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Lifetime and related functions

Lifetime = Time elapsed before the occurrence of an event:
e death, recovery or relapse in Survival Analysis
e Failure of a system or an equipment in Reliability

e Loss of employment in Econometric

Probabilistic Model: random variable (r.v.) X > 0, with
cumulative distribution function (c.d.f.) F(x) = P(X < x).

R(x) = 1 — F(x)=Reliability function (or Survival Function
in Survival Analysis).
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Hazard rate (or risk) function

If X is a continuous r.v., the hazard rate function A\(-) is
defined by:

Ax) = lim %P(X € [x, x + h[|X > x)
f(x)

R(x)’

for x > 0, where f(-) is the probability density function (p.d.f.)
of X.

The hazard rate at point x represents the instantaneous

probability of failure (or death) at time x given that failure (or
death) didn't occur before.
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If the r.v. X is discrete, i.e. with values in the denumerable
set {x1 <xp < -+ < xp,<---}, we have:

Fx)= > pi,
ixi<x
where p; = P(X = x;).

The Hazard rate function is defined by:

A(xi) = P(X = xi|X > x;) = %.

The Cumulative hazard rate function is defined by:

Ax) =D A().

ix<x

We have:
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The mathematical expectation of X can be written in terms of
the Reliability function:

E(X) = /0 o xdF (x) = /0 " R dx.

The Residual Life at time x, denoted by 7y, is the r.v with
distribution

R(x+y)

P(rx >y)=P(X —x>y|X >x) = RO

The Mean Residual Life function m(-), is defined for x > 0,
by
m(x) = E(7x) =E(X — x|X > x)

fx+°° R(s)ds
R(x)
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6-MP dataset

Remission Status at Time to Relapse for Time to Relapse for
Pair Randomézation Placebo Paticnts 6-MP Patients

1 Partial Rem on 1 10
2 Complete Remission 22 7
3 Complete Remission 3

4 Complete Remission 12

5 Complete Remission s

6 Partial Remission 17 6
7 Complete Remission 2 16
8 Complete Remission 11 34
9 Complete Remission 8 32
10 Complete Remission 12 25
11 Complete Remission 2 11+
12 Partial Remission 5 20*
13 Complete Remission 4 19*
14 mplete Remission 15 6
15 Complete Remission 8 17+
16 Partial Remission 23 35+
17 Partial Remission 5 6
18 mplete Remission 11 13
19 Complete Remission 4 9"
20 Complete Remission 1 o
21 Complete Remission 8 10+

*Censored observation

Figure: Clinical trial: 6-mercaptopurine versus placebo (Freirich et al.
Blood 21, 1963). Time in months.
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Type | right censoring. The censoring time ¢ is known and
fixed. For example c is equal to the end of study time. One
only observes the r.v. (Tj,6;)i=1,...» defined by

T; = min(Xj,¢)
0i = Igx<q

,fori=1,...,n.

——
%

o

4 Times to Failure

Test

sL
)l 1Time to Termination

Time to Failure

Figure: Type | right Censored data (source: ReliaWiki.org).
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Progressive type | right censoring. The censoring times ¢;,
for i=1,...,n are known and fixed. One only observes the

r.v. (Ti75f)l'=1,...,n defined by

min(X,-,C,-)

T =
0 = lixi<a)

,fori=1,...,n.
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Type |l right censoring. The censoring time is given by the
time of the rth failure observed in the sample. One only
observes the r.v. (Tj,6;)i=1,...n given by

T,' = min(X,-, X(r))

,fori=1,...,n,
O = Lxex)

where X(1) < X(2) < -+ < X(,) are the r first order statistics.
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Random censoring. One observes the r.v. (Tj,0;)i=1,...n
given by:

,fori=1,...n,

{T,' = min(X,-,C;)
op = ]l{XiSCi}

where (i, ..., C, are r.v. with c.d.f. Gy, ..., G, respectively.

