values into a random function u that belongs to a Euclidean subspace E of L%(a, b).

Choosing an approximating Euclidean subspace. We usually choose polynomial spaces, spline spaces with given knots and order, or
spaces spanned by a truncated Hilbert basis of L%(a, b). In practice, this choice also depends on the preprocessing method that we
have in mind to smooth discrete observations into functions.

Preprocessing the observations into the approximating space. Considering a dense, deterministic grid (¢, ...,?5), we need to reconstruct
an E-valued random function u from its noisy observed values (u(t;) + €;,...,u(ty) + €5). There are many well-documented
approximation techniques to carry out this preprocessing step, such as interpolation, spline smoothing, or Fourier methods [for
a detailed presentation, see 21].
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Solving ICS in the approximating space. Once we have obtained an E-valued random function u, we can apply the method described
in Section 2.3 to reduce ICS(u, Cov,, ,Cov,,) to a multivariate problem on the coordinates in a basis of E. In particular, for an
orthonormal basis B of E (such as a Fourier basis or a Hermite polynomial basis), Corollary 2 gives the equivalence between the

following two assertions:

1. (H, A) solves ICS(u, Covy,,»
2. ([H]g, A) solves ICS([u] g, Covwl,Covwz) in the space R”.

Cov,,) in the space E

If E is a finite-dimensional spline space, we usually work with the coordinates of u in a B-spline basis of E, but then we should take
into account its Gram matrix, as in Corollary 2.

ICS has previously been defined for multivariate functional data by Archimbaud et al. [9], who define a pointwise method and
a global method. Unlike the pointwise approach, which is specific to multivariate functional data, the global method can also be
applied to univariate functional data in L?(a, b), as it corresponds to applying multivariate ICS to truncated coordinate vectors in a
Hilbert basis of L2(a, b). The above framework retrieves the global method in [9] as a particular case when taking a Hilbert basis B
of L?(a,b) and solving coordinate-free ICS in the space E spanned by the p first elements of B.

2.6. ICS for distributional data

A first option to adapt ICS to density data would be to consider it as constrained functional data and directly follow the approach
of Section 2.5. However, distributional data does not reduce to density data [such as absorbance spectra studied in 22], as it can
also be histogram data or sample data (such as the dataset of temperature samples analysed in Section 4). Moreover, the framework
of Bayes Hilbert spaces, described by [23] and recalled in the Appendix, is specifically adapted to the study of distributional data.
Taking into account the infinite-dimensional nature of distributional data, we follow a similar framework as the one of Section 2.5,
restricting our attention to finite-dimensional subspaces E of the Bayes space B2(a, b) with the Lebesgue measure as reference.

Choosing an approximating Euclidean space. Following smoothing splines methods, adapted to Bayes spaces by Machalova et al. [24]
and recalled in the Appendix, we choose to work in the space E = C;"(a, b) of compositional splines on (a, b) of order d +1 with knots
Ay = (¥, ..., 7,)- Note that the centred log-ratio transform clr is an isometry between E and the space F = Zj’(a, b) of zero-integral
splines on (a, b) of order d + 1 (degree less than or equal to d) and with knots 4y = (y,, ..., y,). They both have dimension p = k +d.

Preprocessing the observations into the approximating space. We consider the special cases of histogram data and of sample data. In the
former, we follow [25] to smooth each histogram into a compositional spline in E. In the latter, we assume that a random density
is observed through a finite random sample (X|,..., X ) drawn from it. The preprocessing step consists in estimating the density
from the observed sample. To perform the estimation, we need a nonparametric estimation procedure that yields a compositional
spline belonging to E. That is why we opt for maximum penalised likelihood (MPL) density estimation, introduced by Silverman
[26]. The principle of MPL is to maximise a penalised version of the log-likelihood over an infinite-dimensional space of densities
without parametric assumptions. The penalty is the product of a smoothing parameter A by the integral over the interval of interest
of the square of the mth derivative of the log density. Therefore, the objective functional is a functional of the log density. Due to
the infinite dimension of the ambient space, the likelihood term alone is unbounded above, hence the penalty term is necessary. In
our case of densities on an interval (a, b), we select the value m = 3 so that [according to 26, Theorem 2.1] when the smoothing
parameter tends to infinity, the estimated density converges to the parametric maximum likelihood estimate in the exponential
family of densities whose logarithm is a polynomial of degree less than or equal to 2. This family comprises the uniform density,
exponential and Gaussian densities truncated to (a, b). In order to use MPL in B?(a, b), we need to add extra smoothness conditions
and therefore we restrict attention to the densities of B?(a, b) whose log belongs to the Sobolev space of order m on (a, b), thus
ensuring the existence of the penalty term. Note that compositional splines verify these conditions. With Theorem 4.1 in [26], the
optimisation problem has at least a solution. Since the estimate f of the density of (X,...,Xy) needs to belong to the chosen
finite-dimensional subspace E = ij(a, b), we restrict MPL to E, using the R function fda: :density.fd, designed by Ramsay
et al. [27]. This function returns the coordinates of In(f) in the B-spline basis with knots Ay and order d + 1, that we project onto
ij(a, b) and to which we apply clr™! so that we obtain an element of ij(a, b).

