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Abstract
This paper studies the hierarchical structure of periodic orbits of the automorphism induced

by the matrix A =
(
2 1
1 1

)
on the torus T

2. The induced symbolic dynamics is not trivial with

forbidden sequences. We show that the periodic orbits of the system is hierarchically struc-
tured by clusters. We establish the number of clusters via symbolic dynamics and digraphs.
Algorithms that group all periodic orbits in clusters are given.

Keywords Hierarchical structure · Periodic orbits · Symbolic dynamics · Hyperbolic toral
automorphisms

Mathematics Subject Classification primary 37B10 · 37D20; secondary 05C20 · 37C55

1 Introduction

Bohigas, Giannoni and Schmit [7] argued that periodic orbit clustering leads to universal
spectral fluctuations for chaotic quantum systems. Altland et al. [1] stated that periodic orbits
including encounters form orbit clusters. The clusters of periodic orbits have hierarchical
structures due to the near indistinguishability of different orbits of a cluster within links, and
one can get a bigger cluster when one orbit in a cluster closely encounters an orbit from
another cluster. The simplest orbit cluster is a Sieber–Richter pair [17] where each orbit has
2 stretches mutually close, which is called a 2-antiparallel encounter.

Roughly speaking, a periodic orbit cluster is a family of periodic orbitswhich visit the same
parts in the phase space with the same number of times but with different orders. There is a
similar notion in graph theory, namely degeneracy class. The problemof counting degeneracy
classes was studied in [6, 9, 16, 18] for some classes of metric graphs. The leading asymptotic
(for large n) contribution to the number of degeneracy classes in a general connected graph
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was obtained by Berkolaiko [6] and it was applied to calculating the two-point spectral
statistics for this class of graphs in the limit as the number of vertices tends to infinity.
The number of degeneracy classes and the number of closed paths in each class (so-called
degeneracy) were obtained by Tanner [18] for balanced, binary directed graphs (i.e., directed
graphs with two incoming and two outgoing edges for each vertex). The spectral form factor
can be written in terms of degenerate periodic orbit pairs only via the periodic orbit length
degeneracy function. Gavish and Smilansky [9] considered an indirected, fully connected
graph (i.e., a graph in which each vertex is connected by a single edge to any other vertices
beside itself) with no loop and the lengths of edges being rationally independent and they
obtained asymptotics for the average size of a degeneracy class. Sharp [16] established an
asymptotic formula for the number of pairs of closed cycles with the same metric length
for directed, connected graph with non-backtracking and the lengths of edges are rationally
independent. Gutkin and Osipov [10] discovered the relation between clusters of periodic
orbits and degeneracy classes of closed paths. The authors used the symbolic dynamics of
the baker’s map and introduced the notion of p-closeness to define clustering of periodic
orbits and showed that periodic orbits create hierarchy of clustering. The counting of clusters
is equivalent to the one of closed paths in the corresponding de Brujin graph. The symbolic
dynamics of the baker’smap is the simplest chaotic dynamical systemwith two-letter alphabet
xi ∈ {0, 1} without forbidden sequences, i.e., each symbol in the sequence can be followed
by any other symbols, and all sequences are periodic. The authors studied the distribution
of cluster sizes for the baker’s map in the asymptotic limit of long trajectories via counting
degeneracies in the spectrum of the associated de Bruijn graphs and derived the probability
Pk that k randomly chosen periodic orbits belong to the same cluster. The graphs considered
are balanced and binary. In addition, they provided an asymptotic formula for the number of
clusters as the length of sequences tends to infinity via a system of linear equations. Again
Gutkin and Osipov [11] showed that the counting of cluster size can be turned to spectral
problem for matrices from truncated unitary ensemble and they gave an asymptotic formula
for the average size of clusters through the average number of encounters and a conjecture.
However, up to now, there have been no researches considering dynamical systems whose
symbolic dynamics are non-trivial. In the present paper, we consider a classical hyperbolic
dynamical system, namely the diffeomorphism T on the 2-torus T

2 = R
2/Z

2 induced by

matrix A =
(
2 1
1 1

)
. More concretely, T (x+Z

2) = Ax+Z
2 for all x+Z

2 ∈ T
2. The 2-torus

can be viewed as the unit square [0, 1]×[0, 1]with opposite sides identified: (x1, 0) ∼ (x1, 1)
and (0, x2) ∼ (1, x2), x1, x2 ∈ [0, 1]. The map T is given in coordinates by

A

(
x1
x2

)
=

(
(2x1 + x2) mod1
(x1 + x2) mod1

)
.

Note that T
2 is a commutative group and A is an automorphism on T

2, since A−1 is also
an integer matrix. A Markov partition for T was constructed by Katok and Hasselblatt [12],
then Barreira [4] proposed the symbolic dynamics induced from this Markov partition. The
adjacency matrix is a 5× 5 matrix with entries 0 and 1, so the respective symbolic dynamics
is with forbidden sequences, i.e., each symbol in a sequence is not allowed to follow by
any other symbols. This is completely different from the one induced from the baker’s map
considered by Gutkin and Osipov in [10, 11].

The aim of this paper is to study the hierarchical property of clustering of periodic orbits of
T via its respective symbolic dynamics and with the help of digraphs. We exploit the notion
p-closeness between periodic sequences introduced by Gutkin and Osipov [10]. This is an
equivalence relation and each equivalence class is called a p-cluster. There is a one-to-one
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Fig. 1 Graphical representation
of the Arnold’s cat map [19]

correspondence between the set of n-periodic sequences in the shift space and the set of
n-periodic points of the automorphism T . Each cluster of periodic sequences corresponds to
a cluster of periodic orbit of T . Furthermore, if two periodic orbits are p+1-close, then they
are p-close. So, the periodic orbits of the system can be represented as a hierarchy structure
of clusters. We obtain an asymptotic formula for the number of p-clusters for given p. In
addition, we give algorithms to list all periodic orbits and clusters of periodic orbits for the
respective subshift of finite type.

Periodic sequences with the same period are grouped by p-clusters, so we know the
accurate size of each p-cluster as well. The largest 1 ≤ p ≤ n for which at least one p-
cluster contains more than one sequence is given. The argument in this paper can be applied
for any dynamical system whose adjacency matrix is specific.

The paper is organized as follows. In the next section we give a brief construction of
symbolic dynamics for T . A periodic point of T associates to a periodic sequence with
symbols 0, 1, 2, 3, 4. Section3 investigates the clustering of periodic orbits of T . Periodic
orbits are hierarchically structured by p-clusters. We show that the number of p-clusters is
the one of degeneracy classes in the corresponding de Bruijn graph. An asymptotic formula
for the number of p-clusters for sufficiently large period is established. In the last part of this
paper, we present algorithms to list all periodic orbits and arrange them in p-clusters.

2 Symbolic Dynamics of T

The eigenvalues of matrix A are

λ = 3 − √
5

2
and λ−1 = 3 + √

5

2
, (2.1)

which do not lie on the unit circle. So, the corresponding isomorphism T is hyperbolic [4,
Example 6.1]. In addition, the fact that the set of periodic points of T is Q

2/Z
2 implies

that set of its non-wandering points is the full space T
2. It follows that T is an Axiom A

diffeomorphism (see [8]). An explicit Markov partition of T is constructed by Katok and
Hasselblatt [12, p. 84] including five rectangles R0, R1, R2, R3, R4. Let

A = {0, 1, 2, 3, 4}
and

A Z = {x = (xi )i∈Z : xi ∈ A for all i ∈ Z}.
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Definition 2.1 The map σ : A Z −→ A Z defined by

(σ x)i = xi+1 for all i ∈ Z

is called the shift map.

