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Issue

I Explain the presence/absence of cardiovascular disease
(CHD) by age X of patients.

I Predict the status of a machine tool (on/off) as a
function of its age, for predictive maintenance purposes,
for example.

I Predict the probability of repayment of a loan (credit
scoring).

I More generally, predict a qualitative variable (binary
here) based on quantitative variables.
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An example: cardiovascular disease
Y : with or without cardiovascular disease (CHD)
X : patient’s age
n = 100 observations

Id age chd

1 20 healthy

2 23 healthy

3 24 healthy

...
...

98 64 diseased

99 65 diseased

100 69 diseased
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Graphical representation
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Y binary variable

Here the variable Y takes 2 values, we model it by:

Y /X = x ∼ B (p(x)) .

Here:

P (Y = 1 /X = x ) = p(x) ,

P (Y = 0 /X = x ) = 1− p(x) .

So:

E (Y /X = x ) = p(x) ,

Var (Y /X = x ) = p(x) [1− p(x)] .
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A first idea: the division into age classes

Age n Healthy Diseased Average

[19, 29[ 10 9 1 .10

[29, 34[ 15 13 2 .13

[34, 39[ 12 9 3 .25

[39, 44[ 15 10 5 .33

[44, 49[ 13 7 6 .46

[49, 54[ 8 3 5 .625

[54, 59[ 17 4 13 .76

[59, 69[ 10 2 8 .8
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Graphical representation
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To go further

We would like to find a function:

I smoother,

I that uses all the data.
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Expected function
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Equation of an S curve

A first way to get a S curve is to consider the function :

x 7→
exp

(
x>β

)
1 + exp (x>β)

.
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Comparison with the linear model

In the linear model:

E (Y /X = x ) = x>β .

When Y is binary:

E (Y /X = x ) = p(x) ∈ [0, 1]

but it is possible to consider g link functions such as:

g (p(x)) = x>β .
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The logit function

Let’s consider:

E (Y /X = x ) = p(x) =
exp

(
x>β

)
1 + exp (x>β)

.

The following function, named logit:

g(p) = ln

(
p

1− p

)
is bijective (derivable) and:

g (p(x)) = ln

(
p(x)

1− p(x)

)
= x>β .

This function is used in logistic regression.
The outstanding issue is the estimation of the beta
parameter.
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Maximum likelihood estimate I
Let’s consider the likelihood:

p (y1, . . . , yn;β) =
n∏

i=1

P (Y = yi /X = xi ) .

So:

p (y1, . . . , yn;β) =
n∏

i=1

p (xi )
yi (1− p (xi ))1−yi .

The log-vraisemblance is:

` (y1, . . . , yn;β) =
n∑

i=1

{yi ln [p (xi )] + (1− yi ) ln [1− p (xi )]} .

We obtain:

` (y1, . . . , yn;β) =
n∑

i=1

{
yix
>
i β − ln

[
1 + exp

(
x>i β

)]}
.
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Maximum likelihood estimate II

I Partial derivatives are calculated and cancelled to obtain
the normal equations.

I Unfortunately, there are no explicit solutions for β̂.
I Likelihood has (usually) a single maximum, and there

are iterative numerical algorithms to obtain this
maximum, including :

I Newton’s algorithm,
I Fisher’s score algorithm.
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Back to introductory example

P̂ (CHD = 1 /age ) =
exp(−5.30945 + 0.11092× age)

1 + exp(−5.30945 + 0.11092× age)
.
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Direct interpretation

When βj associated with the variable Xj is:

I Positive : if Xj increases then p increases.

I Negative : if Xj increases then p decreases.

In the example β̂age = 0.11, so the probability of CHD
increases with age.
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Interpretation by odd-ratios I

The odds (of an event) is the ratio of the probability of an
event to its complementary.

Let’s imagine a game whose probability of winning is p = 1
20 .

The odd is worth:

p

1− p
=

1
20

1− 1
20

=
1

19
.

On average, there is 1 winner for 19 losers.
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Interpretation by odd-ratios II

For an individual x , the odd to get the answer Y = 1 is
defined by:

odd(x) =
p(x)

1− p(x)

where p(x) = P (Y = 1 /X = x ).

The odds ratio (OR) between 2 individuals x and x ′ is:

OR =
odd(x)

odd(x ′)
=

p(x)
1−p(x)
p(x ′)

1−p(x ′)
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Interpretation by odd-ratios II

For 2 categories j and j ′:

1. Interpretation rules of odd-ratios

ORj ,j ′ > 1⇔ pj > pj ′ ,

ORj ,j ′ = 1⇔ pj = pj ′ ,

ORj ,j ′ < 1⇔ pj < pj ′ .

2. Odd-ratios and relative risk (or risk ratio: RR)
If pj ′ = pj ≈ 0 then:

ORj ,j ′ ≈ pj/pj ′ := RRj ,j ′ .

3. Odd-ratios and parameters:

ORj ,ref = exp (βj (xj − xref))

ORj ,j ′ = exp
(
βj − βj ′

)
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