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Abstract 1

In this paper, we propose an LMI-based approach to study stability and H∞ filtering for 2

linear singular continuous equationswith time-varying delay. Particularly, the delay pattern is 3

quite general and includes non-differentiable time-varying delay. First, new delay-dependent 4

sufficient conditions for the admissibility of the equation are extended to the time-varying 5

delay case. Then, we propose a design of H∞ filters via feasibility problem involving linear 6

matrix inequalities, which can be solved by the standard numerical algorithm. The proposed 7

result is demonstrated through an example and simulations. 8

Keywords Stability · Singularity · Filters · Time-varying delay · Linear matrix inequalities 9

Mathematics Subject Classification (2010) 34D10 · 93D20 · 49M7 10

1 Introduction 11

Consider the following linear singular differential equations (LSDEs)with time-varying delay 12{
E ẏ(t) = Ay(t) + Aτ y(t − τ(t)), t ≥ 0,

y(t) = ξ(t), t ∈ [−τ, 0], (1) 13

where y(t) ∈ Rn, E ∈ Rn×n is singular: rank E = r < n; A, Aτ ∈ Rn×n, ξ(t) ∈ 14

C([−τ, 0], Rn), τ (t) is continuous and satisfies 0 ≤ τ(t) ≤ τ, t ≥ 0. 15

Over the past decades, considerable attention has been devoted to state estimation problem 16

such as Kalman and H∞ filtering due to its various applications in systems and control 17

area [3, 15]. The Kalman filtering gives an optimal estimation of the state error variables, 18
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however, a main disadvantage of the Kalman filtering is that the statistical information of the19

external disturbance noise on the system must be known. To overcome this disadvantage, an20

estimation technique based on H∞ filtering approach has been used in [8, 10]. It is notable21

that an advantage of the H∞ filtering is that one does not need to exactly know the statistical22

features of the external disturbance noise, we only require the boundedness of the noise.23

The H∞ filtering problem considered in this paper is to design a filter guaranteeing stability24

of the filtering error singular system with a maximum H∞ performance. In the last few25

decades, numerous mathematical and control approaches, including polynomial equation26

and interpolation approaches, Lyapunov function and LMI approaches have been proposed27

to solve the H∞ filtering problem [2, 17, 18, 22].28

With the growing complexity of dynamic systems, singular (or descriptor, implicit,29

differential-algebraic) equations have become popular research topics and widely studied,30

since the singular equations have many interesting applications in control and engineering31

field [5, 19]. Especially, study of singular delay equations (SDEs) becomes more and more32

difficult, because SDEs are coupledwith delay differential and algebraic equations. In order to33

guarantee the existence of solutions, the proposed conditions should guarantee the equations34

not only to be stable but also to be regular and impulse free. There are two approaches have35

been used to investigate the stability of SDEs. The first approach is to decompose the system36

into differential and algebraic subequations, and the stability of the differential subequation37

is proved by using Lyapunov-Krasovskii function method [16, 19]. The second approach38

consists of constructing Lyapunov-Krasovskii functionals that corresponds directly to the39

descriptor form of the equation [7, 8]. In [8, 13, 20], using the first approach, the authors40

propose a delay-dependent H∞ filtering design for system (1) with constant delays τ(t) = τ.41

The results on the H∞ filtering were extended in [4, 21, 23] to linear singular equations42

(LSEs) with time-varying delay by using the second approach. However, the time-varying43

delay τ(t) considered in the aforementioned papers is assumed to be differentiable, which44

limit the scope of applications of the derived conditions. Moreover, from the existing results,45

we may conclude that to study stability of LSEs with time-varying delay τ(t), one needs to46

find appropriate Lyapunov-Krasovskii functionals, which are possible to apply the Lyapunov47

stability theorem. However, most of the existing results on this topic tackled only the case48

of constant delay (τ(t) = τ ) or of the bounded differentiable delay (τ̇ (t) ≤ δ). In this paper,49

we show that by constructing properly augmented Lyapunov-Krasovskii functionals, we can50

obtain less conservative conditions for system (1) with more general time-varying delay.51

Namely, the system with non-differentiable, continuous and bounded delay (0 ≤ τ(t) ≤ τ ).52

As far as we know, the H∞ filtering problem of system (1) with non-differentiable time-53

varying delay has not been fully studied, which is very challenging and of great importance.54

Based on the above discussion, we study stability and H∞ filtering problem for LSEs55

with time-varying delay. This paper is our first attempt at exploring an LMI approach to the56

design of H∞ filters for LSEs with time-varying delay. The novelty and contributions of this57

work are the following.58

• Different from the existing results in the literature, the delay function was required to59

be differentiable or even its time derivative was assumed to be smaller than one. In our60

paper the time-varying delay appeared in both the observation and the disturbance inputs61

is only assumed to be continuous and bounded.62

• Newly proposed technical results (Lemma 1, Lemma 2, Lemma 4, Lemma 5) are pre-63

sented to develop and to extend the stability results for LSEs with time-varying delay.64

• Novel criteria for H∞ filtering design are proposed via solving tractable LMIs [6].65

• Numerical examples and its simulations show the effectiveness of the theoretical results.66
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The remainder of this paper is arranged as follows. In Section 2, we introduce the problem 67

to be treated and some auxiliary technical lemmas needed for the proof of the main results. 68

