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No	free	lunch	theorem	

•  Assume A is a searching algorithm that looking for the maximum of a 
function   

    where S is a finite set of states, W is a finite subset of R, and  

•  The work of algorithm A after t steps can be identified by the 
sequence: VA(f,t) = 

•  The quality of algorithm A can be measured by an evaluation function: 

•  for example:  

f : S→W

s1, f (s1)( ), s2 , f (s2 )( ),..., st , f (st )( )⎡
⎣

⎤
⎦
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dowolnych algorytmów A,A0
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NFL , F jest zamknięta wzg. permutacji

Prawdopodobieństwo wylosowania niepustej klasy
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O co chodzi w NFL?

Znaleźć optimum nieznanej funkcji f : S ! W (f 2 F),
gdzie S,W są skończonymi zbiorami.
Działanie algorytmu przeszukiwania A dla funkcji f

jest identyfikowany z wektorem:

VA(f , t) = h(s1, f (s1)), (s2, f (s2)), ..., (st, f (st))i

Ocena algorytmu: M : {VA(f , t)|A, f , t} ! R;
Np. M(VA(f , t)) = min{i|f (si) = fmax}
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No	free	lunch	theorem	

•  The class F satisfies NFL condition: if the following equation 

 
    holds for any measure M and any pair of algorithms A, A’ 

•  F is closed under permutation: for any permutation 
and           we have     
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NFL , F jest zamknięta wzg. permutacji
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NFL theorem:  
the class F satisfies NFL condition iff F is closed under permutation  
 



No	free	lunch	

•  For example: the class of all functions from S to W is closed under 
permutation  

•  The probability that a random class of functions from S to W is closed 
under permutation equals 
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Prawdopodobieństwo wylosowania niepustej klasy
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No	free	lunch	theorem	for	learning	

Wolpert (1996) shows that in a noise-free scenario where the loss function is 
the misclassification rate, if one is interested in off-training-set error, then there 
are no a priori distinctions between learning algorithms. 

More formally, where 
•  d = training set; 
•  m = number of elements in training set; 
•  f = ‘target’ input-output relationships; 
•  h = hypothesis (the algorithm's guess for f made in response to d); and 
•  C = off-training-set ‘loss’ associated with f and h (‘generalization error’) 
•  all algorithms are equivalent, on average, by any of the following measures 

of risk: E(C|d), E(C|m), E(C|f,d), or E(C|f,m). 



Therefore	… 	

•  No search or learning algorithm can be the best on all possible 
learning or optimization problems.  

•  In fact, every algorithm is the best algorithm for the same number of 
problems.  

•  But only some problems are of interest.  
•  For example:  

a random search algorithm is perfect for a completely random problem 
(the ``white noise'' problem), but for any search or optimization 
problem with structure, random search is not so good. 



KNOWLEDGE	PRESENTATION	METHODS:	
							classification,		
							taxonomy,	
							ontology,		
							thesaurus.		



Merriam-Webster	definition	

Classification 
•  systematic arrangement in groups or 

categories according to established 
criteria 

Taxonomy 
•  orderly classification of plants and 

animals according to their presumed 
natural relationships. 

Ontology  
•  Old:  a branch of metaphysics concerned with 

the nature and relations of being or a 
particular theory about the nature of being or 
the kinds of existents. 

•  New: machine-readable set of definitions that 
create a taxonomy of classes and subclasses 
and relationships between them 

Thesaurus:  
•  a thesaurus deals only with words, 

alternatives for those words, synonyms, 
translations, et cetera 

•  can be used by a classification, a taxonomy 
and an ontology 



Taxonomy: 
•  Sub-concept relation only 
•  A proper taxonomy is a strict 

hierarchy (one parent), e.g. 
Natural Science (500)  
-> Zoological Sciences (590)  
   -> Other Invertebrates (595)  
         -> Insects (595.7)  
            -> Lepidoptera (595.78)  
               -> Butterflies (595.789). 

•  Relaxed model: multi-parent but 
still noncyclic  e.g. 

                   

Ontology 
•  Objects could be: 

- classes  
- instances of the class 
- class attributes 

•  More types of relations: 
- is-a  
- has-a  
- use-a  

•  the relationships aren’t 
necessarily binary — for example, 
a co-worker 

Ontology	vs	taxonomy		

USB Cables  

Computer Accessories  Cell Phone Accessories 



Example	of	taxonomic	name	curation		



Example	of	XML	entities	ontology		



What	is	ontology?	

For examples: 
•  Gene ontology,  
•  lexical ontology (wordnet),  
•  Ontology for General 

Medical Science 
•  other domain ontology  

A structured, taxonomic model or representation of the entities 
and relations existing within a particular domain of reality. 
 



Ontology	libraries	&	repositories		
LIBRARIES:  
•  A library system that offers various functions for managing, 

adapting and standardizing groups of ontologies.  

•  It should fulfill the needs for re-use of ontologies. In this sense, 
an ontology library system should be easily accessible and 
offer efficient support for reusing existing relevant ontologies 
and standardizing them based on upper-level ontologies and 
ontology representation languages. 

REPOSITORIES:  
•  A structured collection of ontologies (...) by using an Ontology 

Metadata Vocabulary.  

•  References and relations between ontologies and their 
modules build the semantic model of an ontology repository. 
Access to resources is realized through semantically-enabled 
interfaces applicable for humans and machines.  

•  Therefore, a repository provides a formal query language.  

 

Position paper – Keynote SIMBig 2017 – September 2017, Lima, Peru 
 
 

  

“A structured collection of ontologies (…) 
by using an Ontology Metadata Vocabulary. 
References and relations between ontologies 
and their modules build the semantic model of 
an ontology repository. Access to resources is 
realized through semantically-enabled interfac-
es applicable for humans and machines. There-
fore, a repository provides a formal query lan-
guage.” 