Solving ICS in the approximating space. We have now obtained an E-valued random compositional spline f. In order to work with
two weighted covariance operators Cov,, and Cov,,, where wj,w, : R* — R are two measurable functions, we assume that
fEE&, NEy, using the notations of Definition 2. Now, we refer to Section 2.3 to reduce the problem ICS(f,Cov Cov,,) to a
multivariate ICS problem on the coordinates of f in the CB-spline basis of C;"(a, b) [defined in 25], transformed by the Gram matrix
of said CB-spline basis. Note that Corollary 1 applied to the centred log-ratio isometry between Cj"(a, b) and Zﬁ’(a, b) gives the

equivalence between:

wy?

1. (H, A) solves ICS(f,Cov,, ,Cov,,) in the space E = ij(a, b)
2. (clr(H), A) solves ICS(clr(f), Covy, , Cov,,) in the space F = ij(a, b).

Then, it is completely equivalent, and useful for implementation, to work with the coordinates of clr(f) in the ZB-spline basis of
4y

Z " (a,b).
d
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3. Outlier detection for complex data using ICS
3.1. Implementation of ICS on complex data for outlier detection

We propose using ICS to detect outliers in complex data, specifically in scenarios with a small proportion of outliers (typically
1 to 2%). For this, we follow the three-step procedure defined by Archimbaud et al. [4], modifying the first step based on the
implementation of coordinate-free ICS in Section 2.3.

Computing the invariant coordinates. For the scatter operators, we follow the recommendation of Archimbaud et al. [4] who compare
several pairs of more or less robust scatter estimators in the context of a small proportion of outliers, and conclude that (Cov, Cov,) is
the best choice. Thus, we use the empirical scatter pair (Cov, Cov,) (see Examples 1 and 2), and compute the eigenvalues 4; > - > 4,,
and the invariant coordinates z;,1 < j < p, for each observation X;,1 < i < n. As outlined in Section 2.3, for a given sample of
random complex objects D, = {X,,..., X, } in a Euclidean space E, solving the empirical version of ICS is equivalent to solving an
ICS problem in a multivariate framework [see 1] with the coordinates of the objects in a basis B of E. In order to choose a basis,
we follow the specific recommendations for each type of data from Sections 2.4-2.6.

Selecting the invariant components. The second step of the outlier detection procedure based on ICS is the selection of the x < p
relevant invariant components and the computation of the ICS distances. For each of the n observations, the ICS distance is equal
to the Euclidean norm of the reconstructed data using the «x selected invariant components. In the case of a small proportion of
outliers and for the scatter pair (Cov, Cov4), the invariant components of interest are associated with the largest eigenvalues and the

squared ICS distances are equal to Z z-.. As noted by Archimbaud et al. [4], there exist several methods for the selection of the

number of invariant components. One approach is to examine the scree plot, as in PCA. This method, recommended by Archimbaud
et al. [4], is not automatic. Alternative automatic selection methods apply univariate normality tests to each component, starting
with the first one, and using some Bonferroni correction [for further details see page 13 of 4]. In the present paper, we use the scree
plot approach when there is no need of an automatic method, and we use the D’Agostino normality test for automatic selection.
The level for the first test (before Bonferroni correction) is 5%. Dimension reduction involves retaining only the first k components
of ICS instead of the original p variables. Note that when all the invariant components are retained, the ICS distance is equal to the
Mahalanobis distance.

Choosing a cut-off. The computation of ICS distances allows to rank the observations in decreasing order, with those having the
largest distances potentially being outliers. However, in order to identify the outlying densities, we need to define a cut-off, and this
constitutes the last step of the procedure. Following Archimbaud et al. [4], we derive cut-offs based on Monte Carlo simulations
from the standard Gaussian distribution. For a given sample size and number of variables, we generate 10,000 standard Gaussian
samples and compute the empirical quantile of order 97.5% of the ICS-distances using the three steps previously described. An
observation with an ICS distance larger than this quantile is flagged as an outlier.

The procedure described above has been illustrated in several examples [see 4], and is implemented in the R package
ICSOutlier [see 4]. However, in the context of densities, the impact of preprocessing parameters (see Section 2.6) on the
ICSOutlier procedure emerges as a crucial question that needs to be examined.

3.2. Influence of the preprocessing parameters for the density data application

As a toy example, consider the densities of the maximum daily temperatures for the 26 provinces of the two regions Red River
Delta and Northern Midlands and Mountains in Northern Vietnam between 2013 and 2016. We augment this data set made of 104
densities by adding the provinces AN GIANG and BAC LIEU from Southern Vietnam in the same time period. The total number of
observations is thus 112. Details on the original data and their source are provided in Section 4.1.

Fig. 1 displays a map of Vietnam with the contours of all provinces and coloured according to their administrative region,
allowing the reader to locate the 26 provinces in the North and the two in the South. As shown on the left panel of Fig. 2, the eight
densities of the two provinces from the South for the four years exhibit a very different shape (in red) compared to the northern
provinces (in blue and green), with much more concentrated maximum temperatures. These two provinces should be detected
as outliers when applying the ICSOutlier methodology. However, the results may vary depending on the choice of preprocessing
parameters (see Section 2.6). Our goal is to analyse how the detected outliers vary depending on the preprocessing when using the
maximum penalised likelihood method with splines of degree less than or equal to d = 4. Specifically, we study the influence on the
results of ICSOutlier of the smoothing parameter /A, the number of inside knots k, and the location of the knots defining the spline
basis.