In Section 3, the stability conditions and the H∞ filter design are provided with an illustrated 69

numerical example. 70

Notations. By R we denote the set of real numbers; C we denote the set of complex 71

numbers; by R+ and Z+ we denote the set of nonnegative numbers and nonnegative integers, 72

respectively; by Rn wedenote the n−dimensional Euclidean space. Rn×m stands for the space 73

of n × m matrices. λmax(A) and λmin(A) stand for the maximal and minimal eigenvalues 74

sets of A, respectively. C([−τ, 0], Rn) is the space of Rn− valued continuous functions on 75

[−τ, 0]. ‖xt‖ is the norm of x(·) on [t − τ, t] defined by ‖xt‖ = sups∈[−τ,0] ‖x(t + s)‖. 76

[Mi j ]k×k is a (k × k)−dimension symmetric matrix of elements Mi j , i, j = 1, 2, . . . , k. 77

2 Preliminaries 78

In this section, we present some mathematical basic of singular systems and auxiliary tech- 79

nical lemmas to be used in the next section. 80

Definition 1 System (1) is said to be 81

(i) Regular if det(αE − A), α ∈ C, is not identically zero, 82

(ii) Impulse-free if deg(det(αE − A)) = rank E, α ∈ C, 83

(iii) Asymptotically stable if it is stable and limt→∞ ‖y(t)‖ = 0, 84

(iv) Admissible if it is regular, impulse-free and asymptotically stable. 85

It is well known that the LSEs (1) may have an impulsive solution, however, if the equation 86

is regular and impulse-free then its solution exists and is unique on [0,∞), which is shown 87

in ([7, 9]). 88

The following lemma is slightly modified from [12, Lemma 3.4]. 89

Lemma 1 Let x ∈ C([−τ,∞), R+) and x(t) ≤ β‖xt‖+ N , t ≥ c, where N > 0, 0 < β <

1, c ≥ 0. Then

x(t) < β‖xc‖ + N

1 − β
, t ≥ c.

Proof We have

x(c) ≤ β‖xc‖ + N < γ := β‖xc‖ + N

1 − β
.

Next, we will prove that x(t) < β‖xc‖ + N
1−β

, ∀t ≥ c. Contrarily, if there is a real number
t∗ ≥ c such that

x(t∗) = γ, x(t) < γ, ∀t ∈ [c, t∗),
which implies that sups∈[c,t∗] x(s) = γ. 90

From t∗ + θ ∈ [c − τ, c] ∪ [c, t∗], ∀θ ∈ [−τ, 0], we have 91

‖xt∗‖ = sup
θ∈[−τ,0]

x(t∗ + θ) ≤ max

{
sup

s∈[c−τ,c]
x(s) and sup

s∈[c,t∗]
x(s)

}
92

≤ max{‖xc‖ and γ }. 93

Using the assumption again, we obtain 94

γ = x(t∗) ≤ β‖xt∗‖ + N ≤ β max{‖xc‖ and γ } + N , 95
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it follows that

γ ≤
{

β‖xc‖ + N if ‖xc‖ ≥ γ

βγ + N if ‖xc‖ ≤ γ
< γ,

because β‖xc‖ + N < γ and βγ + N < γ. This yields a contradiction. Hence,

x(t) < β‖xc‖ + N

1 − β
, t ≥ c.

The lemma is proved. ��96

Lemma 2 Let a(.) ∈ C([−τ,+∞), R+) and b(.) : R+ → R+ is a continuous and bounded97

function satisfying a(t) ≤ α‖at‖ + b(t), t ≥ 0, where α ∈ (0, 1). If limt→∞ b(t) = 0, then98

limt→∞ a(t) = 0.99

Proof From the assumption we have

a(t) ≤ α‖at‖ + sup
t≥c

b(t), t ≥ c.

Using Lemma 1 we get

a(t) ≤ α‖ac‖ + 1

1 − α
sup
t≥c

b(t), t ≥ c.

Since the nonnegative function a(t) is bounded, there is a sequence {tk}
0 = t0 < t1 < t2 < · · · , and tk+1 − tk > τ, ∀k = 1, 2, . . .

and δ ≥ 0 such that lim supt→∞ ‖at‖ = limk→∞ ‖atk‖ = δ ≥ 0 and

‖a(t)‖ ≤ α‖atk‖ + 1

1 − α
sup
t≥tk

b(t), t ≥ tk, k = 1, 2, . . . .

Since tk+1 − tk > τ, we have tk+1 + s > tk, s ∈ [−τ, 0], and hence

‖a(tk+1 + s)‖ ≤ α‖atk‖ + 1

1 − α
sup
t≥tk

b(t), s ∈ [−τ, 0].

Consequently,

‖atk+1‖ ≤ α‖atk‖ + 1

1 − α
sup
t≥tk

b(t), k = 1, 2, . . . .