A distance on A Z is defined by

�(x, y) =
{
2−k if x �= y and k is maximum so that x−k . . . x0 . . . xk = y−k . . . y0 . . . yk
0 if x = y

for x = (xn), y = (yn) ∈ A Z. Then (A Z, �) is a compact metric space and the shift map σ

is a homeomorphism on A Z. The adjacency matrix A = (ai, j )4i, j=0 is defined by

ai, j =
{
1 if int T (Ri ) ∩ int R j �= ∅,

0 if int T (Ri ) ∩ int R j = ∅

and according to [4],

A =

⎛
⎜⎜⎜⎜⎝

1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

⎞
⎟⎟⎟⎟⎠ .

From the matrix A, we define a set of allowed sequences as follows. The set

�A = {(xn) ∈ A Z : axi ,xi+1 = 1 for all i ∈ Z}
is a closed set of A Z and invariant under the shift map σ . The map σ|�A : �A → �A is
called the subshift of finite type induced by A.

Definition 2.2 For a given n ∈ N, a sequence x = (xi )∞i=−∞ ∈ A Z is called periodic
of period n or n-periodic if σ n(x) = x , i.e., xi+n = xi , for all i ∈ Z. Then we write
x = [x0x1 . . . xn−1]. The set consisting of all periodic sequences in �A of period n and its
cardinality are denoted by Pn and p(n), respectively.

Let

Xn := {
x0 . . . xn−1 : x0, . . . , xn−1 ∈ A , axi ,xi+1 = 1, i ∈ {0, . . . , n − 2}}

be the set of subsequences of length n in �A. To calculate the cardinality of Xn and p(n),
we first observe that

An =

⎛
⎜⎜⎜⎜⎝

an an bn an bn
an an bn an bn
an an bn an bn
bn bn cn bn cn
bn bn cn bn cn

⎞
⎟⎟⎟⎟⎠ ,

where

an = 5 + √
5

10
λn + 5 − √

5

10
λ−n, bn = −5 + 3

√
5

10
λn + −5 + 3

√
5

10
λ−n,

cn = 5 + 2
√
5

5
λn + 5 − 2

√
5

5
λ−n . (2.2)
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The number of subsequences of length n is the sum of all entries in An−1, which is

card(Xn) = 9an−1 + 12bn−1 + 4cn−1 = 5 − 2
√
5

5
λn + 5 + 2

√
5

5
λ−n . (2.3)

The number of n-periodic sequences in �A is

p(n) = tr(An) = λn + λ−n .

Denote by
Qn = {x ∈ �A : σ n(x) = x, σ k(x) �= x for 1 ≤ k < n}

the set of primitive periodic points of period n ∈ N and by q(n) its cardinality. It is obvious
that Pn = ⋃

k|n Qk and therefore p(n) = ∑
k|n q(k). To calculate q(k), we need the Möbius

inversion formula:

q(k) =
∑
m|k

μ(m)p

(
k

m

)
,

where μ is the Möbius function defined as follows. If m = ps11 . . . psrr is the prime factorisa-
tion, then

μ(m) =

⎧⎪⎨
⎪⎩

(−1)r if m is square-free,

1 if m = 1,

0 otherwise.

(2.4)

Recall that a positive integer is said to be square-free if no prime number occurs more than
once in its prime factorisation; see [2, Theorem 2.9] for a proof of (2.4). We have shown the
following result.

Proposition 2.3 The number of periodic sequences with primitive period n is

q(n) =
∑
k|n

μ
(n
k

)
(λk + λ−k).

We define a metric on [0, 1) by
ρ(x, y) = min{|x − y|, |1 − x + y|, |1 + x − y|}, for x, y ∈ [0, 1)

and consider metric d on T
2 defined by

d(x, y) = max{ρ(x1, y1), ρ(x2, y2)},
where x = (x1, x2) + Z

2, y = (y1, y2) + Z
2, (x1, x2), (y1, y2) ∈ [0, 1) × [0, 1). The next

result will be useful later.

Lemma 2.4 For p ≥ 2 and x = (xi ) ∈ �A, the set

Q p(x) :=
p⋂

k=−p

T−k(Rxk )

has diameter at most λp.

Proof Every rectangle R ∈ {R0, . . . , R4} is formed by two directions, in which the shorter
parallel sides go along the stable direction (the eigenvector w.r.t. λ−1), whereas the longer
parallel sides go along the unstable direction (the eigenvector w.r.t. λ). The width (resp.
length) of R is contracting (resp. expanding) by the factor λ−1 (resp. λ) after the action
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Fig. 2 Intersection of rectangles along the unstable direction [4]

of T . Conversely, the action of T−1 makes the width (resp. length) of R expanding (resp.
contracting) by the factor λ−1 (resp. λ). Recall from the Markov property that if R∩T (R) �=
∅, then T (R) intersects R the whole unstable direction, and if R ∩ T−1(R) �= ∅, then
T−1(R) intersects R the whole stable direction. Therefore, the non-empty set Qu

p(x) :=⋂p
k=0 T

−k(Rxk ) is a single rectangle stretching all the way across Rx0 in the expanding

direction, whereas Qs
p(x) := ⋂0

k=−p T
−k(Rxk ) is a rectangle stretching all the way across

Rx0 in the contracting direction; see Fig. 2. This implies that the diameter of Qp(x) =
Qs

p(x) ∩ Qu
p(x) is at most λp .

��
Next we present the relation between the periodic sequences in�A and the periodic orbits

of T . Define

h : �A → T
2, h(x) =

⋂
n∈Z

T−n(Rxn ) for all x = (xn)n∈Z ∈ �A. (2.5)

Note that (2.5) is well-defined since the intersection
⋂

n∈Z T−n(Rxn ) is a single point in T
2

due to the fact that R0, R1, R2, R3, R4 forms a Markov partition (see [4, p.189]). Then h is
a continuous surjection and satisfies

h ◦ σ = T ◦ h.

Then
h ◦ σ n = T n ◦ h for all n ≥ 1. (2.6)

This implies that if x ∈ �A is an n-periodic point, then h(x) is an n-periodic point of T . It is
clear that h is not one-to-one, but it is finite-to-one and this does not affect the investigation
of periodic orbits. Indeed, the number of n-points of T is

card{x ∈ T
2 : T n(x) = x} = λn + λ−n − 2;

see [15].

Remark 2.5 (a) If x = (xi ) ∈ Pn , then h(x) = x ∈ T
2 satisfies T n(x) = x and

T k(x) ∈ Rxk , k = 0, . . . , n − 1.

