
Neural Random Access
Machines

a deep learning technique for sequential data

Based on the PhD thesis of
Dr Karol Kurach

Warsaw University/Google

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

A primer on Deep Learning

Deep Learning

Big Data + Big Deep Model
 = Success Guaranteed

State of the art in:

●  computer vision,

●  speech recognition,

●  machine translation, …

●  New techniques (e.g.,

initialization, pretraining)
●  Computing power (GPU,

FPGA, TPU…)
●  Big datasets

➢ Neural networks with cycles

➢ Process inputs of variable length

➢ Preserve state between timesteps

Recurrent Neural Networks

Recurrent Neural Networks
CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

CHAPTER 2. BACKGROUND 9

Figure 2.2: The feedforward neural network.

FNNs are trained by minimizing the training error w.r.t. the parameters using a gradient method,
such as SGD or momentum.

Despite their representational power, deep FNNs have been historically considered very hard to
train, and until recently have not enjoyed widespread use. They became the subject of intense attention
thanks to the work of Hinton and Salakhutdinov (2006) and Hinton et al. (2006), who introduced the idea
of greedy layerwise pre-training, and successfully applied deep FNNs to a number of challenging tasks.
Greedy layerwise pre-training has since branched into a family of methods (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006; Bengio et al., 2007), all of which train the layers of a deep FNN in order,
one at time, using an auxiliary objective, and then “fine-tune” the network with standard optimization
methods such as stochastic gradient descent. More recently, Martens (2010) has attracted considerable
attention by showing that a type of truncated-Newton method called Hessian-free optimization (HF) is
capable of training deep FNNs from certain random initializations without the use of pre-training, and
can achieve lower errors for the various auto-encoding tasks considered in Hinton and Salakhutdinov
(2006). But recent results described in Chapter 7 show that even very deep neural networks can be
trained using an aggressive momentum schedule from well-chosen random initializations.

It is possible to implement the FNN with the computational graph formalism and to use backward
automatic differentiation to obtain the gradient (which is done if the FNN is implemented in Theano
(Bergstra et al., 2010)), but it is also straightforward to program the gradient directly:

1: dz` dL(z`; y)/dz`

2: for i from `+ 1 downto 1 do
3: dxi e

0
(xi) · dzi

4: dzi�1 W
>
i�1dxi

5: dbi dxi

6: dWi�1 dxiz
>
i�1

7: end for
8: Output [dW0, . . . , dW`, db1, . . . , db`+1]

2.5 Recurrent Neural Networks

We are now ready to define the Recurrent Neural Network (RNN), the central object of study of this
thesis. The standard RNN is a nonlinear dynamical system that maps sequences to sequences. It is pa-
rameterized with three weight matrices and three bias vectors [Whv,Whh,Woh, bh, bo, h0] whose con-

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

= à à

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

à

Recurrent Neural Networks

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

➢ Basic version of RNN

➢ State: vector h

Vanilla RNN

Learning RNN: BPTT

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

CHAPTER 2. BACKGROUND 10

Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation ✓ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT) (which we
denote by v

T
1), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the

following algorithm:
1: for t from 1 to T do
2: ut Whvvt +Whhht�1 + bh

3: ht e(ut)

4: ot Wohht + bo

5: zt g(ot)

6: end for
where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =

TX

t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot g

0
(ot) · dL(zt; yt)/dzt

3: dbo dbo + dot

4: dWoh dWoh + doth
>
t

5: dht dht +W
>
ohdot

6: dzt e
0
(zt) · dht

7: dWhv dWhv + dztv
>
t

8: dbh dbh + dzt

9: dWhh dWhh + dzth
>
t�1

10: dht�1 W
>
hhdzt

11: end for
12: Return d✓ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

➢ Exploding gradient (idea: use gradient clipping)

➢ Vanishing gradient (idea: use ReLU and/or LSTM)

make it difficult to optimize RNNs on sequences with long-

range temporal dependencies, and are possible causes for

the abandonment of RNNs by machine learning researchers

Vanilla RNN - problems

➢ Better at learning long-range dependencies

➢ Avoid vanishing gradient problem

➢ State: a pair of vectors (c, h)

LSTM: Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997)

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

Input: Output:

LSTM Cell

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht 2 Rn be a hidden state, ct 2 Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht�1, ct�1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that � is an
operation that aggregates ht�1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ⇤ [ht�1 � xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ⇤ [ht�1 � xt] + bi)

ut = tanh(Wu ⇤ [ht�1 � xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut

should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct�1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ⇤ [ht�1 � xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied to real-
world problems, including language modeling [18], handwrit-
ing [7] or speech [6] recognition, and machine translation [19].

