Neural Random Access Machines

a deep learning technique for sequential data

Based on the PhD thesis of Dr Karol Kurach Warsaw University/Google

Agenda

1. Introduction to Deep Neural Architectures

- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- Applications: Predicting Events From Sensor Data

A primer on Deep Learning

Deep Learning

Big Data + Big Deep Model = Success Guaranteed

State of the art in:

- computer vision,
- speech recognition,
- machine translation, ...
- New techniques (e.g., initialization, pretraining)
- Computing power (GPU, FPGA, TPU...)
- Big datasets

Recurrent Neural Networks

- > Neural networks with cycles
- Process inputs of variable length
- > Preserve state between timesteps

$$v_1^T = (v_1, \dots, v_T) \rightarrow \begin{bmatrix} W_{hv}, W_{hh}, W_{oh}, b_h, b_o, h_0 \end{bmatrix} \rightarrow h_1^T \rightarrow z_1^T$$

Recurrent Neural Networks

Vanilla RNN

- Basic version of RNN
- State: vector h

$$h_t = \tanh(U * x_t + W * h_{t-1})$$
$$o_t = output(V * h_t)$$

Learning RNN: BPTT

$$L(z, y) = \sum_{t=1}^{T} L(z_t; y_t)$$

(BPTT; Werbos, 1990; Rumelhart et al., 1986):

- 1: for t from T downto 1 do
- 2: $do_t \leftarrow g'(o_t) \cdot dL(z_t; y_t)/dz_t$
- 3: $db_o \leftarrow db_o + do_t$
- 4: $dW_{oh} \leftarrow dW_{oh} + do_t h_t^\top$
- 5: $dh_t \leftarrow dh_t + W_{oh}^{\top} do_t$

6:
$$dz_t \leftarrow e'(z_t) \cdot dh_t$$

7:
$$dW_{hv} \leftarrow dW_{hv} + dz_t v_t^{\mathsf{T}}$$

8:
$$db_h \leftarrow db_h + dz_t$$

9:
$$dW_{hh} \leftarrow dW_{hh} + dz_t h_{t-1}^{\top}$$

10: $dh_{t-1} \leftarrow W_{hh}^{\top} dz_t$

11: **end for**

12: **Return** $d\theta = [dW_{hv}, dW_{hh}, dW_{oh}, db_h, db_o, dh_0].$

Vanilla RNN - problems

Exploding gradient (idea: use gradient clipping)
 Vanishing gradient (idea: use ReLU and/or LSTM)
 make it difficult to optimize RNNs on sequences with long range temporal dependencies, and are possible causes for
 the abandonment of RNNs by machine learning researchers

- > Better at learning long-range dependencies
- > Avoid vanishing gradient problem
- > State: a pair of vectors (c, h)

LSTM Cell

 W_i, W_f, W_u, W_o b_i, b_f, b_u, b_o

 $f_t = \operatorname{sigm}(W_f * [h_{t-1} \oplus x_t] + b_f)$ $i_t = \operatorname{sigm}(W_i * [h_{t-1} \oplus x_t] + b_i)$ $u_t = \tanh(W_u * [h_{t-1} \oplus x_t] + b_u)$ $c_t = f_t \odot c_{t-1} + \dot{|s_{tngle} g_{tues}|}$ Si $o_t = \operatorname{sigm}(W_o * [h_{t-1} \oplus x_t] + b_o)$ $h_t = o_t \odot \tanh\{\mathfrak{E}_t\}^{1}$ \longrightarrow [LSTM 2] x_1^2 x_{2}^{2} x_M^1 $x_1^1 | x_2^1 |$ x_{Λ}^2

Sequence-to-Sequence & Attention

Sequence-to-sequence model

Sutskever et al, NIPS 2014

Sequence-to-sequence model

Sequence-to-sequence model

Encoder ingests the incoming message

Internal state is a fixed length encoding of the message

Decoder is initialized with final state of encoder

Decoder is initialized with final state of encoder

Encoder - decoder

- People observed that some heuristics made seq2seq better
 - Example: reverse sequence, feed it twice
- > Size of the encoding vector may be a bottleneck

Attention

- > One of the most "hot" / promising techniques for DNNs now
- ➤ Basic idea:
 - network decides which part of input it wants to look at in the next timestep
- > Two variants: soft (differentiable) & hard (RL)

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

Attention

$h_t = f(x, h_{t-1})$ $h_t = f(attention(x, h_{t-1}), h_{t-1})$

Attention in machine translation

$$x'_{t} = f_{att}(x_{t}, s_{t-1})$$

$$e_{t} = g(x_{t}, s_{t-1}; \theta) \quad (e_{t}, x_{t} \in \mathcal{R}^{D})$$

$$\alpha_{tj} = \frac{exp(e_{tj})}{\sum_{i=1}^{D} exp(e_{ti})}$$

$$x'_{t} = \sum_{j=1}^{D} \alpha_{tj} x_{tj}$$

Hard vs Soft

- Hard:
 - Discretely sampling
 - Non-differential
 - Learning by Reinforcement learning
- Soft:
 - Linear combination/Masking/Weights
 - Differential

Turing Machine & Neural Turing Machine

Turing Machine

- > Theoretical, abstract machine
- \succ Capable of simulating any computer algorithm
- > Operates on *infinite tape* divided into cells (each in N states)
- \succ Machine in one of M states
- \succ Head can read/write to the tape and move left/right
- \succ Finite table of instructions

Turing Machine - formally

Definition: A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$,

- -Q is a finite set of *states*;
- $-\Sigma$ is an *input alphabet*, $\sqcup \notin \Sigma$;
- $-\Gamma$ is a *tape alphabet*, $\sqcup \in \Gamma$, and $\Sigma \subset \Gamma$;
- $-\delta: Q \times \Gamma \mapsto (Q \cup \{q_{accept}, q_{reject}\}) \times \Gamma \times \{L, R\}$ is the transition fur
- $-q_0 inQ$ is the start state;
- $-q_{accept}, q_{reject}$ are the *accept* and *reject* states, respectively.