(b) The map σ |�A has three fixed points, which are 1-periodic points, including [0], [1], [4].
However, only 0 + Z

2 is the unique fixed point of T . Therefore,

h([0]) = h([1]) = h([4]) = 0 + Z
2. (2.7)
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These fixed points are counted as n-periodic points with any n > 0. This explains the
relation

card{x ∈ �A : σ n(x) = x} = card{x ∈ T
2 : T n(x) = x} + 2. (2.8)

(c) It follows from (2.7) and (2.8) that the map

h : Pn \ {[0], [1], [4]} → {x ∈ T
2 \ {0 + Z

2} : T n(x) = x}
is a bijection. Therefore, instead of considering periodic points of T , we shall work on
periodic sequences in �A as there are more advantages. �

For any n, we define two one-to-one maps

l : Xn → Xn−1, l(x0 . . . xn−1) = x1 . . . xn−1, (2.9)

r : Xn → Xn−1, r(x0 . . . xn−1) = x0x1 . . . xn−2, (2.10)

which remove the first symbol and the last symbols of elements in Xn , respectively. For
i, j, k ∈ A , define

Xi;n = {i x1 . . . xn−1 ∈ Xn} (2.11)

consisting of elements in Xn beginning with i , and

Xi, j;n = Xi;n ∪ X j;n, Xi, j,k;n = Xi;n ∪ X j;n ∪ Xk;n (2.12)

the set of elements in Xn whole first symbols are in {i, j} and in {i, j, k}, respectively. The
following lemma is useful in the next section.

Lemma 2.6 (a) l(X0;n) = l(X1;n) = l(X2;n) and l(X3;n) = l(X4;n);
(b) l(Xi;n) ∪ l(X j;n) = Xn−1 for i ∈ {0, 1, 2} and j ∈ {3, 4}.
Proof Recall that if i ∈ {0, 1, 2}, then i is followed by 0, 1, 3, and if j ∈ {3, 4}, then j is
followed by 2 and 4. This leads to

l(Xi;n) = X0;n−1 ∪ X1;n−1 ∪ X3;n−1 and l(X j;n) = X2;n−1 ∪ X4;n−1,

which proves the lemma. ��
Denote by ωn , αn, βn, γn, ζn, ηn the cardinalities of Xn, X0;n, X1;n, X2;n, X3;n, X4;n ,

respectively. The following result will be useful in the next section.

Proposition 2.7 One has

(a) ζn = ηn = ωn−2;
(b) αn + ζn = ωn−1;
(c) αn = βn = γn = 1

3 (ωn − 2ωn−2) = ωn−1 − ωn−2.

Proof Since 3, 4 are followed by 2, 4 and 0, 1, 2 are followed by 0, 1, 3, one has

ζn = ηn = γn−1 + ηn−1

= (αn−2 + βn−2 + ζn−2) + (γn−2 + ηn−2) = ωn−2,

which is (a). Similarly,

αn + ζn = (αn−1 + βn−1 + ξn−1) + (γn−1 + ηn−1) = wn−1
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and (b) is proved. For (c), αn = βn = γn is obvious. It follows from (a) and αn + βn + γn +
ζn + ηn = ωn that

αn = 1

3
(ωn − 2ωn−2). (2.13)

For the last equality of (c), observe that

αn = αn−1 + αn−1 + ζn−1 = 3αn−1 + 2ζn−1 − (αn−1 + ζn−1) = ωn−1 − ωn−2.

The proof is complete. ��
Corollary 2.8 One has

(a) ωn = 3ωn−1 − ωn−2;
(b) αn = ωn − 2ωn−1 and ζn = 3ωn−1 − ωn. In particular, 2ωn−1 < ωn < 3ωn−1;
(c) ωn = 2ωn−1 + ωn−2 + · · · + ω2 + 8.

Proof (a) This follows immediately from Proposition 2.7 (c).
(b) This is obtained due to 3αn + 2ζn = ωn and αn + ζn = ωn−1.
(c) Indeed,

ωn = 3ωn−1 − ωn−2 = 2ωn−1 + 2ωn−2 − ωn−3

= 2ωn−1 + ωn−2 + 2ωn−3 − ωn−4 + · · ·
= 2ωn−1 + ωn−2 + ωn−3 + · · · + 2ω3 − ω2

= 2ωn−1 + ωn−2 + · · · + ω2 + 8,

using ω3 − ω2 = ω2 + 8.
��

Remark 2.9 (a) Relation in Corollary 2.8 (a) is a homogeneous linear difference equation of
second order. This allows us to calculate ωn without using matrixAn . The characteristic
equation has two eigenvalues λ, λ−1 as its roots; and with ω1 = 5 and ω2 = 13, we
obtain again the explicit formula (2.3).

(b) From Corollary 2.8 (b) and in conjunction with (2.2)–(2.3), we have

αn = 3an−1 + 2bn−1,

which is the sum of entries in the first row of An and this agrees with [14, Prop. 2.2.12].

3 Hierarchy of Clusters of Periodic Orbits

In this section we first show that the number of p-clusters of periodic orbits of T is the
number of p-degeneracy classes. We derive an asymptotic formula for the number of p-
clusters. Algorithms that list all periodic orbits and grouping them to clusters are also given.

3.1 Cluster Counting as Degeneracy Class Counting

Let x ∈ T
2 be an n-periodic point of T . The orbit of T through x is defined by

O(x) = {T i (x), i = 0, 1, . . . , n − 1}.
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Fig. 3 Some clusters of periodic orbits with n = 7

Definition 3.1 Let x, y be n-periodic points of T and p ∈ N
∗. We say O(x) and O(y) are

p-close if there exists a permutation α : {0, 1 . . . , n − 1} → {0, 1 . . . , n − 1} such that
d(T k(x), T α(k)(y)) < λp, for all k ∈ {0, . . . , n − 1}.

Roughly speaking, from every point on the orbit of x, there exists a point on the one of y
such that the distance between them is less than λp . This means that these two orbits enter
the same parts of T

2 but with different order. When O(x) and O(y) are p-close, we say that
they belong to the same p-cluster. So, one p-cluster contains orbits which are p-close to each
other.

Next we recall an equivalence relation ∼ in Pn as follows. For x, y ∈ Pn , we write x ∼ y
if there is k ∈ {0, . . . , n − 1} such that σ k(x) = y. Let Pn = Pn/ ∼. For convenience, we
also write x = [x0x1 . . . xn−1] ∈ Pn .

Definition 3.2 [10] Let 1 ≤ p ≤ n be an integer. Two periodic sequences x =
[x0 . . . xn−1], y = [y0 . . . yn−1] ∈ Pn are p-close if any element in X p appears the same

number of times both in x and y. Then we write x
p∼ y.

Proposition 3.3 [10] (i) The relation
p∼ is an equivalence relation.

(ii) If x
p+1∼ y, then x

p∼ y.

The first property (i) divides the set Pn into equivalence classes. Each equivalence class
consists of sequences which are p-close to each other and it is called a p-cluster. The second
property (ii) allows us to arrange periodic sequences as a hierarchical structure; see Fig. 3
below.

Example 3.4 According to Proposition 3.3, all periodic sequences in Pn can be illustrated by
a line chart like Figure 2 in [10]. We present here some clusters in Fig. 3 in the case of n = 7.

(a) Six sequences [0011342], [0013421], [0101342], [0103421], [0110342], [0034211]
belong to the same 1-cluster. This is separated into six different 2-clusters; see Fig.3a.