The number « of selected invariant components is fixed at four in all experiments to facilitate interpretation. This value has
been chosen after viewing the scree plots of the ICS eigenvalues following the recommendations in Section 3.1. For each of the
experimental scenarios detailed below, we compute the squared ICS distances of the 112 observations as defined in Section 3.1,
using k = 4. Observations are classified as outliers when their squared ICS distance exceeds the threshold defined in Section 3.1,
using a level of 2.5%. For each experiment, we plot on Fig. 3 the indices of the observations from 1 to 112 on the y-axis, marking
outlying observations with dark squares. The eight densities from Southern Vietnam are in red and correspond to indices 1 to 8.
We consider the following scenarios:
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Fig. 1. Map of Vietnam showing the 63 provinces, with the three regions under study colour-coded. The 28 provinces included in the toy example
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Fig. 2. Plots of the 112 densities of maximum temperature in 28 provinces of Vietnam between 2013 and 2016 (left panel) and their centred
log-ratio transformation (right panel), colour-coded by region.

« the knots are either located at the quantiles of the temperature values (top panel on Fig. 3) or equally spaced (bottom panel
on Fig. 3),

+ from the left to the right of Fig. 3, the number of knots varies from 0 to 14 by increments of 2, and then takes the values 25
and 35 (overall 10 different values). Note that when increasing the number of knots beyond 35, the code returns more and
more errors due to multicollinearity issues and the results are not reported.

+ the base-10 logarithm of the parameter A varies from —8 to 8 with an increment of 1 on the x-axis of each plot.

Altogether we have 2 x 10x 17 = 340 scenarios. Fig. 4 is a bar plot showing the observations indices on the x-axis and the frequency
of outlier detection across scenarios on the y-axis colour-coded by region. The eight densities from the two southern provinces
(AN GIANG and BAC LIEU) across the four years are most frequently detected as outliers, along with the province of LAl CHAU
(indices 33 to 36), which is located in a mountainous region in northwest of Vietnam. On the original data, we can see that the LAI
CHAU province corresponds to densities with low values for high maximum temperatures (above 35 °C) coupled with relatively



C. Mondon et al.

0 2 4 6
90 £ 2 EE
60 £
2 imm mmema =y o=
30
3 T & B
°
< Nl BN =l S5
o
.§
I} - — - -
&
) t 4 E
90
60 B
a meE —ao = =0 =
30

50 5 50 5 50 5

50 5 50 5 50 5

log10(lambda)

50 5

25

il = =Rl i R By =R e

50 5

Journal of Multivariate Analysis 211 (2026) 105522

35

paoeds Ajenba

region

8 Mekong Delta
— I Northern Midlands and
-_——

Mountains

Red River Delta
outlying

FALSE

H TRUE

sajuenb

=

L=

50 5

Fig. 3. Outlier detection by ICS across smoothing parameters for the data set of 112 densities of maximum temperature in 28 provinces of
Vietnam between 2013 and 2016. Top: knots at quantiles; Bottom: equally spaced knots. y-axis: observation indices; x-axis: 4 parameter. Columns
correspond to knot numbers (0-35). Outliers are dark and colour-coded by region.

4

1

0

0 30

outlier detection frequency
n w
o o o o
o o o o
@ 000000_0__—___1
|
- 0 0000n0n09090n0m9m9m9m0m0m0m0m0m0m0m9m9m9m9m9m9m9m9m9m9m9m9m9m9m9m090m9m0m9m9m0m090 ]
1
0000000000000
0000000000000 @01
|
]
1
n
1
1
n
1
1
1
1
I
]
I
I
]
'
1
1
-
!
1
I
1
I

60
observation index

region

I Mekong Delta

B Northern Midlands and Mountains
] Red River Delta

90

Fig. 4. Frequency of outlier detection by ICS across 340 scenarios with varying smoothing parameters, for each of the 112 densities of maximum

temperature in 28 provinces of Vietnam between 2013 and 2016, colour-coded by region.



C. Mondon et al. Journal of Multivariate Analysis 211 (2026) 105522

high density values for maximum temperatures below 35 °C. A few other observations are detected several times as outliers, but
less frequently: indices 53 (TUYEN QUANG in 2013), 96 (QUANG NINH in 2016), and 107 (THANH HOA in 2015).

Looking at Fig. 3, we examine the impact of the preprocessing parameters on the detection of outlying observations. First, note
that the ICS algorithm returns an error when the A parameter is large (shown as white bands in some plots). This is due to a
multicollinearity problem. Even though the QR version of the ICS algorithm is quite stable, it may still encounter problems when
multicollinearity is severe. Indeed, when 4 is large, the estimated densities converge to densities whose logarithm is a polynomial
of degree less than or equal to 2 (see details in Section 2.6), and belongs to a 3-dimensional affine subspace of the Bayes space,
potentially with a dimension smaller than that of the approximating spline space. If we compare the top and the bottom plots, we
do not observe large differences in the outlying pattern, except for a few observations rarely detected as outliers. Thus, the knot
location has a rather small impact on the ICS results for this data set. Regarding the impact of the 1 parameter, the outlier pattern
remains relatively stable when the number of knots is small (less than or equal to 6), especially when looking at the densities from
the south of Vietnam in red. For a large number of knots, the observations detected as outliers vary with A. The number of knots has
more impact than their location or the A parameter. When the number of knots is smaller than or equal to 6 (corresponding to p = 10
variables), the plots are very similar. However, as p increases, some observations from Southern Vietnam are not detected for all 1
values, while another density (QUANG NINH in 2016) is detected for large A values with equally spaced knots, and to a lesser extent
for knots at temperature quantiles. In [9], ICS is applied to multivariate functional data with B-splines preprocessing. Based on their
empirical experience, the authors recommend using a dimension p (in their case, the number of functional components times the
number of B-splines coefficients) no larger than the number of observations divided by 10. Typically in multivariate analysis, the
rule of thumb is that the dimension should not exceed the number of observations divided by 5. For functional or distributional
data, it appears that even more observations per variable are needed. The reason for this is not entirely clear, but in the case of ICS,
we can suspect that the presence of multicollinearity, even approximate, degrades the results. By increasing the number of knots,
we precisely increase the multicollinearity problem, especially for large values of A.

