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Lecture 1: Learning, machine learning
and artificial intelligent.

1. What are learning, deductive learning and
machine learning.

2. History of machine learning and artificial
intelligence.

3. Current tasks and main type of machine
learning.

4. Basic questions in mathematical founda-
tion of machine learning.



1. What are learning, deductive learning

and machine learning?

(a) Small children learn to speak by observ-

ing, repeating and mimicking adults’ phrases.

Their way of learning is inductive learning.

(b) In school we learn mathematics, physics,

biology, chemistry by following the instruc-

tions of our teachers and those in textbooks.

We learn general rules and apply them to

particular cases. This type of learning is de-

ductive learning.



(c) Experimental physicists design experiments

and observe the outcomes of the experiments

to validate or dispute a conjecture on the na-

ture of the observables. This type of learning

is inductive learning.

• A learning is a process of gaining new knowl-

edge by examination of empirical data of the

observables. A learning is successful if the

knowledge can be tested in examination of

new data. A machine learning is an autom-

atized process of learning.



Definition (Russell and Norvig - Artificial In-

telligence - A modern Approach) An agent

(human, robot, machine) is learning if it im-

proves its performance on future tasks after

making observations about the world.

Mathematical definition (Vapnik) Learning

is a problem of function estimation on the

basis of empirical data.

In mathematical language experience is em-

pirical data and knowledge is function esti-

mation.



• A classical example of learning is that of

learning a physical law by curve fitting to

data. Assuming the law, an unknown func-

tion f : R→ R, has a specific form and that

the space of all functions having this form

can be parameterized by N real numbers.

For instance, if f is assumed to be a poly-

nomial of degree d, then N = d+ 1 and the

parameters are the coefficients w0, · · · , wd of

f . In this case, finding the best fit by the

least squares method estimates the unknown

f from a set of pairs (x1, y1), · · · , (xm, ym).



One computes the vector of coefficients w

such that the value

m∑
i=1

(fw(xi)− yi)2 with fw(x) =
d∑

j=0

wjx
j

is minimized where, typically m > N . If the

measurements generating this set were ex-

act, then f(xi) would be equal to yi. But in

general one expects the values yi to be af-

fected by noise. The least square technique,

going back to Gauss and Legendre, which is

computational efficient and relies on numer-

ical linear algebra.



The least-squares method is usually cred-
ited to Carl Friedrich Gauss (1809), but it
was first published by Adrien-Marie Legen-
dre (1805).



2 History of machine learning and artifi-
cial intelligence

• 1945 Vannevar Bush proposed in “As We
May Think” published in “The Atlantic”, a
system which amplifies peoples own knowl-
edge and understanding. Bush’s memex was
based on what was thought, at the time, to
be advanced technology of the future: ultra
high resolution microfilm reels, coupled to
multiple screen viewers and cameras, by elec-
tromechanical controls. Through this ma-
chine, Bush hoped to transform an informa-
tion explosion into a knowledge explosion.



• 1948 John von Neumann suggested that

machine can do any thing that peoples are

able to do.



• 1950 Alan Turing asked Can machines think?

in “Computing Machine and Intelligence” and

proposed the famous Turing test. The Tur-

ing is carried out as imitation game. On

one side of a computer screen sits a human

judge, whose job is to chat to an unknown

gamer on the other side. Most of those

gamers will be humans; one will be a chat-

bot with the purpose of tricking the judge

into thinking that it is the real human.



Alan Turing (1912-1950)



• 1956 John McCarthy coined the term arti-

ficial intelligence.

• 1959, Arthur Samuel, the American pio-

neer in the field of computer gaming and

artificial intelligence, defined machine learn-

ing as a field of study that gives computers

the ability to learn without being explicitly

programmed. The Samuel Checkers-playing

Program appears to be the world’s first self-

learning program, and as such a very early

demonstration of the fundamental concept

of artificial intelligence (AI).



However, an increasing emphasis on the logi-
cal, knowledge-based approach caused a rift
between AI and machine learning. Proba-
bilistic systems were plagued by theoretical
and practical problems of data acquisition
and representation, which were unsolvable
because of small capacity of hardware mem-
ory and slow speed of computers that time.
By 1980, expert systems had come to domi-
nate AI, and statistics was out of favor. Ex-
pert system uses the idea that “intelligent
systems derive their power from the knowl-
edge they possess rather than from the spe-
cific formalisms and inference schemes ”.



Work on symbolic based learning did con-

tinue within AI, leading to inductive logic

programming. Neural networks research had

been abandoned by AI and computer science

around the same time. Their main success

came in the mid-1980s with the reinvention

of a algorithm in neural network which was

able thanks to increasing speed of computers

and increasing hardware memory.



Machine learning, reorganized as a separate
field, started to flourish in the 1990s.

• AI ; ML: tackling solvable problems of a
practical nature.

• Methods and models borrowed from statis-
tics and probability theory. Laplacian de-
terminism ; probabilistic modeling of ran-
dom observables - new paradigm shift in sci-
ences.

• The current trend is benefited from Inter-
net.



In the book by Russel and Norvig “Artificial

Intelligence a modern Approach” (2010) AI

encompass the following domains:

- natural language processing,

- knowledge representation,

- automated reasoning to use the stored in-

formation to answer questions and to draw

new conclusions;

- machine learning to adapt to new circum-

stances and to detect and extrapolate pat-

terns,

- computer vision to perceive objects,

- robotics.



All the listed above domains of artificial intel-

ligence except knowledge representation and

robotics are now considered domains of ma-

chine learning. Pattern detection and recog-

nition were and are still considered to be do-

main of data mining but they become more

and more part of machine learning. Thus AI

= knowledge representation + ML + robotics.

• representation learning, a new word for

knowledge representation but with a differ-

ent flavor, is a part of ML.



• Robotics = ML + hardware.

Why did such a move from artificial intelli-

gence to machine learning happen?

The answer is that we are able to formal-

ize most concepts and model problem of ar-

tificial intelligence using mathematical lan-

guage and represent as well as unify them in

such a way that we can apply mathematical

methods to solve many problems in terms

of algorithms that machine are able to per-

form.



3. Current tasks and types of ML.

Main tasks

• Classification task assigns a category to

each item. For example, document classifi-

cation may assign items with categories such

as politics, email spam, sports, or weather,

image classification may assign items with

landscape, portrait, or animal. A classifica-

tion task is a construction of a function on

the set of items that takes value in a count-

able set of categories.



• As we have remarked in the mathemati-

cal example of learning (p. 6) usually we

have ambiguous/incorrect measurement and

we have to add a “noise” to our measure-

ment. If every thing would be exact, the

classification task is the classical interpola-

tion function problem in mathematics. In

real life and for machine learning we need

to model the noise using probability theory.

Therefore machine learning is based on sta-

tistical learning theory, which we shall learn

in tomorrow lecture.



• Regression task predicts a real value for

each item. Examples of regression tasks in-

clude prediction of stock values or variations

of economic variables. In this problem, the

penalty for an incorrect prediction depends

on the magnitude of the distance between

the true and predicted values, in contrast

with the classification problem, where there

is typically no notion of closeness between

various categories. A regression task is a

(construction of a) function, on the set of

items that takes value in R, taking into ac-

count a “noise” from incorrect measurement.



The term regression was coined by Francis

Galton in the 19 century to describe a biolog-

ical phenomenon that the heights of descen-

dants of tall ancestors tend to regress down

towards a normal average (a phenomenon

also known as regression toward the mean

of population). For Galton, regression had

only this biological meaning, but his work

was later extended to a more general statis-

tical context. Galton method of investiga-

tion is non-standard at that time: first he

collected the data, then he guessed the re-

lationship model of the events.