(b) Five periodic sequences [0000132], [0000321], [0001032], [0003201], [0010032] are in
the same 1-cluster because the numbers of times 0, 1, 2, 3, 4 appear in these sequences
are 4, 1, 1, 1, 0, respectively. This 1-cluster is divided into three 2-clusters: [0000132]
and [0000321] are in independent clusters, whereas [0001032], [0003201], [0010032]
belong to the same 2-cluster since 00 appears twice in all three sequences, 01, 10, 03,
32, 20 appear once, and 11, 13, 21, 23, 34, 42, 44 are absent. This 2-cluster divides into
three disjoint 3-clusters; see Fig. 3b.

123
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Fig. 4 Connection rule in Gp

(c) For n = 7, p = 3, only two clusters contain more than one element, namely:
{[0001011], [0100011]} and {[0010111], [0011101]}. For n = 7 and p ≥ 4, each cluster
has only one element (see Fig. 3a and [10, Fig. 2]).

Remark 3.5 Since A is a 5 × 5 matrix with a00 = a01 = a10 = a11 = 1 and the adjacency

matrix of the baker’s map is

(
1 1
1 1

)
, the hierarchy of periodic orbits with arbitrary length n

consists of the hierarchy of respective periodic orbits of the baker’s map. �

Each n-periodic sequence x ∈ �A corresponds to an n-periodic point of T . Therefore,
each equivalence class in Pn corresponds to an n-periodic orbit of T . The following result
allows us to study the clustering of periodic sequences in Pn instead of working on the
clustering of periodic orbits of T .

Proposition 3.6 If two equivalence classes x, y ∈ Pn are (2p+ 1)-close, then the respective
orbits of T in T

2, which are O(h(x)) and O(h(y)), are p-close.

Proof Suppose that x = [x0 . . . xn−1], y = [y0 . . . yn−1] ∈ Pn are (2p + 1)-close and let
h(x) = x, h(y) = y ∈ T

2. Then, for every i ∈ {0, . . . , n−1}, there exists i ′ ∈ {0, . . . , n−1}
such that xi+k = yi ′+k for all k ∈ {−p, . . . , p}. We can choose i ′ such that if i �= j , then
i ′ �= j ′. Define permutation α : {0, . . . , n− 1} → {0, . . . , n− 1} by α(i) = i ′. We are going
to show that d(T i (x), T α(i)(y)) < λ−p for all i ∈ {0, . . . , n − 1}. For i ∈ {0, . . . , n − 1},
note that T i+k(x) ∈ Rxi+k and T α(i)+k(y) ∈ Ryα(i)+k for all k ∈ {−p, . . . , p}. Equivalently,
T i (x) ∈ T−k(Rxi+k ) and T α(i)(y) ∈ T−k(Ryα(i)+k ) for all k ∈ {−p, . . . , p}. Since xi+k =
yα(i)+k for all k ∈ {−p, . . . , p}, it follows that T i (x), T α(i)(y) ∈

p⋂
k=−p

T−k(Ri+k). By

Lemma 2.4, d(T i (x), T α(i)(y)) < λp , completing the proof. ��
Next we are going to show that the counting problem of p-close periodic orbits is as the

one of counting closed paths on the de Bruijn graph Gp passing the same number of times
through its edges.

Definition 3.7 For p ≥ 2. The de Bruijn graph G p is a digraph defined as follows:

(i) the set of vertices V (Gp) are given by elements in X p−1 and
(ii) the set of edges E(Gp) are given by elements in X p:

E(Gp)=
{
(x1 . . . xp−1,y1 . . . yp−1) ∈ X p−1 × X p−1 : xi+1= yi , for i ∈ {1, . . . , p − 2}}.

More instantly, the edge x1x2 . . . xp−1xp goes from the vertex x1x2 . . . xp−1 to the vertex
x2 . . . xp−1xp (see Fig. 4).

The graph Gp has ωp−1 vertices and ωp edges. The number of incoming and outgo-
ing edges at each vertex depends on its beginning and ending symbols, so the graph is not
balanced. The vertex x1 . . . xp−1 with x1 ∈ {0, 1, 3} (resp. x1 ∈ {2, 4}) has 3 (resp. 2) incom-
ing edges, namely 0x1 . . . xp−1, 1x1 . . . xp−1, 2x1 . . . xp−1 (resp. 3x1 . . . xp−1, 4x1 . . . xp−1).
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Fig. 5 Edges of graph G2 (a) are vertices of graph G3 (b)

The vertex x1 . . . xp−1 with xp−1 ∈ {0, 1, 2} (resp. xp−1 ∈ {3, 4}) has 3 (resp. 2) outgoing
edges, namely x1 . . . xp−10, x1 . . . xp−11, x1 . . . xp−13 (resp. x1 . . . xp−12, x1 . . . xp−14). For
instance, let us consider p = 2. The de Bruijn graph G2 has vertices 0, 1, 2, 3, 4 and edges
00, 01, 03, 10, 11, 13, 20, 21, 23, 32, 34, 42, 44 (see Fig. 5a), whereas the graph G3 has
vertices which are edges of graph G2, and has 34 edges which are the elements of X3 (see
Fig. 5b).

We say that a path on the graph Gp has the length of n if it passes through n edges with
multiplicity. A path on Gp is called closed if the first and last vertices coincide, i.e., it starts
and ends at the same vertex.

Proposition 3.8 There is a one-to-one correspondence between the set of closed paths of
length n in G p and the set of n-periodic sequences Pn.

Proof Let g be a path of length n in Gp and suppose that its 1st edge, 2nd edge, …, nth edge
have the symbols x0 . . . xp−1, x1 . . . xp , x2 . . . , xp+1, xn−1 . . . xn+p−2, respectively. If the
path g is closed, then xn . . . xn+p−2 = x0 . . . xp−2. We associate this closed path of length
n with the n-periodic sequence x = [x0x1 . . . xn−1] ∈ Pn . In this way, the i th edge of Gp

associates to the symbol xi xi+1 . . . xi+p−1 of sequence x = [x0 . . . xn−1].
Conversely, let x = [x0x1 . . . xn−1] ∈ Pn . Then xi xi+1 . . . xi+p−1 ∈ X p for i = 0 . . . n−

1, here xn+ j = x j for j = 0, . . . , p − 1. There exists a unique path passing through the n
edges xi xi+1 . . . xp−1+i , i = 0 . . . n − 1, and since xn . . . xn+p−2 = x0 . . . xp−2, the path is
closed and has the length of n. The proof is complete. ��

For x ∈ Pn , denote by gx the closed path associated the sequence x .

Definition 3.9 A p-degeneracy class in Gp is a family of closed paths which visit each edge
of Gp with the same number of times.

For x ∈ Pn and a ∈ X p , we denote by na(x) the number of times a ∈ X p appears in x . We
associate with each x ∈ Pn a ωp-dimensional integer vector with non-negative components

x �→ np(x) = {na(x)}a∈X p ∈ Z
ωp
+ .

Proposition 3.10 Let x, y ∈ Pn. The following assertions are equivalent:

(a) x
p∼ y;
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(b) np(x) = np(y);
(c) gx and gy belong to the same p-degeneracy class.