V. MODEL

A. Preprocessing
Recall from Section II that most of the solutions to the

previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard
deviation. This is a standard Machine Learning
procedure, and as such it should be applicable to almost
any problem. The normalization makes easier both
optimization of the loss function and the regularization,

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN 2 R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s 2 R12 of per-record characteristics and the vector
e 2 R10 representing the working site id embedding.

because all feature values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10� 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi 2 R50) is connected to the previous state
hi�1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

Sequence-to-Sequence & Attention

Sequence-to-sequence model

Sutskever et al, NIPS 2014

Sequence-to-sequence model

encoder decoder

Sequence-to-sequence model

Ingests incoming message Generates reply message

Reading a sequence of words into an RNN

How

Reading a sequence of words into an RNN

How are

Reading a sequence of words into an RNN

How are you

Reading a sequence of words into an RNN

How are you ?

Encoder ingests the incoming message

How are you ?

Internal state is a fixed
length encoding of the
message

Decoder is initialized with final state of encoder

How are you ? __

Decoder is initialized with final state of encoder

How are you ? __

Decoder predicts next word

How are you ? __

Decoder predicts next word

How are you ? __ __ I

➢ People observed that some heuristics made seq2seq

better

○  Example: reverse sequence, feed it twice

➢ Size of the encoding vector may be a bottleneck

Encoder - decoder

➢ One of the most “hot” / promising techniques for DNNs

now

➢ Basic idea:

○  network decides which part of input it wants to look at

in the next timestep

➢  Two variants: soft (differentiable) & hard (RL)

Attention

Attention

Attention in machine translation

Turing Machine & Neural Turing Machine

➢  Theoretical, abstract machine

➢  Capable of simulating any computer algorithm

➢ Operates on infinite tape divided into cells (each in N states)

➢ Machine in one of M states

➢  Head can read/write to the tape and move left/right

➢  Finite table of instructions

Turing Machine

Turing Machine - formally

CSE2001, Fall 2006 1

Turing Machines (cont’d)

• Last time we introduced a new computational model called Turing Machine (TM). Our
goal for the next two lectures is to convince ourselves that TMs are a good model to
study properties of intuitively reasonable computation. The word reasonable, among
other things, implies the following:

– The computation in the model is controlled by a finite set of instructions.

– Each instruction can be carried out in a finite number of steps.

– The computation in the model is deterministic (i.e. the effect of each instruction
is predictable).

• We will proceed in stages:

– Give a formal definition of TM and a computation of TM.

– Show that Turing Machine can emulate a Turing Machine with multiple tapes.

– Show that Turing Machine with multiple tapes can emulate a Random Access
Machine (RAM).

RAMs are appealing because the control logic of RAMs looks very much like computer
programs written in assembly language, and so, hopefully, the equivalence between
RAMs and TMs will make a strong point for the appropriateness of studying TMs.

Formal definition of Turing Machine.

• Definition: A Turing Machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject), where

– Q is a finite set of states ;

– Σ is an input alphabet, ! /∈ Σ;

– Γ is a tape alphabet, ! ∈ Γ, and Σ ⊂ Γ;

– δ : Q × Γ %→ (Q ∪ {qaccept, qreject}) × Γ × {L, R} is the transition function;

– q0inQ is the start state;

– qaccept, qreject are the accept and reject states, respectively.

• A configuration of TM consists of the state, the content of the tape, and the current
position of the head. Think of the configuration as a “snapshot” of the current state
of the TM. Formally, we define a configuration as follows:

Definition: A configuration of a Turing Machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject), is
a triple (u, q, v), written as u q v, where u, v ∈ Γ∗, and q ∈ Q ∪ {qaccept, qreject}.