Giving k → ∞, limk→∞ supt≥tk b(t) = 0, we have δ ≤ αδ, such that δ = 0 due to α < 1.100

Thus, limt→∞ a(t) = 0. The lemma is proved. ��101

The following Barbalat’s Lemma stated in [1] will be used.102

Lemma 3 (Barbalat lemma [1]) If f : R+ → R is uniformly continuous and
∫ ∞
0 f (s)ds <103

∞, then limt→∞ f (t) = 0.104

3 Stability105

In this section, we provide sufficient conditions for regularity, impulse-free property and106

asymptotical stability of system (1).107
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Frommatrix theory, we can find two invertible matrices H1, H2 satisfyingE = H1EH2 = 108(
Ir 0
0 0

)
such that the system (1) under transformation u(t) = H−1

2 y(t) =
(
u1(t)
u2(t)

)
, u1(t) ∈ 109

Rr , u2(t) ∈ Rn−r is formulated in the form 110

Eu̇(t) = Au(t) + Aτu(t − τ(t)), (2) 111

where

A = H1AH2 =
(
A11 A12

A21 A22

)
, Aτ = H1Aτ H2 =

(
D11 D12

D21 D22

)
.

System (2) is reduced to the following differential-algebraic equations written by 112{
u̇1(t) = A11u1(t) + A12u2(t) + D11u1(t − τ(t)) + D12u2(t − τ(t)),

0 = A21u1(t) + A22u2(t) + D21u1(t − τ(t)) + D22u2(t − τ(t)),
(3) 113

with the initial conditions u(t) = H−1
2 ξ(t) := φ(t) =

(
φ1(t)
φ2(t)

)
, t ∈ [−τ, 0]. 114

Lemma 4 below extends a result of [19] to the time-varying delay case. 115

Lemma 4 System (1) is regular, impulse-free if there exist a nonsingular matrix P satisfying 116

E
P
 = PE ≥ 0, a symmetric matrix Q > 0 and a matrix R such that the following LMI 117

holds 118(
A
P
 + PA + Q + RE + (RE)
 PAτ

∗ −Q

)
< 0. (4) 119

Moreover, ‖A−1
22 D22‖ < 1, where A22, D22 are defined in the algebraic equation of (3). 120

Proof Let

P̂ = HT
2 PH−1

1 =
(
P11 P12
P21 P22

)
, Q̂ = HT

2 QH2 =
(
Q11 Q12

Q21 Q22

)
.

Note that, from the assumption it follows that P̂E = E
T P̂T ≥ 0, P21 = 0, P11 > 0, and 121

hence P̂ =
(
P11 P12
0 P22

)
. Moreover, since HT

2 (PA + AT PT )H2 = P̂A + A
T P̂T , left and 122

right-multiplying LMI (4) by diag(H2, H2)
T and diag(H2, H2), respectively gives 123(

P̂A + A
T P̂T + Q̂ + HT

2 REH2 + [HT
2 REH2]T P̂Aτ

∗ −Q̂

)
< 0. (5) 124

Since

HT
2 REH2 = HT

2 RH−1
1 E =

(∗ 0
∗ 0

)
,

HT
2 PAτ H2 = H2PH−1

1 H1Aτ H2 = P̂Aτ =
(∗ ∗

∗ P22D22

)
,

HT
2 PAH2 = H2PH−1

1 H1AH2 = P̂A =
(∗ ∗

∗ P22A22

)
,

where the terms ∗ are not relevant and can be ignored. Left and right-multiplying LMI (5) 125

by

(
0 I 0 0
0 0 0 I

)
and its transpose gives 126

(
P22A22 + AT

22P
T
22 + Q22 P22D22

∗ −Q22

)
< 0, (6) 127
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which gives P22A22 + AT
22P

T
22 < 0, because of Q22 > 0. We obtain matrix A22 is invertible,128

which shows the regularity and impulse-free (see, e.g., [5, 19]).Now left and right-multiplying129

LMI (6) by [(−A−1
22 D22)

T , I ] and its transpose, we have130

0 >[(−A−1
22 D22)

T , I ]
(
P22A22 + AT

22P
T
22 + Q22 P22D22

[P22D22]T −Q22

) [
(−A−1

22 D22)

I

]
131

= (−A−1
22 D22)

T
(
P22A22 + AT

22P
T
22 + Q22

)
(−A−1

22 D22) + (−A−1
22 D22)

T P22D22132

+ [P22D22]T (−A−1
22 D22) − Q22133

= (−A−1
22 D22)

T Q22(−A−1
22 D22) − Q22,134

which gives ρ(A−1
22 D22) < 1, and hence135

‖A−1
22 D22‖ < 1. (7)136

The lemma is proved. ��137

For a function V(.) : C([−τ, 0], Rn) → R+ we define the derivative of V(.) (see, e.g.,
[7, 11]) by

V̇(φ) = lim sup
h→0+

1

h
[V(xt+h(t, φ)) − V(φ)].