Proof (a) ⇔ (b): This is obvious. (b) ⇔ (c): By Definition 3.9, gx and gy are in the same
p-degeneracy class if and only if gx and gy visit each edge the same number of times.
By the proof of Proposition 3.8, this is equivalent to na(x) = na(y) for all a ∈ X p , or
np(x) = np(y), which is (b). ��

The above result shows that the problem of counting number of clusters of periodic
sequences is equivalent to the one of counting number of degeneracy classes. The latter will
be solved in the next section.

3.2 The Number of p-Degeneracy Classes

We treat the elements in X p as p-digit-numbers in the decimal numerical system and arrange
them in the ascending order with the convention of 2 > 3. This convention makes things
easier to get the explicit forms of the matrices Sp and Rp below. For instance, let us consider
some small values of n:

X1 ={0, 1, 3, 2, 4}, X2 = {00,01,03,10, 11, 13, 32, 34, 20, 21, 23, 42, 44},
X3 = {000,001,003,010,011, 013, 032, 034, 100, 101, 103, 110, 111, 113, 132, 134, 320,

321,323, 342,344,200,201,203, 210, 211, 213, 232, 234, 420, 421, 423, 442, 444}.

For p ≥ 2, let Sp = {Sp(a, b)}a∈X p−1,b∈X p be amatrix with rows labelled by the elements
in X p−1 and columns labelled by the elements in X p , defined by

Sp(a, b) =
{
1 if a is the last p − 1 symbols of b,

0 otherwise
(3.14)

and let Rp = {Rp(a, b)}a∈X p,b∈X p−1 be a matrix with rows labelled by the elements in X p

and columns labelled by the elements in X p−1, defined by

Rp(a, b) =
{
1 if b is the first p − 1 symbols of a,

0 otherwise.
(3.15)

In other words,

Sp(a, b) =
{
1 if l(b) = a,

0 otherwise,
and Rp(a, b) =

{
1 if r(a) = b,

0 otherwise,
(3.16)

where the maps l and r are defined in (2.9)–(2.10). Recall that the elements in X p and X p−1

indicate the edges and vertices of Gp , respectively. So Sp(a, b) = 1 means that the edge
having the code a is possible to enter the vertex with the code b, whereas Rp(a, b) = 1
means that the edge with the code b can exit from the vertex having the code a. Intuitively,
for p = 2 the connection rule of S2 is illustrated in Table 1.
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Table 1 The connection rule of S2

The matrices S2 and R2 are given by

S2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Define

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For p ≥ 3, we obtain the following result.

Theorem 3.11 One has

Sp =
(
Iαp

�
Iαp+ζp Iαp+ζp

)
, p ≥ 3, (3.17)

R3 =
⎛
⎝F � �

� R2 �

� � R2

⎞
⎠ , (3.18)
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Table 2 The connection rule of Sp

Rp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F � � . . . � � �

� R2 � . . . � � �
...

...
...

. . .
...

...
...

� � � . . . Rp−2 � �

� � � . . . � Rp−1 �

� � � . . . � � Rp−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, p ≥ 4, (3.19)

where the symbol � denotes the matrices of entries 0 of suitable dimensions; recall αp and
ζp from Proposition 2.7.

Proof We first verify the form of Sp . Recall that Sp is formed by rows and columns labelled
by the elements in X p−1 and X p , respectively. Decompose

X p−1 = X0,1,3;p−1 ∪ X2,4;p−1

and
X p = 0X0,1,3;p−1 ∪ 1X0,1,3;p−1 ∪ 3X2,4;p−1 ∪ 2X0,1,3;p−1 ∪ 4X2,4;p−1;

recall (2.12). Note that the set X p is obtained by adding labels 0, 1, 2 to the left of X0,1,3;p−1
and 3, 4 to the left of X2,4;p−1. The matrix Sp is illustrated by Table 2.

Recall from the proof of Proposition 2.7 that card(X0,1,3;p−1) = αp and card(X2,4;p−1) =
ζp . Then

card(0X0,1,3;p−1) = card(1X0,1,3;p−1) = card(2X0,1,3;p−1) = αp

and
card(3X2,4;p−1) = card(4X2,4;p−1) = ζp.

It is clear that

Sp(a, b) =

⎧⎪⎨
⎪⎩
Iαp (a, b) if a ∈ X0,1,3;p−1, b ∈ 0X0,1,3;p−1 ∪ 1X0,1,3,p−1 ∪ 2X0,1,3;p−1,

Iζp (a, b) if a ∈ X2,4,p−1, b ∈ 2X0,1,3;p−1 ∪ 4X2,4;p−1,

0 otherwise.

(3.20)

This leads to the form of Sp in (3.17).
Next we verify the form of Rp . Let us start with p = 3. The symbols of columns of F are

the first three elements of X2, namely

CF = {00, 01, 03}.
The symbols of rows of F are the first eight elements in X3, obtained by adding allowed
symbols to the right of CF , including

RF = {000, 001, 003, 010, 011, 013, 032, 034}.
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Table 3 The connection rule in Rp

This explains the presence of F in R3.We also obtain that R3(a, b) = 0witha /∈ RF , b ∈ CF .
The next elements of X2 after RF are

CR2 = {10, 11, 13, 32, 34}.
The next elements of X3 after RF are obtained by adding allowed symbols to the right of
elements in CR2 , including

RR2 = {100, 101, 103, 110, 111, 113, 132, 134, 320, 321, 323, 342, 344}.
This leads to the appearance of the first matrix R2 and R3(a, b) = 0 for b ∈ CR2 , b /∈ RR2 .
An analogous argument is applied to have the second appearance of R2 and we obtain the
form of R3 in (3.18).

For p ≥ 4, we decompose the rows

X p = X0;p ∪ X1,3;p ∪ X2,4;p

and the columns
X p−1 = X0;p−1 ∪ X1,3;p−1 ∪ X2,4;p−1.

We first calculate the entries of Rp in rows X1,3;p ∪X2,4;p and columns X1,3;p−1∪X2,4;p−1.
By the definition of Rp in (3.15) we observe that if a ∈ X p and b ∈ X p−1 have the same
first symbol, then Rp(a, b) = Rp−1(l(a), l(b)). In other words, for any i ∈ {0, 1, 2, 3, 4}

Rp(a, b) = Rp−1(l(a), l(b)) for (a, b) ∈ Xi,p × Xi,p−1. (3.21)

By Lemma 2.6(b) that

l(X1,3;p) = X p−1 and l(X1,3;p−1) = X p−2,

and X1,3;p = X1;p ∪ X3;p and X2,4;p = X2,4;p−1, the relation (3.21) leads to the first and
the second presences of Rp−1 in Rp; see Table 3 for an illustration.

Next, for the entries with rows labelled by X0;p and columns labelled by X0;p−1, we
define

Fp(a, b) = Rp(a, b) for (a, b) ∈ X0;p × X0;p−1; (3.22)

see Table 3. This means that Fp is the matrix formed from the first αp rows and the first αp−1

columns of Rp . It remains to verify the following claim:

Fp = diag(F, R2, . . . , Rp−2) for p ≥ 4. (3.23)

Formula (3.23) is rewritten as

Fp = diag(Fp−1, Rp−2) for p ≥ 4. (3.24)
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Table 4 The connection rule of Fp

Decompose the rows
X0;p = X00;p ∪ X01;p ∪ X03;p

and the columns
X0;p−1 = X00;p−1 ∪ X01;p−1 ∪ X03;p−1.

