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Abstract. We study Noetherian local rings whose all formal �bers are of
dimension zero. Universal catenarity and going-up property of the canonical
map to the completion are considered. We present several characterizations
of these rings, including a characterization of Weierstrass preparation type.
A characterization of local rings with going up property by a strong form of
Lichtenbaum-Hartshorne Theorem is obtained. As an application, we give an
upper bound for dimension of formal �bers of a large class of algebras over
these rings.

0. Introduction

Let (R,m) be a commutative Noetherian local ring. In [11], Matsumura proposes
to study the maximum of the dimensions of all formal �bers of R. Denote this
number by α(R). In an attempt to relate this invariant with other invariants of
R, Matsumura gives several estimates of α(R) in terms of the dimension of R and
computes it for some concrete examples. In general one has 0 ≤ α(R) ≤ dim(R)−1.
Matsumura constructs examples of local rings with α(R) = 0,dim(R)−1,dim(R)−2
(cf. [11]). Later, in an attempt to answer a question of Matsumura, Rotthaus [16]
constructs examples with α(R) = i for any i ∈ {0, 1, . . . ,dim(R)−1}. However, the
interesting question how to compute α(R) by means of known numerical invariants
of R is not yet answered. To �nd an answer to this question, beginning with
understanding the class of local rings whose formal �bers have dimension zero
seems to be natural. These local rings will be called local rings with trivial formal
�bers. They are the object of investigation in this note.

Examples of local rings with trivial formal �bers consist of complete local rings
and one-dimensional local rings. Higher dimensional and non-complete examples
are harder to construct. A well-known example is due to Nagata [13, Example E3.1,
Appendix]. There is also a construction of local rings with trivial formal �bers due
to Rotthaus [16]. There are interesting examples coming from arithmetics and
geometry. For instance, let K be a p-adic �eld, that is, a �nite extension of Qp,
and let X be a projective curve over the ring of integers OK . If x is a point of the
special �ber of X, then the local ring OX,x of germs of regular functions at x has all
formal �bers of dimension zero (see Example 1.1). This is in fact very special class
of local rings with trivial formal �bers which is a motivation for our present work.
Further examples with applications in algebraic number theory could be found in
[6], [3].
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Local rings with trivial formal �bers have been studied by several authors. In [7],
Heinzer and Rotthaus consider excellent Henselian local rings with trivial formal
�bers and show that they satisfy the Noetherian intermediate rings property. Re-
cently, Zöschinger [17] gave several characterizations of local rings whose canonical
map to the completion satis�es the going-up property. These are in fact local rings
with trivial formal �bers.

The aim of this note is to study several basic properties of local rings with trivial
formal �bers and some applications to higher dimensional case.

In Section 1 we �rst present the example of local rings of regular functions on
a curve over the ring of p-adic integers, these rings have trivial formal �bers. The
main result of this section is Theorem 1.4 and its consequence where we consider
over a local ring with trivial formal �bers certain class of algebras, including the
polynomial algebras, and give an upper bound for the dimension of their formal
�bers.

Universally catenary local rings with trivial formal �bers are considered in Sec-
tion 2. By using a result of Charters and Loepp, we obtain an example of a local
ring with trivial formal �bers which is not universally catenary. This distinguishes
the subclass to the whole class of local rings considered in the previous section.
We then present several characterizations of local rings in this subclass including a
characterization of Weierstrass preparation type (Theorem 2.4 and its consequence).

In the last Section 3 we consider local rings whose canonical map R ↪→ R̂ sat-
is�es the going-up theorem. An easy argument shows that R is universally cate-
nary and α(R) = 0. The converse does not hold (see Example 3.1). Recently
Zöschinger [17] studied such rings with going-up property and gave several char-
acterizations. We will give another characterization by means of a strong form of
Lichtenbaum-Hartshorne Vanishing Theorem. The famous theorem of Lichtenbaum
and Hartshorne characterizes the vanishing of the top local cohomology module of
a local ring supported on an ideal by some conditions on the completion. Several
authors have attempted to replace the conditions on R̂ by similar conditions on
R. It is of course impossible in general. However, we will show that such desired
conditions are possible for local rings with going-up property, it even characterizes
such local rings among universally catenary local rings with trivial formal �bers
(see Theorem 3.2).

Throughout this note all rings will be commutative and Noetherian with a unit,
local rings mean commutative rings with a unique maximal ideal.