• Density estimation task finds the distri-

bution of inputs in some distribution space.

Karl Pearson (1857-1936) proposed that all

observations come from some probability dis-

tribution and the purpose of sciences is to es-

timate the parameter of these distributions.

Density estimation problem has been pro-

posed by Ronald Fisher (1980-1962) as a

key element of his simplification of statisti-

cal theory, namely he assumed the existence

of a density function p(ξ) that defines the

randomness (noise) of a problem of inter-

est.



The measure ν is called dominated by µ (or
absolutely continuous with respect to µ), if
ν(A) = 0 for every set A with µ(A) = 0.
Notation: ν << µ. By Radon-Nykodym the-
orem, we can write

ν = f · µ
and f is the density function of ν w.r.t. µ.

For example, the Gaussian distribution on
the real line is dominated by the canonical
measure dx and we express the standard nor-
mal distribution in terms of its density

f(x) =
1√
2π

exp(−
1

2
x2).



The classical problem of density estimation

is formulated as follows. Let a statistical

model A be a class of densities subjected to

a given dominant measure. Let the unknown

density p(x, ξ), where ξ ∈ A. The problem

is to estimate the parameter ξ using i.i.d.

data X1, · · · , Xl distributed according to this

unknown density p(x, ξ).



Karl Pearson (1857-1936) Ronald Fisher (1890-1962)



• Ranking task orders items according to

some criterion. Web search, e.g., returning

web pages relevant to a search query, is the

canonical ranking example. If the number

of ranking is finite, then this task is close to

the classification problem, but not the same,

since in the ranking task we need to specify

each rank during the task and not before the

task as in the classification problem.



• Clustering task partitions items into (ho-

mogeneous) regions. Clustering is often per-

formed to analyze very large data sets. Clus-

tering is one of the most widely used tech-

niques for exploratory data analysis. For ex-

ample, computational biologists cluster genes

on the basis of similarities in their expression

in different experiments; retailers cluster cus-

tomers, on the basis of their customer pro-

files, for the purpose of targeted marketing;

and astronomers cluster stars on the basis of

their spacial proximity.



• Dimensionality reduction or manifold learn-

ing transforms an initial representation of

items in high dimensional space into a space

of lower dimension while preserving some prop-

erties of the initial representation. A com-

mon example involves pre-processing digital

images in computer vision tasks. We can re-

gard clustering as dimension reduction too.



Main types of ML

The type of ML is defined by the type of

interaction between the learner and the en-

vironment: the type of training data, i.e.,

the data available to the learner before mak-

ing decision and prediction; and the type of

the test data that are used to evaluate and

apply the learning algorithm.

Main types of ML are supervised, unsuper-

vised and reinforcement learning.



• In supervised learning a learning machine is

a device that receives labeled training data,

i.e, the pair of a known instance and its

feature, also called label. In computer sci-

ences language, a known instance is an in-

put and and its feature is the output of a

program that predicts the label for unseen

instances. Examples of sets of labeled data

are emails that are labeled “spam” or “no

spam” and medical histories that are labeled

with the occurrence or absence of a certain

disease.



• Most of classification and regression prob-
lems of machine learning belong to super-
vised learning.

• In unsupervised learning there is no ad-
ditional label attached to the data and the
task is to describe structure of data. Since
the examples (the avalable data) given to the
learning algorithm are unlabeled, there is no
straightforward way to evaluate the accuracy
of the structure that is produced by the al-
gorithm. Density estimation, clustering and
dimensionality reduction are examples of un-
supervised learning problems.



Most important applications of unsupervised

learning are finding association rules that are

important in market analysis, banking secu-

rity and consists of important part of pattern

recognition, which is important for under-

stand advanced AI.

At the current time, unsupervised learning is

primarily descriptive and experimental whereas

supervised learning is more predictive (and

has deeper theoretical foundation).



• Reinforcement learning is the type of ma-

chine learning where a learner actively inter-

acts with the environment to achieve a cer-

tain goal. More precisely, the learner collects

information through a course of actions by

interacting with the environment. This ac-

tive interaction justifies the terminology of

an agent used to refer to the learner. The

achievement of the agent’s goal is typically

measured by the reward he receives from the

environment and which he seeks to maxi-

mize. For examples, reinforcement learning

is used in self-driving car.



Reinforcement learning is aimed at acquiring

the generalization ability in the same way as

supervised learning, but the supervisor does

not directly give answers to the students ques-

tions. Instead, the supervisor evaluates the

students behavior and gives feedback about

it.



Basic questions in mathematical founda-

tions of ML

A learning is a process of gaining knowledge

on a feature of observables by examination

of partially available data. The learning is

successful if we can make a “good” predic-

tion on unseen data, which improves when

we have more data.



Mathematical foundations of machine learn-

ing aim to answer the following questions

How and why do machine learn successfully?

1. What is the mathematical model of learn-

ing?

To answer Question 1 we need to specify

our definition of learning in a mathematical

language which can be used to build instruc-

tions for machines.



2. How to quantify the difficulty/complexity

of a learning problem?

The difficulty of a problem shall be defined

in terms of complexity: time complexity to

solve a problem, resource complexity of a

problem to have enough data/space/energy

to solve a problem. If the complexity of a

problem is very large then we cannot not

learn it. So Question 2 contains the sub-

question why can we learn a problem?



3. How to choose a learning algorithm?

Clearly we want to have the best learning al-

gorithm, once we know a model of a machine

learning which contains all possible learning

algorithms. To answer Question 3 we need

to measure success of a learning algorithm/a

learning machine, e.g. we quantify the suc-

cess in the rate/number of mistakes, which

can be linked to the complexity of a learning

problem. Thus Question 3 is related to the

first and second Question.



4. Is there a mathematical theory underlying

intelligence?

I shall discuss the last Question in the last

lecture.

Future of machine learning and AI

Nowadays many machine learning systems

can automate things that humans do well.

Examples include image recognition, speech

recognition, and email spam classification which

are mostly supervised learning.



We are now surpassing human-level perfor-

mance on more and more of the tasks where

we can get easily labeled training data. Un-

supervised learning currently is mostly exper-

imental, since we cannot quantify the notion

of success for unsupervised learning, e.g. for

clustering. For example, it is not clear what

is the “correct” clustering for given data or

how to evaluate a proposed clustering. If we

can quantify the “success” in an unsuper-

vised learning problem then we can make a

mathematical model for this problem.



Conclusion Machine learning is automatized
learning, whose performance is improves with
increasing volume of empirical data. Ma-
chine learning uses mathematical statistics
to model incomplete information and the ran-
dom nature of the observed data. Machine
learning is the core part of artificial intel-
ligence. Machine learning is very success-
ful experimentally and there are many open
questions concerning its mathematical foun-
dations. Mathematical foundations of ma-
chine learning is important for building gen-
eral purpose artificial intelligence, also called
AGI, or UAI.
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Mathematical foundations of
machine learning

Lecture 1: Learning, machine learning
and artificial intelligent

Machine learning is a process of gaining new
knowledge by generalization from empirical
data, whose performance improves with “ex-
perience ”.

Lecture 2: Statistical models and frame-
works for machine learning



A model is simply a compact representation

of possible data one could observe. Model-

ing is central to the sciences. Models allow

one to make predictions, to understand phe-

nomena, and to quantify, compare and falsify

hypotheses. A model for machine learning

must be able to make predictions, anticipate

outcomes of their actions, and update their

ability to make predictions in light of new

data



The model for machine learning depends on

type of statistical learning.

1. Statistical model and framework for su-

pervised learning.

