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 A B S T R A C T

Invariant coordinate selection (ICS) is a dimension reduction method, used as a preliminary 
step for clustering and outlier detection. It has been primarily applied to multivariate data. 
This work introduces a coordinate-free definition of ICS in an abstract Euclidean space and 
extends the method to complex data. Functional and distributional data are preprocessed 
into a finite-dimensional subspace. For example, in the framework of Bayes Hilbert spaces, 
distributional data are smoothed into compositional spline functions through the Maximum 
Penalised Likelihood method. We describe an outlier detection procedure for complex data 
and study the impact of some preprocessing parameters on the results. We compare our 
approach with other outlier detection methods through simulations, producing promising results 
in scenarios with a low proportion of outliers. ICS allows detecting abnormal climate events in a 
sample of daily maximum temperature distributions recorded across the provinces of Northern 
Vietnam between 1987 and 2016.

. Introduction

The invariant coordinate selection (ICS) method was introduced in a multivariate data analysis framework by Tyler et al. [1]. 
CS is one of the dimension reduction methods that extend beyond Principal Component Analysis (PCA) and second moments. 
CS seeks projection directions associated with the largest and/or smallest eigenvalues of the simultaneous diagonalisation of two 
catter matrices [see 2,3, for recent references]. This approach enables ICS to uncover underlying structures, such as outliers 
nd clusters, that might be hidden in high-dimensional spaces. ICS is termed ‘‘invariant’’ because it produces components, linear 
ombinations of the original features of the data, that remain invariant (up to their sign and some permutation) under affine 
ransformations of the data, including translations, rotations and scaling. Moreover, Theorem 4 in [1] demonstrates that, for a 
ixture of elliptical distributions, the projection directions of ICS associated with the largest or smallest eigenvalues usually generate 
he Fisher discriminant subspace, regardless of the chosen pair of scatter matrices and without prior knowledge of group assignments. 
nce the pair of scatter matrices is chosen, invariant components can be readily computed, and dimension reduction is achieved by 
electing the components that reveal the underlying structure. Recent articles have examined in detail the implementation of ICS in 
 multivariate framework, focusing on objectives such as anomaly detection [4] or clustering [5]. These studies particularly address 
he choice of pairs of scatter matrices and the selection of relevant invariant components. Note that this idea of joint diagonalisation 

I This article is part of a Special issue entitled: ‘JMVA_Dimension Reduction in Multivariate Analysis’ published in Journal of Multivariate Analysis.
∗ Corresponding author.
E-mail address: camille.mondon@tse-fr.eu (C. Mondon).
ttps://doi.org/10.1016/j.jmva.2025.105522
eceived 29 August 2024; Received in revised form 30 June 2025; Accepted 7 November 2025
vailable online 8 November 2025 
047-259X/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/jmva
https://www.elsevier.com/locate/jmva
https://orcid.org/0009-0007-4569-990X
mailto:camille.mondon@tse-fr.eu
https://doi.org/10.1016/j.jmva.2025.105522
https://doi.org/10.1016/j.jmva.2025.105522


C. Mondon et al. Journal of Multivariate Analysis 211 (2026) 105522 
of scatter matrices is also used in the context of blind source separation and more precisely for Independent Component Analysis 
(ICA) which is a model-based approach as opposed to ICS [see 3, for more details]. ICS has later been adapted to more complex 
data, namely compositional data [6], functional data [7,8, for ICA] and multivariate functional data [9,10, for ICA].

A significant contribution of the present work is the formulation of a coordinate-free variant of ICS, considering data objects in 
an abstract Euclidean space, without having to choose a specific basis. This formulation allows ICS to be consistently defined in a 
very general framework, unifying its original definition for multivariate data and its past adaptations to specific types of complex 
data. In the case of compositional data, the coordinate-free approach yields an alternative implementation of ICS that is more 
computationally efficient. We are also able to propose a new version of invariant coordinate selection adapted to distributional data. 
Note that a coordinate-free version of ICS has already been mentioned in [1], in the discussion by Mervyn Stone, who proposed to 
follow the approach of Stone [11]. In their response, Tyler and co-authors agree that this could offer a theoretically elegant and 
concise view of the topic. A coordinate-free approach of ICA is proposed by Li et al. [8], but to our knowledge, no coordinate-free 
approach to ICS exists for a general Euclidean space.

As mentioned above, a possible application of ICS is outlier detection. In the context of a small proportion of outliers, a 
complete detection procedure integrating a dimension reduction step based on the selection of invariant coordinates is described 
by Archimbaud et al. [4]. This method, called ICSOutlier, flags outlying observations and has been implemented for multivariate 
data by Archimbaud et al. [4]. It has been adapted to compositional data by Ruiz-Gazen et al. [6] and to multivariate functional 
data by Archimbaud et al. [9]. We propose to extend this detection procedure to complex data and illustrate it on distributional 
data.

Detecting outliers is already challenging in a classical multivariate context because outliers may differ from the other observations 
in their correlation pattern [see 12, for an overview on outlier detection and analysis]. Archimbaud et al. [4] demonstrate how 
the ICS procedure outperforms those based on the Mahalanobis distance and PCA (robust or not). For compositional data, the 
constraints of positivity and constant sum of coordinates must be taken into account as detailed in [6] and further examined in 
this paper. For univariate functional data, outliers are categorised as either magnitude or shape outliers, with shape outliers being 
more challenging to detect because they are hidden among the other curves. Many existing detection methods for functional data 
rely on depth measures, including the Mahalanobis distance [see, e.g., the recent paper 13, and the included references]. Density 
data are constrained functional data, and thus combine the challenges associated with both compositional and functional data. The 
literature on outlier detection for density data is very sparse and recent with, as far as we know, the papers by Menafoglio et al. 
[14], Lei et al. [15] and Murph et al. [16] only. Two types of outliers have been identified for density data: the horizontal-shift 
outliers and the shape outliers, with shape outliers being again more challenging to detect [see 15, for details]. The procedure 
proposed by Menafoglio et al. [14] is based on an adapted version of functional PCA to density objects in a control chart context. In 
order to derive a robust distribution-to-distribution regression method, Lei et al. [15] propose a transformation tree approach that 
incorporates many different outlier detection methods adapted to densities. Their methods involve transforming density data into 
unconstrained data and using standard functional outlier detection methods. Murph et al. [16] continue the work of the previously 
cited article by comparing more methods through simulations, and give an application to gas transport data. ICS is not mentioned 
in these references.

Our coordinate-free definition of ICS enables direct adaptation of the ICSOutlier method to complex data. Through a case study on 
temperature distributions in Vietnam, we assess the impact of preprocessing parameters and provide practical recommendations for 
their selection. In addition, the results of a simulation study demonstrate that our method performs favourably compared with other 
approaches. An original application to Vietnamese data provides a detailed description of the various stages involved in detecting 
low-proportion outliers using ICS, as well as interpreting them from the dual eigendensities.

Section 2 presents ICS in a coordinate-free framework, states a useful result to link ICS in different spaces, and treats the 
specific cases of compositional, functional and distributional data. For the latter, we develop a Bayes space approach and discuss the 
maximum penalised likelihood method to preprocess the original samples of real-valued data into a sample of compositional splines. 
Section 3 describes the ICS-based outlier detection procedure adapted to complex data, discusses the impact of the preprocessing 
parameters on outlier detection through a toy example. Simulating data from multiple generating schemes, we compare ICS with 
other outlier detection methods for density data. Section 4 provides an application of the outlier detection methodology to maximum 
temperature data in Vietnam over 30 years. Section 5 concludes the paper and offers some perspectives. Supplementary material 
on ICS, a reminder on Bayes spaces, as well as proofs of the propositions and corollaries are given in Appendix.

2. ICS for complex data

A naive approach to ICS for complex data would be to apply multivariate ICS to coordinate vectors in a basis. This not only 
ignores the metric on the space when the basis is not orthonormal, but also gives a potentially different ICS method for each 
choice of basis [as in 9]. Defining a unique coordinate-free ICS problem avoids defining multiple ICS methods and having to discuss 
the potential links between them, thus making our approach more intrinsic. In particular, it leads to more interpretable invariant 
components that are of the same nature as the considered complex random objects. In the case of functional or distributional data, 
the usual framework assumes that the data objects reside in an infinite-dimensional Hilbert space, which leads to non-orthonormal 
bases and incomplete inner product spaces. We choose to restrict our attention to finite-dimensional approximations of the data in 
the framework of Euclidean spaces, which are particularly suitable here because ICS is known to fail when the dimension is larger 
than the sample size [17]. This suggests that an ICS method for infinite-dimensional Hilbert spaces would require modifying the 
core of the method, which is beyond the scope of this work.
2 
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2.1. A coordinate-free ICS problem

In order to generalise invariant coordinate selection [1, def. 1] to a coordinate-free framework in a Euclidean space 𝐸, we 
need to eliminate any reference to a coordinate system, which means replacing coordinate vectors by abstract vectors, matrices by 
linear mappings, bases or quadratic forms, depending on the context. This coordinate emancipation procedure will ensure that our 
definition of ICS for an 𝐸-valued random object 𝑋 does not depend on any particular choice of basis of 𝐸 to represent 𝑋.

Following this methodology, we are able to immediately generalise the definition of (affine equivariant) scatter operators from 
random vectors in 𝐸 = R𝑝 [as defined in 1, eq. 3] to random objects in a Hilbert space 𝐸. This is a perfect example of how the 
coordinate-free framework can be used to extend existing work to infinite-dimensional spaces. For further details, see Definition  3 
in Appendix. A notable difference from [1] is that we work directly with random objects instead of their underlying distributions. 
In particular, we introduce an affine invariant space  of random objects on which the scatter operators are defined and to which 
we assume that 𝑋 belongs. For example,  = 𝐿𝑝(𝛺,𝐸) corresponds to assuming the existence of the 𝑝 first moments of ‖𝑋‖.

Again, emancipating from coordinates allows us to naturally generalise ICS to complex random objects in a Euclidean space.