1. Local rings with trivial formal fibers

Let (R,m) be a Noetherian local ring and R̂ be its m-adic completion. For each

prime p ∈ SpecR, denote by α(R, p) the Krull dimension of the �ber ring R̂⊗Rk(p),
where k(p) := Rp/pRp, and α(R) := max{α(R, p) : p ∈ SpecR}. We identify R

with a subring of R̂ via the canonical map R → R̂. The restriction morphism on
spectra is denoted by τ : Spec R̂→ SpecR, P 7→ P ∩R. Since the completion is �at,
if p ⊆ q are two primes of R then α(R, p) ≥ α(R, q) by [10, Theorem 15.3], hence
α(R) = max{α(R, p) : p ∈ min SpecR}, here we denote by min Spec(R) the set of
all minimal primes of R. In particular, all formal �bers of a ring have dimension
zero if and only if the dimensions of the generic formal �bers are zero. Such a local
ring is called a local ring with trivial formal �bers.
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Typical examples of non-complete local rings with trivial formal �bers are 1-
dimensional local rings. There are examples coming naturally from arithmetics
and geometry (see, for example, Harbater, Hartmann and Krashen [6] or Cuong
[3]). To motivate the present work, we have an example.

Example 1.1. Let K be a �eld of p-adic numbers and OK be its ring of integers.
Let X be a projective curve over OK . Let x be a point of the special �ber of X.
Then all the formal �bers of the local domain OX,x of germs of regular functions
at x have dimension zero.

Using the triviality of the formal �bers of the ring OX,x in the example and
combining with some other properties of the ring, one can prove that the extension

OX,x ⊂ ÔX,x satis�es the Weierstrass Preparation Theorem (see [3]). The later the-
orem was used e�ectively in algebraic number theory to estimate the u-invariant of
quadratic forms over the fractional �eld of OX,x. This leads to interesting compu-
tation of u-invariant of function �elds over p-adic numbers (see [6]). The proof of
the conclusion in the example will be postponed till the end of this section.

The �atness of the completion implies that the restriction morphism τ satis�es
the going-down theorem, in particular it is surjective. So if P is a prime of R̂, then
height(P ) ≥ height(P ∩R), and consequently, τ(min Spec(R̂)) = min SpecR. Using
this we have the following characterization for α(R) = 0.

Proposition 1.2. Let (R,m) be a Noetherian local ring. The following statements
are equivalent.

(a) α(R) = 0.

(b) min Spec(R̂) = τ−1(min Spec(R)).

(c) For any prime P of R̂, heightR̂(P ) > 0 if and only if heightR(P ∩R) > 0.

Moreover, any of the above equivalent conditions implies that Ass(R̂) = τ−1(Ass(R)).
So via the restriction morphism τ , the associated primes of the completion could be
obtained from the associated primes of R and vice versa.

Proof. (a)⇒ (c): The "if" part is straightforward by the going-down theorem. For

the "only if" part, suppose α(R) = 0 and take P ∈ Spec(R̂) with heightR̂(P ) > 0.

Let Q ⊂ P , Q 6= P , be a prime ideal of R̂. Since α(R) = 0, Q ∩ R 6= P ∩ R. So
heightR(P ∩R) > 0.

(c) ⇒ (b): We have min Spec(R̂) ⊆ τ−1(min SpecR). Let P ∈ Spec(R̂) such that
P ∩ R ∈ min Spec(R). Hence heightR(P ∩ R) = 0 and then heightR̂(P ) = 0 by

the assumption. So P is a minimal prime of the completion R̂ and min Spec(R̂) =
τ−1(min SpecR).
(b)⇒ (a): We have α(R) = dim τ−1(min Spec(R)) (see, for example, [10, Theorem

15.3]). So α(R) = dim(min Spec(R̂)) = 0.

In order to prove the last conclusion, we now assume that α(R) = 0. We will
need the following fact.

Claim: For a Noetherian local ring S, τ(Ass(Ŝ)) = Ass(S).

The conclusion of the claim in fact holds true for any faithfully �at ring extension.
A proof could be found in [14, Lemma 3.4].
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Since α(R) = 0, for each associated prime p ∈ Ass(R), we have α(R/p) = 0. So
by the claim and (c), we have

Ass(R̂/pR̂) ⊆ τ−1({p}) = min Spec(R̂/pR̂) ⊆ Ass(R̂/pR̂).

Thus Ass(R̂/pR̂) = τ−1({p}). On the other hand, there is an inclusion R̂/pR̂ ↪→ R̂
which is induced from an inclusion R/p ↪→ R as p is an associated prime of R and
the faithful �atness of the completion. Then there is an inclusion of sets

Ass(R̂) ⊇
⋃

p∈Ass(R)

Ass(R̂/pR̂) = τ−1(Ass(R)).

Therefore Ass(R̂) = τ−1(Ass(R)) by using again the claim. �

The next proposition gives a characterization of Weierstrass preparation type for
local rings with trivial formal �bers. The idea was in fact used in several places for
constructing examples of such local rings (cf. [16]).

Proposition 1.3. Let (R,m) be a Noetherian local ring. All formal �bers of R

have dimension zero, that is, α(R) = 0, if and only if for any element â ∈ R̂, there
is b̂ ∈ R̂ such that âb̂ ∈ R and heightR(âb̂.R) = heightR̂(âR̂).