2. Statistical model and framework for un-

supervised learning.

3. Statistical model and framework for rein-

forcement learning.



1. Statistical model and framework for

supervised learning The model of super-

vised learning is based on Vapnik’s statistical

learning theory and Cucker-Smale’s mathe-

matical learning theory.

Definition (Vladimir Vapnik) Learning is a

problem of function estimation on the basis

of empirical data.



Toy example A ML firm wants to estimate

the potential of applicants to new positions

of developers of algorithms in ML of its firm

based on its experience that the potential of

a software developer depends on three quali-

ties of an applicant: his/her analytical math-

ematical skill rated by the mark (from 1 to

20), his/her computer sciences skill, rated by

the mark (from 1 to 20), and his/her com-

munication skill rated by the firm test (scaled

from 1 to 5).



The potential of an applicant for the open

position is evaluated in scale 1-10. Since

the position of developer of algorithm in ML

will be periodically re-opened and therefore

they want to design a ML program to pre-

dict the potential of applicants such that the

program automatically will be improved with

time.

This type of machine learning is supervised

learning.



Discriminative model of supervised learning

• A domain set X (also called an input space)

whose elements x ∈ X , called instance/input,

is distributed by an unknown probability mea-

sure µX . In other words, the probability that

x belongs to a subset A ⊂ X is µX (A). Ac-

cording to Kolmogorov’s probability axiom,

we need to supply X with a σ-algebra ΣX and

we can compute only µ(A) for A ∈ ΣX .



• An output space Y, also called a label set,

whose elements are possible features (also

called labels) y for each input x ∈ X . (We

may wish to estimate the probability that y

is a feature of x, which is expressed in an

unknown conditional measure P (y ∈ B|x) -

the probability that y ∈ B ⊂ ΣY is a feature

of x ∈ X ).



We assume that P (y ∈ B|x) is a regular con-

ditional probability, which is more over dom-

inated, i.e., there is a measure µY on Y such

that

P (y ∈ B|x = x0) =
∫
B
fµY(y|x = x0)µY

for a density function fµY(y|x = x0) of the

conditional probability P (y ∈ B|x = x0) w.r.t.

a probability measure µY on Y.



• A sequence S = {(x1, y1), · · · (xn, yn)} ∈
(X × Y)n of i.i.d. (independently identically

distributed) observed pairs of instances and

their label. S is also called a training data,

which are given by a “supervisor”.

• A subset H ⊂ YX of possible predictors

h : X → Y.

• The aim of a learning machine is to find the

best prediction rule - a map hS ∈ H, given a

training data S.



• The learner needs to find an algorithm

A :
⋃
n∈N

(X × Y)n →H, S → hS.

Remark In a discriminative model of super-

vised learning we estimate the desired func-

tion from H.

(In a generative model of supervised learn-

ing we estimate the joint distribution of in-

stances and their feature, or conditional dis-

tribution of a feature, given an instance).



Let us consider the toy example of applicants
of a ML firm. The domain set X = [1,20]×
[1,20]×[1,5]. The label set Y = [1,10]. The
set H of possible hypotheses we want to con-
sider is a subset of the set of all functions
from [1,20] × [1,20] × [1,20] with values in
[1,10], e.g., H is the set of all functions with
values in 5 or 6. In the discriminant model of
learning we estimate potential of applicants
as satisfactory ( with mark 6) or unsatisfac-
tory (with mark 5), but not the conditional
probability of the potential given the marks
of applicants (which we learn in a generative
model).



Different probabilistic modelings of random

observables.

(i) The most general way is to model a ran-

dom correlation of x ∈ X with y ∈ Y via

a measure µX×Y, also called the joint dis-

tribution, on X × Y. The probability that

(x, y) ∈ D ⊂ X × Y is in correlation is equal

to µX×Y(D). In most cases (if Y is a finite

set, a separable metrizable topological space

endowed with the Borel σ-algebra), the mea-

sure on the slice {(y, x)|x = x0} is the condi-

tional probability of y conditioning by x0.



Example. Let X be a finite set of n elements
and Y be a finite set of m elements.

1) Assume that the correlation between x

and y is defined via the counting measure
µcount on X ×Y. Then the conditional prob-
ability measure P (y ∈ B|x = x0) is equal
to the counting measure µY(B) on the slice
x = x0 which does not depend on x0, more-
over the conditional density fµY(y|x) = 1/m
does not depend on y either.

2) Pµcount(A|B) = µcount(A∩B)
µcount(B) .



Recommende book for a short summary and

clear explanation of Probability Theory: J.

Jacod and P. Protter, Probability Essentials,

Springer, 2.edition, 2004.



(ii) Another way to model a random correla-
tion between an instance x ∈ X and its pos-
sible feature y ∈ Y is to regard y as a value of
a probabilistic (or random) map K from X to
Y. The probability that K(x) ∈ B is defined
by a conditional probability PµY(y ∈ B|x) for
some measure µY on Y. If K is a prob-
abilistic map from X to Y then its graph
GrK : X → X × Y, x 7→ (x,K(x)), is a proba-
bilistic mapping from X to the product space
X ×Y with the probability that K(x) ∈ A×B
is equal to

(∗)
∫
A
P (y ∈ B|x)µX =

∫
A

∫
B
pµY(y|x)µYµX .



• Every probabilistic map K : X → Y de-

fines a random correlation on the X ×Y, i.e.,

K defines a probabilistic measure on X × Y.

Given a measure µX on X and probabilistic

map K : X → Y we define the probabilistic

measure (GrK)∗(µX ), the push-forwarding of

µX via the map GrK, on X ×Y as follows

(GrK)∗µX (D) :=
∫
X
PµY((x, y) ∈ D|x)µX

(∗)
=

∫
D
pµY(y|x)µYµX for D ⊂ X × Y.



• Assuming K∗µX = f(x, y) dxdy and µX =

f(x) dx, we deduce from the above formula

the following relation

f(x, y) = f(x)f(y|x).

The probability of the joint distribution x and

y is the product of the probability of x and

the probability of y conditioning on x.

• Any deterministic (usual) K : X → Y can be

regarded as a probabilistic mapping with

PµK(y ∈ B|x) = δK(x)(B) = 1B(K(x)).



(iii) In the current ML and SL literature, fol-

lowing Fisher suggestion, we consider dis-

criminative models of supervised learning where

p(y|x) = f(x) + ε,

and the random error ε (a measurable func-

tion on X ) has Eµ(ε) = 0 and is independent

of x.



• A solution (a desired predictor) for the su-
pervised learning problem must have mini-
mal (expected) error/loss/risk RµX×Y : H →
R.

• Let L : X ×Y×H → R be an instantaneous
loss function L(x, y, f) := d(y, f(x)) where
d : Y ×Y → R is a quasi-distance function on
Y, i.e., d(y, y′) ≥ 0 and d(y, y′) = 0 iff y = y′.
Then

RµX×Y(f) :=
∫
X×Y

L(x, y, f)µX×Y

where µX×Y is the unknown joint distribution
of (x, y).



• (0-1 loss) Let us take H = YX - the sub-

set of all deterministic conditional probabil-

ities. The 0-1 instantaneous loss function

L : X × Y × H → {0,1} is defined as fol-

lows: L(x, y, f) := d(y, f(x)) = δ
y
f(x). The

corresponding expected 0-1 loss determines

the probability of the answer fα(x) that does

not correlate with x:

RµX×Y(f) = µX×Y{(x, y) ∈ X × Y| f(x) 6= y}

= 1− µX×Y({x, f(x)}).