By the end of the 2000’s, the topic was of high in-
terest as illustrated by the 2010 ORES 
workshop (d’Aquin et al., 2010) or the 2008 On-
tologySummit.1 The Open Ontology Repository 
Initiative (Baclawski and Schneider, 2009) was a 
collaborative effort to develop a federated infra-
structure of ontology repositories. At that time, the 
effort already reused the NCBO 
technology (Whetzel and Team, 2013) that was 
the most advanced open source technology for 
managing ontologies but not yet packaged in an 
“virtual appliance” as it is today. More recently 
the effort also studied OntoHub (Till et al., 2014) 
technology for generalization but the OOR initia-
tive is now discontinued. 

In parallel, there have been effort do index any 
Semantic Web data online (including ontologies) 
and offer search engines such as Swoogle and 
Watson (Ding et al., 2004; D’Aquin et al., 2007). 
We cannot talk about ontology library or reposito-
ries for those “Semantic Web indexes”, even if 
they support some features of ontology libraries or 
repositories (e.g., search). 

In the biomedical or agronomic domains there 
are several standards and/or ontology libraries 
such as FAIRSharing (fairsharing.org) (McQuilton 
et al., 2016), the FAO’s VEST Registry 
(aims.fao.org/vest-registry), and the agINFRA 
linked data vocabularies (vocabularies.aginfra.eu). 
They usually register ontologies and provide a few 
metadata attributes about them. However, because 
they are registries not especially focused on vo-
cabularies and ontologies, they do not support the 
level of features that an ontology repository offers. 
In the biomedical domain, the OBO 
Foundry (Smith et al., 2007) is a reference com-
munity effort to help the biomedical and biologi-
cal communities build their ontologies with an en-
forcement of design and reuse principles that have 
made the effort very successful. The OBO Found-
ry Web application (http://obofoundry.org) is not 
an ontology repository per se, but relies on other 
                                                      
1 http://ontolog.cim3.net/wiki/OntologySummit2008.html  

applications that pull their data from the foundry, 
such as the NCBO BioPortal (Noy et al., 2009), 
OntoBee (Ong et al., 2016), the EBI Ontology 
Lookup Service (Côté et al., 2006) and more re-
cently AberOWL (Hoehndorf et al., 2015). In ad-
dition, there exist other ontology libraries and re-
pository efforts unrelated to biomedicine, such as 
the Linked Open Vocabularies (Vandenbussche et 
al., 2014), OntoHub (Till et al., 2014), and the 
Marine Metadata Initiative’s Ontology Registry 
and Repository (Rueda et al., 2009). More recent-
ly, the SIFR BioPortal (Jonquet et al., 2016a) pro-
totype was created at University of Montpellier to 
build a French Annotator and experiment multi-
lingual issues in BioPortal (Jonquet et al., 2015). 
The same university is also developing AgroPor-
tal, an ontology repository for agronomy and 
neighboring domains such as food, plant sciences 
and biodiversity (Jonquet et al., 2017a). 

D’Aquin and Noy, (2012) and Naskar and 
Dutta, (2016) provided the latest reviews of ontol-
ogy repositories. In Table 1, we provide a non-
exhaustive –but quite rich– list of ontology librar-
ies, repositories and Web indexes available today. 
Ontology libraries 
OBO Foundry 
WebProtégé 
Romulus 
DAML ontology library 
Colore 
VEST/AgroPortal Map of standards 
FAIRsharing 
DERI Vocabularies 
OntologyDesignPatterns 
SemanticWeb.org 
W3C Good ontologies 
TaxoBank 
BARTOC 
GFBio Terminology Service 
agINFRA Linked Data Vocabularies 
oeGOV 
Ontology repositories 
NCBO BioPortal* 
Ontobee 
EBI Ontology Lookup Service 
AberOWL 
CISMEF HeTOP 
SIFR BioPortal* 
OKFN Linked Open Vocabularies 
ONKI Ontology Library Service 
MMI Ontology Registry and Repository* 
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Vertical need 
•  For those uses who want to do very 

precise things, e.g.  
o  reasoning,  
o  using specific relations  
using only suitable ontologies 
(developed by the same communities 
and in the same format).  

•  For those users who may just use the 
repositories as libraries to find and 
download ontologies, and work in their 
own environment.  

Horizontal need 
•  For those who wants to work with a 

wide range of ontologies and 
vocabularies useful in their domain 
but developed by different 
communities, overlapping and in 
different formats.  

•  Such users greatly appreciate the 
unique endpoints (Web application 
and programmatic for REST and 
SPARQL queries) offered by the 
repositories under a simplified 
common model.  

Applications	



Ontology:	challenges	and	applications	

•  Metadata & selection  
•  Multilingualism  
•  Ontology alignment  
•  Generic ontology-based 

services  
•  Annotations and Linked Data  
•  Scalability & interoperability  



Leslie	Valiant		

•  A fundamental question for  
AI is to characterize the  
computational building blocks  
that are necessary for cognition.  

•  A specific challenge is to build on the success of machine learning so 
as to cover broader issues in intelligence.  

•  This requires, in particular a reconciliation between two contradictory 
characteristics 
- The apparent logical nature of reasoning and  
- the statistical nature of learning.  

•  Professor Valiant has developed a formal system, called robust 
logics, that aims to achieve  such a reconciliation. 

•  Turing Award, 2010
•  European Association for ���
Theoretical Computer Science ���
Award, 2008

•  Knuth Prize, 1997
•  Nevanlinna Prize, 1986



Ontology	driven	methods	for			
Machine	Learning	and	AI		



Case	studies		

1.  Robocup  
 
2.  Semantic Text processing and mining   

3.  Approximate reasoning  



ROBOCUP:	robocup.org		



robotic	soccer	architecture		
as	a	distributed	deliberative	and	reactive	system		

2 The Complete Robotic System

Though conducted in simulation, the work described in this article is intended to contribute to the high-level
reasoning aspect of our physical robotic system. The architecture of our system addresses the combination
of high-level and low-level reasoning by viewing the overall system as the conjunction of mini-robots, a
vision camera over-looking the playing field connected to a centralized interface computer, and several
clients as the minds of the mini-robot players. Figure 1 sketches the building blocks of the architecture.

Coaching/
Perceiving/
Transmitting
Interface

Client
Module

Client
Module

Client
Module

Client
Module

Client
Module

Raw Vision
Data

Action
Code

Robot-specific
Action code

Object
Positions

Figure 1: Our robotic soccer architecture as a distributed deliberative and reactive system.