The rv. Xi1,..., Xy, G, ..., C, are generally assumed to be
independent.
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HIV - HIV +
test test
+ t Time
0 t 2 y

f )

Figure: Example of Interval Censored data (source:
http://www.jcrsmed.org).

HIV exposure
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Truncation
Definition
The lifetime X is said to be left truncated (resp. right

truncated) by C if one can observe the r.v. X only when X is
greater than (resp. lower) than C.

Figure: Example of left truncated data obtained from cross sectional
observation. Only the survival time of individuals alived at time tp
are known.
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One can see that:

E(X) = 1/A
Var(X) = 1/X\2

The exponential distribution is well known for its memoryless
property :

PX<x+x0/X>x) = P(X<x), ¥(x,x) € RT xRt
& F(x+x) = F(x)F(x0), V(x,x) € RT x RT
& L(1) = L(X), Vxo € RT.

There is an important link between the exponential distribution
and the Poisson Process: = recurrent failures on a system
with exponential interarrival times.
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Weibull distribution W(a, 3)

X has a W(«, 3) distribution if its c.d.f. is given by:

F(x)=1— exp <— (;)ﬂ> , for x > 0,

where « and [ are respectively the scale and the form
parameters.

f(x) = g (5) exp <— (Zf) , forx >0
3

(a)ﬂ ' for x > 0.

(6 = 1) = Exponential distribution with prameter 1/a.
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One can show that:

E(X) = al(1+1/p)
Var(X) = o?[[(1+2/8) - (1+1/8)].

Remarks.

e The r.v. (X/a)? has an exponential distribution with
parameter 1.

e The minimum of ni.i.d. r.v. with same Weibull W(a, 3)
distribution has a Weibull W(a/n/?, 3) distribution.
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f(t)

Weibull pdf with0<B<1,B=1,andp >1

Figure

N
Time (t) 1000.00

: Weibull p.d.f. (source: ReliaWiki.org).



Reminders of
Lifetime Data
Analysis

J.Y. Dauxois,
4-8 June 2018

Lifetime
Models

Lifetime and
related functions
Censoring and
Truncation
Some usual
lifetime
distributions

IFR and DFR
distributions

Statistical
Inference
Parametric
models
Nonparametric
inference
With
uncensored
observations
With censored
observations

32/54

Figure

Weibull Reliability Plot with0<B<1,B=1,andB>1
1.00

Reliability

£}

Time (t) 700.00

. Weibull Reliability function (source: ReliaWiki.org).
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Figure:

IFR and DFR distributions

The distribution has the Increasing Failure Rate (IFR),
resp. Decreasing Failure Rate (DFR), property when the hazard
rate function \(-) is increasing, resp. decreasing.

Decreasing Constant Increasing
Failure Failure Failure
Rate Rate Rate

! '
! |
! '
! |
! !
! '
 Early | Observed Failure |
", "Infant Rate
ity

I
| Constant (Random) |

Failure Rate

Time

Bathtup curve (source: Wikipedia).
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Proposition
The following assertions are equivalent
i) The distribution is IFR
ii) The cumulative hazard rate function \(-) is convex

iii) The residual lifetime at time x is stochastically greater
than the one at time X', for x < X', i.e.

V(x,x") € RT x Rt such that x < x’, we have:
P(mx > y) > P(1 > y), forally > 0.
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Statistical Inference in parametric
models

Let us consider a parametric model

F={Pyp,0 €O} or F={fh,0 € ©} or F ={Fy,0 € O}
for the lifetime X.
Example: Exponential model {R\(x) = e*; A > 0}.

Problem: How to estimate the (possibly) multidimensional
parameter 87 Many different methods are available...

You certainly know how to do Maximum Likelihood Estimation

(MLE) with a complete sample (i.e. without censoring). Is it
the case?
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MLE with censored data

It is more difficult when censoring occurs...

Let us first consider the case where the censoring times are
deterministic.