Neural Turing Machine *Alex Graves et. al. in 2014.*

- Inspired by Turing Machine
- > Fully differentiable
- > Separation of the network into controller & memory
- > Capable of solving simple tasks, like Copy, Reverse

NTM - addressing mechanism

NTM - content addressing

$$w_t^c(i) \leftarrow \frac{\exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(i)]\right)}{\sum_j \exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(j)]\right)}$$

Agenda

- 1. Introduction to Deep Neural Architectures
- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- Applications: Predicting Events From Sensor Data

Neural Random-Access Machines

Karol Kurach* Marcin Andrychowicz* Ilya Sutskever

Overview

- Neural architecture which can dereference pointers
- Can learn concepts such as "linked list" or "Binary Search Tree"
- Can interact with external modules
- Decides when to stop the computation

Components

- External random-access memory M
- Fixed number of registers (distributions over Z_M)
- A fixed set of gates, e.g. addition modulo M
- LSTM controller deciding which operations should be applied at every timestep and which values should be stored in the registers

Memory

- Memory cells store distributions over Z_M
- Distributions over Z_M can be interpreted as *fuzzy pointers*
- Number of parameters independent of the memory size
- Interaction with using two special modules

Fuzzy pointer

each memory cell and each register stores a probability distribution over M memory cells

0
1
2
3
...
M-1

0
0.02
0.97
0.01
0
0
$$\sum = 1$$

Architecture overview

Gates

- But we have distributions, not integers....
- Natural extension:

$$\forall_{0 \le c < M} \ \mathbb{P}\left(m_i(A, B) = c\right) = \sum_{0 \le a, b < M} \mathbb{P}(A = a)\mathbb{P}(B = b)[m_i(a, b) = c]$$

Circuit generation

Training

- Only input-output examples
- Log-likelihood cost function
- Gradient clipping both globally and during the backprop
- Curriculum
- Entropy bonus
- Gradient noise

Experiments

Task	Train error	Generalization	Discretization
Access	0	perfect	perfect
Increment	0	perfect	perfect
Copy	0	perfect	perfect
Reverse	0	perfect	perfect
Swap	0	perfect	perfect
Apply the given permutation	0	almost perfect	perfect
Find the k -th element on a list	0	strong	hurts performance
Find the given value on a list	0	weak	hurts performance
Merge 2 sorted arrays	1%	weak	hurts performance
Follow the given path in a BST	0.3%	strong	hurts performance

Step	Memory cells						Registers									
	0	1	2	3	4	5	6	7	8	9	10	r_1	r_2	r_3	r_4	r_5
1	1	11	3	8	1	2	9	8	5	3	0	0	0	0	0	0
2	2	11	3	8	1	2	9	8	5	3	0	1	2	2	2	1
3	2	12	3	8	1	2	9	8	5	3	0	2	12	12	12	2
••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	
11	2	12	4	9	2	3	10	9	6	4	0	10	4	4	4	10

Summary

- First neural network that use pointers
- Can use external modules (gates)
- Can interact with external modules
- Decides when to stop the computation

Agenda

- 1. Introduction to Deep Neural Architectures
- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- Applications: Predicting Events From Sensor Data

Hierarchical Attentive Memory

Karol Kurach* Marcin Andrychowicz*

Motivation:

- Recently there have been proposed many memory architectures
- But most of them are not very efficient copying a sequence of length n requires O(n²) operations:
- Aim: design an efficient memory architecture
- Means: hierarchical attention

Hierarchical Attentive Memory (HAM)

- Memory access in O(log n)
- Memory is structured as a binary tree

Inner nodes: auxiliary hidden values "summarizing" memory cells beneath

Leafs: memory cells

LSTM + HAM

2. Attention phase

3. Output phase

4. Update phase

a) modify the attended leaf Highway Networks-style write: WRITE(h_a , h_{LSTM}) = T(h_a , h_{LSTM}) \cdot H(h_a , h_{LSTM}) + [1-T(h_a , h_{LSTM})] \cdot h_a

b) update the values in the inner nodes

Example: sorting

Example: sorting

Properties of HAM

- Number of parameters independent of the memory size
- Memory access complexity: O(log n)
- Supports some operations impossible for normal attention, e.g. extracting the minimum

Training

• BPTT

- REINFORCE with discounted returns for the sampling nodes
- Reward: log-probability → percentage of correctly predicted bits
- Entropy bonus: $\alpha H(p) \rightarrow -\alpha/H(p)$:
 - Forces the model to give non-zero probability to every leaf
- Curriculum: [1,4], [1,8], [1,16]...