Our architecture implements the overall robotic soccer system as a set of different platforms with
different processing features. The mini-robots perform the physical navigation actions, decode commands,
and can respond to positioning requests. Off-board computers perceive the environment through a vision
camera, perform the high-level decision making and send commands to the mini-robots. Communication
between the off-board computers and the robots in our current system is done by infrared radiation. The
complete system is fully autonomous consisting of the following processing cycle: (i) the vision system
perceives the dynamic environment, namely the positioning of the robots and the ball; (ii) the image is
processed and transferred to the host computer that makes the perception available to the client modules;
(iii) based on the perceived positioning of the agents and any other needed information about the state
of the game (e.g. winning, losing, attacking), each client uses its strategic knowledge to decide what to
do next; (iv) the client selects navigational commands to send to its corresponding robot agent; (v) these
commands are sent by the main computer to the robots through wireless communication (infrared radiation
in the current implementation) using the robot-specific action codes. Commands can be broadcast or sent
directly to individual agents. Commands include positioning requests and navigation primitives, such as
forward, backward, and turning moves at specific speeds. Each robot has a self identification binary code
that is used in the wireless communication.

Figure 2 shows the architecture as a layered functional system. The protocols of communicationbetween
the layers are specified in terms of the modular inputs and outputs at each level. It is the layered strategic
behaviors (Figure 2(b)) that we hope to enhance with the aid of the simulator client behaviors described in
this article.

3 Related Work

A ground-breaking system for Robotic Soccer, and the one that served as the inspiration for our work,
is the Dynamo System developed at the University of British Columbia [18]. This system was designed
to be capable of supporting several robots per team, but most work has been done in a 1 vs. 1 scenario.
Sahota used this system to introduce a decision making strategy called reactive deliberation which was
used to choose from among seven hard-wired behaviors [16]. Our system differs from the Dynamo system

3



Robocup	and	simulated	robotic	soccer	

Noda’s Soccer Server  
•  the players’ vision is limited (45o);  
•  the players can communicate by 

posting to a blackboard that is visible to 
all players;  

•  all players are controlled by separate 
processes;  

•  each player has 10 teammates and 11 
opponents;  

•  each player has limited stamina;  
•  actions and sensors are noisy; and  
•  play occurs in real time.  
The simulator, acting as a server, provides 
a domain and supports users who wish to 
build their own agents (clients).   



Example		

(flag p r c)

(flag p r t)

(flag r t)

1

3

2

1

(line r)

(goal r)

CLIENT

(see 124 ((goal r) 20.1 34) ((flag r t) 47.5 -4) ((flag p r t) 30.3 -24) ((flag p r c) 10.1 -20)
((ball) 11 0) ((player usa 2) 21 19) ((player usa 3) 21 -11) ((player brazil 1) 17 35) ((line r) 40 -26))
**-> (dash 80)
(see 129 ((goal r) 16 43) ((flag r t) 42 -6) ((flag p r t) 25 -30) ((flag p r c) 5 -40) ((ball) 6 1)
((player usa 2) 16.3 24) ((player usa 3) 15.3 -17) ((line r) 32.8 -27))
**-> (turn 1)
**-> (dash 60)
(see 134 ((flag r t) 40 -9) ((flag p r t) 23.3 -35) ((ball) 3.7 2) ((player usa 2) 14.4 24)
((player usa 3) 13.3 -22) ((line r) 28.2 -30))
**-> (turn 2)
**-> (dash 30)
(hear 138 18 shoot the ball)
(see 139 ((flag r t) 38.1 -11) ((flag p r t) 22 -39) ((ball) 1.9 0) ((player usa 2) 12.8 27)
((player usa 3) 11.6 -27) ((line r) 25.5 -31))
**-> (say shooting now)
**-> (kick 53 51)
(hear 141 self shooting now)
(see 144 ((flag r t) 38.1 -11) ((flag p r t) 22 -39) ((ball) 8.1 42) ((player usa 2) 12.8 27)
((player usa 3) 11.6 -27) ((line r) 25.5 -31))
**-> (turn 42)
(see 149 ((goal r) 13.6 9) ((ball) 13.5 5 0) ((player usa 2) 12.8 -14) ((player brazil 1) 11 18)
((line r) 14 -73))
**-> (turn 5)
**-> (dash 81)
(hear 150 referee goal_l_1)
(hear 150 referee kick_off_r)

Figure 4: A trace of the simulator’s input and output to the client controlling player 1 (indicated “CLIENT”). The
player moves to the ball and then shoots it towards the goal. Commands from the player are indicated with “**- ”
preceding them. Dashes are followed by a power (they are always in the direction that the player is facing), turns are
followed by an angle, and kicks are followed by a power and an angle. Sensory information from the server comes
in the form of audial and visual strings. In both cases, the number after the type indicator (“hear” or “see”) indicates
the elapsed time in the match. Audial information then indicates whether it is the referee speaking or else from what
angle on the sound came. Visual information includes the distance followed by angle of the visible object.
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the elapsed time in the match. Audial information then indicates whether it is the referee speaking or else from what
angle on the sound came. Visual information includes the distance followed by angle of the visible object.
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simulated	robotic	soccer	

•  An example of MAS; 
•  Enough complexity to be realistic;  
•  Easy accessibility to researchers worldwide;  
•  Embodiment of most MAS issues: reactivity, modeling, cooperation, 

competition, role playing, resource management, communication, 
convention, commitment/decommitment strategies  

•  Straightforward evaluation  
•  Good multiagent ML opportunities. 



Learning	a	lower-level	skill		

Intercepting a moving ball:   
•  Co-Learning for the shooter and the defender   
•  Using neural networks (NN)  

???

Shooter

Defender
4

20

30

Figure 5: If the defender moves directly towards
the ball (left arrow), it will miss entirely. If the
defender turns to move in the appropriate direc-
tion (right arrow), it may no longer be able to see
the ball.

Figure 6: At the beginning of each trial, the defender
starts 4 units from the goal, while the ball and shooter
are placed randomly between 20 and 30 units from the
defender.