• We don’t know µ and therefore we don’t

know Rµ. Therefore we have to find a hy-

pothesis hS, given a sequence S of empirical

data generated by the probability distribution

µ that defines the probability of the corre-

lation of labeled pairs in X × Y, such that

the expected error of hS is smallest possible.

This motivates the notion of the empirical

risk discussed below.



For a loss function L : X × Y × H → R,
L(x, y, h) = d(y, h(x)),
S = {(x1, y1) · · · , (xn, yn)} ∈ (X × Y)n

we define the empirical risk of h as follows

R̂LS(h) :=
1

n

n∑
i=1

d(yi, h(xi)) ∈ R.

Given S a learner can compute R̂S(h) for any
function h : X → Y. A minimizer of the em-
pirical risk should have also very small ex-
pected risk, which goes to zero as the size
of the empirical data increases. This is the
empirical risk minimization principle.



We shall show an counter-example of the

ERM principle.

• The empirical risk corresponding to 0-1-

loss function L : X ×Y×YX → {0,1} is called

the training error. It is defined as follows

R̂S(h) :=
|i ∈ [n] : h(xi) 6= yi|

n

for a training data S = {(x1, y1), · · · , (xn, yn)}
and a function h : X → Y.



Given a training data S = {(xi, yi = f(xi))}
for a map f : X → Y we shall find a predic-

tor hS with vanishing training error R̂S(hS),

nevertheless its expected 0-1 risk is equal to

ε for any given ε ∈ (0,1). Let

(∗∗)hS(x) =

{
f(xi) if ∃i ∈ [n] s.t. xi = x
0 otherwise.

• Clearly R̂S(hS) = 0, since hS(x) = 0 except

finite (at most n) points x in X .



• Let X be the unit cube Ik in Rk, k ≥ 1, and
Y = Z2. Let µ0 be the Lebesgue measure
on Ik. For ε ∈ (0,1), we shall find a map
f : X → Y, such that the expected 0-1 risk
of the function hS defined in ( **) is equal

R(Grf)∗µ0
(hS) = ε.

Let X = A1∪̇A2 s.t. µ0(A2) = ε.
Let f : X → Z2 be the indicator function 1A1

.
Then
(♠)
R(Grf)∗µ0

(hS) = ({x ∈ X|hS(x) 6= 1A1
(x)}).



Since hS(x) = 0 a.e. on X it follows from

(♠) that

R(Grf)∗µ0
(hS) = µ0(A2) = ε.

Such a predictor hS is said to be overfitting,

i.e. it fits well to training data but not real

life.



The idea for the construction of the counter-

example of ERM principle is simple: the ex-

pected 0-1 risk of a function f is the average

of the 0-1 loss of f , which is zero if f is zero

everywhere except a null set. On the other

hand, any empirical sequence {x1, · · · , xn} is

a null set in the unit cube (Ik)n where k ≥ 1,

and the zero set of the indicator function 1A1

is the susbet A2 of measure ε.



The phenomenon of overfitting suggests the

following questions

1) Can we learn in discriminative model of

supervised learning using the ERM princi-

ple?

2) If we can learn, we would like to know the

rate of convergence of the learning process

as well as construction method of learning

algorithms.



• There is also another method of minimizing

the expected risk, without knowing the prob-

ability measure µ corresponding to the joint

distribution of labeled pairs (x, y) on Z = X×
Y. It is called the stochastic approximation

method, suggested by Robbins and Monroe

in 1951. This method has been developed

into the main methods of machine learn-

ing nowadays: the back-propagation method

and its version - the Amari natural gradient.

The stochastic approximation method works

also for density estimation, so we shall con-

sider it in unsupervised learning.



2. Statistical model for unsupervised learn-

ing In unsupervised learning we are given

output data, a sequence of observables

(x1, · · · , xn), without any additional label yi
to the observable xi. The goal of the learner

therefore is to discover “interesting struc-

ture” in the data (knowledge discovery). Hu-

man learning is mostly unsupervised learning.

We live for 109 seconds and the brains visual

system has 1014 neural connections. So its

no use learning one bit per second. You need

more like 105 bits per second.



Currently there is no general mathematical

theory for unsupervised learning. The main

question is how to formulate the notion of an

interesting structure and quantify the degree

of “interesting” in mathematical language.

Today we shall consider main problem in un-

supervised learning: to estimate the proba-

bility distribution of a random element x on

a measurable space X as discover the total

structure of x, (till now this problem is called

density estimation problem), clustering and

dimension reduction.



Statistical model and framework for den-

sity estimation Density estimation is a cen-

tral problem of classical statistics. Over a

hundred years ago, Karl Pearson proposed

that all observations arise from probability

distributions, and that the purpose of sci-

ence is to estimate the parameters of those

distributions.

We assume that a sequence of observables

(x1, · · · , xn) ∈ Ωn are i.i.d. (identically inde-

pendently distributed). This is assumption

of classical statistics.



The general setting for density estimate is

similar to the setting for supervised learning.

We consider a family P of density functions

on a measure space (Ω, µ0). The loss func-

tion L : Ω× P → R is the minus log-likelihood

function

L(ω, p) = − log p(ω)dµu

where µu = pu(ω) · µ0 is the unknown prob-

ability measure to be estimated and p ∈ P.

Hence the expected risk function is

R(p) = −
∫

Ω
log p(ω)pudµ0.



Note that minimizing the risk functional R(p)
is the same as minimizing the following mod-
ified risk function

R∗(p) = R(p) +
∫

Ω
log pupudµ0

= −
∫

Ω
log

p(ω)

p0(ω)
p0(ω)dµ0.

The expression on the RHS is the Kullback-
Leibler divergence.The Kullback-Leibler di-
vergence can be defined on the space P(Ω)
of all probability measures on Ω. It is a quasi-
distance, i.e.,

KL(µ, µ′) ≥ 0 and KL(µ, µ′) = 0 iff µ = µ′.



It is important to find such quasi-instance

functions on P(Ω) that satisfying certain nat-

ural statistical requirement. This problem

has been considered in information geome-

try, which has been initiated by Chentsov un-

der influence of Kolmogorov’s lecture at the

Poincaré institute Paris in 1955, and later by

Amari in Japan motivated by many problems

in applied statistics. Recommended books

“Information Geometry ” (N. Ay, J. Jost,

H.V. L, L. Schwachhoefer), “Information Ge-

ometry and its applications” (S. Amari).



To minimize a risk functional

R : Ω× P → R, R(p) =
∫

Ω
L(ω, p)µu(dω),

using i.i.d. observables ω1, ω2, · · · , ωl, one
uses stochastic approximation as follows. One
iterates the following procedure for k = 1, · · · , l

p(k + 1) = p(k)− γk∇PL(ωk, p(k)). (1)

If the variable ωk is fixed, then (1) is the
discretization of the gradient flow

ṗ(t) = ∇PL(ωk, p(t)).

By taking ω randomly, i.e., ω = ωk in (1), we
can approximate the expected risk function
RL.



Statistical model for clustering

• Clustering is the process of grouping similar

objects together.

• In similarity-based clustering, the input to

the algorithm is an N×N dissimilarity matrix

or distance matrix D.

• In feature-based clustering, the input to

the algorithm is an N ×D feature matrix or

design matrix X.



• Two possible types of output: partitional

clustering, where we partition the objects

into disjoint sets; and hierarchical cluster-

ing, where we create a nested tree of parti-

tions.

• The goal of clustering is to assign points

that are similar to the same cluster, and to

ensure that points that are dissimilar are in

different clusters. There are several ways of

measuring these quantities. However, these

internal criteria may be of limited use.



