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A primer on Deep Learning 



Deep Learning 

Big Data + Big Deep Model  
                    = Success Guaranteed 
 
State of the art in:  

●  computer vision,  

●  speech recognition,  

●  machine translation, … 

 

 

 

 

 

 

 
●  New techniques (e.g., 

initialization, pretraining) 
●  Computing power (GPU, 

FPGA, TPU…)  
●  Big datasets 

 



➢ Neural networks with cycles 

➢ Process inputs of variable length 

➢ Preserve state between timesteps 
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Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT ) (which we
denote by v

T
1 ), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut  Whvvt +Whhht�1 + bh

3: ht  e(ut)

4: ot  Wohht + bo

5: zt  g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot  g

0
(ot) · dL(zt; yt)/dzt

3: dbo  dbo + dot

4: dWoh  dWoh + doth
>
t

5: dht  dht +W
>
ohdot

6: dzt  e
0
(zt) · dht

7: dWhv  dWhv + dztv
>
t

8: dbh  dbh + dzt

9: dWhh  dWhh + dzth
>
t�1

10: dht�1  W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known
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Figure 2.2: The feedforward neural network.

FNNs are trained by minimizing the training error w.r.t. the parameters using a gradient method,
such as SGD or momentum.

Despite their representational power, deep FNNs have been historically considered very hard to
train, and until recently have not enjoyed widespread use. They became the subject of intense attention
thanks to the work of Hinton and Salakhutdinov (2006) and Hinton et al. (2006), who introduced the idea
of greedy layerwise pre-training, and successfully applied deep FNNs to a number of challenging tasks.
Greedy layerwise pre-training has since branched into a family of methods (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006; Bengio et al., 2007), all of which train the layers of a deep FNN in order,
one at time, using an auxiliary objective, and then “fine-tune” the network with standard optimization
methods such as stochastic gradient descent. More recently, Martens (2010) has attracted considerable
attention by showing that a type of truncated-Newton method called Hessian-free optimization (HF) is
capable of training deep FNNs from certain random initializations without the use of pre-training, and
can achieve lower errors for the various auto-encoding tasks considered in Hinton and Salakhutdinov
(2006). But recent results described in Chapter 7 show that even very deep neural networks can be
trained using an aggressive momentum schedule from well-chosen random initializations.

It is possible to implement the FNN with the computational graph formalism and to use backward
automatic differentiation to obtain the gradient (which is done if the FNN is implemented in Theano
(Bergstra et al., 2010)), but it is also straightforward to program the gradient directly:

1: dz`  dL(z`; y)/dz`

2: for i from `+ 1 downto 1 do
3: dxi  e

0
(xi) · dzi

4: dzi�1  W
>
i�1dxi

5: dbi  dxi

6: dWi�1  dxiz
>
i�1

7: end for
8: Output [dW0, . . . , dW`, db1, . . . , db`+1]

2.5 Recurrent Neural Networks

We are now ready to define the Recurrent Neural Network (RNN), the central object of study of this
thesis. The standard RNN is a nonlinear dynamical system that maps sequences to sequences. It is pa-
rameterized with three weight matrices and three bias vectors [Whv,Whh,Woh, bh, bo, h0] whose con-
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➢ Basic version of RNN 
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Learning RNN: BPTT  
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➢ Exploding gradient (idea: use gradient clipping) 

➢ Vanishing gradient (idea: use ReLU and/or LSTM) 

make it difficult to optimize RNNs on sequences with long-

range temporal dependencies, and are possible causes for 

the abandonment of RNNs by machine learning researchers  

Vanilla RNN - problems 



➢ Better at learning long-range dependencies 

➢ Avoid vanishing gradient problem 

➢ State: a pair of vectors (c, h) 

 

 

 

 

 

 

LSTM: Long Short-Term Memory  
(Hochreiter and Schmidhuber, 1997) 

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 .... LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

Input: Output: 
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the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.
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of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
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operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,
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because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.
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at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
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should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
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• Data normalization, in regards to mean and standard
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procedure, and as such it should be applicable to almost
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After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
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because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,
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Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 .... LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s
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layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,
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Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf ) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].
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less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,
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Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.
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in the next timestep 

➢  Two variants: soft (differentiable) & hard (RL) 

 

 

 

 

 

 