Definition 1 (Coordinate-free ICS).  Let (𝐸, ⟨⋅, ⋅⟩) be a Euclidean space of dimension 𝑝,  ⊆ 𝐿1(𝛺,𝐸) an affine invariant set of 
integrable 𝐸-valued random objects, 𝑆1 and 𝑆2 two scatter operators on  and 𝑋 ∈  . The invariant coordinate selection problem 
ICS(𝑋,𝑆1, 𝑆2) is to find a basis 𝐻 = (ℎ1,… , ℎ𝑝) of 𝐸 and a finite non-increasing real sequence 𝛬 = (𝜆1 ≥ ⋯ ≥ 𝜆𝑝) such that 

ICS(𝑋,𝑆1, 𝑆2) ∶
{

⟨𝑆1[𝑋]ℎ𝑗 , ℎ𝑗′ ⟩ = 𝛿𝑗𝑗′ ,
⟨𝑆2[𝑋]ℎ𝑗 , ℎ𝑗′ ⟩ = 𝛿𝑗𝑗′𝜆𝑗 ,

1 ≤ 𝑗, 𝑗′ ≤ 𝑝, (1)

where 𝛿𝑗𝑗′  equals 1 if 𝑗 = 𝑗′ and 0 otherwise. Such a basis 𝐻 is called an ICS(𝑋,𝑆1, 𝑆2) eigenbasis, whose elements are ICS(𝑋,𝑆1, 𝑆2)
eigenobjects. Such a 𝛬 is called an ICS(𝑋,𝑆1, 𝑆2) spectrum, whose elements are called ICS(𝑋,𝑆1, 𝑆2) eigenvalues or generalised 
kurtosis. Given an ICS(𝑋,𝑆1, 𝑆2) eigenbasis 𝐻 and 1 ≤ 𝑗 ≤ 𝑝, the real number 

𝑧𝑗 = ⟨𝑋 − E𝑋, ℎ𝑗⟩ (2)

is called the 𝑗th invariant coordinate (in the eigenbasis 𝐻).
In Definition  1, our coordinate emancipation procedure does not yield a generalisation to infinite-dimensional Hilbert spaces, 

where a basis 𝐻 would not be properly defined as it is not necessarily orthonormal.

Remark 1 (Multivariate Case). If 𝐸 = R𝑝, we identify 𝑆1 and 𝑆2 with their associated (𝑝× 𝑝)-matrices in the canonical basis, and we 
identify an ICS eigenbasis 𝐻 with the (𝑝× 𝑝)-matrix of its vectors stacked column-wise, so that we retrieve the classical formulation 
of invariant coordinate selection by Tyler et al. [1].

In the ICS problem (1), the scatter operators 𝑆1 and 𝑆2 do not play symmetrical roles. This is because the usual method of solving 
ICS(𝑋,𝑆1, 𝑆2) is to use the associated inner product of 𝑆1[𝑋], which requires 𝑆1[𝑋] to be injective. In that case, Proposition  2 in 
the Appendix proves the existence of solutions to the ICS problem.

Another way to understand the coordinate-free nature of this ICS problem is to work with data isometrically represented in two 
spaces and to understand how we can relate a given ICS problem in the first space to a corresponding ICS problem in the second. 
This is the object of the following proposition, which will be used in Section 2.3.

Proposition 1. Let 𝜑 ∶ (𝐸, ⟨⋅, ⋅⟩𝐸 ) → (𝐹 , ⟨⋅, ⋅⟩𝐹 ) be an isometry between two Euclidean spaces of dimension 𝑝,  ⊆ 𝐿1(𝛺,𝐸) an affine 
invariant set of integrable 𝐸-valued random objects, 𝑆

1  and 𝑆
2  two affine equivariant scatter operators on  . Then:

(a)  = 𝜑() = {𝜑(𝑋 ), 𝑋 ∈ } is an affine invariant set of integrable 𝐹 -valued random objects, and we denote 𝑋 = 𝜑(𝑋 ) ∈ 
whenever 𝑋 ∈  ;

(b) 𝑆
𝓁 ∶ 𝑋 ∈  ↦ 𝜑◦𝑆

𝓁 [𝑋
 ]◦𝜑−1,𝓁 ∈ {1, 2}, are two affine equivariant scatter operators on  ;

(c) 𝐻 = 𝜑(𝐻 ) = (𝜑(ℎ1 ),… , 𝜑(ℎ𝑝 )) is a basis of 𝐹  whenever 𝐻 = (ℎ1 ,… , ℎ𝑝 ) is a basis of 𝐸.
For any 𝐸-valued random object 𝑋 ∈  , any basis 𝐻 = (ℎ1 ,… , ℎ𝑝 ) of 𝐸, and any finite non-increasing real sequence 𝛬 = (𝜆1 ≥ ⋯ ≥ 𝜆𝑝)
the following assertions are equivalent:

(i) (𝐻 , 𝛬) solves ICS(𝑋 , 𝑆
1 , 𝑆


2 ) in the space 𝐸

(ii) (𝐻 , 𝛬) solves ICS(𝑋 , 𝑆
1 , 𝑆


2 ) in the space 𝐹 .

2.2. The case of weighted covariance operators

A difficulty in ICS is to find interesting scatter operators that capture the non-ellipticity of the random object. Usually, for 
multivariate data, we use the pair of scatter matrices (Cov,Cov4). In this section, we define an important family of scatter operators, 
namely the weighted covariance operators, which contains both Cov and Cov4. They are explicitly defined by coordinate-free 
formulas which allow us to relate ICS problems using weighted covariance operators between any two Euclidean spaces. We denote 
by (𝐸) the group of linear automorphisms of 𝐸 and by 𝐴1∕2 the unique non-negative square root of a linear mapping 𝐴.
3 
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Definition 2 (Weighted Covariance Operators). For any measurable function 𝑤 ∶ R+ → R, let 

𝑤 =
{

𝑋 ∈ 𝐿2(𝛺,𝐸)
|

|

|

|

Cov[𝑋] ∈ (𝐸) and 𝑤
(

‖

‖

‖

Cov[𝑋]−1∕2(𝑋 − E𝑋)‖‖
‖

)

‖𝑋 − E𝑋‖ ∈ 𝐿2(𝛺,R)
}

. (3)

Note that 𝑤 is an affine invariant set of integrable 𝐸-valued random objects. For 𝑋 ∈ 𝑤, we define the 𝑤-weighted covariance 
operator Cov𝑤[𝑋] by 

∀(𝑥, 𝑦) ∈ 𝐸2, ⟨Cov𝑤[𝑋]𝑥, 𝑦⟩ = E
[

𝑤2
(

‖

‖

‖

Cov[𝑋]−1∕2(𝑋 − E𝑋)‖‖
‖

)

⟨𝑋 − E𝑋, 𝑥⟩⟨𝑋 − E𝑋, 𝑦⟩
]

. (4)

When necessary, we will also write Cov𝐸𝑤 for the 𝑤-weighted covariance operator on 𝐸 to avoid any ambiguity. It is easy to check 
that weighted covariance operators are affine equivariant scatter operators in the sense of Definition  3.

Example 1. If 𝑤 = 1, we retrieve Cov, the usual covariance operator on 𝐿2(𝛺,𝐸).

Example 2. If for 𝑥 ∈ R+, 𝑤(𝑥) = (𝑝 + 2)−1∕2𝑥, we obtain the fourth-order moment operator Cov4 [as in 3, for the case 𝐸 = R𝑝] on 
𝑤 =

{

𝑋 ∈ 𝐿4(𝛺,𝐸) | Cov[𝑋] ∈ (𝐸)
}

.

The following corollary applies Proposition  1 to the pair of 𝑤𝓁-weighted covariance operators 𝑆
𝓁 = Cov𝑤𝓁

,𝓁 ∈ {1, 2}, for which 
the corresponding 𝑆

𝓁  are exactly the 𝑤𝓁-weighted covariance operators on 𝐹 .

Corollary 1. Let (𝐸, ⟨⋅, ⋅⟩𝐸 )
𝜑
→ (𝐹 , ⟨⋅, ⋅⟩𝐹 ) be an isometry between two Euclidean spaces of dimension 𝑝 and 𝑤1, 𝑤2 ∶ R+ → R two measurable 

functions. For any integrable 𝐸-valued random object 𝑋 ∈ 𝑤1
∩ 𝑤2

 (with the notations from Definition  2), the equality 

Cov𝐹𝑤𝓁
[𝜑(𝑋)] = 𝜑◦Cov𝐸𝑤𝓁

[𝑋]◦𝜑−1 (5)

holds for 𝓁 ∈ {1, 2}, as well as the equivalence between the following assertions, for any basis 𝐻 = (ℎ1,… , ℎ𝑝) of 𝐸, and any finite 
non-increasing real sequence 𝛬 = (𝜆1 ≥ ⋯ ≥ 𝜆𝑝):

(i) (𝐻,𝛬) solves ICS(𝑋,Cov𝐸𝑤1
,Cov𝐸𝑤2

) in the space 𝐸.
(ii) (𝜑(𝐻), 𝛬) solves ICS(𝜑(𝑋),Cov𝐹𝑤1

,Cov𝐹𝑤2
) in the space 𝐹 .

2.3. Implementation

In order to implement coordinate-free ICS in any Euclidean space 𝐸, we restrict our attention to the pair (Cov𝑤1
,Cov𝑤2

) of 
weighted covariance operators defined in Section 2.2. Note that we could also transport other known scatter matrices, such as the 
Minimum Covariance Determinant [defined in 18], back to the space 𝐸 using Proposition  1, but this approach would no longer be 
coordinate-free.

We now choose a basis 𝐵 = (𝑏1,… , 𝑏𝑝) of 𝐸 in order to represent each element 𝑥 of 𝐸 by its coordinate vector [𝑥]𝐵 =
([𝑥]𝑏1 …[𝑥]𝑏𝑝 )

⊤ ∈ R𝑝. Then, the following corollary of Proposition  1 allows one to relate the coordinate-free approach in 𝐸 to three 
different multivariate approaches applied to the coordinate vectors in any basis 𝐵 of 𝐸, where the Gram matrix 𝐺𝐵 = (⟨𝑏𝑗 , 𝑏𝑗′ ⟩)1≤𝑗,𝑗′≤𝑝
appears, accounting for the non-orthonormality of 𝐵. Notice that, since the ICS problem has been defined in Section 2.1 without 
any reference to a particular basis, it is obvious that the basis 𝐵 has no influence on ICS.