Proof. For the su�cient condition, let P ∈ Spec R̂ with heightR̂(P ) ≥ 1. Take an

element â ∈ P such that heightR̂(âR̂) = 1. By the assumption, there is b̂ ∈ R̂

such that âb̂ ∈ R and heightR(âb̂R) = 1. In particular, heightR(P ∩ R) ≥ 1. This
is actually an equivalence since τ satis�es the going-down theorem. So α(R) = 0
following Proposition 1.2.

Conversely, let min Spec(R) = {p1, . . . , ps} and min Spec(R̂) = {P1, . . . , Pr}.
We have τ−1(p1, . . . , ps) = {P1, . . . , Pr} by Proposition 1.2, since α(R) = 0. Put
S = R\(p1∪. . .∪ps) which is a multiplicative set. The �ber ring of τ at min Spec(R)

is S−1R̂. Note that dimS−1R̂ = 0 since α(R) = 0, so S−1R̂ is Artinian. Its

maximal ideals are S−1P1, . . . , S
−1Pr. Take an element â ∈ R̂. It su�ces to prove

the assertion for the case heightR̂(âR̂) = 1. In other words, â 6∈ P1 ∪ . . . ∪ Pr and
thus â ∈ S−1R̂ is invertible. Write â−1 = b̂

x ∈ S
−1R̂ for some b̂ ∈ R̂, x ∈ S. Then

there is y ∈ S such that âb̂y = xy ∈ R with heightR(xyR) = 1. �

Now we are going to estimate the dimension of formal �bers of certain algebras
over a local ring R provided α(R) = 0. For a Noetherian local ring A, the bounds
0 ≤ α(A) ≤ dim(A) − 1 are obvious. The highest possibility dim(A) − 1 of α(A)
occurs rather popularly in nature, as Matsumura [11] points out that α(A) =
dim(A) − 1 if A is essentially of �nite type over a �eld. In the following we will
present a class of local rings A with α(A) ≤ dim(A)− 2. This is an interesting way
to produce local rings with higher (but not highest) dimensional formal �bers from
those with trivial formal �bers.

We �rst denote the least dimension of irreducible components of Spec(R) by
sdim(R). So sdim(R) = min{dim(R/p) : p ∈ min Spec(R)}.

Theorem 1.4. Let (R,mR, k) be a Noetherian local ring. Let R ⊆ A be a ring
extension where (A,mA) is a Noetherian local ring such that dim(A) > 1, mA∩R =
mR and the natural inclusion R/mR ↪→ A/mA is a �nite �eld extension. We assume
further that for each element x ∈ R, if heightR(xR) = 1 then heightA(xA) = 1 in
the ring A. Then α(A) ≤ dim(A)− 2 if either
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(a) R is complete and of positive dimension; or,

(b) α(R) = 0 and sdim(R̂) ≥ 2.

Proof. (a) In the �rst case we assume (R,mR) is a complete local ring of positive
dimension. The present proof extends Matsumura's ideas in [11].

We assume the contrary that α(A) = dim(A) − 1. Then there is a prime P

of Â such that dim Â/P = 1 and dim(A/P ∩ A) = dim(A). Denote p = P ∩ A.
By the assumption, the ideal mRA ⊆ A is of positive height, thus mRA is not

contained in p. Then mRÂ + P is an mAÂ-primary ideal in Â. Let n > 0 be an

integer such that mn+1
A Â ⊆ mRÂ+P . We choose a set of generators f1, . . . , fr ∈ A

of mA. Since Â/mAÂ ' A/mA is a �nite extension of k = R/mR, we can write

Â/mAÂ = kw1 + . . .+ kwt for some w1, . . . , wt ∈ A. We have

Â = Rw1 + . . .+Rwt + mAÂ

= (Rw1 + . . .+Rwt) + (f1Â+ . . .+ frÂ)

= . . . =
∑

1≤i≤t
α1+...+αr≤n

wif
α1
1 . . . fαr

r R+ mn+1
A Â

=
∑

1≤i≤t
α1+...+αr≤n

wif
α1
1 . . . fαr

r R+ P + mRÂ.

Denote M = Â/P , then

M = R[w̄1, . . . , w̄t][f̄1, . . . , f̄r]≤n + mRM,

where w̄1, . . . , w̄t, f̄1, . . . , f̄r ∈ A/p and the subindex ≤ n means the subset of
polynomials of degree bounded above by n. SoM/mRM is �nitely generated over k.

Note thatM is separated in the mRÂ-adic topology, Theorem 30.6 of [13] concludes

that Â/P is an R-module generated by the �nite set {wifα1
1 . . . fαr

r : 1 ≤ i ≤
t, α1 + . . .+αr ≤ n}. Combining this with the inclusions R/(p∩R) ⊆ A/p ⊆ Â/P ,
we obtain

dim(R/(p ∩R)) = dim(A/p) = dim Â/P = 1.

This contradicts the assumption dim(A/p) = dim(A) ≥ 2. Therefore α(A) ≤
dim(A)− 2.

(b) We now consider the general case where R is not necessarily complete. We have
a commutative diagram of Cartesian product

R̂ // R̂⊗R A

R //

OO

A.