The following lemma extends [7, Lemma 1] to the time-varying delay case.138

Lemma 5 Let (1) be regular, impulse-free and the condition (7) holds. Equation (1) is asymp-139

totically stable if there are numbers α1 > 0, α2 > 0, α3 > 0, an absolutely continuous140

function V(.) : C([−τ, 0], Rn) → R+ such that141

(i) α1|φ1(0)|2 ≤ V(φ) ≤ α2|φ|2,142

(ii) V̇(φ) ≤ −α3|φ(0)|2.143

Proof Using (i) and V(ut ) ≤ V(u0), where u0 : C[−τ, 0] → Rn, u0(s) = φ(s), s ∈
[−τ, 0], and

‖u1(s)‖ ≤ ‖u(s)‖ ≤ ‖u0‖ = sup
s∈[−τ,0]

‖u(s)‖,

we have144

α1|u1(t)|2 = α1|(ut )1(0)|2 ≤ V(ut ) ≤ V(u0) ≤ α2|u0|2, t ≥ 0.145

Hence146

∃β1 > 0 : ‖u1(t)‖ ≤ β1‖u0‖, t ∈ [−τ,∞). (8)147

Moreover, from the second equation of (3) it follows that

u2(t) = −A−1
22 [A21u1(t) + D21u1(t − τ(t))] − A−1

22 D22u2(t − τ(t))

and hence

‖u2(t)‖ ≤ ‖A−1
22 ‖‖[A21u1(t) + D21u1(t − τ(t))]‖ + ‖A−1

22 D22‖‖u2(t − τ(t))‖.
Applying (8), there exists β2 > 0 such that

‖A−1
22 ‖‖[A21u1(t) + D21u1(t − τ(t))]‖ ≤ β2‖u0‖, t ≥ 0,

hence
‖u2(t)‖ ≤ β2‖u0‖ + η‖u2(t − τ(t))‖,
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where η = ‖A−1
22 D22‖ < 1. Setting x(t) = ‖u2(t)‖, we have

x(t) ≤ η‖xt (·)‖ + β2‖u0‖, t ≥ 0,

and using Lemma 1, we get

x(t) ≤ η‖x0‖ + β2‖u0‖
1 − η

, t ≥ 0,

consequently, 148

‖u2(t)‖ ≤ η‖u0‖ + β2‖u0‖
1 − η

≤ β3‖u0‖, t ≥ 0, (9) 149

where β3 = η + β2
1−η

. From (8) and (9) it follows that

‖y(t)‖ ≤ ‖H2‖‖u(t)‖ ≤ ‖H2‖(β1 + β3)‖u0‖, t ≥ 0,

hence
∃N > 0 : ‖y(t)‖ ≤ N‖y0‖, t ≥ 0,

which shows that y(t) is stable. To show asymptotic stability, i.e., limt→∞ y(t) = 0, using 150

the condition (ii) and integrating V̇(.), 151

V(ut ) − V(u0) =
∫ t

0
V̇(us)ds ≤ −

∫ t

0
α3|us(0)|2ds = −

∫ t

0
α3|u(s)|2ds, 152

which gives ∫ t

0
α3|u(s)|2ds ≤ V(u0) − V(ut ) ≤ V(u0) ≤ α2|u0|2,

due to V (ut ) ≥ 0 and (i). Letting t → +∞, we obtain that

∃α4 > 0 :
∫ ∞

0
‖u(t)‖2dt ≤ α4‖u0‖2,

which implies u(t) ∈ L2[0,+∞), and hence y(t) = H2u(t) ∈ L2[0,+∞). Setting
f (t) = ‖u1(t)‖2, we have

∫ ∞
0 f (t) < +∞. Using the first equation of (3) gives u̇1(t)

is bounded on [0,+∞), then ḟ (t) = 2u1(t)T u̇1(t) is bounded, which gives f (t) is
uniformly continuous on [0,+∞). Applying the Barbalat’s Lemma (Lemma 3), we get
limt→∞ f (t)dt = 0, which gives limt→∞ u1(t) = 0. On the other hand, using the second
equations of (3) gives

‖u2(t)‖ ≤ ‖A−1
22 ‖‖[A21u1(t) + D21u1(t − τ(t))]‖ + ‖A−1

22 D22‖‖u2(t − τ(t))‖,
then

∃α5 > 0 : ‖u2(t)‖ ≤ η sup
s∈[−τ,0]

‖u2(t + s)‖ + α5 sup
s∈[−τ,0]

‖u1(t + s)‖, t ≥ 0,

where η = ‖A−1
22 D22‖ < 1. Applying Lemma 2, where a(t) = ‖u2(t)‖, 153

b(t) = α5 sups∈[−τ,0] ‖u1(t + s)‖, we get limt→∞ u2(t) = 0. Therefore, limt→∞ y(t) = 0. 154

The lemma is proved. �� 155
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4 H∞ Filtering156

In this section, we propose an LMI-based design of the H∞ filters for LSEs (1). Consider157

the observer-based LSEs with time-varying delay defined by158

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E ẏ(t) = Ay(t) + Aτ y(t − τ(t)) + Bw(t), t ≥ 0,

o(t) = Cy(t) + Cτ y(t − τ(t)),

z(t) = Dy(t) + Dτ y(t − τ(t)),

y(t) = ξ(t), t ∈ [−τ, 0],
(10)159

where o(t) is the observation vector, z(t) is the measured vector, w(t) is the disturbance160

vector; B,C,Cτ , D, Dτ are given constant matrices. Consider the following filtering system161

{
E ˙̄y(t) = Aȳ(t) + Bo(t),
z̄(t) = C x̄(t) + Go(t), (11)162

where E,A,B, C,G are the filters to be designed. Setting r(t) = (y(t), ȳ(t))
, e(t) =163

z(t) − z̄(t), the error system for (10) is164

⎧⎪⎨
⎪⎩
Ēṙ(t) = Ār(t) + Āτ r(t − τ(t)) + B̄w(t),

e(t) = C̄r(t) + C̄τ r(t − τ(t)),

r(t) = [ξ(t), 0], t ∈ [−τ, 0],
(12)165

where
C̄ = [D − GC,−C], C̄τ = [Dτ − GCτ , 0],

Ē =
(
E 0
0 E

)
, Ā =

(
A 0
BC A

)
, Āτ =

(
Aτ

BCτ

)
[I , 0], B̄ =

(
B
0

)
.