Corollary 2. Let (𝐸, ⟨⋅, ⋅⟩) be a Euclidean space of dimension 𝑝, 𝑤1, 𝑤2 ∶ R+ → R two measurable functions. Let 𝐵 be any basis of 𝐸, 
𝐺𝐵 = (⟨𝑏𝑗 , 𝑏𝑗′ ⟩)1≤𝑗,𝑗′≤𝑝 its Gram matrix and [⋅]𝐵 the linear map giving the coordinates in 𝐵. For any 𝑋 ∈ 𝑤1

∩ 𝑤2
 (with the notations 

from Definition  2), any basis 𝐻 = (ℎ1,… , ℎ𝑝) of 𝐸, and any finite non-increasing real sequence 𝛬 = (𝜆1 ≥ ⋯ ≥ 𝜆𝑝) the following assertions 
are equivalent:
(1) (𝐻,𝛬) solves ICS(𝑋,Cov𝐸𝑤1

,Cov𝐸𝑤2
) in the space 𝐸

(2) (𝐺1∕2
𝐵 [𝐻]𝐵 , 𝛬) solves ICS(𝐺1∕2

𝐵 [𝑋]𝐵 ,Cov𝑤1
,Cov𝑤2

) in the space R𝑝

(3) ([𝐻]𝐵 , 𝛬) solves ICS(𝐺𝐵[𝑋]𝐵 ,Cov𝑤1
,Cov𝑤2

) in the space R𝑝

(4) (𝐺𝐵[𝐻]𝐵 , 𝛬) solves ICS([𝑋]𝐵 ,Cov𝑤1
,Cov𝑤2

) in the space R𝑝

where [𝐻]𝐵 denotes the non-singular 𝑝 × 𝑝 matrix representing the basis ([ℎ1]𝐵 ,… , [ℎ𝑝]𝐵) of R𝑝.

In practice, we prefer assertion (3) (first transforming the data by the Gram matrix of the basis) because it is the only one 
that does not require inverting the Gram matrix in order to recover the eigenobjects. Then, the problem is reduced to multivariate 
ICS, already implemented in the R package ICS using the QR decomposition [19]. This QR approach enhances stability compared 
to methods based on a joint diagonalisation of two scatter matrices, which can be numerically unstable in some ill-conditioned 
situations.

After we obtain the ICS eigenelements, we can use them to reconstruct the original random object, in order to interpret the 
contribution of each invariant component. Proposition  3 in the Appendix generalises the multivariate reconstruction formula to 
4 
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complex data. In order to implement this reconstruction, we need the coordinates of the elements of the dual ICS eigenbasis. 
Identifying the basis [𝐻]𝐵 with the matrix whose columns are its vectors, the dual basis [𝐻∗]𝐵 is the matrix 

[𝐻∗]𝐵 =
(

[𝐻]⊤𝐵𝐺𝐵
)−1 . (6)

Remark 2 (Empirical ICS and Estimation).  In order to work with samples of complex random objects, we can study the particular case 
of a finite 𝐸-valued random object 𝑋 where we have a fixed sample 𝐷𝑛 = (𝑥1,… , 𝑥𝑛) and we assume that 𝑋 follows the empirical 
probability distribution 𝑃𝐷𝑛

 of (𝑥1,… , 𝑥𝑛). In that case, the expressions (in Definition  2 for instance) of the form E𝑓 (𝑋) for any 
function 𝑓 are discrete and equal to 1𝑛

∑𝑛
𝑖=1 𝑓 (𝑥𝑖).

Now, let us assume that we observe an i.i.d. sample 𝐷𝑛 = (𝑋1,… , 𝑋𝑛) following the distribution of an unknown 𝐸-valued 
random object 𝑋0. We can estimate solutions of the problem ICS(𝑋0, 𝑆1, 𝑆2) from Definition  1 by working conditionally on the data 
(𝑋1,… , 𝑋𝑛) and taking the particular case where 𝑋 follows the empirical probability distribution 𝑃𝐷𝑛

. This defines estimates of the 
ICS(𝑋0, 𝑆1, 𝑆2) eigenobjects as solutions of an ICS problem involving empirical scatter operators. Since the population version of ICS 
for a complex random object 𝑋 ∈ 𝐸 is more concise than its sample counterpart for 𝐷𝑛 = (𝑋1,… , 𝑋𝑛), we shall use the notations of 
the former in the next subsections.

2.4. ICS for compositional data

The specific case of coordinate-free ICS for compositional data is equivalent to the approach of Ruiz-Gazen et al. [6]. To see 
this, let us consider the simplex 𝐸 = (𝑝+1, ⊕,⊙, ⟨⋅, ⋅⟩𝑝+1 ) of dimension 𝑝 in R𝑝+1 with the Aitchison structure [20]. The results from 
Section 5.1 (resp. Section 5.2) in [6] can be recovered by applying Corollary  1 to any isometric log-ratio transformation [see 20, 
for a definition] (resp. the centred log-ratio transformation).

Corollary  2 gives a new characterisation of the problem ICS(𝑋,Cov𝑤1
,Cov𝑤2

) using additive log-ratio transformations. For a 
given index 1 ≤ 𝑗 ≤ 𝑝, let 𝐵𝑗 = (𝑏1,… , 𝑏𝑝) denote the basis of 𝑝+1 corresponding to the alr𝑗 transformation, i.e. obtained by taking 
the canonical basis of R𝑝+1, removing the 𝑗th vector and applying the exponential. In that case, it is easy to compute the 𝑝× 𝑝 Gram 
matrix of 𝐵𝑗 : 

𝐺𝐵𝑗
= 𝐼𝑝 −

1
𝑝 + 1

𝟏𝑝𝟏⊤𝑝 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 1
𝑝+1 − 1

𝑝+1 … − 1
𝑝+1

− 1
𝑝+1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ − 1
𝑝+1

− 1
𝑝+1 … − 1

𝑝+1 1 − 1
𝑝+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

Then, we get the equivalence between the following two ICS problems:

1. (𝐻,𝛬) solves ICS(𝑋,Cov𝑤1
,Cov𝑤2

) in the space 𝑝+1

2. (alr𝑗 (𝐻), 𝛬) solves ICS(clr(𝑋)(𝑗),Cov𝑤1
,Cov𝑤2

) in the space R𝑝

where clr(𝑥)(𝑗) = 𝐺𝐵𝑗
alr𝑗 (𝑥) is the centred log-ratio transform of 𝑥 ∈ 𝑝+1 from which the 𝑗th coordinate has been removed. This 

suggests a new and fastest implementation of invariant coordinate selection for compositional data, in an unconstrained space and 
only requiring the choice of an index 𝑗 instead of a full contrast matrix.

2.5. ICS for functional data

The difficulty of functional data (in the broader sense, encompassing density data) is twofold: first, functions are usually analysed 
within the infinite-dimensional Hilbert space 𝐿2(𝑎, 𝑏), second, a random function is almost never observed for every argument, but 
rather on a discrete grid. This grid can be regular or irregular, deterministic or random, dense (the grid spacing goes to zero) or 
sparse. We describe a general framework for adapting coordinate-free ICS to functional data, solving both difficulties at the same 
time by smoothing the observed values into a random function 𝑢 that belongs to a Euclidean subspace 𝐸 of 𝐿2(𝑎, 𝑏).

Choosing an approximating Euclidean subspace. We usually choose polynomial spaces, spline spaces with given knots and order, or 
spaces spanned by a truncated Hilbert basis of 𝐿2(𝑎, 𝑏). In practice, this choice also depends on the preprocessing method that we 
have in mind to smooth discrete observations into functions.

Preprocessing the observations into the approximating space. Considering a dense, deterministic grid (𝑡1,… , 𝑡𝑁 ), we need to reconstruct 
an 𝐸-valued random function 𝑢 from its noisy observed values (𝑢(𝑡1) + 𝜀1,… , 𝑢(𝑡𝑁 ) + 𝜀𝑁 ). There are many well-documented 
approximation techniques to carry out this preprocessing step, such as interpolation, spline smoothing, or Fourier methods [for 
a detailed presentation, see 21].
5 
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Solving ICS in the approximating space. Once we have obtained an 𝐸-valued random function 𝑢, we can apply the method described 
in Section 2.3 to reduce ICS(𝑢,Cov𝑤1

,Cov𝑤2
) to a multivariate problem on the coordinates in a basis of 𝐸. In particular, for an 

orthonormal basis 𝐵 of 𝐸 (such as a Fourier basis or a Hermite polynomial basis), Corollary  2 gives the equivalence between the 
following two assertions:

1. (𝐻,𝛬) solves ICS(𝑢,Cov𝑤1
,Cov𝑤2

) in the space 𝐸
2. ([𝐻]𝐵 , 𝛬) solves ICS([𝑢]𝐵 ,Cov𝑤1

,Cov𝑤2
) in the space R𝑝.

If 𝐸 is a finite-dimensional spline space, we usually work with the coordinates of 𝑢 in a B-spline basis of 𝐸, but then we should take 
into account its Gram matrix, as in Corollary  2.

ICS has previously been defined for multivariate functional data by Archimbaud et al. [9], who define a pointwise method and 
a global method. Unlike the pointwise approach, which is specific to multivariate functional data, the global method can also be 
applied to univariate functional data in 𝐿2(𝑎, 𝑏), as it corresponds to applying multivariate ICS to truncated coordinate vectors in a 
Hilbert basis of 𝐿2(𝑎, 𝑏). The above framework retrieves the global method in [9] as a particular case when taking a Hilbert basis 𝐵
of 𝐿2(𝑎, 𝑏) and solving coordinate-free ICS in the space 𝐸 spanned by the 𝑝 first elements of 𝐵.

2.6. ICS for distributional data

A first option to adapt ICS to density data would be to consider it as constrained functional data and directly follow the approach 
of Section 2.5. However, distributional data does not reduce to density data [such as absorbance spectra studied in 22], as it can 
also be histogram data or sample data (such as the dataset of temperature samples analysed in Section 4). Moreover, the framework 
of Bayes Hilbert spaces, described by [23] and recalled in the Appendix, is specifically adapted to the study of distributional data. 
Taking into account the infinite-dimensional nature of distributional data, we follow a similar framework as the one of Section 2.5, 
restricting our attention to finite-dimensional subspaces 𝐸 of the Bayes space 𝐵2(𝑎, 𝑏) with the Lebesgue measure as reference.
Choosing an approximating Euclidean space. Following smoothing splines methods, adapted to Bayes spaces by Machalová et al. [24] 
and recalled in the Appendix, we choose to work in the space 𝐸 = 𝛥𝛾

𝑑 (𝑎, 𝑏) of compositional splines on (𝑎, 𝑏) of order 𝑑+1 with knots 
𝛥𝛾 = (𝛾1,… , 𝛾𝑘). Note that the centred log-ratio transform clr is an isometry between 𝐸 and the space 𝐹 = 𝛥𝛾

𝑑 (𝑎, 𝑏) of zero-integral 
splines on (𝑎, 𝑏) of order 𝑑 + 1 (degree less than or equal to 𝑑) and with knots 𝛥𝛾 = (𝛾1,… , 𝛾𝑘). They both have dimension 𝑝 = 𝑘+ 𝑑.