OO

Denote the mRA-adic completion and the mA-adic completion of A respectively by

A′ and Â. We have

A′ ' lim←−
s

A/msRA ' lim←−
s

(R/msR ⊗R (R̂⊗R A)).
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So A′ is isomorphic to the mR(R̂⊗R A)-adic completion (R̂⊗R A)′ of R̂⊗R A. We
then get a commutative diagram

R̂ // R̂⊗R A // (R̂⊗R A)′

'

��
R //

OO

A //

OO

A′ // Â.

We denote the composition R̂ → R̂ ⊗R A → A′ by ϕ and R0 := Im(ϕ). Consider
the commutative triangle

R //

��@
@@

@@
@@

@ R̂

ϕ
��~~

~~
~~

~~

R0

where the map R→ R0 is induced from the inclusions R ↪→ A ↪→ A′. In particular,
Ker(ϕ)∩R = 0. The assumption α(R) = 0 then implies that Ker(ϕ) is included in

some minimal primes of R̂. In particular, dim(R0) ≥ sdim(R̂) ≥ 2.
We have obtained a complete local ring R0 with positive dimension and maximal

ideal mRR0 such that R0 ⊆ A′ is a subring satisfying

(i) mAA
′ ∩R0 = mRR0 is the maximal ideal of R0;

(ii) A′/mAA
′ ' A/mA is a �nite extension of R0/mRR0 ' R/mR;

(iii) For each x ∈ R̂, if heightR0
(xR0) = 1 then heightA′(xA′) = 1. Indeed, we

have heightR̂(xR̂) = 1 as well. Proposition 1.2 gives us heightR(R ∩ xR̂) = 1.

Taking an element a ∈ R∩xR̂ such that heightR(aR) = 1. By the assumption,
we have heightA′(aA′) = heightA(aA) = 1. Since aA′ ⊆ xA′, it shows that
heightA′(xA′) = 1.

This is exactly the situation in the �rst case. So if P is a prime of Â with

dim(Â/P ) = 1, from the the proof of Case (a), either mR ⊆ P or dim(R0/P ∩R0) =

dim(Â/P ) = 1.
We will show that P ∩A is not a minimal prime of A. This is obvious if mR ⊆ P .

So assume that mR 6⊆ P and dim(R0/P ∩R0) = dim(Â/P ) = 1. Let q = ϕ−1(P ∩
R0) be the prime of R̂ corresponding to P ∩R0 via the projection ϕ. The dimension

of the quotient R̂/q is also one. As sdim(R̂) ≥ 2, q is not a minimal prime of the

completion R̂. The assumption α(R) = 0 implies that the ideal P ∩ R = q ∩ R is
not a minimal prime of R (cf. Proposition 1.2). In particular, the ideal P ∩ A is
not a minimal prime of A. We therefore obtain α(A) ≤ dimA− 2. �

Remark 1.5. 1. In Theorem 1.4, it is required that if x is an element of R and
heightR(xR) = 1, then the ideal xA is of height 1 in the algebra A. Equivalently,
minimal primes of A restrict to minimal primes of R. This requirement is ful�lled
in the following important cases

(i) A is a domain; or
(ii) The extension R ⊆ A satis�es the going-down theorem (for example, A is

�at over R).

2. The assumption sdim(R̂) ≥ 2 in the second case is important. For instance,
consider R = k[X](X) where k is a �eld, and A = k[X,Y ](X,Y ). We have dim(R) =

dim(R̂) = sdim(R̂) = 1 and α(R) = 0. However, α(A) = 1 = dim(A)− 1.
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Theorem 1.4 gives an interesting relation between local rings with trivial formal
�bers and those with higher dimensional formal �bers. The following consequence
of the theorem provides us a rich class of local algebras which satisfy the conditions
in the theorem. It is worth noting that Example 1.1 is a special case of this corollary.

Corollary 1.6. Keep the assumption on (R,mR, k) in Theorem 1.4. Let X be a
projective scheme over Spec(R) and suppose that X dominates Spec(R). Let x be
a closed point in the special �ber of X over k = R/m. Then we have

α(OX,x) ≤ dim(OX,x)− 2.

Proof. Let mx be the maximal ideal of OX,x. Since x is a closed point of the special
�ber of X, we have mx ∩ R = mR. Furthermore, by the geometric formulation of
Hilbert's Nullstellensatz (see Mumford [12, Proposition 3, page 99]), OX,x/mx is a
�nite extension of the residue �eld k. So OX,x satis�es all conditions in Theorem
1.4, it leads to α(OX,x) ≤ dim(OX,x)− 2. �

2. Universal catenarity

Local rings with trivial formal �bers seems to be quite close to complete local
rings. In fact, this is not a right intuition, there are some fundamental properties
of complete local rings like universal catenarity which are not satis�ed generally by
local rings with trivial formal �bers.

There are examples of local rings with trivial formal �bers and the rings are
not universally catenary. In order to give an example of such a local ring, we �rst
recall a result of Charters and Loepp [2, Theorem 3.1 and Lemma 2.8] which is very
helpful in seeking for examples of local rings with prescribed generic formal �bers.