The range of situations from which training examples were gathered is illustrated in Figure 6. For each
training example, the shooter kicks the ball directly towards the defender with a fixed power. However, due
to the noise in the simulator, the ball does not always move directly at the defender: if the defender remains
still, the ball hits it only 35% of the time. Furthermore, if the defender keeps watching the ball and moving
directly towards it, it is only able to stop the ball 53% of the time.

The defender’s behavior during training is more complex than the shooter’s. As we are using a
supervised learning technique, it must first gather training data by acting randomly and recording the results
of its actions. It does so as follows (BD = Ball’s distance, BA = Ball’s angle, TA = Turn angle— the angle
to turn after facing the ball):

While BD 14, TURN(BA)

When BD 14, set TA = Random Angle between -45 and 45

Record BD, BA, previous BD, and TA

TURN(BA + TA)

DASH()

Record result (from coach)

Until the ball is within a given range, the defender simply watches and faces the ball. Then, once the ball is
in range, the defender turns a random angle (within a range) away from the ball and dashes. Of course the
defender misses most (76%) of the time, but after about 750 positive examples, it is able to learn to perform
much better (see below).
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Perfomance		

In order to automate the training process, a coach client is used. The coach ends a trial when the ball
gets past the defender or when it starts moving back towards the shooter. In the latter case, the trial is labeled
a SAVE. In the former case, it is labeled a GOAL if the ball is still between the goal posts and a MISS if it is
heading wide of the goal. Only saves are considered positive results and thus used for training. At the end
of the trial, the coach resets the positions of both players and the ball for another trial.

The goal of learning is to allow the defender to choose the appropriate turn angle (TA) based upon the
BD, BA, and previous BD. Thus, only the data from the saves during the training phase are useful (the
NN is learning a continuous, not a binary, output). In order to learn the TA, we chose to use a Neural
Network (NN). Other supervised learning techniques, such as memory-based learning, could also have
worked (see below). After a small amount of experimentation with different NN configurations, we settled
on a fully-connected net with 4 sigmoid hidden units and a learning rate of 10 6. The weights connecting
the input and hidden layers used a linearly decreasing weight decay starting at .1%. We used a linear output
unit with no weight decay. We trained for 3000 epochs. This configuration proved to be satisfactory for our
task with no need for extensive tweaking of the network parameters.

In order to test the NN’s performance, we ran 1000 trials with the defender using the output of the NN
to determine its turn angle. The behaviors of the shooter and the coach were the same as during training.
The results for NNs trained with different numbers of training examples are displayed in Figure 7. The
misses are not included in the results since those are the shots that are far enough wide that the defender
does not have much chance of even reaching the ball before it is past. The figure also records the percentage
of shots on-goal (Saves+Goals) that the defender saved. Reasonable performance is achieved with only 300
save examples, and examples beyond about 750 do not improve performance. The defender is able to save
almost all the shots despite the continual noise in the ball’s movement.

Training Saves
Examples Saves(%) Goals(%) Goals+Saves(%)
100 57 33 63
200 73 18 80
300 81 13 86
400 81 13 86
500 84 10 89
750 86 9 91
1000 83 10 89
4773 84 9 90
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Figure 7: The defender’s performance when using NNs trained with different numbers of positive examples. The last
column of the table indicates the percentage of shots that were “on goal” that the defender saved.

In order to study the effect of noise in the ball’s movement upon the defender’s performance, we varied
the amount of noise in the Soccer Server (the ball rand parameter). Figure 8 shows the effect of varying
noise upon the defender when it uses the trained NN (trained with 750 examples) and when it moves straight
towards the ball. The default value of noise is .05, meaning that on every simulator step, the true position of
the ball is perturbed by a random amount between -.05 and .05 with uniform probability distribution over
the range. The “straight” behavior always sets TA=0, causing the defender to go directly towards where
it last saw the ball. Notice that with no ball noise, both the straight and learned behaviors are successful:
the ball and the defender move straight towards each other. As the noise in the ball’s motion increases, the
advantage to using the learned interception behavior becomes significant. The advantage of the NN can
also be seen with no noise if the shooter aims slightly wide (by 4 degrees) of the goal’s center. Then the
defender succeeds 99% of the time when using the NN, and only 10% of the time when moving straight
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Figure 9: At the beginning of a trial, the passer is
placed behind the ball. 3 teammates and 4 opponents
are placed randomly within the region indicated by
the dashed line, while 2 other players from each team
are placed randomly on the field. In the following
figures, the players involved in the play are enlarged
for presentation purposes. When the passer sees that it
has the ball, it announces its intention to pass. Its goal
is to assess the likelihoodof a pass to a given teammate
succeeding.

Figure 10: When the receivers are facing the ball, they
tell the passer what the world looks like to them. The
passer can use the transmitted data to help it assess
the likelihood that each receiver would successfully
receive a pass. The data includes distances and angles
to the other players as well as some counts of players
within given distances and angles.

The coach classified the example as a SUCCESS if the receiver managed to pass the ball back toward
the passer; a FAILURE if one of the defenders cleared the ball to a side; or a MISS if the receiver and
the defenders failed to intercept the ball (Figure 13).

The key part of gathering training examples was the passer’s recording of the attributes describing the
trial. Rather than restricting the number of attributes, we capitalized on the DT’s ability to filter out the
irrelevant ones. Thus, we gathered a total of 174 attributes (in addition to the coach’s label) for each trial,
half each from the passer’s and the receiver’s perspective. The attributes from the receiver’s perspective
were communicated to the passer before it had to decide which player to pass to. The attributes—all
continuous—available to the DT were:

Distance and Angle to the receiver (2);

Distance and Angle to other teammates (up to 9) sorted by angle from the receiver (18);

Distance and Angle to opponents (up to 11) sorted by angle from the receiver (22);

Counts of teammates, opponents, and players within given distances and angles of the receiver (45);

Distance and Angle from receiver to teammates (up to 10) sorted by distance (20);

Distance and Angle from receiver to opponents (up to 11) sorted by distance (22);

Counts of teammates, opponents, and players within given distances and angles of the passer from
the receiver’s perspective (45);
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Figure 11: During training, the passer chooses its re-
ceiver randomly. During testing, it uses a DT to evalu-
ate the likelihood that a pass to each of the teammates
would succeed. It passes to the most likely receiver
(Receiver 2 in this case).