Preprocessing the observations into the approximating space. We consider the special cases of histogram data and of sample data. In the 
former, we follow [25] to smooth each histogram into a compositional spline in 𝐸. In the latter, we assume that a random density 
is observed through a finite random sample (𝑋1,… , 𝑋𝑁 ) drawn from it. The preprocessing step consists in estimating the density 
from the observed sample. To perform the estimation, we need a nonparametric estimation procedure that yields a compositional 
spline belonging to 𝐸. That is why we opt for maximum penalised likelihood (MPL) density estimation, introduced by Silverman 
[26]. The principle of MPL is to maximise a penalised version of the log-likelihood over an infinite-dimensional space of densities 
without parametric assumptions. The penalty is the product of a smoothing parameter 𝜆 by the integral over the interval of interest 
of the square of the 𝑚th derivative of the log density. Therefore, the objective functional is a functional of the log density. Due to 
the infinite dimension of the ambient space, the likelihood term alone is unbounded above, hence the penalty term is necessary. In 
our case of densities on an interval (𝑎, 𝑏), we select the value 𝑚 = 3 so that [according to 26, Theorem 2.1] when the smoothing 
parameter tends to infinity, the estimated density converges to the parametric maximum likelihood estimate in the exponential 
family of densities whose logarithm is a polynomial of degree less than or equal to 2. This family comprises the uniform density, 
exponential and Gaussian densities truncated to (𝑎, 𝑏). In order to use MPL in 𝐵2(𝑎, 𝑏), we need to add extra smoothness conditions 
and therefore we restrict attention to the densities of 𝐵2(𝑎, 𝑏) whose log belongs to the Sobolev space of order 𝑚 on (𝑎, 𝑏), thus 
ensuring the existence of the penalty term. Note that compositional splines verify these conditions. With Theorem 4.1 in [26], the 
optimisation problem has at least a solution. Since the estimate 𝑓 of the density of (𝑋1,… , 𝑋𝑁 ) needs to belong to the chosen 
finite-dimensional subspace 𝐸 = 𝛥𝛾

𝑑 (𝑎, 𝑏), we restrict MPL to 𝐸, using the R function fda::density.fd, designed by Ramsay 
et al. [27]. This function returns the coordinates of ln(𝑓 ) in the B-spline basis with knots 𝛥𝛾 and order 𝑑 + 1, that we project onto 
𝛥𝛾

𝑑 (𝑎, 𝑏) and to which we apply clr−1 so that we obtain an element of 𝛥𝛾
𝑑 (𝑎, 𝑏).

Solving ICS in the approximating space. We have now obtained an 𝐸-valued random compositional spline 𝑓 . In order to work with 
two weighted covariance operators Cov𝑤1

 and Cov𝑤2
, where 𝑤1, 𝑤2 ∶ R+ → R are two measurable functions, we assume that 

𝑓 ∈ 𝑤1
∩ 𝑤2

, using the notations of Definition  2. Now, we refer to Section 2.3 to reduce the problem ICS(𝑓,Cov𝑤1
,Cov𝑤2

) to a 
multivariate ICS problem on the coordinates of 𝑓 in the CB-spline basis of 𝛥𝛾

𝑑 (𝑎, 𝑏) [defined in 25], transformed by the Gram matrix 
of said CB-spline basis. Note that Corollary  1 applied to the centred log-ratio isometry between 𝛥𝛾

𝑑 (𝑎, 𝑏) and 𝛥𝛾
𝑑 (𝑎, 𝑏) gives the 

equivalence between:

1. (𝐻,𝛬) solves ICS(𝑓,Cov𝑤1
,Cov𝑤2

) in the space 𝐸 = 𝛥𝛾
𝑑 (𝑎, 𝑏)

2. (clr(𝐻), 𝛬) solves ICS(clr(𝑓 ),Cov𝑤1
,Cov𝑤2

) in the space 𝐹 = 𝛥𝛾
𝑑 (𝑎, 𝑏).

Then, it is completely equivalent, and useful for implementation, to work with the coordinates of clr(𝑓 ) in the ZB-spline basis of 
𝛥𝛾 (𝑎, 𝑏).
𝑑

6 



C. Mondon et al. Journal of Multivariate Analysis 211 (2026) 105522 
3. Outlier detection for complex data using ICS

3.1. Implementation of ICS on complex data for outlier detection

We propose using ICS to detect outliers in complex data, specifically in scenarios with a small proportion of outliers (typically 
1 to 2%). For this, we follow the three-step procedure defined by Archimbaud et al. [4], modifying the first step based on the 
implementation of coordinate-free ICS in Section 2.3.
Computing the invariant coordinates. For the scatter operators, we follow the recommendation of Archimbaud et al. [4] who compare 
several pairs of more or less robust scatter estimators in the context of a small proportion of outliers, and conclude that (Cov,Cov4) is 
the best choice. Thus, we use the empirical scatter pair (Cov,Cov4) (see Examples  1 and 2), and compute the eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑝, 
and the invariant coordinates 𝑧𝑗𝑖, 1 ≤ 𝑗 ≤ 𝑝, for each observation 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛. As outlined in Section 2.3, for a given sample of 
random complex objects 𝐷𝑛 = {𝑋1,… , 𝑋𝑛} in a Euclidean space 𝐸, solving the empirical version of ICS is equivalent to solving an 
ICS problem in a multivariate framework [see 1] with the coordinates of the objects in a basis 𝐵 of 𝐸. In order to choose a basis, 
we follow the specific recommendations for each type of data from Sections 2.4–2.6.
Selecting the invariant components. The second step of the outlier detection procedure based on ICS is the selection of the 𝜅 < 𝑝
relevant invariant components and the computation of the ICS distances. For each of the 𝑛 observations, the ICS distance is equal 
to the Euclidean norm of the reconstructed data using the 𝜅 selected invariant components. In the case of a small proportion of 
outliers and for the scatter pair (Cov,Cov4), the invariant components of interest are associated with the largest eigenvalues and the 
squared ICS distances are equal to 

𝜅
∑

𝑗=1
𝑧2𝑗𝑖. As noted by Archimbaud et al. [4], there exist several methods for the selection of the 

number of invariant components. One approach is to examine the scree plot, as in PCA. This method, recommended by Archimbaud 
et al. [4], is not automatic. Alternative automatic selection methods apply univariate normality tests to each component, starting 
with the first one, and using some Bonferroni correction [for further details see page 13 of 4]. In the present paper, we use the scree 
plot approach when there is no need of an automatic method, and we use the D’Agostino normality test for automatic selection. 
The level for the first test (before Bonferroni correction) is 5%. Dimension reduction involves retaining only the first 𝜅 components 
of ICS instead of the original 𝑝 variables. Note that when all the invariant components are retained, the ICS distance is equal to the 
Mahalanobis distance.
Choosing a cut-off. The computation of ICS distances allows to rank the observations in decreasing order, with those having the 
largest distances potentially being outliers. However, in order to identify the outlying densities, we need to define a cut-off, and this 
constitutes the last step of the procedure. Following Archimbaud et al. [4], we derive cut-offs based on Monte Carlo simulations 
from the standard Gaussian distribution. For a given sample size and number of variables, we generate 10,000 standard Gaussian 
samples and compute the empirical quantile of order 97.5% of the ICS-distances using the three steps previously described. An 
observation with an ICS distance larger than this quantile is flagged as an outlier.

The procedure described above has been illustrated in several examples [see 4], and is implemented in the R package
ICSOutlier [see 4]. However, in the context of densities, the impact of preprocessing parameters (see Section 2.6) on the 
ICSOutlier procedure emerges as a crucial question that needs to be examined.

3.2. Influence of the preprocessing parameters for the density data application

As a toy example, consider the densities of the maximum daily temperatures for the 26 provinces of the two regions Red River 
Delta and Northern Midlands and Mountains in Northern Vietnam between 2013 and 2016. We augment this data set made of 104 
densities by adding the provinces AN GIANG and BAC LIEU from Southern Vietnam in the same time period. The total number of 
observations is thus 112. Details on the original data and their source are provided in Section 4.1.

Fig.  1 displays a map of Vietnam with the contours of all provinces and coloured according to their administrative region, 
allowing the reader to locate the 26 provinces in the North and the two in the South. As shown on the left panel of Fig.  2, the eight 
densities of the two provinces from the South for the four years exhibit a very different shape (in red) compared to the northern 
provinces (in blue and green), with much more concentrated maximum temperatures. These two provinces should be detected 
as outliers when applying the ICSOutlier methodology. However, the results may vary depending on the choice of preprocessing 
parameters (see Section 2.6). Our goal is to analyse how the detected outliers vary depending on the preprocessing when using the 
maximum penalised likelihood method with splines of degree less than or equal to 𝑑 = 4. Specifically, we study the influence on the 
results of ICSOutlier of the smoothing parameter 𝜆, the number of inside knots 𝑘, and the location of the knots defining the spline 
basis.

The number 𝜅 of selected invariant components is fixed at four in all experiments to facilitate interpretation. This value has 
been chosen after viewing the scree plots of the ICS eigenvalues following the recommendations in Section 3.1. For each of the 
experimental scenarios detailed below, we compute the squared ICS distances of the 112 observations as defined in Section 3.1, 
using 𝜅 = 4. Observations are classified as outliers when their squared ICS distance exceeds the threshold defined in Section 3.1, 
using a level of 2.5%. For each experiment, we plot on Fig.  3 the indices of the observations from 1 to 112 on the 𝑦-axis, marking 
outlying observations with dark squares. The eight densities from Southern Vietnam are in red and correspond to indices 1 to 8. 
We consider the following scenarios:
7 
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Fig. 1. Map of Vietnam showing the 63 provinces, with the three regions under study colour-coded. The 28 provinces included in the toy example 
are labelled.

Fig. 2. Plots of the 112 densities of maximum temperature in 28 provinces of Vietnam between 2013 and 2016 (left panel) and their centred 
log-ratio transformation (right panel), colour-coded by region.