Observe from property (3.21) and definition (3.22) that

Fp(a, b) = Rp(a, b) = Rp−1(l(a), l(b)) for (a, b) ∈ X0;p × X0;p−1. (3.25)

In particular,

Fp(a, b) = Fp−1(l(a), l(b)) for (a, b) ∈ X00;p × X00;p−1; (3.26)

note that (3.26) is well-defined since (l(a), l(b)) ∈ X0;p−1 × X0;p−2. In addition, owing to
l(X00;p) = X0;p−1 and l(X00;p−1) = X0;p−2, relation (3.26) leads to the presence of Fp−1

in Fp . From (3.25) one also has

Fp(a, b) = Rp−2(l
2(a), l2(b)) for (a, b) ∈ (X01;p × X01;p) ∪ (X03;p−1 × X03;p−1).

(3.27)
If (a, b) ∈ (X01;p × X01;p) ∪ (X03;p−1 × X03;p−1), then (l2(a), l2(b)) ∈ (X p−2, X p−3).
Furthermore, by Lemma 2.6 (b),

l2(X01;p ∪ X03;p) = X p−2 and l2(X01;p−1 ∪ X03;p−1) = X p−3

the presence of Rp−2 in Fp . Finally, is clear that if a ∈ X0;p and b ∈ X0,p−1 have different
first symbols, then Fp(a, b) = Rp(a, b) = 0. We have proved (3.24). For an illustration, see
Table 4.

��
Remark 3.12 (a) Each row of Sp as well as Rp has only one entry 1 and each column has

two or three entries 1. The columns with two entries 1 correspond to the elements ending
with 3 or 4 since 3 and 4 are followed by 2 and 4.

(b) Formula (3.19) explains the equality in Corollary 2.8(c).
(c) This argument can be generalized for arbitrary adjacency matrix with entries 0 and 1. �

Theorem 3.13 The number of p-clusters in Pn is the number of vectors np = (na)a∈X p ∈
Z

ωp
+ satisfying the following constraints

(i) ∑
a∈X p

na = n; (3.28)
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(ii)
Spnp = RT

p np; (3.29)

(iii) If there is a ∈ {[0], [1], [4]} with 0 < na < n, then nb > 0 for some b ∈ Xk;p \ {a},
where k is the first symbol of a.

Proof Due to the fact that the matrices Sp and RT
p have dimension ωp−1 × ωp , system

(3.28)–(3.29) consists of ωp−1 + 1 linear equations with ωp variables. Since each vector np

corresponds to a periodic sequence of length n, its coordinates must satisfy the following:

(i) The length of the closed path is equal to n, so (3.28) holds;
(ii) The number of times the closed path visiting a vertex of Gp is the same to the one of this

path exiting this vertex. This condition is expressed by equation (3.29).

Furthermore, if (a, b) ∈ {([0], [0]), ([1], [1]), ([4], [4])} ⊂ X p−1 × X p , then Sp(a, b) =
RT
p (a, b). This means that the visiting and exiting at each vertex [0], [1], [4] are the same,

and the variables na , a ∈ {[0], [1], [4]} in (3.29) are eliminated after simplifying. Therefore,
constraint (iii) is necessary to guarantee the path is connected since otherwise the subpath
visiting the edge a would be isolated. The theorem is proved. ��

Now we are in a position to determine the number of clusters. For, we first verify that

rank(Sp − RT
p ) = ωp−1 − 1. (3.30)

Recall that Sp − RT
p has dimension ωp−1 × ωp . Every column of Sp and RT

p has only one

element equal to 1, whereas the others equal 0. Summing all the rows of Sp − RT
p gives a

null row. This yields rank(Sp − RT
p ) ≤ ωp−1 − 1. In order to get the equality, we consider

the square matrix Ep which is formed from the last ωp−1 columns of Sp − RT
p and has the

form
Ep−1 = Iωp−1 − Tp−1,

where Tp−1 = (ai j )ωp−1×ωp−1 is the matrix formed from the last ωp−1 columns of RT
p . Since

ai j = 0 for all 1 ≤ i ≤ j ≤ ωp−1 − 1, it follows that the (ωp−1 − 1)th main subdeterminant
of Ep−1 is 1, and so (3.30) holds. This implies that system (3.29) contains ωp−1 − 1 linearly
independent equationswithωp variables.By choosingωp−ωp−1 =: κp appropriate variables
freely, the remaining ωp−1 ones are uniquely fixed by equations (3.28)–(3.29). Furthermore,
the constraint na ≥ 0 for a ∈ X p must be satisfied. They define a κp-polytope Vp in R

κp .
For instance, the polytope Vp is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n − (a11x1 + · · · + a1κp xκp ) ≥ 0

a21x1 + · · · + a2κp xκp ≥ 0

. . .

aωp−11x1 + · · · + aωp−1κp xκp ≥ 0

xi ≥ 0, i = 1, . . . , κp

for some integers ai j , i = 1, . . . , ωp − 1, j = 1, . . . , κp . Consider the polytope Wp given
by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + · · · + a1κp xκp ≤ 1

a21x1 + · · · + a2κp xκp ≥ 0

. . .

aωp−11x1 + · · · + aωp−1κp xκp ≥ 0

xi ≥ 0, i = 1, . . . , κp.
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Then Vp = nWp and the number of solutions of systems (3.28)–(3.29) with non-negative
integer components is card(nWp ∩ Z

κp ). According to Ehrhart’s theorem (see [5, Section
3.4]), this number is a polynomial in n with the leading term vol(Wp)nκp , where vol(Wp)

is the volume of polytope Wp; see [13] for a calculation of vol(Wp). We have shown the
following result.

Theorem 3.14 The number of p-clusters of n-periodic sequences in Pn satisfies the asymp-
totic formula

N (n, p) = wpn
κp (1 + O(1/n)) as n → ∞,

where wp is a constant depending on p.

Note that κp = ωp − ωp−1 is obtained from (2.3):

κp =
√
5

10

[(3 + √
5

2

)p−1 −
(3 − √

5

2

)p−1]
,

where wp can be explicitly computed for small value p.

Remark 3.15 Condition (iii) in Theorem 3.13 can be rewritten as follows: For every a ∈
{[0], [1], [4]}, na(n − na)(

∑
b∈Xk;p\{a} nb − 1) ≥ 0, where k is the first symbol of a. For

p = 2, this becomes

n00(n−n00)(n01+n03−1) ≥ 0, n11(n−n11)(n10+n13−1) ≥ 0, n44(n−n44)(n42−1) ≥ 0.
(3.31)

Example 3.16 (a) The number of 2-clusters in Pn is represented by the number of vectors

n2 = (n00, n01, n03, n10, n11, n13, n32, n34, n20, n21, n23, n42, n44) ∈ Z
13+

satisfying the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n00 + n01 + n03 + n10 + n11 + n13 + n32
+n34 + n20 + n21 + n23 + n42 + n44 = n

n01 + n03 − n10 − n20 = 0

n03 + n13 − n20 − n21 = 0

n03 + n13 + n23 − n32 − n34 = 0

n34 − n42 = 0

(3.32)

with constraint (3.31). For n = 7, the above system has 98 solutions with non-negative
integer coordinates, so the number of 2-clusters is 98, which agrees the one in Table 5. Note
that without constraint (3.31), i.e, without conditions (iii), this number is 114.