Figure 12: After choosing its receiver, the passer an-
nounces its decision so that the receiver knows to ex-
pect the ball and the other teammates can move on to
other behaviors. In our experiments, the non-receivers
remain stationary.

Success!!

1
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3

4

Figure 13: Finally, the receiver records the result of the pass.

Whenever fewer than the maximum number of players were visible, the remaining attributes were marked
as unknown.

The goal of learning is to use these attributes to predict whether a pass to the given receiver will lead
to a SUCCESS, a FAILURE, or a MISS. For training, we used standard off-the-shelf C4.5 code with all of
the default parameters [14]. We gathered a total of 5000 training examples, 51% of which were successes,
42% of which were failures, and 7% of which were misses.

Training on this data produced a pruned tree with 87 nodes giving 26% error on the training set. The
tree is shown in Figure 14. All of the attributes starting with “passer” are from the passer’s perspective.
Notice that these are used much more frequently than the attributes from the receiver’s perspective. Thus
the trained tree is comparably effective when the passer must decide without any input from the potential
receivers. The first node in the tree tests for the number of opponents within 6 degrees of the receiver from
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the default parameters [14]. We gathered a total of 5000 training examples, 51% of which were successes,
42% of which were failures, and 7% of which were misses.

Training on this data produced a pruned tree with 87 nodes giving 26% error on the training set. The
tree is shown in Figure 14. All of the attributes starting with “passer” are from the passer’s perspective.
Notice that these are used much more frequently than the attributes from the receiver’s perspective. Thus
the trained tree is comparably effective when the passer must decide without any input from the potential
receivers. The first node in the tree tests for the number of opponents within 6 degrees of the receiver from
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Learning	a	Higher-level	Decision:	passing	

174 attributes were use to construct a Decision Tree: 
•  Distance and Angle to the receiver (2);  
•  �Distance and Angle to other teammates (up to 9) sorted by angle from the receiver (18);  
•  �Distance and Angle to opponents (up to 11) sorted by angle from the receiver (22);  
•  Counts of teammates, opponents, and players within given distances and angles of the receiver 

(45);  
•  Distance and Angle from receiver to teammates (up to 10) sorted by distance (20);  
•  �Distance and Angle from receiver to opponents (up to 11) sorted by distance (22);  
•  �Counts of teammates, opponents, and players within given distances and angles of the passer 

from the receiver’s perspective (45);  

the passer’s perspective. If there are any, the tree predicts that the pass will fail. Otherwise, the tree moves
on to the second node which tests the angle of the first opponent. Since the passer sorts the opponents by
angle, this is the closest opponent to the receiver in terms of angle from the passer’s perspective. If there
is no opponent within 13 degrees of the receiver, the tree predicts success. Otherwise it goes on to deeper
nodes in the tree.

In order to test the DT’s performance we ran 5000 trials with the passer using the DT to choose the
receiver. All other behaviors were the same as during training. Since the DT returns a confidence estimate
in its classification, the passer can choose the best receiver candidate even if more than one is classified as
likely to be successful. If the tree predicts a failure for all three receivers, the one with the lowest confidence
reading can be selected. Notice that during testing, the passermust pass, while in a game situation the passer
would be given the option to dribble or shoot instead.

We compiled results sorted by the DT’s confidence in the success of the pass to the chosen receiver (see
Table 2). The largest number of passes were classified as successes with confidence between .7 and .8, with
another large portion classified as successes with confidence between .8 and .9. Overall, the success rate of
65% ismuch better than the 51% success rate obtainedwhen a receiver was chosen randomly. However, this
result was obtained under a condition of forced passing: the passer was required to pass the ball during all
trials. Notice that if the passer wanted to be fairly sure of success, it could pass only when the DT predicted
success with confidence greater than .8. The resulting 79% success rate approaches the limit imposed by
the success rate of the ball-interception skill. When the testing is repeated with no defenders to intercept
the ball, the success rate is 86%.

Success Confidence:
Result Overall .8–.9 .7–.8 .6–.7
(Number) (5000) (1050) (3485) (185)

SUCCESS (%) 65 79 63 58
FAILURE (%) 26 15 29 31
MISS (%) 8 5 8 10

Table 2: The results of 5000 trials during which the passer used the DT to choose the receiver. Overall results are
given as well as a breakdown by the passer’s confidence prior to the pass. The passer was forced to pass even if it
predicted failures for all 3 teammates. In that case, it passed to the teammate with the lowest likelihood of failure.
Results are given in percentages of the number of such cases (shown in parentheses).

With all the different attributes to choose from, it was not obvious how to construct an analytic heuristic
for the passer to use when choosing a receiver. However, we needed some comparison other than the
passer’s random choice during training. A reasonable improvement over the random choice is to pass to the
closest teammate. For this reason, we compared the DT decision with the closest teammate heuristic.

Over 5000 trials, the closest teammate heuristic produced a success rate of 64%. Although this number
compares favorably with the overall DT success rate, it is significantly lower than the 79% success rate the
passer can achieve with the DT when given the option of not passing. Furthermore, the closest teammate
heuristic gives no way of estimating the likelihood that a pass will succeed. It simply postulates that given
a choice, the passer should pass to the closer teammate. Since the likelihood estimation is the true goal of
our learning in this section, there is a clear advantage to using the DT method. When deciding whether to
pass, dribble, or shoot, the knowledge of whether or not a given pass is likely to succeed will be extremely
useful.

In this section, we demonstrated that a higher-level decision could be built upon the low-level skill
learned in the previous section. Using a DT, our clients learned to judge the likelihood that a pass to a given
receiver would be successfully received. This judgement represented a second layer in our quest to build
intelligent Soccer Server clients by layered learning.
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Team-level	Strategies		

7 Scaling Up to Team-level Strategies

Once able to judge the likelihood that a pass will succeed, a real or simulated soccer player is ready to start
making decisions in game-like situations. When considering what to do with the ball, the player can pass to
a strategically positioned teammate, dribble, or shoot. To verify that the second level of learning could be
incorporated into game-like situations, we implemented a set play that uses the passing decision described
in the previous section.