The validation of clustering structures is the

most difficult and frustrating part of cluster

analysis. Without a strong effort in this di-

rection, cluster analysis will remain a black

art accessible only to those true believers

who have experience and great courage ac-

cording to Murphy.



Statistical model and framework for di-

mension reduction

Dimension reduction is the process of taking

data in a high dimensional space and map-

ping it into a new space whose dimension

is much smaller. This process is closely re-

lated to the concept of (lossy) compression

in information theory. That is, if the origi-

nal data is in Rd and we want to embed it

into Rn, n < d, then we would like to find a

matrix W ∈Matd,n that induces the mapping

x 7→Wx.



To find a best matrix W we also define cer-

tain functional on the space of all possible

matrices W and find an optimization prob-

lem. A popular method is called Principal

Component Analysis (PCA), first proposed

by Karl Pearson, where we are also search

for a matrix U ∈ Matd,n and minimize the

distance ρ(x, UW (x)).



Reinforcement learning

A reinforcement learning agent interacts with

its environment in discrete time steps.



At each time t, the agent receives an ob-

servation ot, which typically includes the re-

ward rt. It then chooses an action at from

the set of available actions, which is subse-

quently sent to the environment. The envi-

ronment moves to a new state st+1 and the

reward rt+1 associated with the transition

ot+1 := (st, at, st+1) is determined. The goal

of a reinforcement learning agent is to col-

lect as much reward as possible. The agent

can (possibly randomly) choose any action

as a function of the history.



The uncertainly in reinforcement learning is

expressed in terms of a transition probabil-

ity Pr[s′|s, a] - distribution over destination

states s′ = δ(s, a) and in terms of a reward

probability Pr[r′|s, a] - distribution over re-

wards returned r′ = r(s, a).

Thus the mathematical model of reinforce-

ment learning is Markov decision process.



Conclusion • Mathematical models for ma-

chine learning use the language of statistical

decision theory which is the theory of choos-

ing an optimal non-deterministic behavior in

incompletely known situations.

• An optimal decision is an algorithm that

assign to each sequence S of data a hy-

pothesis hS that minimizes the expected loss

(or expected risk) for supervised or unsuper-

vised learning, respectively maximizes the ex-

pected reward/success.



• In the discriminative model for supervised

learning we search for a good approximation

of a noisy feature y of an instance x by a

function h from a wide class H of possible

hypotheses.

• In the generative model for supervised learn-

ing we search for underlying distribution of

the correlation between a noisy feature y and

an instance x.



• The main difficulty for solving optimiza-

tion problem is that we don’t know how to

compute the expected loss since the proba-

bility measure is unknown. Thus we are lead

to use the ERM principle, which may suffer

from overfitting, and the stochastic approx-

imation method. To apply ERM method we

need to find a sufficient condition to avoid

overfitting.



• We also have not discussed the question

if our solvable decisions require an accept-

able resources for 1) collecting and keeping

statistical data 2) computing time of algo-

rithms. In other words we need to quantify

the difficulty/complexity of a learning prob-

lem which is also related to the last question

in yesterday lecture: how to measure a suc-

cess of a learning machine.



Recommended literature

• M. Mohri, A. Rostamizadeh, A. Talwalkar,

Foundations of Machine Learning, MIT Press,

2012.

• K. P. Murphy, Machine Learning: A Prob-

abilistic Perspective, MIT Press, 2012.

• S. Shalev-Shwart, and S. Ben-David, Un-

derstanding Machine Learning: From The-

ory to Algorithms, Cambridge University Press,

2014.



• M. Sugyiama, Introduction to Statistical

Machine Learning, Elsevier, 2016.

THANK YOU FOR YOUR ATTENTION!



Mathematical foundations of
machine learning

Lecture 1: Learning, machine learning
and artificial intelligent

Lecture 2: Statistical models and frame-
works for machine learning

Machine learning is minimization of the un-
known expected risk on the basis of empirical
data.

Lecture 3: PAC-learning



Question 1 How many random examples
does the ERM algorithm need to draw be-
fore it has sufficient information to learn un-
known hypothesis from the hypothesis class
H?

Question 2 How much computation time is
required for learning?

The answer to the first question led Vladimir
Vapnik to his notion of sample complexity.

The term PAC - probability approximately
correct has been proposed by Valiant in 1984.



• The sample complexity and computational

complexity quantify the notion of hardness of

a learning problem and success of a learning

method based on empirical data.

• The term PAC has been proposed by Valiant

in 1984. The notion of PAC-learning corre-

sponds to the notion of consistent learning in

Vapnik’s theory, and the notion of consistent

learning stems from the notion of consis-

tency of statistical estimation that has been

introduced by Ronald Fisher in 1922.



• There are many versions of consistent learn-

ing theory and PAC learning addressing dif-

ferent hypothesis spaces, loss function, algo-

rithm type.



Plan of today lecture:

1. PAC learning.

2. No-Free-Lunch and VC-dimension.

3. Complexity of regression problems.



1. PAC learning

To quantify the success of a learning algo-

rithm A we need to estimate the error (ex-

pected risk) of the predictor A(S) ∈ H, where

S ∈ Zn is a random sample. In PAC learn-

ing we consider estimations for the error of

a predictor with accuracy/correctness ε (ap-

proximately)up to confidence (1 − δ) (prob-

ably) in probability measure for S ∈ Zn.



• For D ∈ P(Z), we set

PS∼Dm[f(S)]:= Dm({S ∈ Zm | f(S) holds }).

The relation f(S) is usually expressed in terms

of inequalities.

ES∼Dmf :=
∫

Ωm
fdDm.

• We write P [f(S)], E(f), if m = 1 and D is

known (and hence can be omitted).



We say that H is PAC-learnable w.r.t. the

(expected) risk function RL, if there exist a

sample complexity function mH : (0,1)2 → R

and a learning algorithm A with the follow-

ing property. For every (ε, δ) ∈ (0,1)2, for

every distribution D over Z, when running

the learning algorithm A on m ≥ mH(ε, δ)

i.i.d. examples generated by D, the algo-

rithm returns hS ∈ H such that

PS∼Dm[
(
RLD(hS)− inf

h′∈H
RLD(h′)

)
≤ ε]≥ 1− δ.



The sample complexity mH : (0,1)2 → N

of a hypothesis class H is the function of

the accuracy (ε) and the confidence (δ), re-

garded as variables of the function mH, that

appears in the definition of PAC-learnability

of H such that for each (ε, δ) the sample

complexity mH(ε, δ) is the minimal number

that appears in the Definition of the PAC-

learnability.



Theorem 1. Let Z be a domain, H a fi-

nite hypothesis class, and L : Z ×H → [0,1]

a loss function. Then, H is PAC-learnable

using the ERM algorithm with sample com-

plexity

mH(ε, δ) ≤
2 log

(
2#(H)/δ

)
ε2

.

Theorem 1 implies that overfitting never hap-

pens if we have a finite number of possible

hypothesis and arbitrary binary valued loss

function.



Explanation of Theorem 1. Given a hypoth-

esis class H and a training example S the

ERM rule selects a minimizer hS ∈ H of the

empirical risk R̂LS(h). To make sure that a

minimizer h of the empirical risk with respect

to S is an expected risk minimizer (or has ex-

pected risk close to the minimum) with re-

spect to the true data probability distribution

as well, it suffices to ensure that uniformly

over all hypotheses in H, the empirical risk

will be close to the true (expected) risk.



If H is finite, then the uniform approxima-

tion can be obtained if we can show that for

any fixed hypothesis h ∈ H the gap between

the true and empirical risks, |R̂S(h)−LD(h)|
is likely to be small. The weak law of large

numbers, states that when m goes to infinity,

empirical averages converge in probability to

their true expectation. However, since the

law of large numbers is only an asymptotic

result, it provides no information about the

gap between the empirically estimated error

and its true value for any given, finite, sam-

ple size.



