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Lifetime and related functions

Lifetime = Time elapsed before the occurrence of an event:

• death, recovery or relapse in Survival Analysis

• Failure of a system or an equipment in Reliability

• Loss of employment in Econometric

• ...

Probabilistic Model: random variable (r.v.) X ≥ 0, with
cumulative distribution function (c.d.f.) F (x) = P(X ≤ x).

R(x) = 1− F (x)=Reliability function (or Survival Function
in Survival Analysis).
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Hazard rate (or risk) function

If X is a continuous r.v., the hazard rate function λ(·) is
defined by:

λ(x) = lim
h→0+

1

h
P(X ∈ [x , x + h[ |X ≥ x)

=
f (x)

R(x)
,

for x ≥ 0, where f (·) is the probability density function (p.d.f.)
of X .

The hazard rate at point x represents the instantaneous
probability of failure (or death) at time x given that failure (or
death) didn’t occur before.
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The hazard rate function may have different shapes: the most
well known is called the bathtup curve.

Figure: Bathtup curve (source: Wikipedia).
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Figure: Age-specific mortality rates, Canada, in 1984 and 2004
(logarithmic scale) (source: http://www.statcan.gc.ca).



Reminders of
Lifetime Data

Analysis

J.Y. Dauxois,
4-8 June 2018

Lifetime
Models

Lifetime and
related functions

Censoring and
Truncation

Some usual
lifetime
distributions

IFR and DFR
distributions

Statistical
Inference

Parametric
models

Nonparametric
inference

With
uncensored
observations

With censored
observations

8/54

Cumulative hazard rate function :

Λ(x) =

∫ x

0
λ(s)ds, for all x .

Important relations between these functions : we have, for
all x :

R(x) = exp(−Λ(x))

f (x) = λ(x) exp

(
−
∫ x

0
λ(s)ds

)
.
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If the r.v. X is discrete, i.e. with values in the denumerable
set {x1 < x2 < · · · < xn < · · · }, we have:

F (x) =
∑

i :xi≤x

pi ,

where pi = P(X = xi ).
The Hazard rate function is defined by:

λ(xi ) = P(X = xi |X ≥ xi ) =
pi

R(xi−1)
.

The Cumulative hazard rate function is defined by:

Λ(x) =
∑

i :xi≤x

λ(xi ).

We have:
R(x) =

∏
i :xi≤x

(1− λ(xi )) .
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The mathematical expectation of X can be written in terms of
the Reliability function:

E(X ) =

∫ +∞

0
xdF (x) =

∫ +∞

0
R(x)dx .

The Residual Life at time x , denoted by τx , is the r.v with
distribution

P(τx > y) = P(X − x > y |X > x) =
R(x + y)

R(x)
.

The Mean Residual Life function m(·), is defined for x ≥ 0,
by

m(x) = E(τx) = E(X − x |X ≥ x)

=

∫ +∞
x R(s)ds

R(x)
.
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Censoring

Figure: Competing risks data (source: ReliaWiki.org).
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Figure: Complete data (source: ReliaWiki.org).
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6-MP dataset

14/20

Figure: Clinical trial: 6-mercaptopurine versus placebo (Freirich et al.
Blood 21, 1963). Time in months.
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Figure: Right Censored data (source: ReliaWiki.org).
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Definition
The lifetime X is said to be right censored (resp. left
censored) by C if, instead of observing X , one observe X ∧ C
(resp. X ∨ C) where C is a r.v., a ∧ b = min(a, b) and
a ∨ b = max(a, b).

Figure: Left Censored data (source: ReliaWiki.org).
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1.17 Time to First Use of Marijuana 17

the community died or left the center and the age when individuals
entered the community is available on the authors’ web site.

The life lengths in this data set are left truncated because an individ-
ual must survive to a sufficient age to enter the retirement community.
Individuals who die at an early age are excluded from the study. Ignor-
ing this left truncation leads to the problem of length-biased sampling.
The concept of left truncation and the bias induced into the estimation
process by ignoring it is discussed in section 3.4.

This data will be used in section 4.6 to illustrate how one estimates
the conditional survival function for left-truncated data. The data is used
in section 7.3 to illustrate the comparison of two samples (male and
female), when there is left truncation and right censoring employing
the log-rank test, and in Chapter 9 employing the Cox proportional
hazards model.