As illustrated in Figure 15, a player starts with the ball in front of it and dribbles towards the opponent’s
goal. When it notices that there is an opponent in its path, it then decides to stop dribbling and considers its
options. Noticing that it is too far away to shoot and that dribbling forward is no longer an option, it decides
to pass. Thus, in accordance with the sequence laid out in the previous section, it announces its intention to
pass and gets responses from the two nearest players. It then uses the DT to decide which teammate is the
more likely to successfully receive the pass.

Teammate Defender

?

?

Dribble

Pass

Pass
Pass

Shoot

Figure 15: An illustration of the implemented set play. Players are emphasized for improved visibility. Every player
uses at least one of the learned skills described earlier in the article.

In Figure 15, the passer chooses the topmost receiver and passes the ball. The receiver and the adjacent
defender then both try to intercept the ball using the trained NN ball-interception skill. If the defender gets
the ball, it kicks it back towards the left goal and the play starts over. However, if the receiver gets the ball,
it immediately kicks the ball to its teammate on the wing. Since the winger is not covered, it can easily
collect the ball and begin dribbling towards the goal. Using the same behavior as its teammate that began
the set play, the winger notices defenders in its path and decides that it is not at a good angle to shoot. So
rather than shooting or dribbling, it uses the trained DT to choose one of the two nearby teammates to pass
to. If the chosen receiver is able to get to the ball before the defenders, it immediately shoots towards the
goal.

We ran this set play several times in order to verify that the learned behaviors are both robust and reliable.
Since the defenders are all equipped with the same ball-interception skill as the receivers, the defenders are
sometimes able to break up the play. However, the fact that the attacking team can sometimes successfully
string together three passes and a shot on goal when using the learned behaviors demonstrates that these
behaviors are appropriate for game-like situations. Furthermore, this implemented set play suggests a
number of possibilities for the next layer of learning.

In the set play described above, the player that starts with the ball dribbles until it sees an opponent
at a predetermined distance. This distance was chosen so as to allow the player to pass without the
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Next	layers:	

•  More flexible and powerful approach would be to allow the dribbling 
player to learn: 
- when to continue dribbling,  
- when to pass, and  
- when to shoot.  

•  With these three possibilities as the action space and with appropriate 
predicates to discretize the state space, TD-lambda and other 
reinforcement learning methods will be applicable.  

•  By keeping track of whether an opponent or a teammate possesses 
the ball next, a player can propagate reinforcement values for each 
decision made while it possesses the ball.  



Next	layer		

•  Learning moving behavior to be a targeted receiver 
•  Learn to cooperate with the teammates,  learn to thwart the opponents  
•  Last updates allow to have one more agent: the coach (trainer) 



ROBOCUP:	summary		

•  Challenging project that cover many issues in AI and Data 
Science  

•  P. Stone. Layered Learning in Multiagent Systems : A 
Winning Approach to Robotic Soccer.  

•  Why soccer (football)? 



Semantic	text	processing		



What	for?	

•  Extract relevant and useful information from large bodies of 
unstructured data 

•  Find an answer to a question without having to ask a human 
•  Discover the meaning of colloquial speech in online posts 
•  Uncover specific meanings of words used in foreign languages mixed 

with our own 



Semantic	text	mining	tasks:		



What	are	the	natural	languages	being	considered	when	working	
with	text	semantics?	



Explicit	Semantic	Analysis	(ESA)		



Semantic	interpreter		



Example:	Semantic	similarity		



Semantic	enrichment			



Example		



Improved	ESA			



JRS’2012	Data	mining	competition	



Challenges		

•  Scalability: deeper semantic analysis vs time and space complexity  
•  Text representation model. 

•  Semantic analysis < text understanding   
•  Example: Named Entity Recognition (NER) problem: 

-    One of the major problems in NER is ambiguous names: e.g. one    
     protein name may refer to multiple gene products 
-    Example: using sense-tagged corpora and unified medical 
     language system (UMLS) to resolve ambiguous terms.  
     Machine-learning techniques have been applied to sense-tagged corpora, 
     in which senses (or concepts) of ambiguous terms have been most  
     manually annotated 
     >>> quite an expansive manual work  
 



Concept	approximation		



Example	nursery	data	set			



Layered	learning	



Sunspot	recognition	and	classification			



Sunspot	recognition	and	classification		



Differential	Calculus	to	Function	Approximation		



Discrete	Differential	Calculus		



Semantic	evaluation	of	clustering	algorithm.		

Which partition is better? 



External	evaluation	methods		Table 1. Illustration of soft clustering found by an algorithm and an expert.

Doc. Soft Cluster Expert Tag
C1 C2 C3 Cosmonaut astronaut moon car truck

d1 1 1 1 1
d2 1 1 1
d3 1 1 1
d4 1 1 1 1
d5 1 1 1
d6 1 1

by experts, but with each document being assigned a set of tags. We can think
of such tags as of soft clusters. In this paper we aim to provide measures of
external evaluation criteria that relax both conditions on the clustering and
expert clusterings being partitions (hard clusterings).

Typically in the literature it is assumed that the input data to clustering
evaluation can be described in a form similar to Table 1, i.e. with exactly one
valid cluster Ci and exactly one valid expert cluster Ej for each document. We
will relax this condition to allow comparison of soft clustering and a set of expert
tags assigned to each document, thus allowing input data as in Table 1.

3 Overview of clustering evaluation methods

In this section we briefly review external evaluation criteria typically used in
clustering evaluation. We assume that two partitions (hard clusterings) of objects
are given: one by an algorithm, and another one provided by domain experts.
Most external evaluation criteria can be naturally grouped in two groups:

Pair-counting measures: These measures are defined on a 2⇥ 2 contingency
matrix Table 2 (left) that summarizes similarity of pairs of objects w.r.t. both
clusterings: If there are k objects in the data set, then a + b + c + d =

�k
2

�
. A

typical measure that can be expressed in terms of these numbers is

Rand Index =
a+ d

a+ b+ c+ d
.