➢  Inspired by Turing Machine

➢  Fully differentiable

➢ Separation of the network into controller & memory

➢ Capable of solving simple tasks, like Copy, Reverse

Neural Turing Machine
Alex Graves et. al. in 2014.

NTM

NTM - addressing mechanism

NTM - content addressing

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

Confidential & Proprietary

Neural Random-Access
Machines
Karol Kurach*
Marcin Andrychowicz*
Ilya Sutskever

●  Neural architecture which can dereference pointers
●  Can learn concepts such as “linked list” or “Binary

Search Tree”
●  Can interact with external modules
●  Decides when to stop the computation

Overview

●  External random-access memory M
●  Fixed number of registers (distributions over ZM)
●  A fixed set of gates, e.g. addition modulo M
●  LSTM controller deciding which operations should

be applied at every timestep and which values
should be stored in the registers

Components

●  Memory cells store distributions over ZM

●  Distributions over ZM can be interpreted as fuzzy pointers

●  Number of parameters independent of the memory size
●  Interaction with using two special modules

Memory

Fuzzy pointer

Architecture overview

Gates

●  But we have distributions, not integers….
●  Natural extension:

Gates

Circuit generation

●  Only input-output examples
●  Log-likelihood cost function
●  Gradient clipping both globally and during the

backprop
●  Curriculum
●  Entropy bonus
●  Gradient noise

Training

Experiments

Example circuit

●  First neural network that use pointers
●  Can use external modules (gates)
●  Can interact with external modules
●  Decides when to stop the computation

Summary

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

Confidential & Proprietary

Hierarchical Attentive Memory
Karol Kurach*
Marcin Andrychowicz*

●  Recently there have been proposed many memory
architectures

●  But most of them are not very efficient - copying a
sequence of length n requires O(n2) operations:

●  Aim: design an efficient memory architecture
●  Means: hierarchical attention

Motivation:

●  Memory access in O(log n)
●  Memory is structured as a binary tree

Hierarchical Attentive Memory (HAM)

Leafs: memory cells

Inner nodes: auxiliary
hidden values
“summarizing”
memory cells beneath

LSTM + HAM

1. Initialization

x=JOIN(l,r)

x

l r

2. Attention phase

3. Output phase

4. Update phase
a)  modify the attended leaf

Highway Networks-style write:
WRITE(ha, hLSTM) =
T(ha, hLSTM) ⋅ H(ha, hLSTM) +
[1-T(ha, hLSTM)] ⋅ ha

x=JOIN(l,r)

x

l r

b) update the values in the
inner nodes

Example: sorting

EMBED(x) = (x,0)

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0)

(5,0) (1,0) (2,1) (6,0)

(1,1) (2,0)

(1,0)

5 9 1 8 6 2 7 6

Hidden values:
●  Minimum in the subtree
●  Is the minimum in the right

subtree?

JOIN((x1,r1),(x2,r2)) =
(min(x1,x2), [x1 > x2])

Example: sorting

EMBED(x) = (x,0)

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0)

(5,0) (1,0) (2,1) (6,0)

(1,1) (2,0)

(1,0)

5 9 1 8 6 2 7 6

Hidden values:
●  Minimum in the subtree
●  Is the minimum in the right

subtree?

JOIN((x1,r1),(x2,r2)) =
(min(x1,x2), [x1 > x2])

Example: sorting EMBED(x) = (x,0)
JOIN((x1,r1),(x2,r2)) = (min(x1,x2), [x1 > x2])
SEARCH((x,r),hLSTM) = r

(5,0) (9,0) (1,0) (8,0) (6,0) (2,0) (6,0) (7,0)

(5,0) (1,0) (2,1) (6,0)

(1,1) (2,0)

(1,0)

1

(1,0)

(1,0)

(1,1)

(1,0)

(∞,0)

(8,1)

(5,0)

(2,1)

WRITE((x,r),hLSTM)=(∞,0)

(∞,0)

(8,1)

(5,0)

(2,1)

(2,0)

(2,1)

(2,0)

(2,1)

Properties of HAM

●  Number of parameters independent of the
memory size

●  Memory access complexity: O(log n)
●  Supports some operations impossible for normal

attention, e.g. extracting the minimum

Training

●  BPTT
●  REINFORCE with discounted returns for the

sampling nodes
●  Reward: log-probability → percentage of correctly

predicted bits
●  Entropy bonus: 𝛂H(p) → -𝛂/H(p):

○  Forces the model to give non-zero probability to every leaf

●  Curriculum: [1,4], [1,8], [1,16]...