Attention 



Attention 



Attention in machine translation  





Turing Machine & Neural Turing Machine 



➢  Theoretical, abstract machine 

➢  Capable of simulating any computer algorithm 

➢ Operates on infinite tape divided into cells (each in N states) 

➢ Machine in one of M states 

➢  Head can read/write to the tape and move left/right 

➢  Finite table of instructions 

 

 

 

 

 

Turing Machine 



Turing Machine - formally 

CSE2001, Fall 2006 1

Turing Machines (cont’d)

• Last time we introduced a new computational model called Turing Machine (TM). Our
goal for the next two lectures is to convince ourselves that TMs are a good model to
study properties of intuitively reasonable computation. The word reasonable, among
other things, implies the following:

– The computation in the model is controlled by a finite set of instructions.

– Each instruction can be carried out in a finite number of steps.

– The computation in the model is deterministic (i.e. the effect of each instruction
is predictable).

• We will proceed in stages:

– Give a formal definition of TM and a computation of TM.

– Show that Turing Machine can emulate a Turing Machine with multiple tapes.

– Show that Turing Machine with multiple tapes can emulate a Random Access
Machine (RAM).

RAMs are appealing because the control logic of RAMs looks very much like computer
programs written in assembly language, and so, hopefully, the equivalence between
RAMs and TMs will make a strong point for the appropriateness of studying TMs.

Formal definition of Turing Machine.

• Definition: A Turing Machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject), where

– Q is a finite set of states ;

– Σ is an input alphabet, ! /∈ Σ;

– Γ is a tape alphabet, ! ∈ Γ, and Σ ⊂ Γ;

– δ : Q × Γ %→ (Q ∪ {qaccept, qreject}) × Γ × {L, R} is the transition function;

– q0inQ is the start state;

– qaccept, qreject are the accept and reject states, respectively.

• A configuration of TM consists of the state, the content of the tape, and the current
position of the head. Think of the configuration as a “snapshot” of the current state
of the TM. Formally, we define a configuration as follows:

Definition: A configuration of a Turing Machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject), is
a triple (u, q, v), written as u q v, where u, v ∈ Γ∗, and q ∈ Q ∪ {qaccept, qreject}.



➢  Inspired by Turing Machine 

➢  Fully differentiable 

➢ Separation of the network into controller & memory 

➢ Capable of solving simple tasks, like Copy, Reverse 

 

 

 

 

 

Neural Turing Machine 
Alex Graves et. al. in 2014.  



NTM 



NTM - addressing mechanism 



NTM - content addressing 
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Neural Random-Access 
Machines 
Karol Kurach* 
Marcin Andrychowicz* 
Ilya Sutskever 
 



●  Neural architecture which can dereference pointers 
●  Can learn concepts such as “linked list” or “Binary 

Search Tree” 
●  Can interact with external modules 
●  Decides when to stop the computation 

Overview 



●  External random-access memory M 
●  Fixed number of registers (distributions over ZM) 
●  A fixed set of gates, e.g. addition modulo M 
●  LSTM controller deciding which operations should 

be applied at every timestep and which values 
should be stored in the registers 

Components 



●  Memory cells store distributions over ZM 

●  Distributions over ZM can be interpreted as fuzzy pointers 

●  Number of parameters independent of the memory size 
●  Interaction with using two special modules 

Memory 



Fuzzy pointer 



Architecture overview 



Gates 



●  But we have distributions, not integers…. 
●  Natural extension: 

Gates 



Circuit generation 



●  Only input-output examples 
●  Log-likelihood cost function 
●  Gradient clipping both globally and during the 

backprop 
●  Curriculum 
●  Entropy bonus 
●  Gradient noise 

Training 



Experiments 



Example circuit 



●  First neural network that use pointers 
●  Can use external modules (gates) 
●  Can interact with external modules 
●  Decides when to stop the computation 

Summary 
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Hierarchical Attentive Memory 
Karol Kurach* 
Marcin Andrychowicz* 
 



●  Recently there have been proposed many memory 
architectures 

●  But most of them are not very efficient - copying a 
sequence of length n requires O(n2) operations: 

●  Aim: design an efficient memory architecture 
●  Means: hierarchical attention 

Motivation: 



●  Memory access in O(log n) 
●  Memory is structured as a binary tree 

Hierarchical Attentive Memory (HAM) 