However, there exit di↵erent variants of other similar measures. Pfitzner et al.[16]
provide an overview of 43 measures that all fit into this scheme.

Information-theoretic measures: on the other hand compare distributions
of c(D) and e(D), which denote respectively the cluster and the expert label
assigned to a document D drawn randomly from the dataset. These measures
can be expressed in terms of joint distribution of hc(D), e(D)i, i.e. simply by
counting objects belonging to each pair hCi, Eji as shown in Table 2 (right).
Numbers in brackets denote expected values of counts assuming independence
of c(D) and e(D). Information-theoretic measures thus aim to to measure the

MMI (Maximum Mutual 
Information): 
  

Rand index:    

Table 2. Left: All pair-counting measures can be summarized in terms of num-
bers a, b, c, d. Right: Information-theoretic measures are defined in terms of con-
tingency table (following example in Table 1).

Pairs of documents Same cluster?
Yes No

Same Yes a b

expert tag? No c d

C1 C2 C3 Total
E1 1 0 0 1
E2 0 0 1 1
E3 0 1 1 2
E4 1 1 0 2
Total 2 2 2 6

degree of dependence between these two. An example such measure is mutual
information MMI between c(D) and e(D), where

MMI(X,Y ) =
X

x

X

y

p(x, y) log

✓
p(x, y)

p(x)p(y)

◆
.

A measure typically used in clustering evaluation is Normalized Mutual Infor-
mation [10], though [16] reviews 13 di↵erent measures, all defined quite similarly.
Purity is a measure occasionally used as an external evaluation criterion.

Semantic Evaluation Methods for soft clustering: We stress two limita-
tions of measures proposed in the literature and briefly reviewed thus far. The
first limitation, already mentioned in the previous section, is the typical as-
sumption that both the clustering algorithm and the experts provide partitions.
A more important limitation, though, is that neither of these measures described
so far resemble the thought process that the expert himself would undergo if he
was faced with the task of manually evaluating a clustering.

Previous works by other authors on this problem include [3] (Fuzzy Mutual
Information) and [8] (comparing set covers). In this section we we will describe
a novel method of semantic evaluation to deal with the mentioned limitations.

First we describe how to extend a pair-counting measure of similarity of two
partitions to a measure of similarity of set covers. In order to fully characterize
a pair of documents hdi, dji, we proposed in [13] to define notions of cluster-
similarity and expert-similarity for documents and base pair-counting measures
on Table 2. This approach naturally extends any pair-counting measure, with
the focus of our prior experiments on Rand Index [17]. We defined very simple
notions of similarity: we considered two documents di, dj ✓-expert-similar, if

|e(di) \ e(dj)|
|e(di) [ e(dj)|

� ✓

and we defined ✓-cluster-similarity in the same way. This approach allows us to
e↵ortlessly apply each of the 43 pair-counting measures reviewed by Pfitzner[16].

Information-theoretic measures can be extended by counting a given docu-
ment in multiple cells of Table 2 whenever the document is in multiple clusters

Table 1. Illustration of soft clustering found by an algorithm and an expert.

Doc. Soft Cluster Expert Tag
C1 C2 C3 Cosmonaut astronaut moon car truck

d1 1 1 1 1
d2 1 1 1
d3 1 1 1
d4 1 1 1 1
d5 1 1 1
d6 1 1

by experts, but with each document being assigned a set of tags. We can think
of such tags as of soft clusters. In this paper we aim to provide measures of
external evaluation criteria that relax both conditions on the clustering and
expert clusterings being partitions (hard clusterings).

Typically in the literature it is assumed that the input data to clustering
evaluation can be described in a form similar to Table 1, i.e. with exactly one
valid cluster Ci and exactly one valid expert cluster Ej for each document. We
will relax this condition to allow comparison of soft clustering and a set of expert
tags assigned to each document, thus allowing input data as in Table 1.

3 Overview of clustering evaluation methods

In this section we briefly review external evaluation criteria typically used in
clustering evaluation. We assume that two partitions (hard clusterings) of objects
are given: one by an algorithm, and another one provided by domain experts.
Most external evaluation criteria can be naturally grouped in two groups:

Pair-counting measures: These measures are defined on a 2⇥ 2 contingency
matrix Table 2 (left) that summarizes similarity of pairs of objects w.r.t. both
clusterings: If there are k objects in the data set, then a + b + c + d =

�k
2

�
. A

typical measure that can be expressed in terms of these numbers is

Rand Index =
a+ d

a+ b+ c+ d
.

However, there exit di↵erent variants of other similar measures. Pfitzner et al.[16]
provide an overview of 43 measures that all fit into this scheme.

Information-theoretic measures: on the other hand compare distributions
of c(D) and e(D), which denote respectively the cluster and the expert label
assigned to a document D drawn randomly from the dataset. These measures
can be expressed in terms of joint distribution of hc(D), e(D)i, i.e. simply by
counting objects belonging to each pair hCi, Eji as shown in Table 2 (right).
Numbers in brackets denote expected values of counts assuming independence
of c(D) and e(D). Information-theoretic measures thus aim to to measure the

Table 2. Left: All pair-counting measures can be summarized in terms of num-
bers a, b, c, d. Right: Information-theoretic measures are defined in terms of con-
tingency table (following example in Table 1).

Pairs of documents Same cluster?
Yes No

Same Yes a b

expert tag? No c d

C1 C2 C3 Total
E1 1 0 0 1
E2 0 0 1 1
E3 0 1 1 2
E4 1 1 0 2
Total 2 2 2 6

degree of dependence between these two. An example such measure is mutual
information MMI between c(D) and e(D), where

MMI(X,Y ) =
X

x

X

y

p(x, y) log

✓
p(x, y)

p(x)p(y)

◆
.

A measure typically used in clustering evaluation is Normalized Mutual Infor-
mation [10], though [16] reviews 13 di↵erent measures, all defined quite similarly.
Purity is a measure occasionally used as an external evaluation criterion.