In order to know how periodic orbits contribute to each cluster, we can use algorithms in
Sect. 3.3. The total 123 periodic orbits are grouped in 98 2-clusters. There are 77 clusters
in which each cluster has one element, 17 clusters with two elements and four clusters with
three elements. The 2-clusters with three elements are {[0001011], [0010011], [0001101]},
{[0010111], [0011011], [0011101]}, {[0001032], [0003201], [0010032]}, {[0111321], [0113
211], [0132111]}.

(b) For arbitrary n, choose independent integers n01 = x1, n03 = x2, n13 = x3, n20 =
x4, n23 = x5, n34 = x6, n00 = x7, n11 = x8. Then n10 = x1 + x2 − x4, n21 = x2 + x3 −
x4, n32 = x2+x3+x5−x6, n42 = x6, n44 = n−(2x1+4x2+3x3−x4+2x5+x6+x7+x8).
The number of 2-clusters is the number of points with non-negative integer components in
the polytope V8 consisting of (x1, . . . , x8) ∈ R

8 satisfying the constraint
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n − (2x1 + 4x2 + 3x3 − x4 + 2x5 + x6 + x7 + x8) ≥ 0,

x1 + x2 − x4 ≥ 0,

x2 + x3 − x4 ≥ 0,

x2 + x3 + x5 − x6 ≥ 0,

xi ≥ 0, i = 1, . . . , 8.

(3.33)

Consider the polytope P defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2x1 + 4x2 + 3x3 − x4 + 2x5 + x6 + x7 + x8 ≤ 1,

−x1 − x2 + x4 ≤ 0,

−x2 − x3 + x4 ≤ 0,

−x2 − x3 − x5 + x6 ≤ 0,

−xi ≤ 0, i = 1, . . . , 8.

(3.34)

The volume of polytope P is

vol(P) = 1

414720
.

Then, the number of solutions of system (3.31)–(3.32) with non-negative integer components
is

N (n, 2) = n8

414720
+ O(n7) as n → ∞.

It is worth noting that the leading term of N (n, 2) does not change in the case of constraint
(3.31) applied.

Remark 3.17 (a) In [10, Appendix C], the authors did not require constraint (iii) in Theorem
3.13. As a result, this leads to a larger number of clusters than the one it must be. In Example,
they considered p = 2 and n = 7. Constraints (i) and (ii) in Theorem 3.13 take the form

n01 = n10, n11 + n10 + n00 = 7,

whichhas 20non-negative integer solutions (n00, n01, n10, n11): (0,0,0,7), (0,1,1,5), (0,2,2,3),
(0,3,3,1), (1,0,0,6), (1,1,1,4), (1,2,2,2), (2,0,0,5), (2,1,1,3), (2,2,2,1), (3,0,0,4), (3,1,1,2),
(3,2,2,0), (4,0,0,3), (4,1,1,1), (5,0,0,2) (5,1,1,0), (6,0,0,1), (7,0,0,0). However, according to
[10, Figure 2], there are only 14 2-clusters because the solutions (1,0,0,6), (2,0,0,5), (3,0,0,4),
(4,0,0,3), (5,0,0,2), (6,0,0,1) do not give us any periodic orbits. The matter of fact is that if
the symbols 00 and 11 both appear in the same sequence then there must be the presences of
01 and 10. This means that the constraints in [10, Appendix C] are not enough and constraint
(iii) in Theorem 3.13 is necessary. Nevertheless, this does not affect the leading asymptotic
formula for the number of p-clusters for arbitrary p, in particular, for p = 2 (see [10, (C.3)]).

(b) Theorem 3.13 gives the number of p-clusters but it does not show any information
about which sequences are in the same cluster. Algorithms in the next subsection will help
us overcome this disadvantage. �

3.3 Algorithms that List All Clusters

In the remaining part of this paper we present algorithms that list all periodic orbits and group
them into p-clusters for all p ≤ n. In what follows, |X | denoted the cardinality of a given
set X .
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Algorithm 1: Find Xn , the set of all possible sequences of length n

Input: Matrix A, length n
Output: Xn - the set of all possible sequences of length n
/* Create the set X2 */

1 X2 = ∅ // Initialize the set X2

2 for i = 1 : 5 do
3 for j = 1 : 5 do
4 if Ai j �= 0 then
5 X2 = X2 ∪ [i − 1, j − 1]
/* Partition the set X2 into basic subsets */

6 for i = 0 : 4 do
7 Xi;2 = ∅ // Initialize the set Xi;2
8 for i = 1 : |X2| do
9 Let j = X2(i, 1) // Get the index of the basic subset

10 X j;2 = X j;2 ∪ X2(i, :)
/* Create the set Xn */

11 for k = 3 : n do
12 Xk = ∅ // Initialize the set Xk

13 for i = 1 : |Xk−1| do
14 Set j = Xk−1(i, k − 1)
15 Xk = Xk ∪ [Xk−1(i, 1 : k − 2), X j;2]

Algorithm 2: Find the set consisting of all periodic sequences of period n

Input: Xn - the set of all possible sequences of length n
Output: Pn - the set consisting of all periodic sequences in �A of period n after

eliminating permutations
// Initialize the set Pn

1 Pn = ∅

2 for i = 1 : |Xn | do
// Take the last and the first elements of the ith sequence

3 Set xlast = Xn(i, n), xfirst = Xn(i, 1)
4 if [xlast, xfirst] ∈ X2 then

// Create the set of all permutations of the ith sequence

5 Xpermutation = {x | x is a permutation of Xn(i, :)}
// Check that no permutation of i-th (periodic) sequence in Pn

6 if Xpermutation ∩ Pn = ∅ then
7 Pn = Pn ∪ Xn(i, :)

123



Hierarchical Structure of Periodic Orbits... Page 21 of 26    28 

Algorithm 3: Create equivalence classes with respect to the relation
p∼

Input: Pn - the set of n-periodic sequences, p ∈ N, X p - the set of all possible
sequences of length p

Output: Xbranch2cluster: set of equivalence classes of Pn with respect to the relation
p∼

1 Set m = |Pn |
/* Create a matrix Xcount whose columns are the number of occurrences

of an element of Pn in X p */

2 Set Xcount = Om×|X p | // zero matrix of size m × |X p |
3 Set XcountU = ∅ // the set of unique elements in Xcount (eliminate

equivalence)

4 for i = 1 : m do
5 for j = 1 : n do
6 if j ≤ n + 1 − p then

// Take p elements in Pn(i) from the j-element

7 Set Xwindow = Pn(i, j : j + p − 1)

8 else
// Take the last (n − j) elements and the first (p − (n − j))

elements of Pn(i)

9 Set Xwindow = [Pn(i, j : n),Pn(1 : j + p − n − 1)]
// Save the number of occurences of Xwindow in X p

10 for k = 1 : |X p| do
11 if Xwindow = X p(k) then
12 Xcount(i, k) = Xcount(i, k) + 1

// Save this element to XcountU if it has not yet been appeared in

this set

13 Set XcountU = XcountU ∪ Xcount(i, :)
14 Set N = |XcountU|
15 for k = 1 : N do

// The indices of equivalet elements in Xcount

16 I = {i ∈ {1, . . . ,m} | Xcount(i, :) = XcountU(k)}
17 Set Xbranch2cluster(k) = Pn(I )
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Algorithm 4: Find all p-close sequences in Pn

Input: Pn , Xn

Output: p-close sequences
1 Set m = |Pn |.
2 Set p = 0.
// The set of clusters will be branched in the next iteration

3 Set BranchNext = {Pn}.
4 repeat

// The set of clusters is branched in this iteration

5 Set BranchCurrent = BranchNext.
6 Set BranchNext = ∅

7 p = p + 1.
8 Set Cluster(p) = ∅ // the set of all p-close sequences

9 for i = 1 : |BranchCurrent| do
10 Perform Algorithm 3 to get the set of clusters Xbranch2cluster, where the input is

Pn = BranchCurrent(i), p and X p .
11 Set Cluster(p) = Cluster(p) ∪ Xbranch2cluster.