• the knots are either located at the quantiles of the temperature values (top panel on Fig.  3) or equally spaced (bottom panel 
on Fig.  3),

• from the left to the right of Fig.  3, the number of knots varies from 0 to 14 by increments of 2, and then takes the values 25 
and 35 (overall 10 different values). Note that when increasing the number of knots beyond 35, the code returns more and 
more errors due to multicollinearity issues and the results are not reported.

• the base-10 logarithm of the parameter 𝜆 varies from −8 to 8 with an increment of 1 on the 𝑥-axis of each plot.

Altogether we have 2×10×17 = 340 scenarios. Fig.  4 is a bar plot showing the observations indices on the 𝑥-axis and the frequency 
of outlier detection across scenarios on the 𝑦-axis colour-coded by region. The eight densities from the two southern provinces 
(AN GIANG and BAC LIEU) across the four years are most frequently detected as outliers, along with the province of LAI CHAU 
(indices 33 to 36), which is located in a mountainous region in northwest of Vietnam. On the original data, we can see that the LAI 
CHAU province corresponds to densities with low values for high maximum temperatures (above 35 ◦C) coupled with relatively 
8 
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Fig. 3. Outlier detection by ICS across smoothing parameters for the data set of 112 densities of maximum temperature in 28 provinces of 
Vietnam between 2013 and 2016. Top: knots at quantiles; Bottom: equally spaced knots. 𝑦-axis: observation indices; 𝑥-axis: 𝜆 parameter. Columns 
correspond to knot numbers (0-35). Outliers are dark and colour-coded by region.

Fig. 4. Frequency of outlier detection by ICS across 340 scenarios with varying smoothing parameters, for each of the 112 densities of maximum 
temperature in 28 provinces of Vietnam between 2013 and 2016, colour-coded by region.
9 
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high density values for maximum temperatures below 35 ◦C. A few other observations are detected several times as outliers, but 
less frequently: indices 53 (TUYEN QUANG in 2013), 96 (QUANG NINH in 2016), and 107 (THANH HOA in 2015).

Looking at Fig.  3, we examine the impact of the preprocessing parameters on the detection of outlying observations. First, note 
that the ICS algorithm returns an error when the 𝜆 parameter is large (shown as white bands in some plots). This is due to a 
multicollinearity problem. Even though the QR version of the ICS algorithm is quite stable, it may still encounter problems when 
multicollinearity is severe. Indeed, when 𝜆 is large, the estimated densities converge to densities whose logarithm is a polynomial 
of degree less than or equal to 2 (see details in Section 2.6), and belongs to a 3-dimensional affine subspace of the Bayes space, 
potentially with a dimension smaller than that of the approximating spline space. If we compare the top and the bottom plots, we 
do not observe large differences in the outlying pattern, except for a few observations rarely detected as outliers. Thus, the knot 
location has a rather small impact on the ICS results for this data set. Regarding the impact of the 𝜆 parameter, the outlier pattern 
remains relatively stable when the number of knots is small (less than or equal to 6), especially when looking at the densities from 
the south of Vietnam in red. For a large number of knots, the observations detected as outliers vary with 𝜆. The number of knots has 
more impact than their location or the 𝜆 parameter. When the number of knots is smaller than or equal to 6 (corresponding to 𝑝 = 10
variables), the plots are very similar. However, as 𝑝 increases, some observations from Southern Vietnam are not detected for all 𝜆
values, while another density (QUANG NINH in 2016) is detected for large 𝜆 values with equally spaced knots, and to a lesser extent 
for knots at temperature quantiles. In [9], ICS is applied to multivariate functional data with B-splines preprocessing. Based on their 
empirical experience, the authors recommend using a dimension 𝑝 (in their case, the number of functional components times the 
number of B-splines coefficients) no larger than the number of observations divided by 10. Typically in multivariate analysis, the 
rule of thumb is that the dimension should not exceed the number of observations divided by 5. For functional or distributional 
data, it appears that even more observations per variable are needed. The reason for this is not entirely clear, but in the case of ICS, 
we can suspect that the presence of multicollinearity, even approximate, degrades the results. By increasing the number of knots, 
we precisely increase the multicollinearity problem, especially for large values of 𝜆.

From this experimentation, we recommend using knots located at the quantiles of the measured variable, and a number of knots 
such that the number of observations is around 10 times the dimension 𝑝 (here: the dimension of the B-spline basis). The base-10 
logarithm of parameter 𝜆 can be chosen between −2 and 2 to avoid extreme cases and multicollinearity problems. Moreover, the 
idea of launching ICS multiple times with different preprocessing parameter values to confirm an observation’s atypical nature by 
its repeated detection is a strategy we retain for real applications, as detailed in Section 4.3.

3.3. Comparison with other methods

We now compare ICS for functional data (presented in Section 2.5) and ICS for density data (presented in Section 2.6) to 
eight outlier detection methods already existing in the literature, such as median-based approaches [16], the modified band depth 
method [28] and MUOD indices [29].

Our simulation uses three density-generating processes with 2% of outliers. The scheme named GP_clr, based on model 4 of 
the fdaoutlier package [29, section 4.1], first simulates a discretised random function in 𝐿2(0, 1) from a mixture of two Gaussian 
processes with different means, and applies the inverse clr transformation to obtain a random density in the Bayes space 𝐵2(0, 1). The 
scheme named GP_margin first simulates a discretised random function in 𝐿2(0, 1) using model 5 of the fdaoutlier package, 
which consists in a mixture of two Gaussian processes with different covariance operators. Then, the random density is obtained as a 
kind of marginal distribution of the discrete values of the random function, where the 𝑥-axis is discarded: these values are considered 
as a random sample and smoothed using MPL (see Section 2.6 with parameters 𝜆 = 1, 10 basis functions and knots (as well as interval 
bounds) at quantiles of the full sample. This scheme is similar to the data generating process of the Vietnamese climate dataset. 
Finally, the Gumbel scheme first draws parameters from a mixture of two Gaussian distributions in R2 and computes the Gumbel 
density functions corresponding to these parameters (it generates shift outliers as described in [16]). Note that the output of all the 
schemes is a set of discretised densities on a regular grid of size 𝑝 = 100 that covers an interval (𝑎, 𝑏) (which is (0, 1) for GP_clr
and Gumbel and the range of the full sample for GP_margin). In each sample, there are 𝑛 = 200 densities.

For the outlier detection methods, we denote them as <Approach>_<Metric> so that for instance, ICS_B2 refers to ICS for 
density data in the Bayes space 𝐵2(𝑎, 𝑏). The steps of the ICS_B2 method are as follows. After applying the discrete clr transformation 
to each discretised density function, we approximate the underlying clr transformed smooth density by a smoothing spline in 
𝐿2
0(𝑎, 𝑏) using the preprocessing described in [24]. During this process, densities should not take values too close to 0 to avoid 

diverging clr, so we replace by 10−8 all density values below this threshold. The parameters of the compositional spline spaces 
are chosen by the function fda.usc::fdata2fd. Then, we solve ICS in the chosen compositional spline space, automatically 
selecting the components with tests as before. The ICS_L2 method first smooths each discretised density using splines in 𝐿2(𝑎, 𝑏)
treating the densities as ordinary functional parameters. In the second step, we apply ICS in the chosen spline space, selecting 
the components automatically through D’Agostino normality tests. The MBD [30] and MUOD [31] approaches are implemented 
using the package fdaoutlier [29], either directly (<Approach>_L2) or after transforming the densities into log quantile 
densities (<Approach>_LQD) or into quantile functions (<Approach>_QF). The median-based methods such as Median_LQD
and Median_Wasserstein are described in [16] and implemented in the DeBoinR package using the recommended default 
parameters.

For each combination between a generating scheme and a method, we average the TPR (True Positive Rate, or sensitivity) 
and the FPR (False Positive Rate, one minus specificity) over 𝑁 = 200 repetitions, for each value of PP (the number of predicted 
positive) which scales from 0 to 𝑛. We also compute point-wise confidence bounds using the standard deviation of the TPR over 
10 
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Fig. 5. ROC curves of 10 different outlier detection methods for density data with 3 generating schemes, obtained using Monte Carlo methods 
with 200 repetitions.

Table 1
AUC for the 10 outlier detection methods, averaged across the 3 gener-
ating schemes.
 Approach Metric Average AUC 
 MUOD L2 0.92  
 ICS B2 0.92  
 MUOD QF 0.91  
 ICS L2 0.91  
 MBD QF 0.90  
 Median Wasserstein 0.90  
 MUOD LQD 0.88  
 MBD L2 0.86  
 Median LQD 0.78  
 MBD LQD 0.74  

the 𝑁 repetitions and the standard Gaussian quantile of order 97.5%. The ROC curves together with their confidence bands are 
represented in Fig.  5, separately for the three density-generating processes. Table  1 summarises the performance of the methods 
across the schemes, by means of the average area under the curve (AUC).

We can see that both ICS methods give quite similar results except for the GP_clr generating process where ICS_B2
outperforms ICS_L2. Together with MUOD_L2 and MUOD_QF, these methods are the best in terms of average AUC, although 
ICS-based methods perform more consistently across the different generating schemes. The Median_LQD and MBD_LQD methods 
are worse than the others for all generating schemes. Overall, we can recommend ICS versus the other outlier detection methods in 
this situation where the proportion of outliers is small.

4. An application to Vietnamese climate data

4.1. Data description and preprocessing

In this application, we study daily maximum temperatures for each of the 𝐼 = 63 Vietnamese provinces over a 𝑇 = 30-year period 
(1987–2016). Originally from the Climate Prediction Center (CPC) database, developed and maintained by the National Oceanic 
and Atmospheric Administration (NOAA), the data underwent a preliminary treatment presented in [33]. From the daily 365 or 366 
values for each year, we derive the yearly maximum temperature distribution for each of the 1890 province-year units. We assume 
that the temperature samples are independent across years and spatially across provinces, which is a simplifying assumption. Fig.  1 
depicts the six administrative regions of Vietnam, and the corresponding provinces. However, these regions cover areas with varied 
climates. To achieve more climatically homogeneous groupings, we use clusters of provinces based on climatic regions as defined 
by Stojanovic et al. [32]. Fig.  6 displays the three climatic regions covering Northern Vietnam. We focus on region S3, composed 
of 13 provinces, by similarity with the North Plain (Red River Delta) (S3) in [32].

Fig.  7 shows the maximum temperature densities for the 13 provinces of S3, plotted by year, using the preprocessing detailed 
in Section 2.6 with degree less than or equal to 𝑑 = 4, smoothing parameter 𝜆 = 10 and 𝑘 = 10 knots located at quantiles of the 
pooled sample (across space and time). We observe more variability across time than across space which confirms that the spatial 
homogeneity objective is achieved.
11 
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Fig. 6. Map of the provinces of Northern Vietnam, colour-coded according to the climate regions defined in [32].