Experiments

• LSTM+HAM:

- Reverse
- Search (binary)
- Merge
- Sort
- Long binary addition

• Raw HAM:

• Stack

- FIFO Queue
- Priority Queue

Experiments

	LSTM	LSTM+A	LSTM+HAM
Reverse	73%	0%	0%
Search	62%	0.04%	0.12%
Merge	88%	16%	0%
Sort	99%	25%	0.04%
Add	39%	0%	0%
Stack	N/A	N/A	0%
FIFO Queue	N/A	N/A	0%
Priority Queue	N/A	N/A	0.08%

Error rates are percentages of incorrect output sequences.

Generalization

training model (n=32)

testing model (n=128)

Generalization results

	LSTM	LSTM+A	LSTM+HAM
Reverse	100%	100%	0%
Search	89%	0.52%	1.68%
Merge	100%	100%	2.48%
Sort	100%	100%	0.24%
Add	100%	100%	100%
Stack	N/A	N/A	0%
FIFO Queue	N/A	N/A	0%
Priority Queue	N/A	N/A	0.2%

Error rates are percentages of incorrect **output sequences**.

HAM vs. content-based attention:

- Pros:
 - It is more efficient
 - It supports some operations impossible for contentbased attention, e.g. extracting the minimum
 - It generalizes better
- Cons:
 - Performing associative recall may be difficult
- After all there is no need to choose: you can use both

Conclusion

- Efficient memory, access in O(log n)
- Possible drop-in replacement for other data structures
- Good generalization (first to learn sorting that generalizes)

Agenda

- 1. Introduction to Deep Neural Architectures
- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- Applications: Predicting Events From Sensor Data

Smart Reply: Automated Response Suggestion for Email

Anjuli Kannan*, Karol Kurach*, Sujith Ravi*, Tobias Kaufmann*, Andrew Tomkins, Balint Miklos, Greg Corrado, Marina Ganea, Laszlo Lukacs, Peter Young, Vivek Ramavajjala

*equal contribution

Problem

Smart Reply feature

- Provide text assistance for email reply composition
- Targeted at mobile
- Responses can be sent on their own or extended

Smart Reply feature predicts email responses

Why is this task hard?

- extracting meaning from previous message
- generating language
- grammatical transformations between call and response
- matching style/tone

Models

Two main models

Triggering: quickly filter bad candidates

How do we decide when it is appropriate to show suggestions, and avoid showing them when they would be not only useless but distracting?

Scoring: score a whitelist of responses

Triggering model

Receipt

Personal

Promo

Triggering model

 How do we decide when it is appropriate to show suggestions, and avoid showing them when they would be not only useless but distracting?

Solution: Have a separate feed-forward neural network that decides whether to trigger.

Challenging: mails not directly to me, predicting replies != predicting smart replies, ...

Sequence-to-sequence model

Sutskever et al, NIPS 2014

Sequence-to-sequence model

Sequence-to-sequence model

Smartreply model

Message

Training

- Training data is a corpus of email-reply pairs
- Both encoder and decoder are trained together (end-to-end)

Inference

- Resulting model is fully generative
- Output distribution can be used to determine the most likely responses using a beam search

Example

Query	Top generated responses		
Hi, I thought it would be	I can do Tuesday.		
great for us to sit down	I can do Wednesday.		
and chat. I am free	How about Tuesday?		
Tuesday and Wenesday.	I can do Tuesday!		
Can you do either of	I can do Tuesday. What		
those days?	time works for you?		
23.57	I can do Wednesday!		
Thanks!	I can do Tuesday or		
	Wednesday.		
-Alice	How about Wednesday?		
	I can do Wednesday. What		
	time works for you?		
	I can do either.		

Quality

- How do we ensure that the response options are always high quality in content and language?
 - Avoid incorrect grammar and mechanics, misspellings *e.g., your* the best
 - Avoid inappropriate, offensive responses. *e.g., Leave me alone.*
 - Deal with wide variability, informal language. e.g., got it thx
- Restricting model vocabulary is not sufficient!

Solution: Restrict to a fixed set of valid responses, derived automatically from data.

Scalability

• How do we scale costly LSTM computation to the requirements of an email delivery pipeline?

Solution:

- 1. Use
- 2. Perform an approximate search over set of valid responses

Diversity

 How can we select a semantically diverse set of suggestions?

	Redundant responses	Responses with diversity (more useful)
Can you join tomorrow's meeting?	Yes, I'll be there. Yes, I will be there. I'll be there.	Sure, I'll be there. Yes, I can. Sorry, I won't be able to make it tomorrow.

Solution: Learn semantic intents of responses, then use these to filter out redundant suggestions.

Diversity

Our approach to diversity is based on two heuristics:

- Cluster-based diversity: Don't show suggestions of the same intent.
- Forced positives/negatives:

If there is an affirmative suggestion, also force a negative one (and vice versa).

Product decision: offer positive/negative choice, even if the latter is rare.

Cluster-based diversity

«We're waiting for you, are you going to be here soon?»

Cluster-based diversity

«We're waiting for you, are you going to be here soon?»

Diversity results

 Removing diversity click-through rate by 7.5% relative.