Based on the intuitive idea of the likelihood, one can
understand that the likelihood of the observations is like:

L(observations, ) = H fo(ti) H Ry(t) H Fo(ti)

ieD iER ielL
<[] (Fo(Ui) = Fo(Ly))
icl

where D, R, L and | are respectively the sets of individuals
where the observation corresponds to a time of death, right
censoring, left censoring or interval censoring.
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Likelihood with randomly right
censored data

Under assumption of independence between lifetime and
censoring time the likelihood is given by:

n

L((t1,81), s (e 60):0) = [T (5G] [Fo(ee(e)]

i=1

If the distribution of the censoring time doesn’'t depend on the
parameter of interest 6, one can consider the likelihood
L((t1,01), ..., (tn,0n); 0) = H(fe(t;))5’(l:'9(t;))1_6’.
i=1
The maximum likelihood estimator is the value of 6 which
maximizes the likelihood.

Example. Lifetimes with exponential distribution: complete
and right censored observations.
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Nonparametric inference

Here we do not assume any parametric model for the lifetime.

The aim is to estimate its distribution (the functions of
interest) using only the data and without any assumption.
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With uncensored observations

Suppose that we observe a sample Xy, ..., X, of the lifetime X.
The empirical cumulative distribution function

~ 1 o 1
Ful =3 PR PENEIDY Lixgsx)
i—1

n.
() <x

is an estimator of the c.d.f. F(-).

~

ﬁ,,(x) =1 — Fp(x) is an estimator of the Reliability function.
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It's equivalent to estimate the hazard rate A(:) by

~ 1
(X)) = T fori=1,...,n

n—1+

and A,(x) = 0, for all x where there is no observation.
The cumulative hazard rate function can be estimated by

~ 1
/\n(X) = Z m

Xy <x
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Let n; = 27:1 d; be the number of uncensored data in the
sample. One may want to use

R(l)(t ZH{T>t¢S_1}

as an estimator of R(t). But this is not a good idea! Indeed
one can show that

S0y e fo - GYAF(x) [T G(x)dF(x)
Rn (t) (5 — 1) f0+oo G(X)dF(X)

# R(t),

except if G(x) = 1, for x > t, which means that there is no
censoring.
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Nelson-Aalen and Kaplan-Meier
estimators

First, let us suppose that there is no ex-aequo in the sample,
as it is the case for the Competing Risks dataset.

Let T(;) <--- < T(,) be the n observed and ordered times and
(1), --+» 9(n) their corresponding indicators. One can estimate
the hazard rate function A(-) by:

hY (ty) = 0 fori=1,..,n
n\L(i) n—i+1 PREED)
and Ay(x) = 0, elsewhere.



The Nelson-Aalen estimator of the cumulative hazard rate
function A(-) is:
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One can find in the literature another expression of the
Kaplan-Meier estimator:
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In the case where there are some ex-aequo in the sample, one
can use the following expression of the Kaplan-Meier estimator.

Let T; < --- < T/ be the k different distinct and ordered times
observed in the sample. Let M; be the number of death (or
failure) observed at T/ and Y; the number of subject at risk at
time T!. The Kaplan-Meier estimator of R(-) can be written

R = [[ -,

. Yi
iT/<x
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Reliability
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Figure: Example of Kaplan-Meier estimates with pointwise
confidence intervals.



Reminders of
Lifetime Data
Analysis

J.Y. Dauxois,
4-8 June 2018

Lifetime
Models
Lifetime and
related functions
Censoring and
Truncation
Some usual
lifetime
distributions
IFR and DFR
distributions

Statistical
Inference
Parametric
models
Nonparametric
inference

With
uncensored
observations
With censored
observations

54/54

Estimation of the mean lifetime

An estimator of the expectation E(X) one can use:
+oo —~ k —~
hn = / t dF,(t) =) T/ AF,(T])
0 i=1

koo it M
= TI.’ ! (1 _ J> .
2 Ty =y,

We have:

fin 225 /xdF(x) = E(X), when n — +oc.
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