Leafs: memory cells 

Inner nodes: auxiliary 
hidden values 
“summarizing” 
memory cells beneath 



LSTM + HAM 



1. Initialization 

x=JOIN(l,r) 

x 

l r 



2. Attention phase 



3. Output phase 



4. Update phase 
a)  modify the attended leaf 

Highway Networks-style write: 
WRITE(ha, hLSTM) = 
T(ha, hLSTM) ⋅ H(ha, hLSTM) + 
[1-T(ha, hLSTM)] ⋅ ha 

x=JOIN(l,r) 

x

l r 

 
b) update the values in the 
inner nodes 
 



Example: sorting 

EMBED(x) = (x,0) 
 

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0) 

(5,0) (1,0) (2,1) (6,0) 

(1,1) (2,0) 

(1,0) 

5 9 1 8 6 2 7 6 

Hidden values: 
●  Minimum in the subtree 
●  Is the minimum in the right 

subtree? 
 
JOIN((x1,r1),(x2,r2)) = 
(min(x1,x2), [x1 > x2]) 



Example: sorting 

EMBED(x) = (x,0) 
 

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0) 

(5,0) (1,0) (2,1) (6,0) 

(1,1) (2,0) 

(1,0) 

5 9 1 8 6 2 7 6 

Hidden values: 
●  Minimum in the subtree 
●  Is the minimum in the right 

subtree? 
 
JOIN((x1,r1),(x2,r2)) = 
(min(x1,x2), [x1 > x2]) 



Example: sorting EMBED(x) = (x,0) 
JOIN((x1,r1),(x2,r2)) = (min(x1,x2), [x1 > x2]) 
SEARCH((x,r),hLSTM) = r 

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0) 

(5,0) (1,0) (2,1) (6,0) 

(1,1) (2,0) 

(1,0) 

1 

(1,0) 

(1,0) 

(1,1) 

(1,0) 

(∞,0) 

(8,1) 

(5,0) 

(2,1) 

WRITE((x,r),hLSTM)=(∞,0) 

(∞,0) 

(8,1) 

(5,0) 

(2,1) 

(2,0) 

(2,1) 

(2,0) 

(2,1) 



Properties of HAM 

●  Number of parameters independent of the 
memory size 

●  Memory access complexity: O(log n) 
●  Supports some operations impossible for normal 

attention, e.g. extracting the minimum 



Training 

●  BPTT 
●  REINFORCE with discounted returns for the 

sampling nodes 
●  Reward: log-probability → percentage of correctly 

predicted bits 
●  Entropy bonus: 𝛂H(p) → -𝛂/H(p): 

○  Forces the model to give non-zero probability to every leaf 

●  Curriculum: [1,4], [1,8], [1,16]... 



Experiments 

●  LSTM+HAM: 
○  Reverse 
○  Search (binary) 
○  Merge 
○  Sort 
○  Long binary addition 

●  Raw HAM: 
○  Stack 
○  FIFO Queue 
○  Priority Queue 



Experiments 
LSTM LSTM+A LSTM+HAM 

Reverse 73% 0% 0% 

Search 62% 0.04% 0.12% 

Merge 88% 16% 0% 

Sort 99% 25% 0.04% 

Add 39% 0% 0% 

Stack N/A N/A 0% 

FIFO Queue N/A N/A 0% 

Priority Queue N/A N/A 0.08% 
Error rates are percentages of incorrect output sequences. 



Generalization 

training model (n=32) testing model (n=128) 

parameters 



Generalization results 
LSTM LSTM+A LSTM+HAM 

Reverse 100% 100% 0% 

Search 89% 0.52% 1.68% 

Merge 100% 100% 2.48% 

Sort 100% 100% 0.24% 

Add 100% 100% 100% 

Stack N/A N/A 0% 

FIFO Queue N/A N/A 0% 

Priority Queue N/A N/A 0.2% 
Error rates are percentages of incorrect output sequences. 