Experiments

●  LSTM+HAM:
○  Reverse
○  Search (binary)
○  Merge
○  Sort
○  Long binary addition

●  Raw HAM:
○  Stack
○  FIFO Queue
○  Priority Queue

Experiments
LSTM LSTM+A LSTM+HAM

Reverse 73% 0% 0%

Search 62% 0.04% 0.12%

Merge 88% 16% 0%

Sort 99% 25% 0.04%

Add 39% 0% 0%

Stack N/A N/A 0%

FIFO Queue N/A N/A 0%

Priority Queue N/A N/A 0.08%
Error rates are percentages of incorrect output sequences.

Generalization

training model (n=32) testing model (n=128)

parameters

Generalization results
LSTM LSTM+A LSTM+HAM

Reverse 100% 100% 0%

Search 89% 0.52% 1.68%

Merge 100% 100% 2.48%

Sort 100% 100% 0.24%

Add 100% 100% 100%

Stack N/A N/A 0%

FIFO Queue N/A N/A 0%

Priority Queue N/A N/A 0.2%
Error rates are percentages of incorrect output sequences.

HAM vs. content-based attention:

●  Pros:
○  It is more efficient
○  It supports some operations impossible for content-

based attention, e.g. extracting the minimum
○  It generalizes better

●  Cons:
○  Performing associative recall may be difficult

●  After all there is no need to choose: you can use
both

●  Efficient memory, access in O(log n)
●  Possible drop-in replacement for other data

structures
●  Good generalization (first to learn sorting

that generalizes)

Conclusion

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

Smart Reply: Automated Response
Suggestion for Email
Anjuli Kannan*, Karol Kurach*, Sujith Ravi*, Tobias Kaufmann*,
Andrew Tomkins, Balint Miklos, Greg Corrado, Marina Ganea,
Laszlo Lukacs, Peter Young, Vivek Ramavajjala

*equal contribution

Problem

Smart Reply feature

●  Provide text assistance for
email reply composition

●  Targeted at mobile
●  Responses can be sent on

their own or extended

Smart Reply feature predicts
email responses

Smart Reply
Incoming
email

Response
email

Why is this task hard?
●  extracting meaning from previous message
●  generating language
●  grammatical transformations between call

and response
●  matching style/tone

Models

Life of a message

Two main models
●  Triggering: quickly filter bad candidates

How do we decide when it is appropriate to show
suggestions, and avoid showing them when they
would be not only useless but distracting?

●  Scoring: score a whitelist of responses

Triggering model

Receipt Personal Promo

Triggering model
●  How do we decide when it is appropriate to show

suggestions, and avoid showing them when they
would be not only useless but distracting?

Solution: Have a separate feed-forward neural
network that decides whether to trigger.

Challenging: mails not directly to me,
 predicting replies != predicting smart replies, ...

Sequence-to-sequence model

Sutskever et al, NIPS 2014

Sequence-to-sequence model

encoder decoder

Sequence-to-sequence model

Ingests incoming message Generates reply message

Smartreply model

 How are you ? __ I am
great

 I am
great !

Message

Response

Training Inference
●  Training data is a corpus

of email-reply pairs
●  Both encoder and

decoder are trained
together (end-to-end)

●  Resulting model is fully
generative

●  Output distribution can be
used to determine the
most likely responses
using a beam search

Example

Challenges

Quality
●  How do we ensure that the response options are always

high quality in content and language?
○  Avoid incorrect grammar and mechanics, misspellings e.g., your

the best
○  Avoid inappropriate, offensive responses. e.g., Leave me alone.
○  Deal with wide variability, informal language. e.g., got it thx

●  Restricting model vocabulary is not sufficient!

Solution: Restrict to a fixed set of valid responses, derived
automatically from data.

Scalability
●  How do we scale costly LSTM computation to the

requirements of an email delivery pipeline?

Solution:

1.  Use
2.  Perform an approximate search over set of valid

responses

Diversity
●  How can we select a semantically diverse set of

suggestions?