From this experimentation, we recommend using knots located at the quantiles of the measured variable, and a number of knots
such that the number of observations is around 10 times the dimension p (here: the dimension of the B-spline basis). The base-10
logarithm of parameter A can be chosen between —2 and 2 to avoid extreme cases and multicollinearity problems. Moreover, the
idea of launching ICS multiple times with different preprocessing parameter values to confirm an observation’s atypical nature by
its repeated detection is a strategy we retain for real applications, as detailed in Section 4.3.

3.3. Comparison with other methods

We now compare ICS for functional data (presented in Section 2.5) and ICS for density data (presented in Section 2.6) to
eight outlier detection methods already existing in the literature, such as median-based approaches [16], the modified band depth
method [28] and MUOD indices [29].

Our simulation uses three density-generating processes with 2% of outliers. The scheme named GP_clr, based on model 4 of
the fdaoutlier package [29, section 4.1], first simulates a discretised random function in L2(0, 1) from a mixture of two Gaussian
processes with different means, and applies the inverse clr transformation to obtain a random density in the Bayes space B(0, 1). The
scheme named GP_margin first simulates a discretised random function in L?(0, 1) using model 5 of the fdaoutlier package,
which consists in a mixture of two Gaussian processes with different covariance operators. Then, the random density is obtained as a
kind of marginal distribution of the discrete values of the random function, where the x-axis is discarded: these values are considered
as a random sample and smoothed using MPL (see Section 2.6 with parameters A = 1, 10 basis functions and knots (as well as interval
bounds) at quantiles of the full sample. This scheme is similar to the data generating process of the Vietnamese climate dataset.
Finally, the Gumbel scheme first draws parameters from a mixture of two Gaussian distributions in R?> and computes the Gumbel
density functions corresponding to these parameters (it generates shift outliers as described in [16]). Note that the output of all the
schemes is a set of discretised densities on a regular grid of size p = 100 that covers an interval (a, b) (which is (0,1) for GP_clr
and Gumbel and the range of the full sample for GP_margin). In each sample, there are n = 200 densities.

For the outlier detection methods, we denote them as <Approach>_<Metric> so that for instance, ICS_B2 refers to ICS for
density data in the Bayes space B>(a, b). The steps of the ICS_B2 method are as follows. After applying the discrete cIr transformation
to each discretised density function, we approximate the underlying clr transformed smooth density by a smoothing spline in
L%(a, b) using the preprocessing described in [24]. During this process, densities should not take values too close to 0 to avoid
diverging clr, so we replace by 108 all density values below this threshold. The parameters of the compositional spline spaces
are chosen by the function fda.usc: :fdata2fd. Then, we solve ICS in the chosen compositional spline space, automatically
selecting the components with tests as before. The ICS_L2 method first smooths each discretised density using splines in L2(a, b)
treating the densities as ordinary functional parameters. In the second step, we apply ICS in the chosen spline space, selecting
the components automatically through D’Agostino normality tests. The MBD [30] and MUOD [31] approaches are implemented
using the package fdaoutlier [29], either directly (<KApproach>_L2) or after transforming the densities into log quantile
densities (<Approach>_LQD) or into quantile functions (<Approach>_QF). The median-based methods such as Median_LQD
and Median_Wasserstein are described in [16] and implemented in the DeBoinR package using the recommended default
parameters.

For each combination between a generating scheme and a method, we average the TPR (True Positive Rate, or sensitivity)
and the FPR (False Positive Rate, one minus specificity) over N = 200 repetitions, for each value of PP (the number of predicted
positive) which scales from 0 to n. We also compute point-wise confidence bounds using the standard deviation of the TPR over
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Fig. 5. ROC curves of 10 different outlier detection methods for density data with 3 generating schemes, obtained using Monte Carlo methods
with 200 repetitions.

Table 1
AUC for the 10 outlier detection methods, averaged across the 3 gener-
ating schemes.

Approach Metric Average AUC
MUOD L2 0.92
ICS B2 0.92
MUOD QF 0.91
ICS L2 0.91
MBD QF 0.90
Median Wasserstein 0.90
MUOD LQD 0.88
MBD L2 0.86
Median LQD 0.78
MBD LQD 0.74

the N repetitions and the standard Gaussian quantile of order 97.5%. The ROC curves together with their confidence bands are
represented in Fig. 5, separately for the three density-generating processes. Table 1 summarises the performance of the methods
across the schemes, by means of the average area under the curve (AUC).

We can see that both ICS methods give quite similar results except for the GP_clr generating process where ICS_B2
outperforms ICS_L2. Together with MUOD_L2 and MUOD_QF, these methods are the best in terms of average AUC, although
ICS-based methods perform more consistently across the different generating schemes. The Median_LQD and MBD_LQD methods
are worse than the others for all generating schemes. Overall, we can recommend ICS versus the other outlier detection methods in
this situation where the proportion of outliers is small.