HAM vs. content-based attention: 

●  Pros: 
○  It is more efficient 
○  It supports some operations impossible for content-

based attention, e.g. extracting the minimum 
○  It generalizes better 

●  Cons: 
○  Performing associative recall may be difficult 

●  After all there is no need to choose: you can use 
both 



●  Efficient memory, access in O(log n) 
●  Possible drop-in replacement for other data 

structures 
●  Good generalization (first to learn sorting 

that generalizes) 

 

Conclusion 
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6.  Applications: Predicting Events From Sensor 

Data 

 
 

 

 

 

 

Agenda 



Smart Reply: Automated Response 
Suggestion for Email 
Anjuli Kannan*, Karol Kurach*, Sujith Ravi*, Tobias Kaufmann*, 
Andrew Tomkins, Balint Miklos, Greg Corrado, Marina Ganea, 
Laszlo Lukacs, Peter Young, Vivek Ramavajjala 
 
*equal contribution 



Problem 



Smart Reply feature 

●  Provide text assistance for 
email reply composition 

●  Targeted at mobile 
●  Responses can be sent on 

their own or extended 



Smart Reply feature predicts 
email responses 

Smart Reply 
Incoming 
email 

Response 
email 



Why is this task hard? 
●  extracting meaning from previous message 
●  generating language 
●  grammatical transformations between call 

and response 
●  matching style/tone 



Models 



Life of a message 



Two main models 
●  Triggering: quickly filter bad candidates 

 
How do we decide when it is appropriate to show 
suggestions, and avoid showing them when they 
would be not only useless but distracting? 

●  Scoring: score a whitelist of responses 
 



Triggering model 

Receipt Personal Promo 



Triggering model 
●  How do we decide when it is appropriate to show 

suggestions, and avoid showing them when they 
would be not only useless but distracting? 
 

Solution: Have a separate feed-forward neural 
network that decides whether to trigger.   
 

Challenging: mails not directly to me,  
           predicting replies != predicting smart replies, ... 
 

 



Sequence-to-sequence model 

      

        

Sutskever et al, NIPS 2014 



Sequence-to-sequence model 

      

        

encoder decoder 



Sequence-to-sequence model 

      

        

Ingests incoming message Generates reply message 



Smartreply model 

 How  are you  ? __ I  am  
great 

 I  am  
great  ! 

Message 

Response 



Training              Inference  
●  Training data is a corpus 

of email-reply pairs 
●  Both encoder and 

decoder are trained 
together (end-to-end) 

 

●  Resulting model is fully 
generative 

●  Output distribution can be 
used to determine the 
most likely responses 
using a beam search 



Example 



Challenges 



Quality 
●  How do we ensure that the response options are always 

high quality in content and language? 
○  Avoid incorrect grammar and mechanics, misspellings  e.g., your 

the best 
○  Avoid inappropriate, offensive responses. e.g., Leave me alone. 
○  Deal with wide variability, informal language. e.g., got it thx 

●  Restricting model vocabulary is not sufficient! 

 

Solution: Restrict to a fixed set of valid responses, derived 
automatically from data. 



Scalability 
●  How do we scale costly LSTM computation to the 

requirements of an email delivery pipeline? 

 

Solution:  

1.  Use  
2.  Perform an approximate search over set of valid 

responses 



Diversity 
●  How can we select a semantically diverse set of 

suggestions? 

Yes, I’ll be there. 
Yes, I will be there. 
I’ll be there. 
 
 

Can you join tomorrow’s 
meeting? 

Solution: Learn semantic intents of responses, then 
use these to filter out redundant suggestions. 

Sure, I’ll be there. 
Yes, I can. 
Sorry, I won’t be able to make it 
tomorrow. 
 
 

Redundant responses Responses with diversity (more useful) 



Diversity 
Our approach to diversity is based on two heuristics: 

●  Cluster-based diversity: 
Don’t show suggestions of the same intent. 
 

●  Forced positives/negatives: 
If there is an affirmative suggestion, also force a negative 
one (and vice versa). 
Product decision: offer positive/negative choice, even if the 
latter is rare. 



«We're waiting for you, are you going to be here soon?» 

1.  On my way. 
2.  On my way! 
3.  I'm here. 
4.  I'm on my way. 
5.  I'm here! 
6.  Yes, I'm here. 
7.  I'll be there in a few minutes. 
8.  I am on my way. 

Cluster-based diversity 

On my way. 
I am on my way. 
I’m on my way. 
... 

Will be there shortly. 
I’ll be there in a few minutes. 
Be there in a few! 
... 

I am here. 
Already here! 
Yes, I am here. 
... 



«We're waiting for you, are you going to be here soon?» 

1.  On my way. 
2.  On my way! 
3.  I'm here. 
4.  I'm on my way. 
5.  I'm here! 
6.  Yes, I'm here. 
7.  I'll be there in a few minutes. 
8.  I am on my way. 