12 for k = 1 : |Xbranch2cluster| do
13 if |Xbranch2cluster(k)| ≥ 2 // Check if each cluster has at least 2

sequences

14 then
15 BranchNext = BranchNext ∪ Xbranch2cluster(k)

16 until BranchNext = ∅

Running the above algorithms, we get the result in Table 5, in which the symbol � indicates
the respective number of periodic orbits. Note that for a fixed n, the number of p-clusters is
monotonically increasing on p since one p-cluster may be decomposed into several (p+1)-
clusters..

The more number of p-clusters, the less number of that containing many periodic orbits.
Based on the result above, the maximum of p, denoted by pmax, for which there are at least
one p-cluster having more than one element is illustrated in the table below.

Appendix: Complexity of Algorithms

A1 Algorithm 1

First, we will prove that the number of elements in the set Xn is bounded by 13 · 3n−2, or
equivalently, |Xn | = O(3n−2) for all n ≥ 2 by induction. For, recall from Corollary 2.8 (b)
that |Xn | < 3|Xn−1| for n ≥ 2. Then |Xn | < 13 · 3n−2 for n ≥ 2. From lines 1 to 10 of
Algorithm 1, the complexity is O(1) (independent of n). At line 13, for each k ∈ {3, . . . , n},
the algorithm performs |Xk−1| iterations. Therefore, the complexity of the algorithm is

|X2| + |X3| + · · · + |Xn−1| ≤ 13 + 13 · 3 + · · · + 13 · 3n−3 = 13

2
(3n−2 − 1).

Or equivalently, the complexity of Algorithm 1 is O(3n−2).
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Table 6 The largest p for which
there is at least one p-cluster
containing at least two elements

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pmax � 1 1 3 3 4 5 5 6 7 7 8 9 9

A2 Algorithm 2

The main computational complexity of Algorithm 2 lies in generating permutations of a
sequence with n elements (line 5 of this algorithm), which has a complexity of O(n!). The
algorithm needs to perform |Xn | iterations (line 2). Recall that |Xn | ≤ 13 · 3n−2 for all
n ≥ 2. Therefore, combining these above results, the overall complexity of Algorithm 2 is
O(3n−2 · n!).

A3 Algorithm 3

We first recall that |Pn | = λn + λ−n . Since Pn is the set of elements in Pn which are not
related by a cyclic shift and the shift map σ has three fixed points, one has

m := |Pn | = λn + λ−n − 3

n
+ 3.

From lines 6 to 9 of Algorithm 3, extracting p elements from Pn(i) has a complexity of
O(p). Comparing two sequences with p elements in line 11 also has a complexity of O(p).
Thus, the complexity of lines 10 to 12 is O(p|X p|) = O(p · 3p−2) (according to Sect. 1).
Consequently, the complexity of lines 5 to 12 is O(n(p+ p·3p−2)) = O(np·3p−2). Updating
elements in line 13 involves comparing with elements already present in XcountU up to m
times, and each comparison has a complexity of O(3p−2) (comparing two sequences with
|X p| elements). Therefore, line 13 has a complexity of O(m ·3p−2). Thus, the complexity of
lines 4 to 13 is O((np +m) · 3p−2). Note that np < m (see Table 1). Hence, the complexity
of lines 4 to 13 is O(m · 3p−2).

We note that N = |XcountU| = O(m). In line 16, the complexity of creating set I
is O(m · 3p−2) (perform m comparisons of sequences with length |X p|). Line 17 has a
complexity of O(m) (since it involves creating a list of sequences from indices I with at
most m elements). Therefore, the complexity of lines 15 to 17 is O(m(m · 3p−2 + m)) =
O(3p−2 · m2).

In summary, Algorithm 3 has a complexity of O(m2 · 3p−2) = O( λ2n

n2
· 3p−2).

A4 Algorithm 4

According toAppendixA3, line 10ofAlgorithm4has a complexity ofO(|BranchCurrent(i)|2·
3p−2) for all p ∈ N. The condition in line 13 and updating the set BranchNext in line 15
only have a complexity of O(1) (no sequence comparisons are required as in Algorithm 3).
Therefore, lines 12 to 15 have a complexity of

O(|Xbranch2cluster|) = O(N (n, p)) = O(m),

since |Xbranch2cluster| = N (n, p) and the set Pn can be partitioned into at mostm equivalence
classes. Note that after each p-th iteration (the “repeat” loop), the BranchNext set only
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adds at most |Xbranch2cluster|/2 elements (see lines 13–15). Therefore, in the (p + 1)-th
iteration, the number of elements in the BranchCurrent set is no more than |Xbranch2cluster|/2,
or equivalently |BranchCurrent| ≤ N (n, p)/2. Thus, in the p-th iteration for p ≥ 2, line 9
will perform at most N (n, p − 1)/2 iterations. Additionally, in the p-th iteration for p ≥ 2,
we have |BranchCurrent(i)| ≤ N (n, p − 1), for all i = 1, . . . , |BranchCurrent|. Hence, for
p ≥ 2, lines 9 to 15 have a complexity of

O(N (n, p − 1) · (|BranchCurrent(i)|2 · 3p−2 + N (n, p) · N (n, p − 1))

= O(N (n, p − 1)2 · 3p−2 + N (n, p) · N (n, p − 1)).

In particular, for p = 1 (the first “repeat” loop), line 10 has a complexity of O(m2) (according
to Sect.A3), and lines 12–15 have a complexity of O(N (n, 1)). Therefore, for p = 1, lines
9 to 15 have a complexity of O(m2 + N (n, 1)). By setting N (n, 0) = 1, we can conclude
that the complexity of lines 9 to 15 at the p-th iteration is O(N (n, p−1)2 ·3p−2 + N (n, p) ·
N (n, p − 1)). Moreover, since N (n, p) ≤ m, this implies that the complexity of lines 9 to
15 is O(m2 · 3p−2 + m2) = O(m2 · 3p−2) for all p ≥ 1.

Since p ≤ n, there are at most n “repeat” loops. Therefore, the complexity of Algorithm 4
is

O(m2 · 31−2) + O(m2 · 32−2) + · · · + O(m2 · 3n−2) = O(m2 · 3n) = O
(λ2n

n2
· 3n

)
.

In summary, from the above development, the total computational complexity of the
proposed algorithm is

O((m2 + n!)3n) = O

((λ2n

n2
+ n!

)
3n

)
,

where n is the period of sequences and λ = 3−√
5

2 .
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