Fig. 7. Maximum temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987–2016, colour-coded by province.

4.2. Outlier detection using ICS for the S3 climate region of Vietnam

We follow the different steps described in Section 3.1, and examine the results of ICS outlier detection using the scatter pair 
(Cov,Cov4) on the 390 (13 provinces × 30 years) densities from region S3, obtained after the preprocessing detailed above.

The scree plot on the left panel of Fig.  8 clearly indicates that we should retain the first two invariant components. The right 
panel of Fig.  8 shows the squared ICS distances based on these first two components, with the observations index on the 𝑥-axis 
12 
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Fig. 8. Scree plot of the ICS eigenvalues (left panel), and the ICS distances based on the first two components (right panel) for maximum 
temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987–2016.

Fig. 9. Scatter plot of the first two invariant components (left panel) labelled by year and coloured by province, and the first two ICS dual 
eigendensities (right panel) of the maximum temperature densities for the 13 provinces in the S3 climate region of Northern Vietnam,1987–2016.

and with a threshold (horizontal line) corresponding to a significance level of 2.5%. This plot reveals that several observations are 
distinctly above this threshold, especially for the years 1987 and 2010.

The left panel of Fig.  9 displays the scatter plot of the first two components, labelled by year. The densities are coloured by 
province for the outliers and coloured in grey for the other provinces. This plot reveals that the outliers are either densities from 
2010 (and one density from 1998) that are outlying on the first component, or densities from 1987 and 2007 that are outlying on 
the second component.

To interpret the outlyingness, we can use the dual eigendensities plotted in the right panel of Fig.  9 together with Fig.  10, which 
represents the densities and their centred log-ratio transformation, colour-coded by year for the outliers and in grey for the other 
observations. This is justified by the reconstruction formula of Proposition  3 in Appendix. The horizontal line on the eigendensities 
plot (right plot of Fig.  9) corresponds to the uniform density on the interval [5; 40]. Four provinces in 2010 are outlying with large 
positive values on the first invariant component (see the left panel of Fig.  9). The first eigendensity IC.1 is characterised by a smaller 
mass of the temperature values on the interval [5; 20], compared to the uniform distribution, a mass similar to the uniform on [20; 35], 
and a much larger mass than the uniform on the interval [35; 40]. These four observations correspond to the four blue curves on the 
left and right panels of Fig.  10. Compared to the other densities, these four densities exhibit relatively lighter tails on the lower end of 
the temperature spectrum and heavier tails on the higher end. For temperature values in the medium range, these four observations 
fall in the middle of the cloud of densities and of clr transformed densities. On the second invariant component, six observations 
take large values and are detected as outliers. They correspond to four provinces in 1987 and three in 2007 (see the left panel of 
Fig.  9). The second eigendensity IC.2 differs greatly from the uniform distribution on the whole interval of temperature values. The 
left tail is much lighter while the right tail is much heavier. Besides the six observations flagged as outliers, other provinces in 1987 
and 2007 take large values on IC.2, and correspond to densities with very few days with maximum temperature less than 15 degrees 
Celsius compared to other densities.
13 
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Fig. 10. Maximum temperature densities (left panel) and their centred log-ratio transforms (right panel) for the 13 provinces in the S3 climate 
region of Northern Vietnam,1987–2016, outlying densities are colour-coded by year.

Fig. 11. Outlier detection by ICS across smoothing parameters for the Vietnam climate data. Top: 2 invariant components selected; Bottom: 
automatic selection through D’Agostino tests. 𝑦-axis: year; 𝑥-axis: 𝜆 parameter. Columns correspond to knot numbers (5-25). Outliers are marked 
as light grey to black squares depending on their detection frequency.

4.3. Influence of the preprocessing parameters

As mentioned in Section 3.2, we can validate the atypical nature of observations by running the ICSOutlier procedure multiple 
times with varying smoothing parameter values. Following the rule of thumb of one dimension per 10 observations, with 390 
observations, we should consider less than 35 interior knots. In what follows, we take 5, 10, 15, 20 and 25 interior knots and 
we consider base-10 logarithm values for 𝜆 equal to −2, −1, 0, 1 and 2. The number of selected ICS components is either fixed 
equal to 2, or is automatically determined using the D’Agostino normality test described in Section 3.1. We compute the squared 
ICS distances of the 390 observations, and observations are classified as outliers when their squared distance exceeds the threshold 
based on a 2.5% level as detailed in Section 3.1.

We plot in Fig.  11 the years on the 𝑦-axes for the 25 smoothing parameter setups, indicating outlying years with light grey to 
black squares depending on their detection frequency. Fig.  12 displays a bar plot of the frequency of outlier detection (across the 
25 setups and the 13 provinces) for each year. Note that the choice of the number of selected invariant components has minimal 
impact. Both Figs.  11 and 12 confirm the results of the previous subsection. Most provinces are outlying in 1987 and several are 
also outlying in 2007 and 2010. For large values of 𝜆, many provinces are also detected as outliers in 2016. Some provinces are 
detected quite often over the years: THANH HOA, HAI PHONG and HOA BINH. Note that in [32], the province of THANH HOA 
extends across two climatic regions (S3 and S4) which could explain why it is very often detected as an outlier.
14 
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Fig. 12. Frequency of outlier detection by ICS across all 25 scenarios with varying smoothing parameters and all 13 provinces, for each year in 
the Vietnamese climate dataset.

An overall comment regarding the outlier detection procedure that we use in the present application is that, from our experience 
on other data sets, an outlying density is often characterised by a behaviour that differs from the other densities in the tails of the 
distribution. This is not surprising because the Bayes inner product defined by Eq.  (19) involves the ratio of densities which can be 
large when a density is small (at the tails of the distribution).

5. Conclusion and perspectives

We propose a coordinate-free presentation of ICS that allows ICS to be applied to more complex objects than the coordinates 
vectors of multivariate analysis. We focus on the case of distributional data and describe an outlier detection procedure based on 
ICS. However, one of the limitations of the coordinate-free approach is that it is mainly adapted to pairs of weighted covariance 
operators, because they have a coordinate-free definition. These pairs of operators include the well-known (Cov,Cov4) pair. Its scatter 
counterpart in the multivariate context is the one recommended by Archimbaud [34] for a small proportion of outliers. But it is 
unclear how we could generalise other well-known scatter matrices (such as M-estimators, pairwise-based weighted estimators, or 
Minimum Covariance Determinant estimators) which are useful when using ICS as a preprocessing step for clustering [see 5].

Concerning a further adaptation of ICSOutlier to density objects, one perspective to our work is to take into account different 
settings for the preprocessing parameters and aggregate the results in a single outlyingness index. Another perspective is to consider 
multivariate densities (e.g., not only maximum density temperature but also minimum density temperature, precipitation,. . . ) and 
generalise the ICSOutlier procedure as in [9] for multivariate functional data.

This coordinate-free framework for ICS lays the groundwork for a generalisation to infinite-dimensional Hilbert spaces. Many 
difficulties arise, such as the compactness of the covariance operator which makes it non surjective, so that one cannot easily define 
a Mahalanobis distance, on which our definition of weighted covariance operators relies. Moreover, the existence of solutions 
and other properties of ICS proved in this paper come from the fact that one of the scatter operators is an automorphism, so it 
cannot be compact (in particular not the covariance). Finally, Tyler [17] proved that, whenever the dimension 𝑝 is larger than the 
number of observations 𝑛, all affine equivariant scatter operators are proportional, which is a bad omen for a straight generalisation 
to infinite-dimensional Hilbert spaces. One can partially circumvent these difficulties by assuming that the data is almost surely 
in a deterministic finite-dimensional subspace 𝐸 of 𝐻 (which is the case for density data after our preprocessing) and applying 
coordinate-free ICS. Another option could be to alleviate the affine equivariance assumption.
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This article and its figures are fully reproducible using the code available at:

https://github.com/camillemndn/icscomplex
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Appendix

Scatter operators for random objects in a Hilbert space

Let us first discuss some definitions relative to scatter operators in the framework of a Hilbert space (𝐸, ⟨⋅, ⋅⟩). We consider an 
𝐸-valued random object 𝑋 ∶ 𝛺 → 𝐸 where 𝛺 is a probability space and 𝐸 is a Hilbert space equipped with the Borel 𝜎-algebra. In 
order to define ICS, we need at least two scatter operators, which generalise the covariance operator defined on 𝐸 by 

∀(𝑥, 𝑦) ∈ 𝐸2, ⟨Cov[𝑋]𝑥, 𝑦⟩ = E
[

⟨𝑋 − E𝑋, 𝑥⟩⟨𝑋 − E𝑋, 𝑦⟩
]

, (8)

while keeping its affine equivariance property:

∀𝐴 ∈ (𝐸),∀𝑏 ∈ 𝐸,Cov[𝐴𝑋 + 𝑏] = 𝐴Cov[𝑋]𝐴∗,

where the Hilbert norm of 𝑋 is assumed to be square-integrable, and 𝐴∗ is the adjoint linear operator of 𝐴 in the Hilbert space 𝐸, 
represented by the transpose of the matrix that represents 𝐴.

Definition 3 (Scatter Operators).  Let (𝐸, ⟨⋅, ⋅⟩) be a Hilbert space of dimension 𝑝,  an affine invariant set of 𝐸-valued random 
objects, i.e. that verifies: 

∀𝑋 ∈  ,∀𝐴 ∈ (𝐸),∀𝑏 ∈ 𝐸,𝐴𝑋 + 𝑏 ∈  . (9)

An operator 𝑆 ∶  → +(𝐸) (where +(𝐸) is the space of non-negative symmetric operators on 𝐸) is called an (affine equivariant) 
scatter operator (defined on ) if it satisfies the following two properties:

1. Invariance by equality in distribution: 

∀(𝑋, 𝑌 ) ∈ 2, 𝑋 ∼ 𝑌 ⇒ 𝑆[𝑋] = 𝑆[𝑌 ]. (10)

2. Affine equivariance: 

∀𝑋 ∈  ,∀𝐴 ∈ (𝐸),∀𝑏 ∈ 𝐸,𝑆[𝐴𝑋 + 𝑏] = 𝐴𝑆[𝑋]𝐴∗. (11)

We do not know whether there exist other scatter operators than the covariance when the Hilbert space has infinite dimension.
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Details on coordinate-free ICS

The problem ICS(𝑋,𝑆1, 𝑆2) defined by (1) is equivalent to assuming that 𝑆1[𝑋] is injective and finding an orthonormal basis 
𝐻 that diagonalises the non-negative symmetric operator 𝑆1[𝑋]−1𝑆2[𝑋] in the Euclidean space (𝐸, ⟨𝑆1[𝑋]⋅, ⋅⟩). The ICS(𝑋,𝑆1, 𝑆2)
spectrum 𝛬 is unique and is simply the spectrum of 𝑆1[𝑋]−1𝑆2[𝑋].