4. An application to Vietnamese climate data
4.1. Data description and preprocessing

In this application, we study daily maximum temperatures for each of the I = 63 Vietnamese provinces over a T' = 30-year period
(1987-2016). Originally from the Climate Prediction Center (CPC) database, developed and maintained by the National Oceanic
and Atmospheric Administration (NOAA), the data underwent a preliminary treatment presented in [33]. From the daily 365 or 366
values for each year, we derive the yearly maximum temperature distribution for each of the 1890 province-year units. We assume
that the temperature samples are independent across years and spatially across provinces, which is a simplifying assumption. Fig. 1
depicts the six administrative regions of Vietnam, and the corresponding provinces. However, these regions cover areas with varied
climates. To achieve more climatically homogeneous groupings, we use clusters of provinces based on climatic regions as defined
by Stojanovic et al. [32]. Fig. 6 displays the three climatic regions covering Northern Vietnam. We focus on region S3, composed
of 13 provinces, by similarity with the North Plain (Red River Delta) (S3) in [32].

Fig. 7 shows the maximum temperature densities for the 13 provinces of S3, plotted by year, using the preprocessing detailed
in Section 2.6 with degree less than or equal to d = 4, smoothing parameter 4 = 10 and k = 10 knots located at quantiles of the
pooled sample (across space and time). We observe more variability across time than across space which confirms that the spatial
homogeneity objective is achieved.

11
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Fig. 6. Map of the provinces of Northern Vietnam, colour-coded according to the climate regions defined in [32].
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Fig. 7. Maximum temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987-2016, colour-coded by province.

4.2. Outlier detection using ICS for the S3 climate region of Vietnam

We follow the different steps described in Section 3.1, and examine the results of ICS outlier detection using the scatter pair
(Cov, Cov,) on the 390 (13 provinces x 30 years) densities from region S3, obtained after the preprocessing detailed above.

The scree plot on the left panel of Fig. 8 clearly indicates that we should retain the first two invariant components. The right
panel of Fig. 8 shows the squared ICS distances based on these first two components, with the observations index on the x-axis
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Fig. 8. Scree plot of the ICS eigenvalues (left panel), and the ICS distances based on the first two components (right panel) for maximum
temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987-2016.
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Fig. 9. Scatter plot of the first two invariant components (left panel) labelled by year and coloured by province, and the first two ICS dual
eigendensities (right panel) of the maximum temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987-2016.

and with a threshold (horizontal line) corresponding to a significance level of 2.5%. This plot reveals that several observations are
distinctly above this threshold, especially for the years 1987 and 2010.

The left panel of Fig. 9 displays the scatter plot of the first two components, labelled by year. The densities are coloured by
province for the outliers and coloured in grey for the other provinces. This plot reveals that the outliers are either densities from
2010 (and one density from 1998) that are outlying on the first component, or densities from 1987 and 2007 that are outlying on
the second component.

To interpret the outlyingness, we can use the dual eigendensities plotted in the right panel of Fig. 9 together with Fig. 10, which
represents the densities and their centred log-ratio transformation, colour-coded by year for the outliers and in grey for the other
observations. This is justified by the reconstruction formula of Proposition 3 in Appendix. The horizontal line on the eigendensities
plot (right plot of Fig. 9) corresponds to the uniform density on the interval [5;40]. Four provinces in 2010 are outlying with large
positive values on the first invariant component (see the left panel of Fig. 9). The first eigendensity IC.1 is characterised by a smaller
mass of the temperature values on the interval [5; 20], compared to the uniform distribution, a mass similar to the uniform on [20; 35],
and a much larger mass than the uniform on the interval [35;40]. These four observations correspond to the four blue curves on the
left and right panels of Fig. 10. Compared to the other densities, these four densities exhibit relatively lighter tails on the lower end of
the temperature spectrum and heavier tails on the higher end. For temperature values in the medium range, these four observations
fall in the middle of the cloud of densities and of clr transformed densities. On the second invariant component, six observations
take large values and are detected as outliers. They correspond to four provinces in 1987 and three in 2007 (see the left panel of
Fig. 9). The second eigendensity IC.2 differs greatly from the uniform distribution on the whole interval of temperature values. The
left tail is much lighter while the right tail is much heavier. Besides the six observations flagged as outliers, other provinces in 1987
and 2007 take large values on IC.2, and correspond to densities with very few days with maximum temperature less than 15 degrees

Celsius compared to other densities.
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Fig. 10. Maximum temperature densities (left panel) and their centred log-ratio transforms (right panel) for the 13 provinces in the S3 climate
region of Northern Vietnam,1987-2016, outlying densities are colour-coded by year.
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Fig. 11. Outlier detection by ICS across smoothing parameters for the Vietnam climate data. Top: 2 invariant components selected; Bottom:
automatic selection through D’Agostino tests. y-axis: year; x-axis: 4 parameter. Columns correspond to knot numbers (5-25). Outliers are marked
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4.3. Influence of the preprocessing parameters

As mentioned in Section 3.2, we can validate the atypical nature of observations by running the ICSOutlier procedure multiple
times with varying smoothing parameter values. Following the rule of thumb of one dimension per 10 observations, with 390
observations, we should consider less than 35 interior knots. In what follows, we take 5, 10, 15, 20 and 25 interior knots and
we consider base-10 logarithm values for A equal to —2, —1, 0, 1 and 2. The number of selected ICS components is either fixed
equal to 2, or is automatically determined using the D’Agostino normality test described in Section 3.1. We compute the squared
ICS distances of the 390 observations, and observations are classified as outliers when their squared distance exceeds the threshold
based on a 2.5% level as detailed in Section 3.1.