Instead, we will use a measure concentration

inequality due to Hoeffding, which quantifies

the gap between empirical averages and their

expected value.

Hoeffding’s Inequality Let θ = (θ1, · · · , θn)

be a sequence of i.i.d. random variables

and assume that for all i Eθi∼D(θi) = µ and

Pθi∼D[ai ≤ θi ≤ b] = 1. Then for any ε > 0

we have

Pθ∼Dm

[∣∣∣ 1
m

m∑
i=1

θi − µ
∣∣∣ > ε

]
≤ 2 exp

( −2mε2

(b− a)2

)
.



For more details, see S. Shalev-Schwart and

S. Ben-David: Understanding Machine Learn-

ing: From theory to Algorithm, p. 57.).



3. No-Free-Lunch and VC-dimension (cf.

SSBD2015)

No-Free-Lunch-Theorem Let X be an infi-

nite domain set. Then the hypothesis class

H := {0,1}X is not PAC-learnable. More

precisely, let m be any number smaller than

(1/2)#X , representing a training set size.

Then there exist a distribution D over X and

f ∈ {0,1}X such that

PS∼[(Γf)∗D]m[R(Γf)∗D

(
A(S)

)
≥ 1/8] ≥ 1/7.



=⇒ Without further restriction on H, ma-

chines cannot learn, overfitting can happen.

•What are sufficient conditions for learnabil-

ity of a machine learning problem (Z,H, RL, A)?

A partial answer is in terms of VC(Vapnik-

Chervonenkis)-dimension.



The VC-dimension is a measure of the ca-

pacity (complexity, expressive power, rich-

ness, or flexibility) of a space H of functions

that can be learned by a statistical classifica-

tion algorithm. It is defined as the cardinality

of the largest set of points that the algorithm

can shatter.

Definition A hypothesis class H ⊂ {0,1}X

shatters a finite subset C ⊂ X if #H|C =

2#C.



Example. A hypothesis class H shatters a

set of one point x0 ∈ X if and only if there

are two function f, g ∈ H such that f(x0) 6=
g(x0).



Note that any binary function h : X → {0,1}
is defined uniquely the subset h−1(1). Thus

a hypothesis class H ⊂ {0,1}X can be iden-

tified with a collection also denoted by H of

subsets of X . Thus Definition of shattered

finite subset can be rewritten as follows.

Definition (M. Steele, Ph.D. Thesis 1975,

published in 1978) Given a collection H of

subsets of a set X , we say that the finite sub-

set C of X is shattered by H if every subset B

contained in C can be written as intersection

of C with an element of H.



Definition. The VC-dimension, denoted by

V C dim(H), is the maximal size of a set C ⊂
X that can be shattered by H. If H can

shatter sets of arbitrarily large size we say

that H has infinite VC-dimension.



Example Let H be the class of intervals in

the real line, namely,

H = {h(a,b) : a < b ∈ R},

where h(a,b) : R→ {0,1} is the indicate func-

tion of h(a,b). Take the set C = {1,2}. Then,

H shatters C all the function {1,2}(0,1) can

be obtained as the restriction of some func-

tion from H to C. Hence V C dim(H) ≥ 2.



Now take an arbitrary set C = {c1 < c2 <

c3} and the corresponding labeling (1,0,1).

Clearly this labeling cannot be obtained by

an interval: Any interval h(a,b) that contains

c1 and c3 (and hence labels c1 and c3 with the

value 1) must contain c2 (and hence it labels

c2 with 0 ). Hence H does not shatter C.

We therefore conclude that V C dim(H) = 2.

Note that H has infinitely many elements.



Fundamental theorem of binary classification

Let H ⊂ {0,1}X be a hypotheses class with

true risk. Then the following are equiva-

lent:

1. Any ERM rule is a successful PAC-learner

for H, i.e., H is PAC-learnable with ERM-

rule.

2. V C dim(H) <∞.



The main idea of the proof of the fundamen-

tal theorem of binary classification consists

in establishing that the finiteness of the VC-

dimension of H is sufficient and necessary for

the uniform convergence (i.e., independent

from D ∈ P(X × Y) and from S ∈ (X × Y)m)

of the estimation error of the empirical min-

imizer

RLD(hS)−min
h∈H

RL(h)

to zero, when m goes to infinity. Once we

have the uniform convergence the Hoeffding

inequality implies the required PAC-inequality.



4. Complexity of regression problems

In the PAC-learning setting, the VC-dimension

is a combinatorial characterization of the hy-

pothesis class H, which carries no topology.

The PAC-learning setting is satisfactory for

classification problem, where we do not have

topology on the label set Y. For the regres-

sion problem, where Y = R, we consider the

quadratic loss function and the MSE for a

predictor h ∈ H.



The complexity of regression problems has

been considered by Cucker and Smale and

their paper “On the mathematical founda-

tions of learning” in 2001. They proved the

learnability (or generalization ability) of the

regression problem under the compactness

assumption of the hypothesis class H. The

compactness is related to the topology on

the Banach space C(X) of continuous func-

tion with the C0-norm

||f ||C0 = sup
x∈X
|f(x)|.



• For a function f : X → Y = R let

fY : X × Y → Y, (x, y) 7→ f(x)− y.

Then MSE(f) = Eρ(f2
Y ).

• For g : X × Y → Y its variance Vρ(g) is

Vρ(g) := Eρ(g − Eρ(g))2 = Eρ(g2)− (Eρg)2.

• For a compact H ⊂ C(X) and f ∈ H

MSEH(f) := MSE(f)−MSE(fH),

where fH = argminf∈HMSE(f).



• MSEH(f) is (called) the estimation error

of f , which is also called the sample error of

f .

• For S = (z1, · · · , zm) ∈ Zm = (X × Y)m de-

note by fS the minimizer of the empirical

MSE

MSES(f) :=
1

m

m∑
i=1

(f(xi)− yi)2.

The existence of fS follows from the com-

pactness of H and the continuity of the func-

tional MSES on H.



Theorem 2 (CS2001) Let H be a compact

subset of C(X ). Assume that for all f ∈ H
we have |f(x)− y| ≤M ρ- a. e., and let

Vρ(H) := sup
f∈H

Vρ(fY ).

For all ε > 0, PS∼ρm[MSEH(fS) ≤ ε] ≥

1−N (H,
ε

16M
)2e
− mε2

8(4Vρ(H)+1
3M

2ε),

where for s ∈ R the covering number N (H, s)
is the minimal l such that there exists l disks

in H with radius s covering H.



Outline of the proof of the Cucker-Smale

theorem. The proof of the Cucker-Smale

theorem is somewhat similar to the proof

of the PAC-learnability of a finite hypothe-

sis class. First we establish a PAC-inequality

for one function. Then using the compact-

ness of H we establish the PAC-inequality

for H. Here we need the covering number

of H which could be though as an analogue

of the VC-dimension in the case of binary

classification.



Theorem 2 implies an upper bound for the

sample complexity for learning a regression

problem with a compact set H ⊂ C(X ). Namely

for given (ε, δ) ∈ (0,1) to ensure that the ex-

pected risk of the empirical risk minimizes

fS is less than ε for almost all S ∈ Zm with

confidence 1− δ it is sufficient that m satis-

fies

m ≥
8(4Vρ(H)) + 1

3M
2ε)

ε2
×

(
ln
(
2N (H,

ε

16M
)
)

+ ln(
1

δ
)
)
.