Proposition 2.1 (Charters and Loepp). Let (T,mT ) be a complete local ring. Let
W ⊂ Spec(T ) be a non-empty subset of primes which satis�es:

(a) W has �nitely many maximal elements;
(b) mT 6∈W and Ass(T ) ⊆W ;
(c) If P ∈ Spec(T ), Q ∈W and P ⊆ Q then P ∈W ;
(d) For any P ∈W , P ∩ Z.1T = 0.

Then there is a Noetherian local domain (R,m) such that T is isomorphic to the m-
adic completion of R and the generic formal �ber of R, τ−1({0}) = W . Moreover,
if p is a prime of R, p 6= 0, then T ⊗R k(p) ' k(p), where k(p) = Rp/pRp.

Using this result, we are able to give examples of local rings with trivial formal
�bers which are fail to be universally catenary, or even catenary.

Example 2.2. Let k be a �eld and S = k[[X,Y, Z]]/(X,Y ) ∩ (Z). We have
min Spec(S) = {(X,Y ), (Z)}. Proposition 2.1 shows that there is a local do-

main R with R̂ = S and its generic formal �ber is τ−1({0}) = {(X,Y ), (Z)}.
Hence α(R) = 0. On the other hand, R is obviously not formally equidimensional.
Therefore it is not universally catenary due to a well-known theorem of Ratli� [15,
Theorem 2.6].

It is remarkable that though the local domain R is not universally catenary, it
is catenary and all its formal �bers are regular. The catenarity is immediate since
dimR = 2. The regularity of the formal �bers of R follows from Proposition 2.1.
By the same idea, we could also obtain a local domain R with α(R) = 0 and R is
not even catenary.
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Remark 2.3. Let S be the local ring in Example 2.2. Denote the Henselization
of S by Sh. It is well-known that S and Sh are analytically isomorphic and the
canonical homomorphism S → Sh is regular with zero-dimensional �bers (see [5,
Théorème 18.6.9]). Hence α(Sh) = α(S) = 0.

It is worth noting that the formal �bers of S are geometrically normal. Then
Sh is universally catenary due to Heinzer-Rotthaus-Wiegand [8, Proposition 2.2].

So the completion extension S → Ŝ factors through a "small" universally catenary
local ring with trivial formal �bers, namely, through Sh.

The next theorem is a characterization of Weierstrass Preparation type for uni-
versally catenary local rings with trivial formal �bers.

Theorem 2.4. Let (R,m) be a Noetherian local ring. The following statements are
equivalent.

(a) R is universally catenary and α(R) = 0.

(b) For any prime P ∈ Spec(R̂), dim R̂/P = dimR/P ∩R.
(c) For any ideal I ⊂ R̂, dim R̂/I = dimR/I ∩R.

If in addition R is equidimensional, then any of the equivalent statements above
is equivalent to

(d) For any parameter element x ∈ R̂, there is y ∈ R̂ such that xy ∈ R and xy is
a parameter element of R.

Proof.
(a)⇔ (b): The famous theorem of Ratli� [15, Theorem 2.6] (see also [10, Theorem
31.7]) tells us that R is universally catenary if and only if it is formally equidimen-
sional. Or equivalently,

dim R̂/P + height(P/pR̂) = dimR/p,

for any prime P ∈ Spec R̂, where p = P ∩ R. On the other hand, α(R) = 0 is

equivalent to height(P/pR̂) = 0 for any P ∈ Spec R̂. So R is universally catenary

with α(R) = 0 if and only if dim R̂/P = dimR/P ∩ R for all P ∈ Spec R̂, and
p = P ∩R. This proves the equivalence of (a) and (b).

(b)⇔ (c): Let I ⊂ R̂ be a proper ideal. We have
√
I∩R =

√
I ∩R and dim(R̂/I) =

dim(R̂/
√
I), dim(R/I ∩ R) = dim(R/

√
I ∩R), so replacing I by its radical

√
I

we can assume that I and I ∩ R are radical ideals. Write I = ∩ri=1Pi where

Pi ∈ Spec(R̂)'s are primes of I. Take a prime p ∈ Spec(R) of R ∩ I such that
dim(R/p) = dim(R/I ∩R). We have

p ⊇ I ∩R =

r⋂
i=1

(Pi ∩R),

which induces that p ⊇ Pi∩R for some Pi by the Prime Avoidance Theorem. Using
the assumption we obtain dim(R/p) ≤ dim(R/Pi ∩ R) = dim(R̂/Pi) ≤ dim(R̂/I).

So dim R̂/I = dimR/I ∩R. The converse is trivial.
To prove the last assertion, we assume that R is equidimensional.