We plot in Fig. 11 the years on the y-axes for the 25 smoothing parameter setups, indicating outlying years with light grey to
black squares depending on their detection frequency. Fig. 12 displays a bar plot of the frequency of outlier detection (across the
25 setups and the 13 provinces) for each year. Note that the choice of the number of selected invariant components has minimal
impact. Both Figs. 11 and 12 confirm the results of the previous subsection. Most provinces are outlying in 1987 and several are
also outlying in 2007 and 2010. For large values of 4, many provinces are also detected as outliers in 2016. Some provinces are
detected quite often over the years: THANH HOA, HAI PHONG and HOA BINH. Note that in [32], the province of THANH HOA
extends across two climatic regions (S3 and S4) which could explain why it is very often detected as an outlier.
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Fig. 12. Frequency of outlier detection by ICS across all 25 scenarios with varying smoothing parameters and all 13 provinces, for each year in
the Vietnamese climate dataset.

An overall comment regarding the outlier detection procedure that we use in the present application is that, from our experience
on other data sets, an outlying density is often characterised by a behaviour that differs from the other densities in the tails of the
distribution. This is not surprising because the Bayes inner product defined by Eq. (19) involves the ratio of densities which can be
large when a density is small (at the tails of the distribution).

5. Conclusion and perspectives

We propose a coordinate-free presentation of ICS that allows ICS to be applied to more complex objects than the coordinates
vectors of multivariate analysis. We focus on the case of distributional data and describe an outlier detection procedure based on
ICS. However, one of the limitations of the coordinate-free approach is that it is mainly adapted to pairs of weighted covariance
operators, because they have a coordinate-free definition. These pairs of operators include the well-known (Cov, Cov,) pair. Its scatter
counterpart in the multivariate context is the one recommended by Archimbaud [34] for a small proportion of outliers. But it is
unclear how we could generalise other well-known scatter matrices (such as M-estimators, pairwise-based weighted estimators, or
Minimum Covariance Determinant estimators) which are useful when using ICS as a preprocessing step for clustering [see 5].

Concerning a further adaptation of ICSOutlier to density objects, one perspective to our work is to take into account different
settings for the preprocessing parameters and aggregate the results in a single outlyingness index. Another perspective is to consider
multivariate densities (e.g., not only maximum density temperature but also minimum density temperature, precipitation,...) and
generalise the ICSOutlier procedure as in [9] for multivariate functional data.

This coordinate-free framework for ICS lays the groundwork for a generalisation to infinite-dimensional Hilbert spaces. Many
difficulties arise, such as the compactness of the covariance operator which makes it non surjective, so that one cannot easily define
a Mahalanobis distance, on which our definition of weighted covariance operators relies. Moreover, the existence of solutions
and other properties of ICS proved in this paper come from the fact that one of the scatter operators is an automorphism, so it
cannot be compact (in particular not the covariance). Finally, Tyler [17] proved that, whenever the dimension p is larger than the
number of observations n, all affine equivariant scatter operators are proportional, which is a bad omen for a straight generalisation
to infinite-dimensional Hilbert spaces. One can partially circumvent these difficulties by assuming that the data is almost surely
in a deterministic finite-dimensional subspace E of H (which is the case for density data after our preprocessing) and applying
coordinate-free ICS. Another option could be to alleviate the affine equivariance assumption.
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Appendix

Scatter operators for random objects in a Hilbert space

Let us first discuss some definitions relative to scatter operators in the framework of a Hilbert space (E,(,-)). We consider an
E-valued random object X : 2 — E where Q is a probability space and E is a Hilbert space equipped with the Borel c-algebra. In
order to define ICS, we need at least two scatter operators, which generalise the covariance operator defined on E by

V(x,y) € E*,(Cov[X1x,y) = E [(X - EX,x)(X —EX, )], (8)
while keeping its affine equivariance property:
VA € GL(E),Vb € E,Cov[AX + b] = ACov[X]A™,

where the Hilbert norm of X is assumed to be square-integrable, and A* is the adjoint linear operator of A in the Hilbert space E,
represented by the transpose of the matrix that represents A.

Definition 3 (Scatter Operators). Let (E,(-,-)) be a Hilbert space of dimension p, £ an affine invariant set of E-valued random
objects, i.e. that verifies:

VX € E,YAEGL(E),Nbe E,AX +beEE. ()]

An operator S : £ - St(E) (where S*(E) is the space of non-negative symmetric operators on E) is called an (affine equivariant)
scatter operator (defined on &) if it satisfies the following two properties:

1. Invariance by equality in distribution:
Y(X,Y)€ELX ~Y = S[X]=S[Y]. 10)
2. Affine equivariance:

VX € E,YA € GL(E),Vb € E, S[AX + b] = AS[X]A". an

We do not know whether there exist other scatter operators than the covariance when the Hilbert space has infinite dimension.
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Details on coordinate-free ICS

The problem ICS(X, S|, S,) defined by (1) is equivalent to assuming that S;[X] is injective and finding an orthonormal basis
H that diagonalises the non-negative symmetric operator S;[X]71.S,[X] in the Euclidean space (E, (S|[X]-,-)). The ICS(X, S}, S,)
spectrum A is unique and is simply the spectrum of S,[X]~!S,[X].

Proposition 2 (Existence of Solutions). Let (E, (-, -)) be a Euclidean space of dimension p, £ C L'(2, E) an affine invariant set of integrable
E-valued random objects, S, and .S, two scatter operators on €. For any X € &€ such that S|[X] is an automorphism, there exists at least
one solution (H, A) to the problem ICS(X, S}, S,), and A is a uniquely determined non-increasing sequence of positive real numbers.