• If the hypothesis class H in Theorem 2 is

a convex subset in H then Cucker-Smale got

an improved estimation of the confidence 1−
δ for a given accuracy ε (CS2001).



Conclusion In this lecture we learn that in

presence of uncertainty, the complexity of a

learning problem, specified via an expected

loss RL on a hypothesis class H, as well as

the success of a learning algorithm must be

measured up to probability component. The

PAC-learnability of a hypothesis class H sat-

isfies all these requirements. In the binary

classification problem a hypothesis class is

PAC-learnable if and only if the VC-dimension

V C dim(H) is finite.



The PAC-learning theory also implies that

there is No-Free-Lunch, that is, there is no

PAC-learning algorithm for the universal hy-

pothesis class of all hypotheses. In the re-

gression problem, since a loss function is de-

fined in terms of a distance between the true

and predicted value, the topology of a hy-

pothesis class is important. Instead of VC-

dimension, which is a combinatorial sample

complexity, the covering number of a hy-

pothesis class quantifies its complexity.



Final Remarks We note that the PAC-esti-

mation in Cucker-Smale theorem depends on

the unknown distribution underlying a labeled

data set, which is specified in the number

Vρ(H). On the other hand and the PAC-

learnability concept in Vapnik-Chervonenkis

theory is distribution free, i.e., it does not

depends on the unknown distribution under-

lying a labeled data set. Nowadays there are

many notions of sample complexity that de-

pends on the underlying distribution of a la-

beled data set, the most notable of them is

the Rademacher complexity.



In general to estimate a sample complexity of

a hypothesis class is very hard but we should

never use experimental fact to jump to con-

clusion.



As an example I like to mention experiments

with the Riemann Hypothesis (ζ(s) =
∑∞
n=1

1
ns

has its zeros only at the negative even in-

tegers and complex numbers with real part

1/2). There are several ways how to test the

Riemann Hypothesis. An equivalent version

is to use the Mobius function µ(i) (µ(n) = 0

if n is divisible by a square of a prime, µ(n) =

−1 if n is an odd number of distinct primes,

µ(n) = 1 if n is a product of an even number

of distinct primes) and prove/disprove that

for all n > n0 |
∑n
i=1 µ(i)| ≤ n1/2+ε.



For n > 200 the value |
∑
µ(i)| < 1/2

√
n but

suddenly for n = 7,725,038,629 it exceeds

1/2
√
n. In 1985, a counter-example for the

Mertens hypothesis |
∑
µ(i)| <

√
n was found

with the present best bound is n < e1,591040
.

Thus the Mertens conjecture is false, in spite

of all empirical evidence that we have so

far.



Recommended literature.

1. F. Cucker and S. Smale, On mathemati-
cal foundations of learning, Bulletin of AMS,
39(2001), 1-49.

2. P. Pudlak, Logical Foundations of Mathe-
matics and Computational Complexity, Springer
2013.

3. S. Shalev-Shwart, and S. Ben-David, Un-
derstanding Machine Learning: From The-
ory to Algorithms, Cambridge University Press,
2014.



Mathematical foundations of
machine learning

Lecture 1: Learning, machine learning

and artificial intelligent

Lecture 2: Statistical models and frame-

works for machine learning

Lecture 3: PAC-learning

Lecture 4: Deep learning, pattern theory

and algebra of human thoughts



Can machines learn to think like human?

• Machine learning groups are on race to
build new models and techniques for the com-
ing age of AGI (B. M. Lake, T. D. Ullman,
J. B. Tenenbaum, and S. J. Gershman in
“Building machines that learn and think like
people. Behavioral and Brain Sciences”(2016),
Ghahramani “Probabilistic machine learning
and artificial intelligence” (2015)).

• The current main techniques are deep learn-
ing via neural networks and probabilistic (Bayesian)
machine learning.



• Deep learning is related to the pattern the-

ory founded by Grenander and developed by

Mumford and many others.

• Grenander also analyzed the importance of

the pattern theory for AGI.



Plan of today lecture

1. Neural network.

2. Deep learning.

3. Pattern theory and algebra of human

thoughts.

4. Summary of our course.



1. Neural network.

• Today most powerful learning machines are

artificial neural networks (ANN or NN).

• Neural networks encode a certain class of

hypotheses/predictors which can present most

of functions machine could learn.



• A NN: = (V,E, σ, w) where V - vertexes

(nodes), E - directed edges of the network.



• The graph (V,E) is called the underlying

graph of the network.

• Each node, also called a neuron, in V is

modeled as a function σ : R → R, which is

also called the activation function.

Most common activation functions are:

- the sign function σ(x) = sign(x),

- the threshold function σ(x) = 1R+(x),

- the sigmoid function σ(x) := 1
1+e−x, which

is a smooth approximation to the threshold

function.



• w : E → R is called the weight function of

the network.

• The networks architecture of a neural net-

work is the triple G = (V,E, σ).

• The input I(n) of a neuron n is equal to the

weighted sum of the outputs of all the neu-

ron connected to it: I(n) =
∑
w(n′n)O(n′),

where n′n ∈ E is a directed edge, w(n′n) ∈ R,

and O(n′) is the output of the neuron n′ in

the network.



• The output O(n) of a neuron n is obtained

from the input I(n) as follows: O(n) = σ(I(n)).

• The i-th input nodes give the output xi.

For the input space Rn we have n+ 1 input-

nodes, one of them is the “constant” neu-

ron, whose output is 1.

• (E, V,w, σ) represents a function hV,E,σ,w.



• HV,E,σ = {hV,E,σ,w : w ∈ RE} the under-

lying hypothesis class of functions from the

input space to the output space of the net-

work.

Remark Neural networks are abstraction of

biological neural networks, and the activa-

tion function is usually an abstraction repre-

senting the rate of action potential firing in

the cell. In its simplest form, this function is

binary, that is, either the neuron is firing or

not. We can consider activation function as

a filter of relevant information.



Neural networks are classified by type of their

underlying graph.

- A feedforward network has underlying acyclic

directed graph. Otherwise, it is called a re-

current network.

- A layered feedforward neural network FN

has vertices arranged in a disjoint union of

layers V = ∪nl=0Vi such that every edge in E

connects nodes in neighboring layers Vi, Vi+1.



The depth of the network FN is n. V0 is

called the input layer, Vn is called the output

layer, the other layer is called hidden.

Example A perceptron f(w,b), where w ∈ Rn,

is a neuron network with (n+ 1) inputs and

with a single neuron and of depth 1. The

activation function is x 7→ sign (x). The per-

ceptron, invented in 1957 by Frank Rosen-

blatt, is an algorithm for supervised learn-

ing of binary classifiers: f(w,b) : Rn → {0,1}.



Here w ∈ Rn and b ∈ R are defined as fol-

lows

f(w,b)(x) =

1 if 〈w, x〉+ b > 0,

0 otherwise.

Given a sequence of labeled pair (x1, y1), · · · , (xn, yn),

where yi ∈ {0,1}, a perceptron has to define

the best possible function f(w,b) ∈ H such

that

f(w,b)(xi) = yi

for all i.



Training perceptron in an ideal condition

w̃ := (w, b) ∈ Rn+1, x̃ := (x,1) ∈ Rn+1.

With this new notations our goal is to have
w̃ s.t.

(P ) yi〈w̃, x̃i〉 > 0 for all i

⇐⇒ f(w,b)(xi) = yi.

Step 1: set w̃(1) := (0, · · · ,0) ∈ Rn.
Step t for t ≥ 2:
if ∃i = i(t) s.t. yi〈w̃(t), x̃i〉 ≤ 0 then we set
w̃(t+ 1) = w̃(t) + yix̃i,
otherwise w̃(t+ 1) = w̃(t).