Yes, I’ll be there.
Yes, I will be there.
I’ll be there.

Can you join tomorrow’s
meeting?

Solution: Learn semantic intents of responses, then
use these to filter out redundant suggestions.

Sure, I’ll be there.
Yes, I can.
Sorry, I won’t be able to make it
tomorrow.

Redundant responses Responses with diversity (more useful)

Diversity
Our approach to diversity is based on two heuristics:

●  Cluster-based diversity:
Don’t show suggestions of the same intent.

●  Forced positives/negatives:
If there is an affirmative suggestion, also force a negative
one (and vice versa).
Product decision: offer positive/negative choice, even if the
latter is rare.

«We're waiting for you, are you going to be here soon?»

1.  On my way.
2.  On my way!
3.  I'm here.
4.  I'm on my way.
5.  I'm here!
6.  Yes, I'm here.
7.  I'll be there in a few minutes.
8.  I am on my way.

Cluster-based diversity

On my way.
I am on my way.
I’m on my way.
...

Will be there shortly.
I’ll be there in a few minutes.
Be there in a few!
...

I am here.
Already here!
Yes, I am here.
...

«We're waiting for you, are you going to be here soon?»

1.  On my way.
2.  On my way!
3.  I'm here.
4.  I'm on my way.
5.  I'm here!
6.  Yes, I'm here.
7.  I'll be there in a few minutes.
8.  I am on my way.

Cluster-based diversity

On my way.
I am on my way.
I’m on my way.
...

Will be there shortly.
I’ll be there in a few minutes.
Be there in a few!
...

I am here.
Already here!
Yes, I am here.
...

Diversity results

●  Removing diversity click-through rate by
7.5% relative.

Results

Deployment & coverage
●  Deployed in Inbox by Gmail
●  Used to assist with more than 10% of all

mobile replies

Unique cluster and suggestion usage

Most frequently used clusters

Ranking experiments

Examples

Conclusions
●  Sequence-to-sequence produces plausible email

replies in many common scenarios, when trained
on an email corpus

●  Smart Reply is deployed in Inbox by Gmail and
generates more than 10% of mobile replies

●  RNNs show promise not only for assisted
communication, but also for other applications
where a conversation model is needed, such as
virtual assistants

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

Confidential & Proprietary

Learning to Discover Efficient
Mathematical Identities
Karol Kurach*
Wojciech Zaremba*
Rob Fergus

Slides by Wojciech Zaremba & Karol Kurach

(a) The original expression.

(b) The e�cient formula.

Figure 5: Two equivalent expressions. The bottom formula found by our
framework avoids the use of a matrix-matrix multiply operation, hence is
e�cient to compute. The sum(X, 1) is a sum of matrix X along dimension
1 (a row vector containing the sum of each column) and ^T is the matrix
transposition.

could be expressed in matlab notation as sum(sum(A*B)). However, there
exists an e�cient version of the formula, that computes the same result in
O(n(m+p)) time by avoiding matrix-matrix multiplication. It can be written
in matlab as sum((sum(A, 1) * B)’, 1).

In the paper Learning to Discover E�cient Mathematical Identi-
ties [4] we introduce a framework based on attribute grammars for finding
computationally e�cient versions of symbolic math expressions. We show
how machine learning techniques can be integrated into this framework, and
demonstrate how training models on simpler expressions can help with the
discovery of more complex ones. In particular, we present a novel applica-
tion of a recursive neural network[30] to learn a continuous representation of
mathematical structures.

We show how the exploration of the search space can be learned from pre-
viously successful solutions to simpler expressions. This allows us to discover
complex expressions that random or brute-force strategies cannot find. We
present examples of (i) O(n3) target expressions which can be computed in
O(n2) time and (ii) cases where naive evaluation of the target would require
exponential time, but can be computed in O(n2) or O(n3) time. The majority
of these examples are too complex to be found manually or by exhaustive
search and, as far as we are aware, are previously undiscovered.

13

A toy example

Naive computation takes O(n^3).

Our framework found O(n^2) computation

Naive computation
(O(n^3) time)

Optimized computation
(O(n^2) time)

Let’s consider two matrices A, B

(a) The original expression.

(b) The e�cient formula.