1.17 Time to First Use of Marijuana

Turnbull and Weiss (1978) report part of a study conducted at the
Stanford-Palo Alto Peer Counseling Program (see Hamburg et al. [1975]
for details of the study). In this study, 191 California high school boys
were asked, “When did you first use marijuana?” The answers were
the exact ages (uncensored observations); “I never used it,” which are
right-censored observations at the boys’ current ages; or “I have used it
but can not recall just when the first time was,” which is a left-censored
observation (see section 3.3). Notice that a left-censored observation

TABLE 1.8
Marijuana use in high school boys

Number of Exact Number Who Have Yet Number Who Have Started
Age Observations to Smoke Marijuana Smoking at an Earlier Age

10 4 0 0
11 12 0 0
12 19 2 0
13 24 15 1
14 20 24 2
15 13 18 3
16 3 14 2
17 1 6 3
18 0 0 1

!18 4 0 0

Figure: Marijuana use in high school boys (from Turnbull and Weiss,
1978).
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Type I right censoring. The censoring time c is known and
fixed. For example c is equal to the end of study time. One
only observes the r.v. (Ti , δi )i=1,...,n defined by{

Ti = min(Xi , c)
δi = 1l{Xi≤c}

, for i = 1, ..., n .

23/07/2017 15)42

Page 1 sur 1file:///Users/jyd/Downloads/Censored_Data_Example.svgFigure: Type I right Censored data (source: ReliaWiki.org).
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Progressive type I right censoring. The censoring times ci ,
for i = 1, . . . , n are known and fixed. One only observes the
r.v. (Ti , δi )i=1,...,n defined by{

Ti = min(Xi , ci )
δi = 1l{Xi≤ci}

, for i = 1, ..., n .
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Type II right censoring. The censoring time is given by the
time of the rth failure observed in the sample. One only
observes the r.v. (Ti , δi )i=1,...,n given by{

Ti = min(Xi ,X(r))
δi = 1l{Xi≤X(r)}

, for i = 1, ..., n ,

where X(1) 6 X(2) 6 · · · 6 X(r) are the r first order statistics.
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Random censoring. One observes the r.v. (Ti , δi )i=1,...,n

given by: {
Ti = min(Xi ,Ci )
δi = 1l{Xi≤Ci}

, for i = 1, ..., n ,

where C1, ...,Cn are r.v. with c.d.f. G1, ...,Gn respectively.

The r.v. X1, ...,Xn,C1, ...,Cn are generally assumed to be
independent.



Reminders of
Lifetime Data

Analysis

J.Y. Dauxois,
4-8 June 2018

Lifetime
Models

Lifetime and
related functions

Censoring and
Truncation

Some usual
lifetime
distributions

IFR and DFR
distributions

Statistical
Inference

Parametric
models

Nonparametric
inference

With
uncensored
observations

With censored
observations

22/54

Example

Consider failure times of a component with different modes of
failure.

Figure: Competing risks data (source: ReliaWiki.org).
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Definition
The lifetime X is said to be interval censored if, instead of
observing X , one observes only a (possibly random) interval
[L,U] such that X ∈ [L,U].

Figure: Interval Censored data (source: ReliaWiki.org).
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Figure: Example of Interval Censored data (source:
http://www.jcrsmed.org).
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Truncation

Definition
The lifetime X is said to be left truncated (resp. right
truncated) by C if one can observe the r.v. X only when X is
greater than (resp. lower) than C.

Age

Timet0

Figure: Example of left truncated data obtained from cross sectional
observation. Only the survival time of individuals alived at time t0
are known.
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Exponential distribution E(λ)

X has an E(λ) distribution if one of the following (equivalent)
equations is fulfilled.

F (x) =

{
1− e−λx for x ≥ 0
0 elsewhere

f (x) = λ exp(−λx), for x ≥ 0

λ(x) = λ, for x ≥ 0

m(x) =
1

λ
, for x ≥ 0.
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One can see that:

E(X ) = 1/λ

Var(X ) = 1/λ2.

The exponential distribution is well known for its memoryless
property :

P(X 6 x + x0 / X > x0) = P(X 6 x), ∀(x , x0) ∈ R+ × R+

⇔ F̄ (x + x0) = F̄ (x)F̄ (x0), ∀(x , x0) ∈ R+ × R+

⇔ L(τx0) = L(X ), ∀x0 ∈ R+.