For given γ > 0, the H∞ filtering problem of system (10) has a solution if there are166

the filters (11) such that (12) is admissible and for all zero initial conditions and non-zero167

w ∈ L2[0,+∞) the following condition holds168

∫ ∞

0
‖e(t)‖2dt ≤ γ

∫ ∞

0
‖w(t)‖2dt . (13)169

Theorem 1 The H∞ filtering for (10) has a solution if there exist invertible matrices P1, P2170

satisfying PĒ = Ē

P


 ≥ 0, K̄i , i = 1, 2, . . . , 5, K = K

 > 0, and X , Y , Z , V1, V2 such171

that172 (
N11 P Āτ

∗ −K̄5

)
< 0, (14)173

[Ri j ]10×10 < 0. (15)174

The filters are defined by

E = E, A = P−1
2 X , B = P−1

2 Y , C = V1, G = V2,
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where 175

P = diag{P1, P2}, S = [Z , 0], K =
⎛
⎝K̄1 K̄2 K̄3

∗ K̄4 K̄5

∗ ∗ K̄5

⎞
⎠ , 176

N11 = P Ā + Ā

P


 + K̄3 Ē + Ē
 K̄

3 + K̄5, R11 = τ K̄1 − K̄5 + P Ā + Ā


P

, 177

R13 = Ā

P


 − P,R12 = τ K̄2 − K̄3 Ē + Ē
 K̄

5 + P Āτ + Ā


P

, R1 j = 0, j = 7, 8, 10, 178

R14 = Ā

S


,R15 = R16 = PB̄, R19 = [D − V2C,−V1]
, R2 j = 0, j = 5, 6, 8, 9, 179

R22 = τ K̄4 − K̄5 Ē − Ē
 K̄

5 + P Āτ + Ā


τ P

 + K̄5, R23 = Ā


τ P

 − P, R24 = Ā


τ S

, 180

R33 = τ K̄5 − P − P

, R27 = PB̄, R2,10 = [Dτ − V2Cτ , 0]
, R34 = S


, R38 = PB̄, 181

R3 j = 0, j = 5, 6, 7, 9, 10, R44 = SB̄ + B̄

S


, R4 j = 0, j = 5, 6, . . . , 10, 182

R5 j = 0, j = 6, 7, . . . , 10, R6 j = 0, j = 7, 8, . . . , 10, R7 j = 0, j = 8, 9, 10, 183

R9,10 = 0, Ri i = −γ

4
I , i = 5, . . . , 10. 184

Proof Step 1. Singularity and absence impulse of (12). Employing Lemma 4, we will show 185

that there exist matrices Q̄ > 0, R̄ satisfying PĒ = Ē

P


 ≥ 0 such that 186(
P Ā + Ā


P

 + Q̄ + R̄ Ē + Ē
 R̄


P Āτ

∗ −Q̄

)
< 0. (16) 187

It is seen that LMI (16) is equivalent to (14) by taking R̄ = K̄3, Q̄ = K̄5, which derives
the regularity and absence of impulse. In addition, we get ‖ Ā−1

22 D̄22‖ < 1, where Ā−1
22 , D̄22

are the block matrices of the differential-algebraic equations of (12), similar to (3) of (2),
defined by

Ā =
(
Ā11 Ā12

Ā21 Ā22

)
, Āτ =

(
D̄11 D̄12

D̄21 D̄22

)
.

Step 2. Asymptotical stability. Consider the Lyapunov function V(rt ) = ∑3
i=1 Vi (rt ), where 188

V1(rt ) =r
(t)PĒr(t), 189

V2(rt ) =
∫ 0

−τ

∫ t

t+s
ṙ
(θ)Ē
 K̄5 Ēṙ(θ)dθds, 190

V3(vt ) =
∫ t

0

∫ θ

θ−τ(θ)

e
(s, θ)Ke(s, θ)dsdθ, 191

where e
(s, θ) = [r(θ)
, r(θ − τ(θ))
, (Ēṙ(s))
]. 192

Let P̂ = H̄

2 PH̄−1

1 =
(
P̄11 P̄12
P̄21 P̄22

)
, where matrices H̄1, H̄2 are invertible such that ˆ̄E = 193

H̄1 Ē H̄2 =
(
I2r 0
0 0

)
. From PĒ = Ē


P

 ≥ 0, it follows that P̂ ˆ̄E = ˆ̄E


P̂

. Since P̂ is 194

invertible, we have P̄21 = 0, P̄

11 > 0, and then P̂

ˆ̄E =
(
P̄11 0
0 0

)
. We will prove that there 195

exist α1 > 0, α2 > 0 such that 196

α1‖ū1(t)‖2 ≤ V(rt ) ≤ α2‖rt‖2, t ≥ 0, (17) 197
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where ū(t) = H̄−1
2 r(t) = [ū1(t), ū2(t)]
, ū1(t) ∈ R2r , ū2(t) ∈ R2n−2r . For this, we first

estimate V1(rt ) as follows. From

PĒ = [H̄−1
2 ]
P̂ ˆ̄E[H̄−1

2 ] = [H̄−1
2 ]