Deployment & coverage

- Deployed in Inbox by Gmail
- Used to assist with more than 10% of all mobile replies

Unique cluster and suggestion usage

	Daily Count	Seen	Used
Unique Clusters	376	97.1%	83.2%
Unique Suggestions	12.9k	78%	31.9%

Most frequently used clusters

Ranking experiments

Model	Precision@10	Precision@20	MRR
Random	5.58e - 4	1.12e - 3	3.64e - 4
Frequency	0.321	0.368	0.155
Multiclass-BOW	0.345	0.425	0.197
Smart Reply	0.483	0.579	0.267

Examples

Conclusions

- Sequence-to-sequence produces plausible email replies in many common scenarios, when trained on an email corpus
- Smart Reply is deployed in Inbox by Gmail and generates more than 10% of mobile replies
- RNNs show promise not only for assisted communication, but also for other applications where a conversation model is needed, such as virtual assistants

Agenda

- 1. Introduction to Deep Neural Architectures
- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- Applications: Predicting Events From Sensor Data

Learning to Discover Efficient Mathematical Identities

Karol Kurach* Wojciech Zaremba* Rob Fergus

Slides by Wojciech Zaremba & Karol Kurach

A toy example

Let's consider two matrices A, B

$$\sum_{i,k} (AB)_{i,k} = \sum_i \sum_j \sum_k a_{i,j} b_{j,k}$$

Naive computation takes O(n^3).

Our framework found O(n^2) computation

Representation

- Symobolic slow
- Floats numerical issues
- Integers mod P works well!

Allowed computations

Rule	Input	Output	Computation	Complexity
Matrix-matrix multiply	$X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{m \times p}$	$Z \in \mathbb{R}^{n \times p}$	Z = X * Y	O(nmp)
Matrix-element multiply	$X \in \mathbb{R}^{n \times m}$, $Y \in \mathbb{R}^{n \times m}$	$Z \in \mathbb{R}^{n \times m}$	$Z = X \cdot Y$	O(nm)
Matrix-vector multiply	$X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{m \times 1}$	$Z \in \mathbb{R}^{n \times n}$	$Z = X \star Y$	O(nm)
Matrix transpose	$X \in \mathbb{R}^{n \times m}$	$Z \in \mathbb{R}^{m \times n}$	$Z = X^T$	O(nm)
Column sum	$X \in \mathbb{R}^{n \times m}$	$Z \in \mathbb{R}^{n \times 1}$	Z = sum(X, 1)	O(nm)
Row sum	$X \in \mathbb{R}^{n \times m}$	$Z \in \mathbb{R}^{1 \times m}$	Z = sum(X, 2)	O(nm)
Column repeat	$X \in \mathbb{R}^{n \times 1}$	$Z \in \mathbb{R}^{n \times m}$	Z = repmat(X, 1, m)	O(nm)
Row repeat	$X \in \mathbb{R}^{1 \times m}$	$Z \in \mathbb{R}^{n \times m}$	Z = repmat(X, n, 1)	O(nm)
Element repeat	$X \in \mathbb{R}^{1 \times 1}$	$Z \in \mathbb{R}^{n \times m}$	<pre>Z = repmat(X,n,m)</pre>	O(nm)

We can consider arbitrary bigger grammar ...

Many computations are in this family

• E.g. finite Taylor expansion of any function

Many computations are in this family

• E.g. finite Taylor expansion of any function for instance, partition function of Restricted Boltzmann Machine (RBM)

$$\sum_{v,h} \exp(v^T W h) = \sum_k \sum_{v,h} \frac{1}{k!} (v^T W h)^k$$
$$v \in \{0,1\}^n$$
$$h \in \{0,1\}^m$$

Exact solution for k=1 (first term in Taylor series)

$$\sum_{v,h} v^T W h = 2^{n+m-2} \sum_{i,j} W_{i,j}$$
$$v \in \{0,1\}^n$$
$$h \in \{0,1\}^m$$

this is a polynomial computation vs exponential computation in the naive algorithm

Exact solution for k=2 (second term in Taylor series)

$$\sum_{v,h} (v^T W h)^2 = 2^{n+m-4} \Big[$$
$$\sum_{i,j} W_{i,j}^2 + (\sum_{i,j} W_{i,j})^2 +$$
$$\sum_i (\sum_j W_{i,j})^2 + \sum_j (\sum_i W_{i,j})^2 \Big]$$
$$v \in \{0,1\}^n$$
$$h \in \{0,1\}^m$$

this is a polynomial computation vs exponential computation in the naive algorithm

How to find equivalent computations ?