There is an important link between the exponential distribution
and the Poisson Process: ⇒ recurrent failures on a system
with exponential interarrival times.



Reminders of
Lifetime Data

Analysis

J.Y. Dauxois,
4-8 June 2018

Lifetime
Models

Lifetime and
related functions

Censoring and
Truncation

Some usual
lifetime
distributions

IFR and DFR
distributions

Statistical
Inference

Parametric
models

Nonparametric
inference

With
uncensored
observations

With censored
observations

29/54

Weibull distribution W (α, β)

X has a W (α, β) distribution if its c.d.f. is given by:

F (x) = 1− exp

(
−
( x

α

)β)
, for x ≥ 0,

where α and β are respectively the scale and the form
parameters.

f (x) =
β

α

( x

α

)β−1
exp

(
−
( x

α

)β)
, for x ≥ 0

λ(x) =
β

α

( x

α

)β−1
, for x ≥ 0.

(β = 1)⇒ Exponential distribution with prameter 1/α.
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One can show that:

E(X ) = α Γ(1 + 1/β)

Var(X ) = α2
[
Γ(1 + 2/β)− Γ2(1 + 1/β)

]
.

Remarks.

• The r.v. (X/α)β has an exponential distribution with
parameter 1.

• The minimum of n i.i.d. r.v. with same Weibull W (α, β)
distribution has a Weibull W (α/n1/β, β) distribution.
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Figure: Weibull p.d.f. (source: ReliaWiki.org).
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Figure: Weibull Reliability function (source: ReliaWiki.org).
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Figure: Weibull hazard rate function (source: ReliaWiki.org).
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IFR and DFR distributions

Definition
The distribution has the Increasing Failure Rate (IFR),
resp. Decreasing Failure Rate (DFR), property when the hazard
rate function λ(·) is increasing, resp. decreasing.

Figure: Bathtup curve (source: Wikipedia).
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Proposition

The following assertions are equivalent

i) The distribution is IFR

ii) The cumulative hazard rate function Λ(·) is convex

iii) The residual lifetime at time x is stochastically greater
than the one at time x ′, for x ≤ x ′, i.e.

∀(x , x ′) ∈ R+ × R+such that x ≤ x ′, we have:

P(τx > y) ≥ P(τx ′ > y), for all y > 0.
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Example

.

Weibull distribution:

• If β = 1, the hazard rate function is constant (exponential
distribution).

• if β > 1, the distribution is IFR.

• si β < 1, the distribution is DFR.
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Statistical Inference in parametric
models

Let us consider a parametric model

F = {Pθ, θ ∈ Θ} or F = {fθ, θ ∈ Θ} or F = {Fθ, θ ∈ Θ}

for the lifetime X .

Example: Exponential model {Rλ(x) = e−λx ;λ > 0}.

Problem: How to estimate the (possibly) multidimensional
parameter θ? Many different methods are available...

You certainly know how to do Maximum Likelihood Estimation
(MLE) with a complete sample (i.e. without censoring). Is it
the case?
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MLE with censored data

It is more difficult when censoring occurs...

Let us first consider the case where the censoring times are
deterministic.

Based on the intuitive idea of the likelihood, one can
understand that the likelihood of the observations is like:

L(observations, θ) =
∏
i∈D

fθ(ti )
∏
i∈R

Rθ(ti )
∏
i∈L

Fθ(ti )

×
∏
i∈I

(Fθ(Ui )− Fθ(Li )) ,

where D,R, L and I are respectively the sets of individuals
where the observation corresponds to a time of death, right
censoring, left censoring or interval censoring.
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Likelihood with randomly right
censored data

Under assumption of independence between lifetime and
censoring time the likelihood is given by:

L((t1, δ1), ..., (tn, δn); θ) =
n∏

i=1

[
fθ(ti )Ḡ (ti )

]δi [F̄θ(ti )g(ti )
]1−δi .

If the distribution of the censoring time doesn’t depend on the
parameter of interest θ, one can consider the likelihood

L((t1, δ1), ..., (tn, δn); θ) =
n∏

i=1

(fθ(ti ))δi (F̄θ(ti ))1−δi .