Cluster-based diversity 

On my way. 
I am on my way. 
I’m on my way. 
... 

Will be there shortly. 
I’ll be there in a few minutes. 
Be there in a few! 
... 

I am here. 
Already here! 
Yes, I am here. 
... 



Diversity results 

●  Removing diversity click-through rate by 
7.5% relative. 



Results 



Deployment & coverage 
●  Deployed in Inbox by Gmail 
●  Used to assist with more than 10% of all 

mobile replies 



Unique cluster and suggestion usage 



Most frequently used clusters 
 



Ranking experiments 



Examples 



Conclusions 
●  Sequence-to-sequence produces plausible email 

replies in many common scenarios, when trained 
on an email corpus 

●  Smart Reply is deployed in Inbox by Gmail and 
generates more than 10% of mobile replies 

●  RNNs show promise not only for assisted 
communication, but also for other applications 
where a conversation model is needed, such as 
virtual assistants 



1.  Introduction to Deep Neural Architectures 
2.  Neural Random Access-Machines 
3.  Hierarchical Attentive Memory 
4.  Applications: Smart Reply 
5.  Applications: Efficient Math Identities 
6.  Applications: Predicting Events From Sensor 

Data 
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Learning to Discover Efficient 
Mathematical Identities  
Karol Kurach* 
Wojciech Zaremba* 
Rob Fergus 
 

Slides by Wojciech Zaremba & Karol Kurach 



(a) The original expression.

(b) The e�cient formula.

Figure 5: Two equivalent expressions. The bottom formula found by our
framework avoids the use of a matrix-matrix multiply operation, hence is
e�cient to compute. The sum(X, 1) is a sum of matrix X along dimension
1 (a row vector containing the sum of each column) and ^T is the matrix
transposition.

could be expressed in matlab notation as sum(sum(A*B)). However, there
exists an e�cient version of the formula, that computes the same result in
O(n(m+p)) time by avoiding matrix-matrix multiplication. It can be written
in matlab as sum((sum(A, 1) * B)’, 1).

In the paper Learning to Discover E�cient Mathematical Identi-
ties [4] we introduce a framework based on attribute grammars for finding
computationally e�cient versions of symbolic math expressions. We show
how machine learning techniques can be integrated into this framework, and
demonstrate how training models on simpler expressions can help with the
discovery of more complex ones. In particular, we present a novel applica-
tion of a recursive neural network[30] to learn a continuous representation of
mathematical structures.

We show how the exploration of the search space can be learned from pre-
viously successful solutions to simpler expressions. This allows us to discover
complex expressions that random or brute-force strategies cannot find. We
present examples of (i) O(n3) target expressions which can be computed in
O(n2) time and (ii) cases where naive evaluation of the target would require
exponential time, but can be computed in O(n2) or O(n3) time. The majority
of these examples are too complex to be found manually or by exhaustive
search and, as far as we are aware, are previously undiscovered.

13

A toy example 

 

 

Naive computation takes O(n^3).  

Our framework found O(n^2) computation  

 

Naive computation 
(O(n^3) time) 

Optimized computation 
(O(n^2) time) 

Let’s consider two matrices A, B 

(a) The original expression.

(b) The e�cient formula.

Figure 5: Two equivalent expressions. The bottom formula found by our
framework avoids the use of a matrix-matrix multiply operation, hence is
e�cient to compute. The sum(X, 1) is a sum of matrix X along dimension
1 (a row vector containing the sum of each column) and ^T is the matrix
transposition.

could be expressed in matlab notation as sum(sum(A*B)). However, there
exists an e�cient version of the formula, that computes the same result in
O(n(m+p)) time by avoiding matrix-matrix multiplication. It can be written
in matlab as sum((sum(A, 1) * B)’, 1).

In the paper Learning to Discover E�cient Mathematical Identi-
ties [4] we introduce a framework based on attribute grammars for finding
computationally e�cient versions of symbolic math expressions. We show
how machine learning techniques can be integrated into this framework, and
demonstrate how training models on simpler expressions can help with the
discovery of more complex ones. In particular, we present a novel applica-
tion of a recursive neural network[30] to learn a continuous representation of
mathematical structures.