Exact solution for k=6 (sneak preview) derived by our framework

166

167

173

176

178

180

181

184

186

187

188

189

190

201

202

203

206

207

208

1) .* sum(sum(W, 2), 1))) .* 10) + (sum((sum(((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* W), 2) .* repmat(sum(sum((W .* W), 2), 1), [n, 1])), 1) .* 60) + ((sum((sum(W, 2) .* sum(W, 2)), 1) .* (sum(sum(W, 2), 1) .* (sum(sum(W, 2), 1) * sum(sum(W, 2), 1))) * 10) +((sum(sum((W .* W), 2), 1) .* (sum(sum(W, 2), 1) .* (sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)))) .* 10) + (sum((sum(repmat((sum(W, 1) .* sum(W, 1)), [n, 1]), 2) .* sum((repmat(sum(W, 2), [1, m]) .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, sum(W, 1)), 2) .* sum(sum((W .* W), 2), 1))) .* 30) + (sum(sum(((repmat(sum(W, 2), [1, m]) .* repmat(sum((W .* W), 1), [n, 1])) .* repmat(sum((W .* W), 1), [n, 1])), 2), 1) .* -30) + ((sum(sum(W, 2), 1) .* (sum((sum(W, 2) .* sum(W, 2)), 1) .* sum(sum((W .* W), 2), 1))) .* 30) + (sum((repmat(sum(sum(W, 2), 1), [n, 1]) .* (sum((W .* W), 2) .* sum((W .* W), 2))), 1) .* -30) + (sum((repmat(sum(sum(W, 2), 1), [n, 1]) .* sum(((W .* W) (W, *W), 2), 1) (20) + ((sum(sum(W, 2), 1)))1) .* (sum(sum((W .* W), 2), 1) .* sum(sum((W .* W), 2), 1))) .* 15) + (sum((sum((W .* W), 2) .* sum(((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* W), 2)), 1) .* -120) + (sum(((W * (W')) .* (W * (W'))) * repmat(sum(sum(W, 2), 1), [n, 1])), 1) .* 30))) / 1024;

1.6. $g(x \rightarrow x^6, W)$

2^{(n+m)*}(((sum(sum(((W .* W) .* ((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]))), 2), 1) .* 360) + (sum(sum(((W .* repmat(sum(W, 2), [1, m])) .* ((W.* repmat(sum(W, 2), [1, m])) .* repmat(sum((W.* W), 1), [n, 1]))), 2), 1) .* 360) + (sum(((sum(W, 1) .* sum(W, 1)) .* ((sum(W, 1) .* sum(W, 1)) .* (sum(W, 1) .* sum(W, 1)))), 2) .* 16) + ((sum((sum(W, 1), * sum(W, 1)), 2), * sum(((sum(W, 1) .* sum(W, 1)) .* (sum(W, 1) .* sum(W, 1))), 2)) .* -30) + (((sum(W, 1) * ((W') * sum(W, 2))) * (sum(W, 1) * ((W') * sum(W, 2)))) .* 360) + (((sum(W, 1) * (W')) * ((W.* (W.*W)) * (sum(W,(1)')) * 480) + (sum(((sum(W, 2) * sum(W, 2)) * ())))) * ()(sum(W, 2).* sum(W, 2)).* (sum(W, 2).* sum(W, 2)))), 1) .* 16) + (sum(sum(((W .* repmat(sum(W, 1), [n, 1])) .* ((W .* repmat(sum(W, 1), [n, 1])) .* repmat(sum((W .* W), 2), [1, m]))), 2), 1) .* 360) + ((sum((sum(W, 1)), * sum(W, 1)), 2)) * sum(((sum(W, 1) * sum(W, 1)) * sum((W, * W), 1)), 2))

sum(((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* (W.* (W.*W))), 2)), 1) .* 480) + (sum((repmat(sum(sum(W, 2), 1), [n, 1]) .* (sum(W, 2) .* (sum(W, 2) .* sum(((repmat(sum(W, 2), [1, m]) * repmat(sum(W, 1), [n, 1])) .* W), 2)))), 1) .* -240) + (sum((sum((W .* repmat(sum(W, 1), [n, 1])), 2) (sum(W, 2) .* sum(repmat(sum((repmat(sum(W, 2), [1, m]) .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])), 1), [n, 1]), 2))), 1) .* 360) + (((sum(sum(W, 2), 1) * (sum(W, 1) * (W'))) * (($W^{*}(W')$ * sum(W, 2))) .* 720) + (((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* ((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum(sum(W, 2), 1) * sum(sum(W, 2), 1)))) * 1) + ((sum((sum(W, 1) .* sum(W, 1)), 2) .* ((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)))) .* 15) + (sum((sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* (sum(W, 2) .* repmat((sum(sum(W, 2), 1) .* (sum(sum(W, 2), 1) .* sum(sum(W, 2), 1))), [n, 1]))), 1) .* 120) + ((sum((sum(W, 2) .* sum(W, 2)), 1) .* ((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)))) .* 15) + ((sum(sum((W.*W), 2), 1) .* ((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)))) .* 15) + (sum(sum((repmat((sum(W, 2) .* sum(W, 2)), [1, m]) .* ((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* (repmat(sum(W, 2), [1, m]) * repmat(sum(W, 1), [n, 1])))), 1), 2) .* -30) + (sum((sum((repmat(sum(W, 2), [1, m]) .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]))), 1) .* sum((repmat(sum(W, 2), [1, m]) .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]))), 1)), 2) .* 45) + (sum((sum((W .* repmat(sum(W, 2), [1, m])), 1) .* (sum((W .* repmat(sum(W, 2), [1, m])), 1) .* repmat(sum((sum(W, 1) .* sum(W, 1)), 2), [1, m]))), 2) .* 180) + (sum((sum((W .* repmat(sum(W, 2), [1, m])), 1) .* (sum(W, 1) .* sum(((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]) * W), 1)), 2) * -360) + ((sum((sum(W, 1) .* sum(W, 1)), 2) .* (sum((sum(W, 1) .* sum(W, 1)), 2) .* sum((sum(W, 1) .* sum(W, 1)), 2))) .* 15) + (sum((sum((repmat(sum(W, 1), [n, 1]).* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]))), 1) .* sum((repmat(sum(W, 1), [n, 1]) .* (repmat(sum(W, 2), [1, m]).* repmat(sum(W, 1), [n, 1]))), 1)), 2) .* -30) + ((sum(sum(W, 2), 1) .* (sum(sum(W, 2), 1) .* (sum((sum(W, 1) .* sum(W, 1)), 2) .* sum((1) .* sum(W, 1)) * ((repmat(sum(W, 1), [m, 1]) * (W') * (W * (sum(W, 1)'))) .* 180) + (sum((sum((W.* repmat(sum(W, 1), [n, 1])), 2).* ((sum(W, 2).* repmat(sum(sum(W, 2), 1), [n, 1])) .* sum(repmat((