(a)⇒ (d): Assume α(R) = 0 and R is universally catenary. Since R is equidimen-

sional, R̂ is also equidimensional by the theorem of Ratli�. So x is a parameter
element of R̂ if and only if heightR̂(xR̂) = 1. Proposition 1.3 guarantees the exis-

tence of an element y ∈ R̂ such that xy ∈ R and heightR(xyR) = heightR̂(xR̂) = 1.
In particular, xy is a parameter element of R.
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(d) ⇒ (a): We prove �rst α(R) = 0 by using Proposition 1.3. Indeed, let x ∈ R̂.
If heightR̂(xR̂) = 0 then take y = 0 we get xy = 0 ∈ R and heightR(xyR) = 0 =

heightR̂(xR̂). If heightR̂(xR̂) = 1 then x is a parameter element of R̂. By the

assumption, let y ∈ R̂ be such that xy ∈ R and xy is a parameter element of R.
So heightR(xyR) = 1 = heightR̂(xR̂) since R is equidimensional. Proposition 1.3
applies to imply that α(R) = 0.

In order to prove the universal catenarity, again by the theorem of Ratli� it
su�ces to show that R̂ is equidimensional. It is worth noting that a local ring is
equidimensional if and only if every parameter element generates a principal ideal
of height one. So let x be a parameter element of R̂. Let y ∈ R̂ be such that xy ∈ R
and xy is a parameter element of R. Since R is equidimensional, heightR(xyR) = 1.
The argument before Proposition 1.2 gives us

1 = heightR(xyR) ≤ heightR(xyR̂ ∩R) ≤ heightR(xR̂ ∩R) ≤ heightR̂(xR̂).

So heightR̂(xR̂) = 1 and R̂ is equidimensional. This completes the proof. �

Theorem 2.4 leads to the following consequence which is another characterization
of universally catenary rings with trivial formal �bers. For a subset X ⊆ SpecR
and an integer i ∈ Z, we denote Xi := {p ∈ X : dimR/p = i}.

Corollary 2.5. Let R be a Noetherian local ring. The following statements are
equivalent.

(a) R is universally catenary and α(R) = 0.

(b) Ass(R̂)i = τ−1(Ass(R)i), for each i = 1, . . . ,dimR.

(c) min Spec(R̂)i = τ−1(min Spec(R)i), for each i = 1, . . . ,dimR.

In particular, if R is equidimensional then R is universally catenary with trivial

formal �bers if and only if Spec(R̂)d = τ−1(Spec(R)d), where d = dimR.

Proof.

(a) ⇒ (b): We have proved in Proposition 1.2 that if α(R) = 0 then Ass(R̂) =
τ−1(AssR). Then Theorem 2.4(b) induces that (a) implies (b).

(b)⇒ (c): is obvious.

(c)⇒ (a): We have

min Spec R̂ =
⋃
i>0

min Spec(R̂)i =
⋃
i>0

τ−1(min Spec(R)i) = τ−1(min SpecR).

Hence α(R) = 0 by Proposition 1.2. Moreover, for each minimal prime p ∈
min SpecR, let i = dimR/p, we then have

Ass(R̂/pR̂) ⊆ τ−1(p) ⊆ τ−1(min Spec(R)i) = min Spec(R̂)i.

Particularly, R̂/pR̂ is equidimensional. Therefore R is universally catenary by
Ratli�'s theorem. This completes the proof. �

In the rest of this section, we consider some characterizations of universal cate-
narity among local rings with trivial formal �bers. Recall that a local ring R is
called quasi-unmixed if Ass(R) = Ass(R)dimR and it is unmixed if its completion
is quasi-unmixed.

Proposition 2.6. Let R be a Noetherian local ring with α(R) = 0. The following
statements are equivalent.
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(a) R is universally catenary.
(b) For any prime p ∈ Spec(R), R/p is unmixed.
(c) R is a homomorphic image of a Cohen-Macaulay ring.

Proof. The equivalence of (a) and (b) is a direct consequence of Corollary 2.5.

(a)⇔ (c): Note that all the �ber rings of the extension R ⊆ R̂ are Cohen-Macaulay
since α(R) = 0. The conclusion then follows from [9, Corollary 1.2]. �

Proposition 2.6 leads to the following characterization in terms of local cohomol-
ogy of the ring.

Corollary 2.7. Let R be a Noetherian local ring. Suppose R is quasi-unmixed
and α(R) = 0. Then R is universally catenary if and only if dimR/ai(R) < i for
i = 1, 2, . . . ,dim(R) − 1, where ai(R) = AnnR(Hi

m(R)) is the annihilator ideal of
the i-th local cohomology module Hi

m(R).

Proof. To prove the corollary, we need to use the following result about local coho-
mology of local rings (for a proof, see [4, Proposition 3.6]).
Claim: Let S be a homomorphic image of a Cohen-Macaulay ring. Fix an integer
0 ≤ i ≤ dimS. For a prime p of S, p ⊇ a0(S) . . . ai(S) if and only if depth(Sp) +
dimS/p ≤ i.
Necessary condition: Assume R is universally catenary. Then it is an image of a
Cohen-Macaulay local ring by Proposition 2.6. Let p be a prime of R. Using the
claim, if p ⊇ ai(R) then depth(Rp) + dimR/p ≤ i. But depth(Rp) > 0 as R is
quasi-unmixed, then dim(R/p) < i. So dimR/ai(R) < i.