Proof. Since S,[X] is non-singular, S,[X]~!.S,[X] exists and is symmetric in the Euclidean space (E, (S;[X]-, -)), because
V(x,) € E2, (S,[X18,[X]7' $,[X1x,y) = ($,[X]1x, y) = (S2[X 1y, x) = (S [X1S,[X]7 S,[ X1y, x). (12)

Thus, the spectral theorem guarantees that there exists an orthonormal basis H of (E,(S;[X]-,-)) in which S;[X ]‘]SZ[X ] is
diagonal. []

This methodology does not generalise to the infinite-dimensional case, because the inner product space (H, (-, S;[X]-)) is not
necessarily complete, so the spectral theorem does not apply.

Remark 3 (Courant-Fischer Variational Principle). The ICS problem (1) can be stated as a maximisation problem. If 1 < j < p, the
following equalities hold:

n (S,[X]h, h) (S,[X1h, h)
P € argmax

e —— j = max e ——— (13)
heELS) X1k, )=0 i 0<j'<j (S1LX1h, h) heE(S1[X1h,hy)=0 if 0<j'<j {(S1[X1h, h)

The following reconstruction formula, extended from multivariate to complex data, is useful to interpret the ICS dual eigenbasis
H* = (h;f)lS i<ps which is defined as the only basis of the space E that satisfies

(hj b)) = 6.1 <JJ" < p. 14

Proposition 3 (Reconstruction Formula). Let (E,{-,-)) be a Euclidean space of dimension p, £ C L'(2, E) an affine invariant set of
integrable E-valued random objects, S| and S, two scatter operators on €. For any X € € such that S|[X] is an automorphism and any
ICS(X, S,..S,) eigenbasis H = (hy, ..., h,) of E, we have

P
X =EX + ) z;h, (15)
j=1

where the z;,1 <j<pare defined as in (2) and H* = (h;‘)lgjsp =(51[X1h))i<)<p Is the dual basis of H.
Reminder on Bayes spaces

The most recent and complete description of the Bayes spaces approach can be found in [23]. For the present work, we will
identify the elements of a Bayes space, as defined by Van Den Boogaart et al. [23], with their Radon-Nikodym derivative with
respect to a reference measure A. This leads to the following framework: let (a,b) be a given interval of the real line equipped
with the Borel c-algebra, let 4 be a finite reference measure on (a, b). Let B>(a, b) be the space of square-log integrable probability
densities ‘;—‘;, where y is a measure that is equivalent to 4, which means that y and 1 are absolutely continuous with respect to each
other.

Note that the simplex S? used in compositional data analysis can be seen as a Bayes space when considering, instead of an
interval (a, b) equipped with the Lebesgue measure, the finite set {1,...,p+ 1} equipped with the counting measure [see Example 2
in 23].

Let us first briefly recall the construction of the Hilbert space structure of B*(a, b). For a density f in B?(a, b), the clr transformation
is defined by

b
crfO)=Inf()— ﬁ In £ ()dA®?). (16)

The clr transformation maps an element of B?(a,b) into an element of the space L(Z)(a, b) of functions which are square-integrable
with respect to 4 on (a, b) and whose integral is equal to zero. The clr inverse of a function u of Lg(a, b) is B2-equivalent to exp(u).
More precisely, if u € Lg(a, b),

expu(.)

—_— a7
J, expu(t)d A(t)

crlw)() =
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A vector space structure on B%(a, b) is readily obtained by transporting the vector space structure of L(z)(a, b) to B*(a,b) using the
clr transformation and its inverse, see for example Van Den Boogaart et al. [23]. Its operations, denoted by & and ©, are called
perturbation (the “addition”) and powering (the “scalar multiplication”).

For the definition of the inner product, we adopt a normalisation different from that of Egozcue et al. [35] and of Van
Den Boogaart et al. [23] in the sense that we choose the classical definition of inner product in L(z)(a, b), for two functions u and v
in L3(a, b)

b
(u,U)L(z) =/ u(Hv(t)d A(t), (18)

so that the corresponding inner product between two densities f and g in the Bayes space B2(a,b) is given by

b b
(f-8)p = m/a /a (n f(n) —In f(s))(Ing(®) — In g(s))d A(t)d A(s). 19

This normalisation yields an inner product which is homogeneous to the measure 4 whereas the Van Den Boogaart et al. [23]
normalisation is unitless. Note that, for clarity and improved readability, the interval over which the spaces L% and B? are defined
are omitted from some notations.

For a random density f(.) in the infinite-dimensional space B%(a, b), the expectation and covariance operators can be defined as
follows, whenever they exist:

EB[f] = clr™! E[clr f] € B(a, b), (20)
Cov'Iflg =¥ [(f OEF[/1.8) 2 © (f OEZfD] = el EL(S, ) 2 /]
=clr ' E[(cIr f,clrg),2clr f]  for any g € B*(a,b), (21)
0

where © is the negative perturbation defined by f ©g= f & [(-]) © g].
Reminder on compositional splines

Following [25], in order to construct a basis of E = ij(a, b), which is required in practice, it is convenient to first construct a
basis of a finite-dimensional spline subspace of Lg(a, b), which we then transfer to B%(a, b) by the inverse clr transformation. More
precisely, Machalové et al. [24] propose a basis of zero-integral splines in L(z)(a, b) that are called ZB-splines. The corresponding
inverse images of these basis functions by clr are called CB-splines.