.* -180) + (sum((repmat(sum(sum(W, 2), 1), [n, 1]),*

sum(W, 1) .* sum(W, 1)), [n, 1]), 2))), 1) .* 360) + ((sum((W.*W), 1)*(((W')*sum(W, 2)).* $(W^{\circ}) * sum(W, 2)))) .* -360) + (sum((sum((W .*$ W), 1) .* ((sum(W, 1) .* sum(W, 1)) .* (sum(W, 1) .* sum(W, 1)))), 2) .* 240) + ((sum(sum((W .* W), 2), 1) .* sum(((sum(W, 1) .* sum(W, 1)) .* (sum(W. 1) (sum(W, 1)), 2)) (sum(W, 1))sum(W, 1), 2).*(sum((sum(W, 1).*sum(W, 1)), 2) .* sum(sum((W.*W), 2), 1))) .* 45) + ((sum(sum(W, 2), 1) .* (sum(sum(W, 2), 1) .* sum(((sum(W, 1) .* sum(W, 1)) .* sum((W.*W), 1)), 2))) .* -180) + (((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum((sum(W, 1) .* sum(W, 1)), 2) .* sum(sum((W .* W) 2), 1))) .* 90) + (sum(sum(((repmat(sum((W .* W), 2), [1, m]) .* repmat(sum((W .* W), 1), [n, 1])) .* (W.*W)), 2), 1) .* 360) + (sum((sum((W.*W), 1) .* (sum((W .* W), 1) .* repmat(sum((sum(W, 1) $* \operatorname{sum}(W, 1)$, 2), [1, m])), 2) $* -90) + ((\operatorname{sum}(\operatorname{sum}(($ W.*W), 2), 1) .* sum(((sum(W, 2) .* sum(W, 2)) .* (sum(W, 2) .* sum(W, 2))), 1)) .* -30) + ((sum((sum(W, 2) .* sum(W, 2)), 1) .* (sum((sum(W, 2) .* sum(W, 2)), 1) .* sum(sum((W.*W), 2), 1))) .* 45) + (sum((sum((W .* repmat(sum(W, 2), [1, m])), 1) .* (sum((W .* repmat(sum(W, 2), [1, m])), 1) .* repmat(sum(sum((W.*W), 2), 1), [1, m]))), 2).* 180) + (sum((sum((W .* repmat(sum(W, 1), [n, 1])), 2) 246 .* (sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* repmat(sum(sum((W.*W), 2), 1), [n, 1]))), 1) .* 180) + (sum(((sum(W, 2) .* repmat(sum(sum(W, 2), 1), [n, 1])) .* (sum((W .* repmat(sum(W, 1), [n, 1])), 2) * repmat(sum(sum((W .* W), 2), 1), [n, 1]))), 1) .* 360) + (sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* sum((repmat((sum(W, 1) .* sum(W, 1)), [n, 1]) .* (W.* repmat(sum(W, 1), [n, 1]))), 2)), 1).* -240) + (sum(sum((W .* repmat((repmat(sum(sum(W, 2), 1), [1, m]) .* (sum(W, 1) .* sum{((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* W), 1))), [n, 1])), 2), 1) .* -240) + ((sum((sum(W, 2) .* sum(W, 2)), 1) .* sum(((sum(W, 1) .* sum(W, 1)) .* (sum(W, 1) .* sum(W, 1)), 2)) .* -30) + (((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* sum(((sum(W, 2) .* sum(W, 2)) .* sum((W .* W), 2)), 262 1)) .* -180) + (((sum(sum(W, 2), 1) .* sum(sum(W, 263 2), 1)) .* sum(sum(((W .* W) .* (W .* W)), 2). 265 .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1]))), 2) .* sum((repmat(sum(W, 2), [1, m]) 267 .* (repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 268 1), [n, 1])), 2)), 1) .* -30) + ((sum(sum(W, 2), 1)) .* sum((sum(repmat((sum(W, 2) .* sum(W, 2)), [1, m]), 1) .* sum((repmat(sum(W, 2), [1, m]) .* (repmat(sum(W, 2), [1, m]).* repmat(sum(W, 1), [n, 1]))), 1)), 2)).* 45) + (sum((sum((W.* repmat(sum(W, 2), [1, m])), 1) .* (sum((W .* repmat(sum(W, 2), [1, m])),