Figure 5: Two equivalent expressions. The bottom formula found by our
framework avoids the use of a matrix-matrix multiply operation, hence is
e�cient to compute. The sum(X, 1) is a sum of matrix X along dimension
1 (a row vector containing the sum of each column) and ^T is the matrix
transposition.

could be expressed in matlab notation as sum(sum(A*B)). However, there
exists an e�cient version of the formula, that computes the same result in
O(n(m+p)) time by avoiding matrix-matrix multiplication. It can be written
in matlab as sum((sum(A, 1) * B)’, 1).

In the paper Learning to Discover E�cient Mathematical Identi-
ties [4] we introduce a framework based on attribute grammars for finding
computationally e�cient versions of symbolic math expressions. We show
how machine learning techniques can be integrated into this framework, and
demonstrate how training models on simpler expressions can help with the
discovery of more complex ones. In particular, we present a novel applica-
tion of a recursive neural network[30] to learn a continuous representation of
mathematical structures.

We show how the exploration of the search space can be learned from pre-
viously successful solutions to simpler expressions. This allows us to discover
complex expressions that random or brute-force strategies cannot find. We
present examples of (i) O(n3) target expressions which can be computed in
O(n2) time and (ii) cases where naive evaluation of the target would require
exponential time, but can be computed in O(n2) or O(n3) time. The majority
of these examples are too complex to be found manually or by exhaustive
search and, as far as we are aware, are previously undiscovered.

13

●  Symobolic - slow
●  Floats - numerical issues
●  Integers mod P - works well!

Representation

Allowed computations

We can consider arbitrary bigger grammar …

Many computations are in this family

●  E.g. finite Taylor expansion of any function ….

Many computations are in this family

●  E.g. finite Taylor expansion of any function ….
for instance, partition function of Restricted
Boltzmann Machine (RBM)

Exact solution for k=1
(first term in Taylor series)

this is a polynomial computation vs exponential computation in the
naive algorithm

this is a polynomial computation vs exponential computation in the
naive algorithm

Exact solution for k=2
(second term in Taylor series)

How to find equivalent computations ?

Exact solution for k=6 (sneak preview)
derived by our framework

Prior over computation trees

●  Explore space of computation efficiently

●  Find equivalent expressions to the target one
○  But using operations with lower complexity

●  Want to learn prior over sensible computations

○  Humans learn prior over proofs in mathematics

Searching over computation trees

Scheduler picks potential new expressions to
append to current expressions

Scorer ranks each possibility (i.e. how likely
they are to lead to the solution), using prior.

We want to learn a good scorer.

Scoring strategies

●  naive scorer don’t use any prior. All

computations are equally probable

●  n-gram models

●  learnt scorer

n-gram prior over trees

Exemplary intermediate solution:

Build n-grams distribution from solutions of
simpler expressions
●  Patterns that worked before might be useful

Bi-grams:

Experiments:
5 families of related problems
● 
● 
●  Symmetric polynomials, e.g.
●  RBM-1
●  RBM-2

The meaning of a word computation is
described by the words computations

accompanying it

How we can represent a computation?

●  Vector representation for every computation
○  e.g. A^T = vector_1 , \sum(A^T, 1) = vector_2,

●  Want to learn how to compose their vector

representations
○  i.e. ((A^T)^T)^T ~ vector_1, \sum(A, 2)^T ~ vector_2

Learnt representation with RNN
Recursive Neural network → RNN

Task - classify expressions
Example from A class:

Example from B class:

From which class is this example ?

RNNs for a better discovery learning

●  We have a real vector representation for any
computations

●  We use a linear classifier on such

representation to train scorer

Family sum(AA^T)_k with RNN
RNN gives more diversified solutions (doesn’t just copy them), but it doesn’t perform
as good as n-gram.
Targets → Exemplary solution of RNN:
●  sum(A*A’) → (sum((A * ((sum(A, 1))')), 1))
●  sum(A*A’*A) → ((sum(A, 1)) * ((A') * (sum(A, 2))))
●  sum(A*A’*A*A’) → ((((sum(A, 1)) * (A')) * A) * ((sum(A, 1))'))
●  sum(A*A’*A*A’*A) → ((sum(A, 1)) * ((A') * (A * ((A') * (sum(A, 2))))))

naive 5-gram RNN

Hardest
possible
example to
solve

10 >15 ~15

Summary

●  Simple statistical priors over computations
like n-gram allows the discovery of many
new math formulae