(
P̄11 0
0 0

)
[H̄−1

2 ],

it follows that198

V1(rt ) = r
(t)PĒr(t) = r
(t)[H̄−1
2 ]


(
P̄11 0
0 0

)
[H̄−1

2 ]r(t)199

= [ū1(t)]
(t)P̄11ū1(t),200

and hence201

λmin(P̄11)‖ū1(t)‖2 ≤ V1(rt ) ≤ λmax(P̄11)‖ū1(t)‖2202

≤ λmax(P̄11)‖ū(t)‖2 ≤ λmax(P̄11)‖[H̄−1
2 ]‖2.‖r(t)‖2203

≤ λmax(P̄11)‖[H̄−1
2 ]‖2.‖rt‖2.204

Next, upon some similar calculations, we can estimate V2(rt ), V3(rt ), by using ‖rt‖ ≥
max{r(t), r(t − τ(t))} such that

∃a > 0 : V2(rt ) ≤ a‖rt‖2, V3(rt ) ≤ a‖rt‖2,
which shows the condition (17). Taking the derivative of V(.), we have205

V̇1(rt ) =2r
(t)PĒṙ(t)206

=η(t)

(
P Ā + Ā


P


P Āτ

Ā

τ P


 0

)
η(t) + 2r
(t)PB̄w(t),207

V̇2(rt ) =τ ṙ
(t)Ē
 K̄5 Ēṙ(t) −
∫ t

t−τ

ṙ
(s)Ē
 K̄5 Ēṙ(s)ds,208

V̇3(rt ) =
∫ t

t−τ(t)
e
(s, t)Ke(s, t)ds209

=τ(t)η
(t)X̂η(t) + 2η
(t)

(
K̄3

K̄5

)
[Ēr(t) − Ēr(t − τ(t))]210

+
∫ t

t−τ(t)
ṙ
(s)Ē
 K̄5 Ēṙ(s)ds211

=τη
(t)X̂η(t) + 2[r(t)
 K̄3 + r(t − τ(t))
 K̄5][Ēr(t) − Ēr(t − τ(t))]212

+
∫ t

t−τ

ṙ
(s)Ē
 K̄5 Ēṙ(s)ds,213

where η(t) = [r(t), r(t − τ(t))] and X̂ =
(
K̄1 K̄2

∗ K̄4

)
. Therefore, we have214

V̇(rt ) ≤η(t)

(
P Ā + Ā


P


P Āτ

Ā

τ P


 0

)
η(t)215

+ τ ṙ
(t)Ē
 K̄5 Ēṙ(t) + 2r
(t)PB̄w(t) + τη
(t)X̂η(t)216

+ 2
[
r(t)
 K̄3 + r(t − τ(t))
 K̄5

][
Ēr(t) − Ēr(t − τ(t))

]
.217
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Multiplying two sides of (12) by −2ṙ
(t)Ē

P, −2r
(t)P, −2r
(t − τ(t))P, −2w
(t)S,

adding the zero terms and using the following inequation

0 ≤ −‖e(t)‖2 + 2r(t)
C̄
C̄r(t) + 2r(t − τ(t))
C̄

τ C̄τ r(t − τ(t)),

where C̄ = [D − V2C,−V1], C̄τ = [Dτ − V2Cτ , 0], we have 218

V̇(rt ) ≤ η
(t)W1η(t) + μ
(t)W2μ(t) + γ ‖w(t)‖2 − ‖e(t)‖2, (18) 219

where μ(t)
 = [r(t)
, r(t − τ(t))
, (Ēṙ(t))
, w(t)
], 220

W1 =
(
N11 P Āτ

∗ −K̄5

)
, W2 = [Ni j ]4×4, 221

N11 = P Ā + Ā

P


 + Ū3 Ē + Ē
 K̄

3 + K̄5, 222

N11 = τ K̄1 − K̄5 + P Ā + Ā

P


 + 4

γ
PB̄ B̄


P

 + 4

γ
PB̄ B̄


P

 + 2C̄
C̄, 223

N12 = τ K̄2 − K̄3 Ē + Ē
 K̄

5 + P Āτ + Ā


P

, N13 = Ā


P

 − P, 224

N14 = Ā

S


, N23 = Ā

τ P


 − P, N24 = Ā

τ S


, 225

N22 = τ K̄4 − K̄5 Ē − Ē
 K̄

5 + P Āτ + Ā


τ P

 + K̄5 + 4

γ
PB̄ B̄


P

 + 2C̄


τ C̄τ , 226

N44 = SB̄ + B̄

S


, N33 = τ K̄5 − P − P

 + 4

γ
PB̄ B̄


P

, N34 = S


. 227

Using (14), (15) and the Schur complement lemma, we obtain Wi < 0, which gives 228

∃λ3 > 0 : V̇(rt ) ≤ η
(t)W1η(t) + μ
(t)W2μ(t) < −λ3‖r(t)‖2 (19) 229

for w(t) ≡ 0. Finally, applying Lemma 5 and the conditions (17), (19), we have proved the 230

asymptotical stability of the system. 231

Step 3. H∞ performance. To show the condition (13), we use the derived inequality (18) and
Wi < 0, i = 1, 2, such that∫ t