Proposition 2 (Existence of Solutions). Let (𝐸, ⟨⋅, ⋅⟩) be a Euclidean space of dimension 𝑝,  ⊆ 𝐿1(𝛺,𝐸) an affine invariant set of integrable 
𝐸-valued random objects, 𝑆1 and 𝑆2 two scatter operators on  . For any 𝑋 ∈  such that 𝑆1[𝑋] is an automorphism, there exists at least 
one solution (𝐻,𝛬) to the problem ICS(𝑋,𝑆1, 𝑆2), and 𝛬 is a uniquely determined non-increasing sequence of positive real numbers.

Proof. Since 𝑆1[𝑋] is non-singular, 𝑆1[𝑋]−1𝑆2[𝑋] exists and is symmetric in the Euclidean space (𝐸, ⟨𝑆1[𝑋]⋅, ⋅⟩), because 

∀(𝑥, 𝑦) ∈ 𝐸2, ⟨𝑆1[𝑋]𝑆1[𝑋]−1𝑆2[𝑋]𝑥, 𝑦⟩ = ⟨𝑆2[𝑋]𝑥, 𝑦⟩ = ⟨𝑆2[𝑋]𝑦, 𝑥⟩ = ⟨𝑆1[𝑋]𝑆1[𝑋]−1𝑆2[𝑋]𝑦, 𝑥⟩. (12)

Thus, the spectral theorem guarantees that there exists an orthonormal basis 𝐻 of (𝐸, ⟨𝑆1[𝑋]⋅, ⋅⟩) in which 𝑆1[𝑋]−1𝑆2[𝑋] is 
diagonal. □

This methodology does not generalise to the infinite-dimensional case, because the inner product space (, ⟨⋅, 𝑆1[𝑋]⋅⟩) is not 
necessarily complete, so the spectral theorem does not apply.

Remark 3 (Courant–Fischer Variational Principle). The ICS problem (1) can be stated as a maximisation problem. If 1 ≤ 𝑗 ≤ 𝑝, the 
following equalities hold: 

ℎ𝑗 ∈ argmax
ℎ∈𝐸,⟨𝑆1[𝑋]ℎ,ℎ𝑗′ ⟩=0 if 0<𝑗′<𝑗

⟨𝑆2[𝑋]ℎ, ℎ⟩
⟨𝑆1[𝑋]ℎ, ℎ⟩

, 𝜆𝑗 = max
ℎ∈𝐸,⟨𝑆1[𝑋]ℎ,ℎ𝑗′ ⟩=0 if 0<𝑗′<𝑗

⟨𝑆2[𝑋]ℎ, ℎ⟩
⟨𝑆1[𝑋]ℎ, ℎ⟩

. (13)

The following reconstruction formula, extended from multivariate to complex data, is useful to interpret the ICS dual eigenbasis 
𝐻∗ = (ℎ∗𝑗 )1≤𝑗≤𝑝, which is defined as the only basis of the space 𝐸 that satisfies 

⟨ℎ𝑗 , ℎ
∗
𝑗′ ⟩ = 𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝. (14)

Proposition 3 (Reconstruction Formula). Let (𝐸, ⟨⋅, ⋅⟩) be a Euclidean space of dimension 𝑝,  ⊆ 𝐿1(𝛺,𝐸) an affine invariant set of 
integrable 𝐸-valued random objects, 𝑆1 and 𝑆2 two scatter operators on  . For any 𝑋 ∈  such that 𝑆1[𝑋] is an automorphism and any 
ICS(𝑋,𝑆1, 𝑆2) eigenbasis 𝐻 = (ℎ1,… , ℎ𝑝) of 𝐸, we have 

𝑋 = E𝑋 +
𝑝
∑

𝑗=1
𝑧𝑗ℎ

∗
𝑗 , (15)

where the 𝑧𝑗 , 1 ≤ 𝑗 ≤ 𝑝 are defined as in (2) and 𝐻∗ = (ℎ∗𝑗 )1≤𝑗≤𝑝 = (𝑆1[𝑋]ℎ𝑗 )1≤𝑗≤𝑝 is the dual basis of 𝐻 .

Reminder on Bayes spaces

The most recent and complete description of the Bayes spaces approach can be found in [23]. For the present work, we will 
identify the elements of a Bayes space, as defined by Van Den Boogaart et al. [23], with their Radon–Nikodym derivative with 
respect to a reference measure 𝜆. This leads to the following framework: let (𝑎, 𝑏) be a given interval of the real line equipped 
with the Borel 𝜎-algebra, let 𝜆 be a finite reference measure on (𝑎, 𝑏). Let 𝐵2(𝑎, 𝑏) be the space of square-log integrable probability 
densities 𝑑𝜇𝑑𝜆 , where 𝜇 is a measure that is equivalent to 𝜆, which means that 𝜇 and 𝜆 are absolutely continuous with respect to each 
other.

Note that the simplex 𝑝 used in compositional data analysis can be seen as a Bayes space when considering, instead of an 
interval (𝑎, 𝑏) equipped with the Lebesgue measure, the finite set {1,… , 𝑝+ 1} equipped with the counting measure [see Example 2 
in 23].

Let us first briefly recall the construction of the Hilbert space structure of 𝐵2(𝑎, 𝑏). For a density 𝑓 in 𝐵2(𝑎, 𝑏), the clr transformation 
is defined by 

clr 𝑓 (.) = ln 𝑓 (.) − 1
𝜆(𝑎, 𝑏) ∫

𝑏

𝑎
ln 𝑓 (𝑡)𝑑𝜆(𝑡). (16)

The clr transformation maps an element of 𝐵2(𝑎, 𝑏) into an element of the space 𝐿2
0(𝑎, 𝑏) of functions which are square-integrable 

with respect to 𝜆 on (𝑎, 𝑏) and whose integral is equal to zero. The clr inverse of a function 𝑢 of 𝐿2
0(𝑎, 𝑏) is 𝐵2-equivalent to exp(𝑢). 

More precisely, if 𝑢 ∈ 𝐿2
0(𝑎, 𝑏), 

clr−1(𝑢)(.) =
exp 𝑢(.)

𝑏 . (17)

∫𝑎 exp 𝑢(𝑡)𝑑𝜆(𝑡)
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A vector space structure on 𝐵2(𝑎, 𝑏) is readily obtained by transporting the vector space structure of 𝐿2
0(𝑎, 𝑏) to 𝐵2(𝑎, 𝑏) using the 

clr transformation and its inverse, see for example Van Den Boogaart et al. [23]. Its operations, denoted by ⊕ and ⊙, are called 
perturbation (the ‘‘addition’’) and powering (the ‘‘scalar multiplication’’).

For the definition of the inner product, we adopt a normalisation different from that of Egozcue et al. [35] and of Van 
Den Boogaart et al. [23] in the sense that we choose the classical definition of inner product in 𝐿2

0(𝑎, 𝑏), for two functions 𝑢 and 𝑣
in 𝐿2

0(𝑎, 𝑏)

⟨𝑢, 𝑣⟩𝐿2
0
= ∫

𝑏

𝑎
𝑢(𝑡)𝑣(𝑡)𝑑𝜆(𝑡), (18)

so that the corresponding inner product between two densities 𝑓 and 𝑔 in the Bayes space 𝐵2(𝑎, 𝑏) is given by 

⟨𝑓, 𝑔⟩𝐵2 = 1
2𝜆(𝑎, 𝑏) ∫

𝑏

𝑎 ∫

𝑏

𝑎
(ln 𝑓 (𝑡) − ln 𝑓 (𝑠))(ln 𝑔(𝑡) − ln 𝑔(𝑠))𝑑𝜆(𝑡)𝑑𝜆(𝑠). (19)

This normalisation yields an inner product which is homogeneous to the measure 𝜆 whereas the Van Den Boogaart et al. [23] 
normalisation is unitless. Note that, for clarity and improved readability, the interval over which the spaces 𝐿2

0 and 𝐵2 are defined 
are omitted from some notations.

For a random density 𝑓 (.) in the infinite-dimensional space 𝐵2(𝑎, 𝑏), the expectation and covariance operators can be defined as 
follows, whenever they exist:

E𝐵2
[𝑓 ] = clr−1 E[clr 𝑓 ] ∈ 𝐵2(𝑎, 𝑏), (20)

Cov𝐵
2
[𝑓 ]𝑔 = E𝐵2

[

⟨𝑓 ⊖ E𝐵2
[𝑓 ], 𝑔⟩𝐵2 ⊙ (𝑓 ⊖ E𝐵2

[𝑓 ])
]

= clr−1 E[⟨𝑓, 𝑔⟩𝐵2 clr 𝑓 ]

= clr−1 E[⟨clr 𝑓, clr 𝑔⟩𝐿2
0
clr 𝑓 ]  for any 𝑔 ∈ 𝐵2(𝑎, 𝑏), (21)

where ⊖ is the negative perturbation defined by 𝑓 ⊖ 𝑔 = 𝑓 ⊕ [(−1)⊙ 𝑔].