Su�cient condition: We assume the contrary that R is not universally catenary.
Since R is quasi-unmixed and α(R) = 0, Corollary 2.5 shows that there is a minimal

prime P of R̂ such that dim(R̂/P ) < dimR. Put i = dim(R̂/P ). As R is a
homomorphic image of a regular local ring, thank to Cohen Theorem on structure
of complete local rings, the claim applies to shows that dim(R̂/ai(R̂)) = i.

On the other hand, the �at base change theorem for local cohomology gives rise
to an isomorphism Hi

m(R)⊗R R̂ ' Hi
mR̂

(R̂). It induces ai(R̂) ∩ R = ai(R). Hence

dim(R/ai(R)) ≥ dim(R̂/ai(R̂)) = i. This contradicts to the assumption. Therefore
R is universally catenary. �

3. Local rings with going-up property

We say that the extension R ⊆ R̂ satis�es the going-up theorem if for any prime
p ⊆ q of R, for any prime P of R̂ with P ∩ R = p, there is a prime Q of R̂ such
that Q ∩ R = q and P ⊆ Q. We will also say a local ring with going-up property
to indicate such a ring R.

A local ring of dimension one clearly satis�es the going-up theorem. It could be
shown that for the local rings OX,x in Example 1.1, if p is any prime of OX,x then

pÔX,x is a prime of the completion ÔX,x (see [3]). So OX,x satis�es the going-up
theorem.

If the completion R̂ is integral over R then R̂/R satis�es the going-up theorem
by [10, Theorem 9.4]. Non-trivial examples of this kind of local rings seem to be
very rare. One can �nd in [13, Example E3.1, Appendix] for such an example.

We consider four classes of Noetherian local rings
R0 := {Noetherian local rings with trivial formal �bers};
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R0
uc := {R ∈ R0 : R is universally catenary};

R0
gu := {Noetherian local rings with going-up property};

R0
int := {Noetherian local rings R such that R̂ is integral over R}.

Let R be a Noetherian local ring with going up property. Since the inclusion R ⊆ R̂
satis�es both the going-up and going-down theorems, it could be shown without
di�culty that R is universally catenary and α(R) = 0. So we have the inclusions

R0
int ⊂ R0

gu ⊂ R0
uc ⊂ R0.

The last inclusion is trict as we have seen in Example 2.2. The other two inclusions
are also strict as we can see in the following examples.

Example 3.1. We will show by examples that the three classes R0
int, R

0
gu, R

0
uc are

distinct.
1. In the �rst example we present a local ring R with going-up property but R̂ is
not integral over R, so R0

int 6= R0
gu. We set R = Q[X](X). Then R̂ = Q[[X]]. The

extension Q[X](X) ⊂ Q[[X]] clearly satis�es the going-up theorem. The Laurent

series of the exponent function eX is

eX = 1 +
X

1!
+
X2

2!
+ . . .+

Xn

n!
+ . . .

So eX ∈ Q[[X]]. Since e is transcendental over Q, eX is not integral over Q[X](X)

and R̂/R is not integral.
2. Let k be a �eld. We consider the complete local ring k[[X,Y, Z]]/(Y ) ∩ (Z).
Using Proposition 2.1, there is a local domain R such that

(a) R̂ = k[[X,Y, Z]]/(Y ) ∩ (Z);
(b) The generic �ber of the completion extension is τ−1({0}) = {(Y ), (Z)} =

Ass(R̂);

(c) If P is a prime of R̂ not in the generic �ber, then {P} = τ−1(P ∩R).

By Corollary 2.5, the conditions (a) and (b) imply that α(R) = 0 and R is univer-

sally catenary. The ideal Q := (X,Y ) is a prime of R̂ which is obviously not in the
generic �ber of τ . Let q = Q ∩ R, then q 6= 0. Since {Q} = τ−1({q}) by (c) and

Q 6⊇ (Z), the extension R ⊆ R̂ does not satisfy the going-up theorem.

In [17], Zöschinger proves that the extension R ⊆ R̂ satis�es the going-up theo-
rem if and only if

(a) α(R) = 0 and R is universally catenary;

(b) For all primes p ⊆ q 6= m of R, if P ∈ Ass(R̂/pR̂) with dim(R̂/P ) =

dim(R/p), then dim R̂/(qR̂+ P ) > 0.

Example 3.1.2. shows that the condition (b) in Zöschinger's theorem could not be
removed.

The well-known Lichtenbaum-Hartshorne Vanishing Theorem provides a su�-
cient and necessary condition for the vanishing of certain top local cohomology
modules by means of some conditions on the completion of the ring. For local rings
with going-up property, we will show that it is possible to check an analogous con-
dition on the ring itself. So, in this senses, local rings with going-up property are
quite closed to complete local rings. It is also worth noting that recently several
authors have tried to extend the Vanishing Theorem in this direction, for examples,
in the case the completion is integral over the ground ring. The next theorem gives
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a strong form of Lichtenbaum-Hartshorne Vanishing Theorem in a more general
context with a simpler proof. It also provide another characterization of local rings
with going-up property.