1) .* repmat((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)), [1, m]))), 2) .* 180) + (((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)) .* (sum((sum(W, 1) .* sum(W, 1)), 2) .* sum((sum(W, 2) .* sum(W, 2)), 1))) .* 90) + (sum((sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* (sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* repmat((sum(sum(W, 2), 1) .* sum(sum(W, 2), 1)), [n, ((W') * W) + (((sum(W, 1) * ((W') * W)) * ((W') * (W')) * ((W') * W)) * ((W') * (W')) * ((W')) *(W') * W) * (sum(W, 1)'))) .* 360) + (sum((sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* (sum((W .* repmat(sum(W, 1), [n, 1])), 2) .* repmat(sum((sum(W, 2) .* sum(W, 2)), 1), [n, 1])), 1) .* 180) + ((sum((sum(W, 1) .* sum(W, 1)), 2) .* (sum((sum(W, 1) .* sum(W, 1)), 2) .* sum((sum(W, 2) .* sum(W, 2)), 1))) (((W') * W) * (((W') * W) * ((W') * ((W') * W) * ((W') * ((W') * W) * ((W') * ((W(W') * sum(W, 2)))) .* 360) + (sum((sum((W.* repmat(sum(W, 2), [1, m])), 1) .* sum((repmat((sum(W, 2) * sum(W, 2)), [1, m]) * (W, * repmat(sum(W, 2), [1, m]))), 1)), 2) .* -240) + ((((sum(W, 2)') * W) * ((W') * (repmat(sum(W, 2), [1, n]) * (sum(W, 2) .* sum(W, 2))))) .* 180) + ((((sum(W, 2)') * W) * (((W * (W * W))) * sum(W, 2)) * 480) + ((sum((sum(W, 2) .* sum(W, 2)), 1) .* sum(((sum(W, 2) .* sum(W, 2)) .* (sum(W, 2) .* sum(W, 2))), 1)) (sum(W, 2)) + ((sum(W, 2)), * sum(W, 2)), 1).* (sum((sum(W, 2) .* sum(W, 2)), 1) .* sum((sum(W, 2) .* sum(W, 2)), 1))) .* 15) + ((sum((sum(W, 2) .* W), 2) .* sum((W .* W), 2)) .* repmat(sum((sum(W, 2) .* sum(W, 2)), 1), [n, 1])), 1) .* -90) + ((sum((sum(W, 1) .* sum(W, 1)), 2) .* (sum((sum(W, 2) .* sum(W, 2)), 1) .* sum(sum((W.*W), 2), 1))) .* 90) + (sum(((sum(W, 1) .* sum(W, 1)) .* sum(((W .*W) .* (W.*W)), 1)), 2) .* -480) + ((sum((sum(W, * sum(W, 1)), 2).* sum(sum(((W.*W).* (W (* W), 2), 1)) (* 60) + (sum((W (* W), 1))).* sum(((W .* W) .* (W .* W)), 1)), 2) .* -480) + (sum((sum(repmat((sum(W, 2) .* sum(W, 2)), [1, m]), 1) .* sum(((W .* W) .* (W .* W)), 1)), 2) .* 60) + (((sum(W, 1) .* sum((W .* W), 1))) * (((W') * W) * (sum(W, 1)'))) .* -720) + ((sum(sum(W, 2), 1) .* sum(sum((((repmat(sum(W, 2), [1, m]) .* repmat(sum(W, 1), [n, 1])) .* W) .* repmat(sum((W .* W), 1), [n, 1])), 2), 1)) .* -720) + ((sum((sum(W, * sum(W, 2)), 1).* sum(((sum(W, 1).* sum(W, 1)) .* sum((W .* W), 1)), 2)) .* -180) + ((sum(sum((W.*W), 2), 1) .* sum(((sum(W, 1) .* sum(W, 1)) .* sum((W .* W), 1)), 2)) .* -180) + (sum(((sum(W, 1) .* sum(W, 1)) .* (sum((W .* W), 1) .* sum((W .* W), 1))), 2) .* 720) + (sum((sum((W .* W), 1) .* (sum((W .* W), 1) .* sum((W .* W), 1))), 2) .* 240) + (sum(sum((repmat(sum((W .* W), 1), [n, 1]) .* (repmat((sum(W, 2) .* repmat(sum(sum(W, 2),

Prior over computation trees

- Explore space of computation efficiently
- Find equivalent expressions to the target one
 But using operations with lower complexity
- Want to learn prior over sensible computations
 Humans learn prior over proofs in mathematics

Searching over computation trees

Scheduler picks potential new expressions to append to current expressions

Scorer ranks each possibility (i.e. how likely they are to lead to the solution), using prior.

We want to learn a good scorer.

Scoring strategies

- naive scorer don't use any prior. All computations are equally probable
- n-gram models
- learnt scorer

n-gram prior over trees

Exemplary intermediate solution:

Bi-grams:

Build n-grams distribution from solutions of simpler expressions

• Patterns that worked before might be useful

Experiments: 5 families of related problems

- $(\sum AA^T)_k$
- $(\sum (\mathbf{A} \cdot \ast \mathbf{A}) \mathbf{A}^{\mathbf{T}})_k$
- Symmetric polynomials, e.g.

$$\sum_{i < j < k} A_i A_j A_k$$

- RBM-1 $\sum_{v \in \{0,1\}^n} (v^T A)^k$
- RBM-2 $\sum_{v \in \{0,1\}^n, h \in \{0,1\}^n} (v^T A h)^k$

The meaning of a word computation is described by the words computations accompanying it

How we can represent a computation?