Reminder on compositional splines

Following [25], in order to construct a basis of 𝐸 = 𝛥𝛾
𝑑 (𝑎, 𝑏), which is required in practice, it is convenient to first construct a 

basis of a finite-dimensional spline subspace of 𝐿2
0(𝑎, 𝑏), which we then transfer to 𝐵2(𝑎, 𝑏) by the inverse clr transformation. More 

precisely, Machalová et al. [24] propose a basis of zero-integral splines in 𝐿2
0(𝑎, 𝑏) that are called ZB-splines. The corresponding 

inverse images of these basis functions by clr are called CB-splines.
A ZB-spline basis, denoted by 𝑍 = {𝑍1,… , 𝑍𝑘+𝑑−1}, is characterised by the spline of degree less than or equal to 𝑑 (order 𝑑 +1), 

the number 𝑘 and the positions of the so-called inside knots 𝛥𝛾 = {𝛾1,… , 𝛾𝑑} in (𝑎, 𝑏). The dimension of the resulting subspace 𝛥𝛾
𝑑

is 𝑝 = 𝑘 + 𝑑. Let 𝛥𝛾
𝑑  be the subspace generated by 𝐶 = {𝐶1,… , 𝐶𝑝} in 𝐵2(𝑎, 𝑏), where 𝐶𝑗 = clr−1(𝑍𝑗 ) are the back-transforms in 

𝐵2(𝑎, 𝑏) of the basis functions of the subspace 𝛥𝛾
𝑑 . The expansion of a density 𝑓 in 𝐵2(𝑎, 𝑏) is then given by 

𝑓 (𝑡) =
𝑝

⨁

𝑗=1
[𝑓 ]𝐶𝑗

𝐶𝑗 (𝑡), (22)

so that the corresponding expansion of its clr in 𝐿2
0(𝑎, 𝑏) is given by 

clr 𝑓 (𝑡) =
𝑝
∑

𝑗=1
[𝑓 ]𝐶𝑗

𝑍𝑗 (𝑡). (23)

Note that the coordinates of 𝑓 in the basis 𝐶 are the same as the coordinates of clr(𝑓 ) in the basis 𝑍, for 𝑗 = 1,… , 𝑝, [𝑓 ]𝐶𝑗
=

[clr 𝑓 ]𝑍𝑗
. Following Machalová et al. [24], the basis functions of 𝛥𝛾

𝑑  can be written in a B-spline basis, see Schumaker [36], which 
is convenient to allow using existing code for their computation.

Proof of Proposition  1. First, let us verify that the problem ICS(𝑋 , 𝑆
1 , 𝑆


2 ) is well defined on 𝐹 :

(a) The application 𝜑 is linear so it is measurable. Moreover, if 𝑋 ∈  , 𝐴 ∈ (𝐹 ) and 𝑏 ∈ 𝐹 , then 
‖𝜑(𝑋)‖𝐹 = ‖𝑋‖𝐸 (24)

and 
𝐴𝜑(𝑋) + 𝑏 = 𝜑

(

𝜑−1◦𝐴◦𝜑(𝑋) + 𝜑−1(𝑏)
)  where 𝜑−1◦𝐴◦𝜑(𝑋) + 𝜑−1(𝑏) ∈  . (25)

(b) If 𝑋 ∈  , 𝑆
𝓁 [𝜑(𝑋)] = 𝜑◦𝑆

𝓁 [𝑋]◦𝜑−1 is a non-negative symmetric operator and if 𝑌 ∈  verifies 𝜑(𝑋) ∼ 𝜑(𝑌 ), then 𝑋 ∼ 𝑌
(because the Borel 𝜎-algebra on 𝐸 is the pullback by 𝜑 of that on 𝐹 ) so that, for 𝓁 ∈ {1, 2}, 

𝑆
𝓁 [𝜑(𝑋)] = 𝜑◦𝑆

𝓁 [𝑋]◦𝜑−1 = 𝜑◦𝑆
𝓁 [𝑌 ]◦𝜑

−1 = 𝑆
𝓁 [𝜑(𝑌 )] (26)

and 
𝑆
𝓁 [𝐴𝜑(𝑋) + 𝑏] = 𝜑◦𝑆

𝓁 [𝜑
−1◦𝐴◦𝜑(𝑋) + 𝜑−1(𝑏)]◦𝜑−1 = 𝐴◦𝜑◦𝑆

𝓁 [𝑋]◦𝜑−1◦𝐴∗ = 𝐴𝑆
𝓁 [𝜑(𝑋)]𝐴∗. (27)
18 
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(c) The isometry 𝜑 preserves the linear rank of any finite sequence of vectors of 𝐸.
Now, (𝐻 , 𝛬) solves ICS(𝑋 , 𝑆

1 , 𝑆

2 ) in the space 𝐸 if and only if

{

⟨𝑆
1 [𝑋]ℎ𝑗 , ℎ


𝑗′ ⟩𝐸 = 𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

⟨𝑆
2 [𝑋]ℎ𝑗 , ℎ


𝑗′ ⟩𝐸 = 𝜆𝑗𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

⟺

{

⟨𝜑(𝑆
1 [𝑋]ℎ𝑗 ), 𝜑(ℎ


𝑗′ )⟩𝐹 = 𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

⟨𝜑(𝑆
2 [𝑋]ℎ𝑗 ), 𝜑(ℎ


𝑗′ )⟩𝐹 = 𝜆𝑗𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

(28)

⟺

{

⟨𝑆
1 [𝑋]ℎ𝑗 , ℎ


𝑗′ ⟩𝐹 = 𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

⟨𝑆
2 [𝑋]ℎ𝑗 , ℎ


𝑗′ ⟩𝐹 = 𝜆𝑗𝛿𝑗𝑗′ , 1 ≤ 𝑗, 𝑗′ ≤ 𝑝,

(29)

which is equivalent to the fact that (𝐻 , 𝛬) solves ICS(𝑋 , 𝑆
1 , 𝑆


2 ) in the space 𝐹 . □

Proof of Corollary  1. Let 𝓁 ∈ {1, 2} and 𝑋̃ = 𝑋 − E𝑋. In order to prove Eq.  (5), we will need to prove that, for any (𝑥, 𝑦) ∈ 𝐹 2,

⟨𝜑◦Cov𝐸𝑤𝓁
[𝑋]◦𝜑−1(𝑥), 𝑦⟩𝐹 = ⟨Cov𝐸𝑤𝓁

[𝑋]𝜑−1(𝑥), 𝜑−1(𝑦)⟩𝐸 (30)

= E[𝑤𝓁(‖Cov
𝐸 [𝑋]−1∕2𝑋̃‖𝐸 )2⟨𝑋̃, 𝜑−1(𝑥)⟩𝐸⟨𝑋̃, 𝜑−1(𝑦)⟩𝐸 ] (31)

= E[𝑤𝓁(‖Cov
𝐹 [𝜑(𝑋)]−1∕2𝜑(𝑋̃)‖𝐹 )2⟨𝜑(𝑋̃), 𝑥⟩𝐹 ⟨𝜑(𝑋̃), 𝑦⟩𝐹 ] (32)

⟨𝜑◦Cov𝐸𝑤𝓁
[𝑋]◦𝜑−1(𝑥), 𝑦⟩𝐹 = ⟨Cov𝐹𝑤𝓁

[𝜑(𝑋)]𝑥, 𝑦⟩𝐹 . (33)

It is enough to show the equality between (31) and (32), for which we treat differently the cases 𝑤𝓁 = 1 and 𝑤𝓁 ≠ 1. If 𝑤𝓁 = 1, 
there is nothing to prove, so that Eq.  (5) holds for the covariance operator. If 𝑤𝓁 ≠ 1, we now know from the case 𝑤𝓁 = 1 that 

Cov𝐹 [𝜑(𝑋)]−1∕2 = 𝜑◦Cov𝐸 [𝑋]−1∕2◦𝜑−1 (34)

so that 
‖Cov𝐸 [𝑋]−1∕2𝑋̃‖𝐸 = ‖Cov𝐹 [𝜑(𝑋)]−1∕2𝜑(𝑋̃)‖𝐹 . (35)

Once Eq.  (5) is proved, one only needs to apply Proposition  1 to finish the proof. □

 Proof of Corollary  2. Applying Corollary  1 to the isometry 

𝜑𝐵 ∶

{

(𝐸, ⟨⋅, ⋅⟩𝐸 ) → (R𝑝, ⟨⋅, ⋅⟩R𝑝 )
𝑥 ↦ 𝐺1∕2

𝐵 [𝑥]𝐵
, (36)

we obtain the equivalence between the following assertions:
(i) (𝐻,𝛬) solves ICS(𝑋,Cov𝑤1

,Cov𝑤2
) in the space 𝐸

(ii) (𝐺1∕2
𝐵 [𝐻]𝐵 , 𝛬) solves ICS(𝐺1∕2

𝐵 [𝑋]𝐵 ,Cov𝑤1
,Cov𝑤2

) in the space R𝑝,

which gives the equivalence between the assertions (1) and (2). The equivalence between the other assertions are deduced from the 
fact that for any 𝓁 ∈ {1, 2} and any (𝑥, 𝑦) ∈ 𝐸2:

⟨Cov𝐸𝑤𝓁
[𝑋]𝑥, 𝑦⟩𝐸 = ⟨Cov𝑤𝓁

(𝐺1∕2
𝐵 [𝑋]𝐵)𝐺

1∕2
𝐵 [𝑥]𝐵 , 𝐺

1∕2
𝐵 [𝑦]𝐵⟩R𝑝 (37)

= ⟨Cov𝑤𝓁
(𝐺𝐵[𝑋]𝐵)[𝑥]𝐵 , [𝑦]𝐵⟩R𝑝 (38)

= ⟨Cov𝑤𝓁
([𝑋]𝐵)𝐺𝐵[𝑥]𝐵 , 𝐺𝐵[𝑦]𝐵⟩R𝑝 , (39)

where (37) comes from Eq.  (5), and the equalities (38) and (39) come from the affine equivariance of Cov𝑤𝓁
. □

Proof of Proposition  3. Let us decompose 𝑆1[𝑋]−1(𝑋 − E𝑋) over the basis 𝐻 , which is orthonormal in (𝐸, ⟨⋅, 𝑆1[𝑋]⋅⟩):

𝑆1[𝑋]−1(𝑋 − E𝑋) =
𝑝
∑

𝑗=1
⟨𝑆1[𝑋]−1(𝑋 − E𝑋), 𝑆1[𝑋]ℎ𝑗⟩ℎ𝑗 =

𝑝
∑

𝑗=1
⟨𝑋 − E𝑋, ℎ𝑗⟩ℎ𝑗 , (40)

𝑆1[𝑋]−1(𝑋 − E𝑋) =
𝑝
∑

𝑗=1
𝑧𝑗ℎ𝑗 . (41)

The dual basis 𝐻∗ of 𝐻 is the one that satisfies ⟨ℎ𝑗 , ℎ∗𝑗′ ⟩ = 𝛿𝑗𝑗′  for all 1 ≤ 𝑗, 𝑗′ ≤ 𝑝 and we know from the definition of ICS that this 
holds for (𝑆1[𝑋]ℎ𝑗 )1≤𝑗≤𝑝. □
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