●  Use neural nets to map computational

expressions to continuous vectors
○  Also use for formulae discovery

1.  Introduction to Deep Neural Architectures
2.  Neural Random Access-Machines
3.  Hierarchical Attentive Memory
4.  Applications: Smart Reply
5.  Applications: Efficient Math Identities
6.  Applications: Predicting Events From Sensor

Data

Agenda

Detecting Methane Outbreaks from Time Series
Data with Deep Neural Networks

Karol Kurach* & Krzysztof Pawłowski*

Deep Mining

Problem

Problem

Predict level of
methane
concentration in a coal
mine

Goal

Explosion danger

Why

➢ Multivariate: collected from 28 sensors

➢ Time series (1 read/sensor/sec over months)

➢ Non-stationary (concept drift)

➢ Correlated and overlapping

Data

Deep Feedforward Neural
Network

➢ Multiple hidden layers, sigmoid & ReLU activations

➢ Backpropagation with SGD, mini-batch, momentum

➢ Regularization: early stopping & dropout

➢ Trained on GPU. Cost function: RMSE

Architecture & Training

Parameters

Long Short-Term Memory
Model

➢ 1 layer LSTM unrolled to 60 time-steps

➢ Backpropagation through time with SGD

➢ Gradient clipping to avoid exploding gradients

➢ Trained on GPU. Cost function: RMSE

Architecture & Training

Long Short-Term Memory

sensor
values
(t=1)

LSTM

Step 1 Step N

MLP +
Sigmoid LSTM

sensor
values
(t=N)

Memor
y

LSTM Cell

Ensemble & Results

Ensembling & Evaluation

➢ For each of 3 target labels train each of 2 models

➢ Ensemble predictions - rank averaging

➢ Evaluate based on public leaderboard score

➢ For final submission choose the best-performer

Results Area under
ROC

higher is
better

➢  Final, private leaderboard score: 0.9400 and 6th place

○  A big drop - overfitting?

➢ Preliminary, public leaderboard scores:

Analysis

➢ A big drop due to overfitting to public

leaderboard

➢ Classical cross-validation even worse

➢ Reason: Concept drift, correlated data points

➢ Better model selection schemes needed

Conclusion and Future Work

➢ A competitive score of 0.9400 score and the 6th place

➢ Deep Neural Networks are effective for sequential data

➢ Extensive feature engineering not required to perform

well

Conclusion

Predicting Dangerous Seismic Activity with
Recurrent Neural Network

Karol Kurach
Krzysztof Pawłowski

Deep Mining

Problem

To prevent life-
threatening accidents

Problem

Predict increased
seismic activity in a
coal mine

Goal Why

➢ Multivariate (35 variables)

➢ Time series (22 variables are per-hour

readings)

➢ Non-stationary (concept drift)

➢ Overlapping and unbalanced

Data

Our Solution

➢ Goal: minimal preprocessing

➢ Normalization: mean = 0, stddev = 1

➢ Upsampling positives (10-20x)

Preprocessing

Architecture

1.  Time series data
passed through RNN

2.  Concatenate non-time
series data

3.  Pass through feed-
forward neural network

4.  Apply sigmoid and
interpret the result as
the likelihood of
“warning”

M=22	
N=24	

➢ Network unrolled for 24 time-steps

➢ Backpropagation through time with Adam algorithm

➢ Gradient clipping to avoid exploding gradients

➢ Trained on GPU. Cost function: Binary Cross Entropy

Training

➢ Overlapping data => cross-validation doesn’t

work

➢ CV-like scheme (5 folds, 1 training file per fold)

➢ Ignore the leaderboard score!

Model selection

➢ Single model - nice, but usually ensembles

win

➢ We ensembled our RNN with logistic

regression

➢ We used rank averaging

Ensembling

Results & Conclusion

➢  Final score: 5th place (0.934 score, 0.0057 less than

winners)

➢ Single model (no ensembling): 7th place (0.931 score)

Results

➢ Deep Neural Networks are effective for sequential data

➢ Extensive feature engineering not required to perform well

➢ Ensembling works!

Conclusion

Thank you!