0
[‖e(s)‖2 − γ ‖w(s)‖2]ds ≤ −

∫ t

0
V̇(rs)ds = V(r0) − V(rt ) ≤ V(r0).

Letting the initial condition r0 = 0 and t → ∞, we have∫ ∞

0
‖e(s)‖2ds ≤ γ

∫ ∞

0
‖w(s)‖2ds,

which implies the condition (13). The theorem is proved. �� 232

Remark 1 It is notable that in Theorem 1, the conditions (14), (15) are LMIs if we set
A = P−1

2 X , B = P−1
2 Y , we have

P Ā =
[
P1A 0
YC X

]
, P Āτ =

[
P1Aτ

YCτ

]
H , PB̄ =

[
P1B
0

]
,

S Ā = [
Z A 0

]
, S Āτ = [

Z Aτ 0
]
, SB̄ = Z B.

Remark 2 In the proof of Theorem1,we construct improvedLyapunov-Krasovsii functionals 233

Vi (.), i = 1, 2, 3 andwhenwe take their derivativeswe do not need the smooth assumption on 234

τ(t). Therefore, the method used in the existing works [4, 21–23], where the differentiability 235

of the delay function is required, cannot be applicable. 236
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Example 1 We consider system (10) described by an economical Leontief model [14], which237

is a quantitative technique representing the interdependency between production of different238

commodities. Using description of (10), yi represents production of i th commodity, A repre-239

sents the rate of production of commodities, Aτ gives the influence of the past production, B240

corresponds to the known supply uncertainties, and the disturbance w(t) presents the supply241

uncertainty, z(t) corresponds to the productions of commodities available for evaluation, e(t)242

is the error of such an evaluation, where243

E =
[
1 0
0 0

]
, A =

[−5 1
0 −5

]
, Aτ =

[−1 0
0 −1

]
,

B =
[
1 1
0 1

]
,C =

[
1 0.1
0.1 1

]
,Cτ =

[−1 0.1
1 −0.1

]
,

D =
[
0.01 0.1
0.01 0.01

]
, Dτ =

[
0.1 0.1
0.1 0.1

]
,

τ (t) = 1/10 + 2/5| sin(t)|, γ = 0.01, τ = 1/2.

The LMIs (14), (15) are feasibly solved by the LMI Control Toolbox [6] as

P1 =
[
0.0031 0

0 0.0027

]
, P2 =

[
0.0755 0

0 0.0227

]
,

X =
[−0.1165 0

0 −0.0332

]
, Y =

[−0.1165 −0.0004
−0.0004 0.0014

]
,

Z = 10−3
[−0.2953 −0.0750
−0.0750 −0.0321

]
, V1 =

[
0.0001 0

−0.0012 0.0005

]
,

V2 =
[
0.0023 0.0996

−0.0357 0.0244

]
, K̄1 =

⎡
⎢⎢⎣

0.0501 −0.0087 0.0036 −0.0001
−0.0087 −0.0054 −0.0001 −0.0001
0.0036 −0.0001 0.0671 0.0000

−0.0001 −0.0001 0.0000 0.0467

⎤
⎥⎥⎦ ,

K̄2 =

⎡
⎢⎢⎣

−0.0392 −0.0048 −0.0039 0.0006
0.0014 0.0191 −0.0004 −0.0014

−0.0060 0.0005 0.0047 −0.0000
−0.0008 0.0000 0.0001 0.0214

⎤
⎥⎥⎦ ,

K̄3 =

⎡
⎢⎢⎣

−0.0112 −0.0024 −0.0011 0.0001
0.0032 0.0062 −0.0004 0.0002

−0.0018 −0.0001 0.0410 0.0000
−0.0003 0.0004 0.0001 0.0008

⎤
⎥⎥⎦ ,

K̄4 =

⎡
⎢⎢⎣

0.0579 −0.0005 0.0038 −0.0015
−0.0005 0.0137 −0.0005 −0.0006
0.0038 −0.0005 0.0586 −0.0000

−0.0015 −0.0006 −0.0000 0.0088

⎤
⎥⎥⎦ ,

K̄5 =

⎡
⎢⎢⎣

0.0240 0.0024 −0.0010 −0.0002
0.0024 0.0101 0.0001 0.0004

−0.0010 0.0001 0.0582 0.0000
−0.0002 0.0004 0.0000 0.0011

⎤
⎥⎥⎦ .
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Fig. 1 The state y1 and ŷ1

Fig. 2 The state y2 and ŷ2

Fig. 3 The measures z1 and ẑ1
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Fig. 4 The measures z2 and ẑ2

The H∞ filtering problem, by Theorem 1, has a solution and the filters are given as

E =
[
1 0
0 0

]
, A =

[−0.01291 0
0 −0.0037

]
, B =

[
0.0011 0

0 0.0002

]
,

C =
[
0.0001 0

−0.0012 0.0005

]
, G =

[
0.0023 0.0996

−0.0357 0.0244

]
.