Recall that we denote Assh(R) := Ass(R)dimR = {p ∈ Spec(R) : dimR/p =
dimR}.

Theorem 3.2. Let (R,m) be a universally catenary Noetherian local ring with
α(R) = 0. The following statements are equivalent:

(a) The extension R ⊆ R̂ satis�es the going-up theorem.

(b) For any ideal I ⊂ R and any quotient S of R, H
dim(S)
I (S) = 0 if and only

if dimR/(p + I) > 0 for any prime ideal p ∈ Assh(S).

Proof. (a) ⇒ (b): Assume the extension R ⊆ R̂ satis�es the going-up theorem.

Then so does the induced map S → Ŝ, and it su�ces to prove the conclusion
for the case S = R. The Lichtenbaum-Hartshorne Vanishing Theorem says that

H
dim(R)
I (R) = 0 if and only if dim R̂/(P + IR̂) > 0 for any prime P ∈ Assh(R̂). We

will show that the later condition is equivalent to dim(R/p + I) > 0 for any prime
p ∈ Assh(R).

For one direction, let p ∈ Assh(R) and let P ∈ Assh(R̂) such that P restricts

to p. We have dimR/p + I = dim R̂/pR̂ + IR̂ ≥ dim R̂/P + IR̂ > 0. Conversely,

assume dimR/p + I > 0 for any p ∈ Assh(R). Let P ∈ Assh(R̂). Set p = P ∩ R.
Let q ⊇ p + I be a prime ideal such that dimR/q > 0. The going-up theorem

applies to R and implies the existence of a prime ideal Q of R̂ such that P ⊆ Q and
Q ∩ R = q. Hence Q ⊇ P + IR̂. Moreover, dim R̂/Q > 0 since q 6= m. Therefore,

dim R̂/P + IR̂ > 0.

(b)⇒ (a): Let p ⊂ q 6= m be prime ideals of R and let P ∈ Spec(R̂) be an associated

prime of R̂/pR̂. As α(R) = 0, this means that P ∩R = p following Proposition 1.2.
Denote S = R/p. Since R is universally catenary with trivial formal �bers, so is the

quotient S. Corollary 2.5 implies that PŜ ∈ Assh(Ŝ). On the other hand, the fact

dimS/q > 0 induces H
dim(S)
q (S) = 0. Hence dim Ŝ/qŜ + PŜ > 0 by Lichtenbaum-

Hartshorne Theorem, or equivalently, dim R̂/qR̂+P > 0. Combining this with the
assumption α(R) = 0 and R is universally catenary, we obtain a going-up theorem

for the extension R ⊆ R̂ by the result of Zöschinger [17, Satz 1]. �

Theorem 3.2 has an immediate consequence.

Corollary 3.3. Let (R,m) be a local domain with going-up property. Then for any
ideal I ⊂ R which is not m-primary, HdimR

I (R) = 0.

One of the most important applications of Lichtenbaum-Hartshorne Vanishing
Theorem is to study the connectedness of algebraic sets. The idea comes back
to Hartshorne and has been developed further by others. The crucial step is to
use the Vanishing Theorem together with the Mayer-Vietoris Sequence to prove
connectedness results for the spectrum of a complete local ring. By the same idea
and by the usage of Theorem 3.2, we are able to state similar results for local rings
with going-up property. This extension has its own geometric meaning since the
local rings could come from geometry as we have seen in Example 1.1.

We will state one of the main results about connectedness, namely, the Connect-
edness Bound for local rings with going-up property. This result is central in the



LOCAL RINGS WITH ZERO-DIMENSIONAL FORMAL FIBERS 13

theory as it induces most of other results. It is stated and proved for complete local
rings in [1, 19.2.9]. Here the proof for our case is similar to those for complete case
(see [1, 19.2.7, 19.2.8, 19.2.9]) except Theorem 3.2 being used in the place of the
Local Lichtenbaum-Hartshorne Theorem.

Recall that for a local ring (R,m) we denote
c(R) := min{n : there is an ideal b ⊂ R such that dimR/b = n and Spec(R) \

V(b) is disconnected};
sdim(R) := min{dimR/p : p ∈ min Spec(R)};
The arithmetic rank of an ideal a ⊂ R is de�ned as the least number of elements

in m which generate an ideal of the same radical as a and it is denoted by ara(a).
We have

Corollary 3.4 (Connectedness bound for local rings with going-up property). Let
(R,m) be a Noetherian local ring with going-up property. Let a be a proper ideal.
Then

c(R/a) + ara(a) ≥ min{c(R), sdim(R)− 1}.
Consequently, c(R/a) + ara(a) ≥ c(R)− 1.
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