- Vector representation for every computation
 e.g. A^T = vector_1 , \sum(A^T, 1) = vector_2,
- Want to learn how to compose their vector representations

 i.e. ((A^T)^T)^T ~ vector 1, \sum(A, 2)^T ~ vector 2

Learnt representation with RNN

Recursive Neural network → RNN

Task - classify expressions

Example from A class:

(((sum((sum((A * (A')), 1)), 2)) * ((A * (((sum((A'), 1)) * A)'))) * A))

Example from B class:

(((sum((A'), 1)) * (A * ((A') * ((sum(A, 2)) * ((sum((A'), 1)) * A))))))))

From which class is this example ?

((sum((A * (A')), 1)), 2)) * ((sum((A'), 1)) * (A * ((A') * A))))

RNNs for a better discovery learning

- We have a real vector representation for any computations
- We use a linear classifier on such representation to train scorer

Family sum(AA^T)_k with RNN

RNN gives more diversified solutions (doesn't just copy them), but it doesn't perform as good as n-gram.

Targets \rightarrow Exemplary solution of RNN:

- $sum(A^*A') \rightarrow (sum((A^*((sum(A, 1))')), 1))$
- $sum(A^*A^{*}A) \rightarrow ((sum(A, 1))^* ((A')^* (sum(A, 2))))$
- $sum(A^*A^{**}A^*A) \rightarrow ((((sum(A, 1)) * (A')) * A) * ((sum(A, 1))'))$
- $sum(A^*A^{**}A^*A) \rightarrow ((sum(A, 1))^*((A')^*(A^*((A')^*(sum(A, 2))))))$

	naive	5-gram	RNN
Hardest possible example to solve	10	>15	~15

Summary

- Simple statistical priors over computations like n-gram allows the discovery of many new math formulae
- Use neural nets to map computational expressions to continuous vectors
 Also use for formulae discovery

Agenda

- 1. Introduction to Deep Neural Architectures
- 2. Neural Random Access-Machines
- 3. Hierarchical Attentive Memory
- 4. Applications: Smart Reply
- 5. Applications: Efficient Math Identities
- 6. Applications: Predicting Events From Sensor Data

Deep Mining

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks

Karol Kurach* & Krzysztof Pawłowski*

Problem

Problem

Goal

Predict level of methane concentration in a coal mine

Data

- > Multivariate: collected from 28 sensors
- > Time series (1 read/sensor/sec over months)
- > Non-stationary (concept drift)
- Correlated and overlapping

Deep Feedforward Neural Network

Architecture & Training

- > Multiple hidden layers, sigmoid & ReLU activations
- >> Backpropagation with SGD, mini-batch, momentum
- > Regularization: early stopping & dropout
- ➤ Trained on GPU. Cost function: RMSE

Parameters

target label	MM263	MM264	MM256
activation		sigmoid	ReLU
layer sizes	-	76-15-5-2-1	76-25-7-3-1
dropout	-	none	.5
learning rate	-	0.1	0.1
mini-batch size	<u> </u>	30	30
number of epochs		550	233

Long Short-Term Memory Model

Architecture & Training

- > 1 layer LSTM unrolled to 60 time-steps
- > Backpropagation through time with SGD
- > Gradient clipping to avoid exploding gradients
- ➤ Trained on GPU. Cost function: RMSE

Long Short-Term Memory

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{tanh} \end{pmatrix} T_{2n,4n} \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Ensemble & Results

Ensembling & Evaluation

- > For each of 3 target labels train each of 2 models
- > Ensemble predictions rank averaging
- > Evaluate based on public leaderboard score
- > For final submission choose the best-performer

> Final, private leaderboard score: 0.9400 and 6th place

• A big drop - overfitting?

Analysis

- A big drop due to overfitting to public leaderboard
- Classical cross-validation even worse
- > Reason: Concept drift, correlated data points
- > Better model selection schemes needed

Conclusion and Future Work

Conclusion

- > A competitive score of 0.9400 score and the 6th place
- > Deep Neural Networks are effective for sequential data
- Extensive feature engineering not required to perform well
Deep Mining

Predicting Dangerous Seismic Activity with Recurrent Neural Network

Karol Kurach Krzysztof Pawłowski

Problem

Problem

Goal

Predict increased seismic activity in a coal mine

threatening accidents

To prevent life-

Data

- ➤ Multivariate (35 variables)
- Time series (22 variables are per-hour readings)
- > Non-stationary (concept drift)
- > Overlapping and unbalanced

Our Solution

Preprocessing

- > Goal: minimal preprocessing
- Normalization: mean = 0, stddev = 1
- > Upsampling positives (10-20x)

Architecture

- 1. Time series data passed through RNN
- 2. Concatenate non-time series data
- 3. Pass through feedforward neural network
- Apply sigmoid and interpret the result as the likelihood of "warning"

Training

- > Network unrolled for 24 time-steps
- > Backpropagation through time with Adam algorithm
- >> Gradient clipping to avoid exploding gradients
- > Trained on GPU. Cost function: Binary Cross Entropy

Model selection

- > Overlapping data => cross-validation doesn't work
- > CV-like scheme (5 folds, 1 training file per fold)
- >> Ignore the leaderboard score!

Ensembling

- Single model nice, but usually ensembles win
- We ensembled our RNN with logistic regression
- > We used rank averaging

Results & Conclusion

Results

- Final score: 5th place (0.934 score, 0.0057 less than winners)
- > Single model (no ensembling): 7th place (0.931 score)

Conclusion

- > Deep Neural Networks are effective for sequential data
- > Extensive feature engineering not required to perform well
- > Ensembling works!

Thank you!