The maximum likelihood estimator is the value of θ which
maximizes the likelihood.
Example. Lifetimes with exponential distribution: complete
and right censored observations.
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Nonparametric inference

Here we do not assume any parametric model for the lifetime.

The aim is to estimate its distribution (the functions of
interest) using only the data and without any assumption.
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With uncensored observations

Suppose that we observe a sample X1, ...,Xn of the lifetime X .
The empirical cumulative distribution function

F̂n(x) =
1

n

n∑
i=1

1l{Xi≤x} =
1

n

∑
i :x(i)≤x

1l{X(i)≤x}.

is an estimator of the c.d.f. F (·).
R̂n(x) = 1− F̂n(x) is an estimator of the Reliability function.
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It’s equivalent to estimate the hazard rate λ(·) by

λ̂n(x(i)) =
1

n − i + 1
, for i = 1, ..., n

and λ̂n(x) = 0, for all x where there is no observation.

The cumulative hazard rate function can be estimated by

Λ̂n(x) =
∑

i :x(i)≤x

1

n − i + 1
.
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Example. Competing Risks dataset. Estimations of the
lifetime c.d.f., hazard rate and cumulative hazard rate functions
if we do not take into account the different types of failure.

Figure: Competing risks data (source: ReliaWiki.org).
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With censored observations

Suppose that we observe a sample of possibly right censored
data (Ti , δi )i=1,...,n.
Example. Competing Risks dataset. Estimations of the
Reliability, hazard rate and cumulative hazard rate functions of
the time before failure of type A.

Figure: Competing risks data (source: ReliaWiki.org).
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Let n1 =
∑n

i=1 δi be the number of uncensored data in the
sample. One may want to use

R̂
(1)
n (t) =

1

n1

n∑
i=1

1l{Ti>t,δi=1}

as an estimator of R(t). But this is not a good idea! Indeed
one can show that

R̂
(1)
n (t)

p.s.−→
∫ +∞
t Ḡ (x)dF (x)

P(δ = 1)
=

∫ +∞
t Ḡ (x)dF (x)∫ +∞
0 Ḡ (x)dF (x)

6= R(t),

except if Ḡ (x) = 1, for x > t, which means that there is no
censoring.
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Nelson-Aalen and Kaplan-Meier
estimators

First, let us suppose that there is no ex-aequo in the sample,
as it is the case for the Competing Risks dataset.

Let T(1) ≤ · · · ≤ T(n) be the n observed and ordered times and
δ(1), ..., δ(n) their corresponding indicators. One can estimate
the hazard rate function λ(·) by:

λ̂n(t(i)) =
δ(i)

n − i + 1
, for i = 1, ..., n

and λ̂n(x) = 0, elsewhere.
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The Nelson-Aalen estimator of the cumulative hazard rate
function Λ(·) is:

Λ̂n(x) =
∑

i :T(i)≤x

δ(i)

n − i + 1
.

The Kaplan-Meier estimator of the Reliability function R(·)
is

R̂n(x) =
∏

i :T(i)≤x

(1−
δ(i)

n − i + 1
).

One can find in the literature another expression of the
Kaplan-Meier estimator:

R̂n(x) =
∏

i :T(i)≤x

(1− 1

n − i + 1
)δ(i)1l{x6T(n)}.
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In the case where there are some ex-aequo in the sample, one
can use the following expression of the Kaplan-Meier estimator.

Let T
′
1 < · · · < T ′k be the k different distinct and ordered times

observed in the sample. Let Mi be the number of death (or
failure) observed at T ′i and Yi the number of subject at risk at
time T ′i . The Kaplan-Meier estimator of R(·) can be written

R̂n(x) =
∏

i :T ′
i ≤x

(1− Mi

Yi
).
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Figure: Example of Kaplan-Meier estimates with pointwise
confidence intervals.
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Estimation of the mean lifetime

An estimator of the expectation E(X ) one can use:

µ̂n =

∫ +∞

0
t dF̂n(t) =

k∑
i=1

T ′i ∆F̂n(T ′i )

=
k∑

i=1

T ′i
Mi

Yi

i−1∏
j=1

(
1−

Mj

Yj

)
.

We have:

µ̂n
p.s.−→

∫
xdF (x) = E(X ), when n→ +∞.
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