We show how the exploration of the search space can be learned from pre-
viously successful solutions to simpler expressions. This allows us to discover
complex expressions that random or brute-force strategies cannot find. We
present examples of (i) O(n3) target expressions which can be computed in
O(n2) time and (ii) cases where naive evaluation of the target would require
exponential time, but can be computed in O(n2) or O(n3) time. The majority
of these examples are too complex to be found manually or by exhaustive
search and, as far as we are aware, are previously undiscovered.
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●  Symobolic - slow 
●  Floats - numerical issues 
●  Integers mod P - works well! 

Representation 



Allowed computations 

We can consider arbitrary bigger grammar …  



Many computations are in this family 

●  E.g. finite Taylor expansion of any function …. 
 



Many computations are in this family 

●  E.g. finite Taylor expansion of any function …. 
for instance, partition function of Restricted 
Boltzmann Machine (RBM) 
 
 



Exact solution for k=1  
(first term in Taylor series) 

this is a polynomial computation vs exponential computation in the 
naive algorithm 



this is a polynomial computation vs exponential computation in the 
naive algorithm 

Exact solution for k=2  
(second term in Taylor series) 



 
How to find equivalent computations ? 



Exact solution for k=6  (sneak preview) 
derived by our framework 



Prior over computation trees 

●  Explore space of computation efficiently 
 

●  Find equivalent expressions to the target one 
○  But using operations with lower complexity 

 
●  Want to learn prior over sensible computations 

○  Humans learn prior over proofs in mathematics 



Searching over computation trees 

Scheduler picks potential new expressions to 
append to current expressions 
 
Scorer ranks each possibility (i.e. how likely 
they are to lead to the solution), using prior.   
 

We want to learn a good scorer. 
 



Scoring strategies 
 
●  naive scorer don’t use any prior. All 

computations are equally probable 
 
●  n-gram models  
 
●  learnt scorer 



n-gram prior over trees  

Exemplary intermediate solution: 

Build n-grams distribution from solutions of 
simpler expressions 
●  Patterns that worked before might be useful 

Bi-grams: 



Experiments: 
5 families of related problems 
●    
●    
●  Symmetric polynomials, e.g. 
●  RBM-1  
●  RBM-2 



The meaning of a word computation is 
described by the words computations 

accompanying it  



How we can represent a computation?  

●  Vector representation for every computation 
○  e.g. A^T = vector_1 , \sum(A^T, 1) = vector_2,  

 
●  Want to learn how to compose their vector 

representations 
○  i.e. ((A^T)^T)^T ~ vector_1, \sum(A, 2)^T ~ vector_2 

 



Learnt representation with RNN 
Recursive Neural network → RNN 



Task - classify expressions 
Example from A class: 

Example from B class: 

From which class is this example ? 



RNNs for a better discovery learning 

●  We have a real vector representation for any 
computations 

 
●  We use a linear classifier on such 

representation to train scorer  



Family sum(AA^T)_k  with RNN 
RNN gives more diversified solutions (doesn’t just copy them), but it doesn’t perform 
as good as n-gram. 
Targets → Exemplary solution of RNN:  
●  sum(A*A’) → (sum((A * ((sum(A, 1))')), 1)) 
●  sum(A*A’*A) → ((sum(A, 1)) * ((A') * (sum(A, 2)))) 
●  sum(A*A’*A*A’) → ((((sum(A, 1)) * (A')) * A) * ((sum(A, 1))')) 
●  sum(A*A’*A*A’*A) →  ((sum(A, 1)) * ((A') * (A * ((A') * (sum(A, 2)))))) 

 

naive  5-gram RNN 

Hardest 
possible 
example to 
solve 

10 >15 ~15 



Summary 

●  Simple statistical priors over computations 
like n-gram allows the discovery of many 
new math formulae 

 
●  Use neural nets to map computational 

expressions to continuous vectors 
○  Also use for formulae discovery 



1.  Introduction to Deep Neural Architectures 
2.  Neural Random Access-Machines 
3.  Hierarchical Attentive Memory 
4.  Applications: Smart Reply 
5.  Applications: Efficient Math Identities 
6.  Applications: Predicting Events From Sensor 

Data 
 

 

 

 

 

Agenda 



Detecting Methane Outbreaks from Time Series 
Data with Deep Neural Networks 
 

Karol Kurach* & Krzysztof Pawłowski* 

 

 