Figures 1–4 show the response states y = [y1, y2]
, ȳ = [ŷ1, ŷ2]
, z = [z1, z2] and estimate244

signal z̄ = [z̄1, z2]
 with ξ(t) = [0.1,−0.1]
.245

5 Conclusions246

The LMI-based conditions for stability and filtering of LSEs with time-varying delay have247

been presented. By newly proposed delay estimation techniques and improved Lyapunov-248

Krasovskii functionals, we have converted the filtering design into the problem of finding249

some parameters of the stability and H∞ filtering, which could be certainly obtained by250

solving tractable LMIs. A numerical example is given to demonstrate the validity of the251

proposed results.252

Acknowledgements The authors sincerely thank Vietnam Institute for Advanced Study in Mathematics253

(VIASM) for supporting and providing a fruitful research environment and hospitality for them during the254

research visit. This work is supported by the National Foundation for Science and Technology Development,255

Vietnam (grant 101.01-2021.01). The authors would like to thank anonymous reviewers for their valuable256

comments, which allowed them to improve this paper.257

References258

1. Barbalat, I.: Systems equations differentielles oscillations nonlinearies. Rev. RoumaineMath. Pures Appl.259

4, 267–270 (1959)260

2. Bittanti, S., Cuzzola, F.A.: Continuous-time periodic H∞ filtering via LMI. European J. Control 7, 2–16261

(2001)262

123



Linear Singular Continuous Time-varying Delay Equations...

3. Chang, X.H.: Robust Output Feedback H∞ Control and Filtering for Uncertain Linear Systems. Springer, 263

New York (2014) 264

4. Chen, W., Xu, S., Lu, J., Li, Y., Chu, Y., Zhang, Z.: Further results on delay-dependent H∞ filtering for 265

singular systems with interval time-varying delays. Optim. Control Appl. Meth. 42, 1001–1015 (2021) 266

5. Dai, L.: Singular Control Systems. Springer, Berlin (1981) 267

6. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox For use with MATLAB. The 268

MathWorks, Inc, Massachusetts (1995) 269

7. Fridman, E.: Stability of linear descriptor system with delay: a Lyapunov based approach. J. Math. Anal. 270

Appl. 273, 24–44 (2002) 271

8. Fridman, E., Shaked, U.: An improved delay-dependent H∞ filtering of linear neutral systems. IEEE 272

Trans. Signal Proces. 52, 668–673 (2004) 273

9. Haidar, A., Boukas, E.K.: Exponential stability of singular systems with multiple time-varying delays. 274

Automatica 45, 539–545 (2009) 275

10. He, Y., Wang, Q.G., Lin, C.: An improved H∞ filter design for systems with time-varying interval delay. 276

IEEE Trans. CAS II: Express Briefs 53, 1235–1239 (2006) 277

11. Kharitonov, V.: Stability of Time-Delay Systems. Springer, Berlin (2013) 278

12. Li, F., Zhang, X.: A delay-dependent bounded real lemma for singular LPV systems with time-variant 279

delay. Int. J. Robust. Nonl. Contr. 22, 559–574 (2012) 280

13. Lu, R., Xu, Y., Xue, A.: H∞ filtering for singular systems with communication delays. Signal Processing 281

90, 240–1248 (2010) 282

14. Luenberger, D.G., Ami, A.: Singular dynamic Leontief systems. Econometica 49, 991–995 (1977) 283

15. Mahmoud,M.S.: Robust Control and Filtering for Time-Delay Systems.Marcel Dekker, NewYork (2000) 284

16. Park, J.H., Kwon, O.,Won, S.: LMI approach to robust H∞ filtering for neutral delay differential systems. 285

Appl. Math. Comput. 150, 235–244 (2004) 286

17. Phat, V.N., Thanh, N.T., Trinh, H.: New results on H∞ filtering for nonlinear large-scale systems with 287

interconnected time-varying delays. Optim. Cont. Appl. Methods 37, 958–964 (2016) 288

18. Shao, H.: Delay-range-dependent robust H∞ filtering for uncertain stochastic systems with mode- 289

dependent time delays and Markovian jump parameters. J. Math. Analysis Appl. 342, 1084–1095 (2008) 290

19. Xu, S., Lam, J.: Robust Control and Filtering of Singular Systems. Springer, Berlin (2006) 291

20. Xua, Q., Zhang, Y., Qi, W., Xiao, S.: Event-triggered mixed and passive H∞ filtering for discrete-time 292

networked singular Markovian jump systems. Appl. Math. Comput. 368, 124803 (2020) 293

21. Wu, Z., Su, H., Chu, J.: H∞ filtering for singular systems with time-varying delay. Int. J. Robust Nonl. 294

Contr. 20, 1269–1284 (2010) 295

22. Zhang, Z.M., Han, Q.L.: Robust H∞ filtering for a class of uncertain linear systems with time-varying 296

delay. Automatica 44, 157–166 (2008) 297

23. Zhu, X., Wang, Y., Gan, Y.: H∞ filtering for continuous-time singular systems with time-varying delay. 298

Int. J. Adapt. Contr. Sign. Proces. 25, 137–154 (2011) 299

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 300

institutional affiliations. 301

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Linear Singular Continuous Time-varying Delay Equations: Stability and Filtering via LMI Approach
	Abstract
	1 Introduction
	2 Preliminaries
	3 Stability
	4 Hinfty Filtering
	5 Conclusions
	Acknowledgements
	References