• This training will stop after a finite number

of steps, if the equation (P) has a solution w̃

and we don’t need to define the loss function

and minimize it.

• NN are popular since firstly they encode

almost all functions we need to compute in

a convenient way and secondly we can train

them effectively.



Theorem (1) Every continuous function f :

[0,1]n → R can be represented by a neural

network of depth 2.

(2) Every Boolean function f : {0,1}d →
{0,1} can be represented exactly by a feed-

forward neural network with a single hidden

layer containing at most 2d neurons, if σ(x) =

(sign(x) + 1)/2 is used as activation func-

tion.



How to train a neural network?

We shall consider only the case where the in-
put space and the output space of the net-
works are euclidean spaces Rn and Rm re-
spectively.

The risk function we use train our network
is the MSE with the loss function

L(hw(x), y) =
1

2
||hw(x)− y||2.

Hence for D ∈ P(Rn ×Rm)

RLD(hw) = ED
(
L(hw(x), y

)
.



Since D is unknown the ERM principle would

minimizes RLS and using sample complexity

to prove that if hS minimizes RLS then it

also minimizes RLD with ε-accuracy and δ-

confidence if #(S) ≥ m(ε, δ).

Current training methods of neural networks

uses stochastic gradient we considered in lec-

ture 2, p. 79.



As in lecture 2 we set

w(k+1) = wk − η∇wL(h(wk), zk)

replacing p(k) ∈ P by wk - the parameter

of the hypothesis class HV,E,σ and replacing

ωk ∈ Ω by zk = (xk, yk) ∈ Rn × Rm. It can

be proved that under certain condition the

stochastic gradient converges.



2. Deep learning The success of machine

learning algorithms generally depends on data

representation, also called feature learning

(“Representation Learning: A review and Per-

spective, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (2013) by Yoshua

Bengio, Aaron Coyrville and Pascal Vincent,

“Deep Learning” by Ian Goodfellow Yoshua

Bengio and Aaron Courville, MIT Press, 2016).



In machine learning, representation learning

is a set of techniques that allows a system

to automatically discover the representations

needed for feature detection or classification

from raw data. This replaces manual feature

engineering and allows a machine to both

learn the features and use them to perform

a specific task.



Feature learning can be either supervised or

unsupervised. The question is: how do we

automatically find compact representations

of data? In probabilistic modeling, we view

this as a problem of finding latent variables,

which provide a simpler and often lower-dimen-

sional representation of our high-dimensional

data.



In statistics, latent variables (from Latin: present

participle of lateo (“lie hidden), as opposed

to observable variables), are variables that

are not directly observed but are rather in-

ferred (through a mathematical model) from

other variables that are observed (directly

measured). Mathematical models that aim

to explain observed variables in terms of la-

tent variables are called latent variable mod-

els.



3 Pattern theory and algebra of human

thought The methods in representation learn-

ing I just mentioned above is more or less

empirical and heuristic. A mathematical the-

ory of representation theory can be devel-

oped from the general pattern theory by Grenan-

der.



Pattern theory

1. In the real world, signals are mostly stochas-

tic. Signal processing makes use of stochas-

tic properties to find the hidden structure we

want to know about.

1a. The set of variables, observed and hid-

den, typically forms the vertices of a graph,

as in Gibbs models, and one must formulate

prior probability distributions for the hidden

variables as well as models for the observed

variables.



1b. When all the stochastic factors affecting

any given observation are suitably identified,

they show a large amount of conditional in-

dependence. We need techniques e.g. PCA

(principal component analysis), ICA (inde-

pendent component analysis), to decompose

signals into independent components.

2. The various objects, processes, and rules

of the world produce patterns that can be

described as precise pure patterns distorted

and transformed by a limited family of de-

formations, similar across all modalities.



2a. One can list the different types of de-

formations patterns are subject to, thus cre-

ating the basic classes of stochastic models

that can be applied.

2b. Signals decompose into elementary com-

ponents which combine and transform via

stochastic rules into more complicated sig-

nals.



Algebra of human thought U. Grenander, A

Calculus of Ideas, A mathematical Study of

Human Thought, World Scientific, 2012.

In order to build AGI we need to answer the

following question

Can we formalize human thinking?



We can formalize human thinking.

• Aristotle (384322 BC) invented syllogism

(a process of logic in which two general state-

ments lead to a more particular statement)

as foundation for reasoning and thinking.



• David Hume (1711-1776) “Though our

thought seems to possess this unbounded

liberty, we shall find, upon a nearer examina-

tion, that it is really confined within very nar-

row limits, and that all this creative power of

the mind amounts to no more than the fac-

ulty of compounding, transposing, augment-

ing, or diminishing the materials afforded us

by the senses and experience.”



• Immanuel Kant (1724 -1804) argued that

human thought is essentially architectonic:

starting with simple sensory inputs the thinker

combines them into abstractions, then com-

bines these into higher level abstractions, and

so on.



• Siegmund Freud (1856-1939) analyzed emo-

tional thinking terms of elements: id, ego,

superego, censor, libido, castration fear, child

sexuality, transfer, repression, Oedipus com-

plex.... They are combined to form the nu-

cleus of the mind of the patient, or at least

the subconscious part of it, and are supposed

to be discovered by the analyst through ex-

amination of dreams, slips, free associations

and other expressions of the subconscious.



In Grenander’s theory the model of the mind

is built in pattern theoretic terms. Start-

ing from simple, atomic, mental entities (the

generators of pattern theory) we shall com-

bine them into regular structures, thoughts,

(configurations) later on to be controlled by

probabilistic rules of connections. In this way

patterns of thought will be built as hierar-

chies of more and more complex structures

for which we shall introduce a calculus of

ideas.



Main rules of thinking in Grenander’s the-

ory

1. Thoughts are made up of discrete enti-

ties: ideas.

2. Ideas are connected via bonds; defines

semantic.

3. The number of connections to an idea,

the arity, is huge.



4. Ideas constituting a thought are bound

tightly together: a p-clique (a fully con-

nected graph with p nodes).

5. Thought processes form a metric mind

space.

6. Thinking is realized physically by a con-

nected network.

7. The mind equation attributes strengths

to ideas and connections between ideas.



8. The network structure implies that think-

ing is organized in terms of graphs.

9. Language, a small subset of thinking,

must also be organized by graphs.

10. Thoughts are created probabilistically by

the mind equation.

11. Thoughts are conditioned by boundary

conditions.



12. Thoughts are concentrated to neighbor-

hoods N (thought) in mind space.

13. The energy function E has a large num-

ber of local minima concentrating around

thoughts.

14. The high level study of thinking should

take place in mind space, not physical

space.



Conclusion The most powerful technique of

ML today is deep learning that is performed

with neural networks. There are several mo-

tivations for applying neural networks. Neu-

ral networks have excellent expressive power

and good performance using SGD. They are

capable of tackling with high dimensional data.

• Many machine learning problems become

exceedingly difficult when the number of di-

mensions in the data is high. This phe-

nomenon is known as the curse of dimen-

sionality.



• Representation learning is a solution to

curse of dimensionality.

• Pattern Theory could serve a mathematical

foundation for learning representation.
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4. Summary of our course

1. Machine learning is inductive learning based

on empirical data, whose performance im-

proves with the increase of size of data.

2. To model noise/incomplete information/random

observables we use probability language with

different complexity.



3. The sample complexity of a machine learn-

ing problem and the success of a learning

algorithm is expressed in language of proba-

bility theory.

4. To reach AGI we need representation

learning, whose mathematical theory might

be the Grenander pattern theory.