Semantic Evaluation Methods for soft clustering: We stress two limita-
tions of measures proposed in the literature and briefly reviewed thus far. The
first limitation, already mentioned in the previous section, is the typical as-
sumption that both the clustering algorithm and the experts provide partitions.
A more important limitation, though, is that neither of these measures described
so far resemble the thought process that the expert himself would undergo if he
was faced with the task of manually evaluating a clustering.

Previous works by other authors on this problem include [3] (Fuzzy Mutual
Information) and [8] (comparing set covers). In this section we we will describe
a novel method of semantic evaluation to deal with the mentioned limitations.

First we describe how to extend a pair-counting measure of similarity of two
partitions to a measure of similarity of set covers. In order to fully characterize
a pair of documents hdi, dji, we proposed in [13] to define notions of cluster-
similarity and expert-similarity for documents and base pair-counting measures
on Table 2. This approach naturally extends any pair-counting measure, with
the focus of our prior experiments on Rand Index [17]. We defined very simple
notions of similarity: we considered two documents di, dj ✓-expert-similar, if

|e(di) \ e(dj)|
|e(di) [ e(dj)|

� ✓

and we defined ✓-cluster-similarity in the same way. This approach allows us to
e↵ortlessly apply each of the 43 pair-counting measures reviewed by Pfitzner[16].

Information-theoretic measures can be extended by counting a given docu-
ment in multiple cells of Table 2 whenever the document is in multiple clusters

Table 3. Information-theoretic measures can be defined if we can describe the
joint distribution of clusters and expert labels (see example in Table 1).

C1 C2 C3

Cosmonaut 0.139 0.083 0
astronaut 0.083 0 0
moon 0.139 0 0
car 0.056 0.125 0.125
truck 0 0.042 0.208

and/or multiple tags are assigned to the document. If we wish to assign an overall
equal weight to each document, instead of raw counts, one may further assume
that the contribution of a document is inversely proportional to the number of
cells that it contributes to. This has a straightforward probabilistic interpreta-
tion. The original measures, like MMI(c(D), e(D)) are defined for deterministic
functions c and e and a random document D. In the proposed extension, c

and e are also random variables, with c(d) uniformly distributed across clusters
containing document d, and e(d) uniformly distributed across tags assigned to
document d. Original formulas themselves, like MMI(c(D), e(D)) remain un-
changed. This approach is illustrated in Table 3.

4 Semantic Explorative Evaluation

We have mentioned that the calculation of neither of the measures reviewed so
far resembles human reasoning. We propose a di↵erent approach to the problem
of semantic evaluation.

If an expert faced the problem of manual inspection of clustering results,
he would try to explain the contents of clusters in terms of expert tags. In
essence, a cluster should be valid for an expert if the expert can briefly explain
its contents. The expert would find a set of clusters valid if he could provide
a short explanation for each cluster. In order to define a measure of semantic
validity which is based on this reasoning, we need to specify: (1) the description
of clusters in terms of expert concepts (i.e. a model family), (2) the length of such
an explanation so that we know if it is short, (3) a penalty incurred if a cluster is
indescribable in terms of expert concepts, and (4) the aggregate measure, so that
we can evaluate a set of clusters. We specify these three ingredients as follows:

– The explanation of a cluster is in essence a classification model for this cluster
in terms of expert tags. The exact choice of the classifier is of secondary
importance as long as the same procedure is consistently used to evaluate
di↵erent clusterings. In our experiments, the classifier of choice is a decision
tree with no pruning, with splits defined greedily using Gini index.

– By appealing to Minimum Description Length principle, one may then de-
fine a measure of validity of a fixed cluster as the complexity of the model
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Fig. 1. The decision table H1 (above) and the decision tree describing cluster
C1 constructed from H1. Cluster C1 is the easiest for the expert to explain.
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Fig. 2. The decision trees that describe C2, C3 in terms of expert knowledge.

Properties of Semantic Explorative Evaluation measures. The funda-
mental contribution of this paper is related to the semantic evaluation measure
that simulates the process that the expert himself would undergo if he have to
manually evaluate a clustering result. Let us outline the main properties of the
proposed evaluation measure:

1. For hard clustering and hard expert tagging the Mutual Information (MMI)
and Semantic Explorative Evaluation (SEE) measures have the similar range;

2. MMI = 0 if and only if SEE = 0;
3. An arithmetic mean of MMI is an arithmetic mean of SEE for all possible

distributions of documents into clusters and expert tags.

Due to the space limitation we omit the formal proof of these properties.

Randomization. The last problem we aim to address is that of comparing
di↵erent clusterings. With all evaluation methods, either reviewed or introduced
in this article, we face the same issue when we aim to compare di↵erent cluster-
ings: we lack an explanation why one clustering may be better than the other
one. In this section, we introduce a trick which allows us to isolate a specific
sub-problem solved by a clustering algorithm, to which we can assign a measure
of quality that is easily interpretable.

In what follows, we will think of a clustering algorithm as of a procedure that
solves two sub-problems. For hard clustering these are:
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Ontology	learning	

•  Ontology Learning from Text: 
•  Linked Data Mining  
•  Concept Learning in Description Logics and OWL  
•  Crowdsourcing  



Challenges	in	ontology	learning			

•  Heterogeneity: neither the integration of methods nor the homogenization of 
data has attracted high attention of ML community  

•  Uncertainty: Low-quality or unstructured data can lead to results that are 
less likely to be correct.   

•  Reasoning:  ontology learning approaches are not capable of generating 
consistent (and coherent) ontologies  

•  Scalability: Extracting knowledge from the growing amounts of data on the 
web – un-structured, textual data on the one hand and structured data such 
as databases, linked data or ontologies on the other hand – requires scalable 
and efficient approaches  

•  Quality: Formal correctness, completeness and consistency are only a few 
of many possible criteria for judging the quality of an ontology  

•  Interactivity: The lesser the extent to which humans are involved in a semi-
automatic ontology generation process, the lower the quality we can expect.  

 



CONCLUSIONS	

•  No free lunch theorem =>  
  a need of knowledge modeling and involving in the learning process  

•  Layered learning = decomposition + synthesis of results 
•  Lack of a “back propagation” mechanism  
•  ML techniques are efficient in Knowledge Acquisition   