A ZB-spline basis, denoted by Z = {Z,, ..., Z,,,_}, is characterised by the spline of degree less than or equal to d (order d +1),
the number k and the positions of the so-called inside knots 4y = {y,,...,7,} in (a, b). The dimension of the resulting subspace ij
is p=k+d. Let Cj’ be the subspace generated by C = {Cy,...,C,} in B2(a, b), where C; = clr’l(Zj) are the back-transforms in
B?(a, b) of the basis functions of the subspace Z?". The expansion of a density f in B?(a, b) is then given by

)4
10 =@P1s1e,C; 0, (22)
Jj=1
so that the corresponding expansion of its clr in L(Z)(a, b) is given by
)4
clr () = Y[f1e, Z;0). (23)
j=1

Note that the coordinates of f in the basis C are the same as the coordinates of clr(f) in the basis Z, for j = 1,...,p,[f ]cj =

[cIr f1, . Following Machalové et al. [24], the basis functions of Z?V can be written in a B-spline basis, see Schumaker [36], which
is convenient to allow using existing code for their computation.

Proof of Proposition 1. First, let us verify that the problem ICS(X7, Sf, SZF ) is well defined on F:

(a) The application ¢ is linear so it is measurable. Moreover, if X € £, A € GL(F) and b € F, then
leOllF = I1XIlg 24
and
Ap(X)+b =0 (¢~ oAcp(X) + ¢~ ' (b)) where ¢~ 'oAop(X) + ¢! (b) € £. (25)

b) IfX €€, S)/f[(p(X)] = (pOS;f[X]o(p’l is a non-negative symmetric operator and if Y € & verifies ¢p(X) ~ ¢(Y), then X ~ Y
(because the Borel s-algebra on E is the pullback by ¢ of that on F) so that, for ¢ € {1,2},

STIp(X)] = @oSE[Xlog™" = poSE[Y]op™ = S/ [p(Y)] (26)
and

STIA@(X) + b] = @oSE [~ o Ao(X) + ¢~ (B)]og™" = AogoSE[XJog™ o A* = AST [p(X)]A*. 27)
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(c) The isometry ¢ preserves the linear rank of any finite sequence of vectors of E.

Now, (H%, A) solves ICS(X€,.S¢, Szg) in the space E if and only if

(STIXIRS hS) = 6,1 < juJ" <, ((STIXIRD), (W) p = 8,1 < J.J" <, 28
—
(STIX1hT hS) g = 258,01 < j.j' < . (@(SFIX1AT). @(h5)) p = 48,51 < j.J" < p.
(STIXTh] W) p = 60,1 < j.J" < p, 29
(STIXTh] hL) = 48,5, 1 < j.j' < p.

which is equivalent to the fact that (H”, A) solves ICS(X*, ST, ST) in the space F. [

Proof of Corollary 1. Let # € {1,2} and X = X — EX. In order to prove Eq. (5), we will need to prove that, for any (x, y) € F?,

(9o Covyy, [X]og™ (). y)p = (Covyg [X]o™' (). 07 1)k (30)
= Elw, (| Cov* X772 X[ (X, 7' 0)) (X, 7' (1)) ] (31)
= E[w, (|| Cov* [T @(X)I| 1) (@(X). X) p(@(X), y) ] (32)
(9o Cov,g [X1op™ (x).y)p = (Cov,, [@(X)]x. y) - (33)

It is enough to show the equality between (31) and (32), for which we treat differently the cases w, =1 and w, # 1. If w, =1,
there is nothing to prove, so that Eq. (5) holds for the covariance operator. If w, # 1, we now know from the case w, =1 that

CovP [p(X)]™1/? = o CovE [ X7/ ?0g™! (34
so that
| CovELXT™2X || g = || CovF [@(X)] ™2 (X))l - (35)

Once Eq. (5) is proved, one only needs to apply Proposition 1 to finish the proof. []

Proof of Corollary 2. Applying Corollary 1 to the isometry

{ (B = (R (g
Pp -

: 36
x b Gy Ixlg (36)

we obtain the equivalence between the following assertions:

(i) (H, A) solves ICS(X ,Covwl,Cova) in the space E

(i) (G}/*[H]p. A) solves ICS(G}/*

5 [X1p,Cov,, ,Cov,,) in the space R?,

which gives the equivalence between the assertions (1) and (2). The equivalence between the other assertions are deduced from the
fact that for any # € {1,2} and any (x,y) € E:

(Covfft, [X1x, y)g = (Cov,, (GL/Z[X]B)G;/Z[X]B, G;/Z[Y]Bhep (37)
=(Cov,,, (Gl X1p)Ix]p, [¥]p)rr 38
=(Cov,,, ((X15)Gplx]5, Gglylg)re, %

where (37) comes from Eq. (5), and the equalities (38) and (39) come from the affine equivariance of Cov,, .- O

Proof of Proposition 3. Let us decompose S,[X]~'(X — EX) over the basis H, which is orthonormal in (E, (-, S;[X]-)):

)4 )4

SIXTTX —EX) = Y (S [X]7'(X —EX), $,[X1h;)h, = Y (X —EX, h))h;, (40)
j=1 j=1
)4

SIXTN X —EX) = ) z;h;. (41)
j=1

=
The dual basis H* of H is the one that satisfies (h;, h;’f,) =6, forall 1 <j,j’ < p and we know from the definition of ICS that this
holds for (5, [(X1h)i<jp O
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