Deep Mining 



Problem 



Problem 

Predict level of 
methane 
concentration in a coal 
mine 

Goal 

Explosion danger 
 
 
 

Why 



➢ Multivariate: collected from 28 sensors 

➢ Time series (1 read/sensor/sec  over months) 

➢ Non-stationary (concept drift) 

➢ Correlated and overlapping 
 

 

 

 

 

 

Data 



Deep Feedforward Neural 
Network 



➢ Multiple hidden layers, sigmoid & ReLU activations 

➢ Backpropagation with SGD, mini-batch, momentum 

➢ Regularization: early stopping & dropout 

➢ Trained on GPU. Cost function: RMSE 
 

 

 

 

 

 

Architecture & Training 



 

 

 

 

 

 

Parameters 



Long Short-Term Memory 
Model 



➢ 1 layer LSTM unrolled to 60 time-steps 

➢ Backpropagation through time with SGD 

➢ Gradient clipping to avoid exploding gradients 

➢ Trained on GPU. Cost function: RMSE 
 

 

 

 

 

 

Architecture & Training 



Long Short-Term Memory 

sensor 
values 
(t=1) 

 

LSTM 

Step 1 Step N 

MLP + 
Sigmoid  LSTM  

sensor 
values 
(t=N) 

 

Memor
y 



LSTM Cell 



Ensemble & Results 



Ensembling & Evaluation 

➢ For each of 3 target labels train each of 2 models 

➢ Ensemble predictions - rank averaging 

➢ Evaluate based on public leaderboard score 

➢ For final submission choose the best-performer 

 
 

 

 

 

 

 



Results   Area under 
ROC  
 
higher is 
better 

➢  Final, private leaderboard score: 0.9400 and 6th place 

○  A big drop - overfitting? 

➢ Preliminary, public leaderboard scores: 



Analysis 

➢ A big drop due to overfitting to public 

leaderboard 

➢ Classical cross-validation even worse 

➢ Reason: Concept drift, correlated data points 

➢ Better model selection schemes needed 

 
 

 

 

 

 

 



Conclusion and Future Work 



➢ A competitive score of 0.9400 score and the 6th place 

➢ Deep Neural Networks are effective for sequential data 

➢ Extensive feature engineering not required to perform 

well 

 

 

 

 

 

 

Conclusion 



Predicting Dangerous Seismic Activity with 
Recurrent Neural Network 
 

Karol Kurach 
Krzysztof Pawłowski 

 

Deep Mining 



Problem 



To prevent life-
threatening accidents 
 
 
                         

Problem 

Predict increased 
seismic activity in a 
coal mine 

Goal Why 



➢ Multivariate (35 variables) 

➢ Time series (22 variables are per-hour 

readings) 

➢ Non-stationary (concept drift) 

➢ Overlapping and unbalanced 
 

 

 

 

 

 

Data 



Our Solution 



➢ Goal: minimal preprocessing 

➢ Normalization: mean = 0, stddev = 1 

➢ Upsampling positives (10-20x) 
 

 

 

 

 

 

Preprocessing 
 



Architecture 

1.  Time series data 
passed through RNN 

2.  Concatenate non-time 
series data 

3.  Pass through feed-
forward neural network 

4.  Apply sigmoid and 
interpret the result as 
the likelihood of 
“warning” 

M=22	
N=24	



➢ Network unrolled for 24 time-steps 

➢ Backpropagation through time with Adam algorithm 

➢ Gradient clipping to avoid exploding gradients 

➢ Trained on GPU. Cost function: Binary Cross Entropy 
 

 

 

 

 

 

Training 



➢ Overlapping data => cross-validation doesn’t 

work 

➢ CV-like scheme (5 folds, 1 training file per fold) 

➢ Ignore the leaderboard score! 
 

 

 

 

 

 

Model selection 



➢ Single model - nice, but usually ensembles 

win  

➢ We ensembled our RNN with logistic 

regression 

➢ We used rank averaging 
 

 

 

 

 

 

Ensembling 



Results & Conclusion 



➢  Final score: 5th place (0.934 score, 0.0057 less than 

winners) 

➢ Single model (no ensembling): 7th place (0.931 score) 

 

 

 

 

 

 

Results 



➢ Deep Neural Networks are effective for sequential data 

➢ Extensive feature engineering not required to perform well 

➢ Ensembling works! 

 

 

 

 

 

 

Conclusion 



Thank you! 


